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ABSTRACT

Automatic drum transcription is the process of generating
symbolic notation for percussion instruments within audio
recordings. To date, recurrent neural network (RNN) sys-
tems have achieved the highest evaluation accuracies for
both drum solo and polyphonic recordings, however the ac-
curacies within a polyphonic context still remain relatively
low. To improve accuracy for polyphonic recordings, we
present two approaches to the ADT problem: First, to cap-
ture the dynamism of features in multiple time-step hidden
layers, we propose the use of soft attention mechanisms
(SA) and an alternative RNN configuration containing ad-
ditional peripheral connections (PC). Second, to capture
these same trends at the input level, we propose the use
of a convolutional neural network (CNN), which uses a
larger set of time-step features. In addition, we propose the
use of a bidirectional recurrent neural network (BRNN) in
the peak-picking stage. The proposed systems are evalu-
ated along with two state-of-the-art ADT systems in five
evaluation scenarios, including a newly-proposed evalua-
tion methodology designed to assess the generalisability
of ADT systems. The results indicate that all of the newly
proposed systems achieve higher accuracies than the state-
of-the-art RNN systems for polyphonic recordings and that
the additional BRNN peak-picking stage offers slight im-
provement in certain contexts.

1. INTRODUCTION

Music notation, which portrays the instrumentation and
playing techniques used within a musical recording, is pro-
duced through the process of automatic music transcription
(AMT). Fast and accurate production of music notation
would benefit multiple areas including the creative, analyt-
ical and educational industries. The majority of previous
AMT systems has been developed to address pitched in-
strumentation, while relatively few systems have focussed
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on the transcription of percussive instruments. Automatic
drum transcription (ADT) systems soley focus on produc-
ing notation for drum instruments, which strongly portray
the rhythm, groove and feel of the piece. High ADT ac-
curacies have been achieved on audio recordings contain-
ing only basic drum classes such as kick drum, snare drum
and hi-hats [15, 19]. However, accuracies are significantly
lower in a polyphonic context—in which the recordings
contain either additional percussion (e.g., toms, cymbals)
or pitched instrumentation (e.g., guitar, piano) [20].

1.1 Background

Several early ADT systems have been proposed that per-
form well on solo drum recordings [3, 5, 10, 13, 18, 23],
however a relatively small number of systems have demon-
strated the capacity for high performance in a polyphonic
context. Wu and Lerch [21] proposed a non-negative ma-
trix factorisation technique with a specialised basis func-
tion to capture harmonic activity outside of those for the
drum classes under observation. Paulus et al. [12] used a
hidden Markov model to detect the presence of individual
drum onsets within frames of a spectrogram. Southall et
al. [15] and Vogl et al. [19] also formalise ADT as a frame-
wise drum onset detection problem, using recurrent neural
networks (RNN) for classification. Southall et al. [15] pre-
sented a bidirectional RNN (BRNN) system and Vogl et
al. [19] presented a RNN system with time-shifted clas-
sification labels. RNN systems have achieved the best
drum solo performance to date, however their accuracies
in the polyphonic context has been marginalised. Vogl et
al. [20] later proposed the incorporation of gated recurrent
unit (GRU) cells, which incorporate more time-step infor-
mation into the RNN model, resulting in the highest ADT
accuracies to date in a polyphonic context.

1.2 Motivation

The increase in accuracy achieved by the GRU RNN in
[20] over the standard RNN in [19] demonstrates the ef-
fect of storing additional information on classification per-
formance. In a solo drum context, instrumentation over-
lap is limited to the drums under observation, whereas in
a polyphonic context, drums are present along with other
instruments. This may obscure the presence of features be-
longing to the drums under observation, and is mitigated by
the incorporation of additional time-step information in the
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Figure 1: Overview of the proposed SA and PC systems.
Solid lines depict connections of a standard BRNN con-
figuration and dashed lines depict additional SA and PC
connections when attention number a = 1. xt and ỹ are in-
put features and output activation function at time step t. �
in the SA system represents element-wise multiplication.

GRU RNN. Inclusion of additional information in previous
RNN ADT systems however, is still restricted by a bottle-
neck at the output layer, which is determined by the hidden
state sizes. Additionally, larger input feature sizes can not
be used at each time step, due to the computational cost of
fully-connected layers. We present two approaches in an
attempt to overcome the above-stated limitations to ADT
in a polyphonic context: First, to capture the dynamism of
features in multiple time-step hidden layers, we propose
the use of soft attention mechanisms (SA) and an alter-
native RNN configuration containing additional peripheral
connections (PC). Second, to capture these same trends at
the input level, we propose the use of a convolutional neu-
ral network (CNN), which uses a larger set of time-step
features. To further improve the accuracy of the systems,
we also propose the use of an additional BRNN for select-
ing drum onsets from the output activation functions, as
peak-picking within a polyphonic context has proven to be

more difficult than that of drum solos [15, 19, 20].
The remainder of this paper is structured as follows:

Section 2 presents our three newly proposed systems and
our new peak-picking technique. The evaluation is out-
lined in Section 3 and the results are presented in Section
4. Conclusions and future work are provided in Section 5.

2. METHOD

For the three new proposed systems, we use the same
frame-wise classification ADT technique outlined in [15].
Input features are fed into a separate pre-trained neural net-
work for each instrument under observation. Peak-picking
is then performed on the resulting activation functions to
determine onset locations.

2.1 Soft Attention BRNN (SA)

Attention mechanisms allow the network to focus on dif-
ferent parts of the data stored within a RNN for different
tasks. This is achieved by enabling the information fed
to the output layer to be created from multiple time-step
final hidden layers. This was initially achieved through bi-
nary connections in hard attention mechanisms and then by
weighted connections in soft attention mechanisms (SA).
They have improved RNN results in multiple fields includ-
ing: machine translation [1] and image caption genera-
tion [11, 22]. An overview of the implemented SA ADT
system based on [6] is given at the top of Figure 1. We use
a BRNN with each hidden layer containing 100 long short-
term memory cells with peephole connections (LSTMP) as
the basis of the system. This is due to its ability to pass in-
formation through its memory cell c, which is updated us-
ing the input i, forget f and output o gates. The equations
for a LSTMP cell layer are:

itl = σ(Wil
[
xt, ht−1

l , ct−1
l

]
+ bil) (1)

f tl = σ(Wfl
[
xt, ht−1

l , ct−1
l

]
+ bfl) (2)

c̃tl = tanh(Wcl
[
xt, ht−1

l , ct−1
l

]
) (3)

ctl = f t � ct−1
l + it � c̃tl + bcl) (4)

otl = σ(Wol
[
xt, ht−1

l , ctl
]

+ bol) (5)

htl = otl � tanh(ctl), (6)

where htl is the hidden layer of layer l at time step t, the
weights W , and the biases b. x is the input feature where
xt = htl−1 if l > 1. After each hidden layer dropouts
[16] are implemented with a probability of p. Based on
preliminary tests, we use 2 hidden layers as using more
did not improve performance.

The SA feeds the LSTM BRNN output into the output
layer as a weighted combination of 2a + 1 time-step final
hidden layers, centred on the current time-step t, where a
is the attention number. First, an intermediate variablem is
determined for each attention step i (i = t−a : t+a) using
the concatenated outputs of the forwards and backwards
directional LSTMs Q (Q =

[
y→L , y←L

]
) and a context U :
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Figure 2: Overview of the proposed CNN. Information flows through the network from left to right; solid lines represent
connections, with dashed lines representing convolution and dash-dotted lines representing max pooling.

mi = tanh(WqQ
i +WUU). (7)

The aim of U is to feed the SA mechanism information
regarding the wider scope of the current data. We first at-
tempted to use the the cell state of the final hidden layer
cL as in [8], however using the outputs of the first hidden
layer (U =

[
ht→1 , ht←1

]
) resulted in better performance

during preliminary testing. The attention weights s are de-
termined using a softmax function across i:

si ∝ expW T
m mi, (8)

so that
∑
i s
i = 1. The output layer input z is then calcu-

lated using Q and s and fed into an output layer similar to
the BRNN architecture in [15]:

z =
∑
i

si �Qi (9)

ỹt = softmax(Wzz + bz). (10)

s can be thought of as percentage determining how much
information from each of the time-step final hidden layers
Q is used in the input to the output layer z.

2.2 BRNN with Peripheral Connections (PC)

Although the SA system allows the information fed into
the output layer to be determined directly from multiple
time-step hidden layers, the amount of information is still
limited by the hidden layer size. We propose an increase in
the amount of information passed to the output layer by in-
cluding direct connections from multiple time-step hidden
layers to the output layer, which we term peripheral con-
nections (PC). An overview of the PC system is presented
at the bottom of Figure 1. The PC system is the same as
the SA system in eqns. 1–6. However, these connections
are implemented in the output layer using:

ỹt = softmax(WvQ
t−a:t+a + bv), (11)

where v highlights the weights and biases belonging to the
PC output layer and Qt−a:t−a is the concatenation of mul-
tiple LSTM time-step outputs:

Q =
[
h→t−aL , .... , h→t+aL , h←t−aL , .... , h←t+aL

]
. (12)

If a = 0, then both the SA and PC systems are the same as
a standard BRNN network with LSTMP cells.

2.3 Convolutional Neural Network (CNN)

As RNNs contain fully-connected layers, large input fea-
ture sizes can not be used as they become extremely com-
putationally expensive. Convolutional neural networks
(CNN) overcome this problem by combining feature learn-
ing, dimensionality reduction and classification stages in a
single trainable network. This ability has enabled CNNs
to achieve higher accuracies than RNNs in the closely re-
lated fields of onset detection [14] and downbeat detec-
tion [4]. We propose to use a convolutional neural network
to enable multiple time-step features to be used as input for
each frame classification. An overview of the implemented
CNN ADT system is outlined in Figure 2 where j frames
on either side of the current frame t are included in the in-
put features and different values of v and e are used as j
is increased. It consists of two sets of convolutional, max
pooling, dropout [16], and batch normalisation [7] layers
before a 100-neuron fully-connected layer and a two neu-
ron softmax output layer.

2.4 Implementation

The newly proposed models are implemented using the
Tensorflow Python library. Four SA and PC systems (SA1,
SA2, SA3 and SA5) and (PC1, PC2, PC3 and PC5) are im-
plemented where a = [1, 2, 3, 5] and four CNN systems
(CNN2, CNN5, CNN10, and CNN20) are implemented where
j = [2, 5, 10, 20]. These values are chosen as they cover
various ranges of important information regarding the typ-
ical envelope length of drums.

2.4.1 Input Features

In order for an audio file to be processed by the neural
networks, it must be procedurally segmented into frame-
wise spectral features. First, the input audio (16-bit .wav
file sampled at 44100 kHz) is segmented into T frames
using a Hanning window of n samples (n = 2048) with
a n

4 hopsize. A frequency representation of each of the
frames is then created using the magnitudes of a discrete
Fourier transform resulting in a n

2 x T spectrogram. The
spectrogram is input into the SA systems in a frame-wise
manner and as a combination of frames (j frames either
side of the current frame t) for the CNN systems.

2.4.2 Peak Picking

Once the activation functions Ỹ are output from the sys-
tems, peak-picking is used to identify the onset candidates.



In this paper, we implement two peak-picking strategies
for each of the systems. The first approach, termed mean
threshold (MT), is an updated version of the technique used
in [15], in which a threshold is determined for each frame
(τ t) using:

τ t = mean(ỹt−θ : ỹt+θ) ∗ λ (13)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin,

(14)

where θ sets the number of frames in each direction to cal-
culate the mean, λ is a constant and tmax and tmin are
the possible maximum and minimum values. The current
frame of ỹ is accepted as an onset if it is the maximum of a
surrounding number of frames and above the threshold τ :

Ot =

{
1, ỹt == max(ỹt−Ω : ỹt+Ω) & ỹt > τ t

0, otherwise,
(15)

where O(t) represents an onset at time step t and Ω is the
number of frames on either side of the current frame t used
to calculate the maximum.

For the second approach we train an additional neural
network using the activation functions from the training
data in an attempt to learn to identify the drum onsets more
difficult to detect. To do this we use a BRNN, with a single
10 LSTMP-cell hidden layer and a softmax output layer.
The output of the new BRNN is then processed by the MT

technique (eqns. 10–12), we refer to this second technique
as BRNN-MT.

2.4.3 Training

The three models and the BRNN-MT peak-picking networks
are trained using the Adam optimiser [9] with a learning
rate of 0.003. The training data is created by generating
a feature matrix from input features x and an associated
class vector from the target activation functions Y . Mini-
batch gradient descent (batch size = 1000) created from
10 segments (segment length = 100) is used. The activa-
tion function output from the models Ỹ are used as the
input to the BRNN-MT networks which are trained using the
same targets used to train the systems. A new BRNN-MT

network is trained independently for each system in an at-
tempt to increase adaptability, similar to [2]. Training is
stopped when the following criteria have been met: (1) a
minimum of 10 epochs have commenced; and (2) the vali-
dation set accuracy has not increased between epochs. To
ensure training commences correctly, the weights are ini-
tialised using a random uniform distribution scaled to keep
constant variance [17] and the biases are initialised to zero.
Cross entropy is used as the loss function.

3. EVALUATION

To evaluate the newly proposed methods along with the
current state-of-the-art systems, we implement four eval-
uations similar to those carried out in [15, 19, 20], along
with an additional evaluation to test the generalisability

of the systems. The systems are trained to identify kick
drum, snare drum and hi-hat onsets. The first evalua-
tion, termed drum solo, aims to demonstrate system perfor-
mance on drum solo recordings that contain only the three
drum instruments under observation. The second evalu-
ation, termed drum mixture, aims to demonstrate system
performance in a drum-only polyphonic context, where
the recordings contain additional drum instrumentation to
those under observation (e.g., toms and cymbals). The
third evaluation, termed multi-instrument mixture, aims
to demonstrate system performance in a fully-polyphonic
context where multiple instruments are present in addi-
tion to the drum instruments under observation (e.g., pi-
ano and guitar) and the fourth evaluation, termed cross-
context, aims to test the systems adaptability to before
unseen timbres. The newly proposed evaluation, termed
multi-context, aims to test the ability of a single system to
be trained and used in multiple contexts.

3.1 Evaluation Methodology

F-measure is used as the evaluation metric with preci-
sion and recall determined using the onset candidates from
the peak-picking stage. Detected onsets are accepted as
true positives if they fall within 50ms of the ground truth
annotations. The individual instrument F-measures are
calculated as the mean F-measure across test tracks and
the mean instrument F-measure is calculated as the mean
F-measure across the individual instruments. The peak-
picking parameters (θ, λ, tmax, tmin and Ω) are found
using a grid-search on the validation set and the dropout
probability p is set to 0.25.

3.1.1 Drum Solo Evaluation

To test the capability of the systems in the drum solo eval-
uation, we use the updated version of the IDMT-SMT-
Drums dataset [3]. This dataset contains 104 tracks di-
vided into three subsets (20 real drum tracks, 14 techno
drum tracks, and 70 wave drum tracks) with an average
track length of 15 seconds. The dataset is divided by track
in equal distributions across the three subsets into 70%
training 15% validation and 15% test sets. The training
set is used to train the neural network systems, the vali-
dation set to prevent overfitting during training and to op-
timise the peak-picking parameters, and the test subset is
used as unseen data for testing. The four SA systems, the
four PC systems and the four CNN systems are evaluated
along with two current state-of-the-art ADT systems: (1)
tanhB, a BRNN system containing tanh cells [15] and (2)
lstmpB, a BRNN system containing LSTMP cells. The
LSTMP architecture was chosen as it outperformed GRU
cells in preliminary testing on the same datasets. Drum on-
sets are selected from the output activation functions using
the two peak-picking techniques.

3.1.2 Drum Mixture and Multi-instrument Evaluations

To determine system performance in a polyphonic context
we use the minusone subset of the ENST Drums dataset
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Figure 3: Mean instrument F-measures for drum solo
(top), drum mixture (middle) and multi-instrument mixture
(bottom) evaluations. Previous state-of-the-art RNN sys-
tems are on left and the SA, PC and CNN systems on right.
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Figure 4: Mean instrument F-measure results with MT

peak-picking for the cross-context evaluation: drum solo
combinations (top); drum mixture combinations (middle);
and multi-instrument mixture combinations (bottom).

[5]. The dataset contains 64 tracks divided into three dif-
ferent drummers (21 tracks by drummer 1, 22 tracks by
drummer 2, and 21 tracks by drummer 3) with an aver-
age track length of 55 seconds. The dataset is composed
of drum-only recordings which contain multiple drum in-
struments as well as accompaniment files. The drum only
recordings are used for the drum mixture evaluation and the
drum-only recordings are mixed with the accompaniment
files using a ratio of 2/3 to 1/3 respectively for the multi-
instrument mixture evaluation. The same training, valida-
tion and evaluation procedures are used as in the drum solo
evaluation (Section 3.1.1).

3.1.3 Cross-context Evaluation

To test the adaptability of the trained systems to before un-
seen contexts we use the three systems trained in the previ-
ous evaluations (i.e., drum solo, drum mixture, and multi-
instrument mixture) to process the datasets from the other
two evaluations. This results in six cross-context evalu-
ation combinations (e.g., train with drum solo test with
multi-instrument mixture).

3.1.4 Multi-context Evaluation

To test how well a single system can be trained to adapt
and perform in multiple contexts, we combine the training
and validation data from the drum solo, drum mixture and
multi-instrument mixture evaluations. The test data from
the three evaluations is then processed using the single
newly trained systems. Of the five evaluations this is the
most realistic scenario.

4. RESULTS AND DISCUSSION

4.1 Drum Solo, Drum Mixture and Multi-instrument
Mixture Results

Figure 3 highlights the mean instrument F-measure results
of the SA, PC, CNN, and two previous state-of-the-art sys-
tems with both of the peak-picking strategies for the drum
solo, drum mixture and multi-instrument mixture evalua-
tions. The SA systems achieve the highest mean instru-
ment F-measure in all three evaluations; 0.9880 (SA3),
0.9287 (SA1) and 0.9274 (SA2) respectively. The PC sys-
tems achieve higher F-measures in the drum mixture and
multi-instrument mixture evaluations and the CNN sys-
tems achieve higher F-measures than the state-of-the-art
systems in the multi-instrument mixture evaluation. This
demonstrates that within the harder polyphonic contexts,
allowing the output layer to access multiple hidden states
and including the input features of multiple frames does
enable higher performance to be achieved. The BRNN-MT

peak-picking strategy improves the results of some of
the SA and PC systems in both the drum mixture and
multi-instrument mixture evaluations, demonstrating that
the BRNN-MT strategy is able to improve performance in
some contexts by learning to identify peaks within the
noisier activation functions. For both the SA and PC sys-
tems the systems where a ≤ 3 achieved the highest F-
measures, we believe this is because of the extra informa-
tion in the SA5 and PC5 systems is beyond the scope of the
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Figure 5: Results of the multi-context evaluation. For each system using the MT peak-picking technique the drum solo,
drum mixture, multi-instrument mixture, and mean-context F-measures are shown in addition to the mean-context precision
and mean-context recall.

onset and so has a negative effect on the performance. A
similar trend is seen with the CNN systems which again
can be explained by the larger input feature sizes reduc-
ing the impact of the relevant features. We believe that
due to the drum solo evaluation being a relatively simple
task, the less-complex RNN systems are able to achieve
similar accuracies to the newly proposed systems and the
CNN performs poorly on this same task due to noisy out-
put activation functions which are the result of not passing
information between time steps. This would also explain
why the BRNN-MT strategy did not improve the results for
the CNN systems and for any of the systems in the drum
solo evaluation.

4.2 Cross-context Results

For each cross evaluation combination the top performing
configuration of the existing state-of-the-art RNN, SA, PC
and CNN systems using the MT peak-picking technique is
displayed in Figure 4. The highest performing CNN sys-
tem achieves a higher mean instrument F-measure than
the highest performing current state-of-the-art RNN sys-
tem (lsmtpB) in three out of the six combinations, the
highest performing SA system only outperforms the cur-
rent state-of-the-art RNN system in one of the combina-
tions and the PC doesn’t out perform the RNN system in
any combinations. This suggests that the CNN system is
more adaptable than the SA and PC systems even though
the SA and PC systems achieve higher mean instrument
F-measures than the CNN systems in the previous three
evaluations. None of the highest accuracies were achieved
by systems that used the BRNN-MT peak-picking strategy,
which suggests that it is not suited for adapting to unseen
situations.

4.3 Multi-context Results

Figure 5 highlights the drum solo, drum mixture, multi-
instrument mixture, and mean-context F-measures using
the MT peak-picking technique. Also included are the
mean-context precision, and recall for each of the sys-
tems in the multi-context evaluation. The SA and CNN
systems outperform the existing state-of-the-art and PC
systems, further demonstrating the high performance of

the SA systems and the adaptability of the CNN systems.
This is achieved through higher recall, but not necessarily
higher precision, suggesting that the improvement made
by these systems is due to their ability to produce fewer
false spikes within the resulting activation functions. All
of the highest context F-measures were lower than the F-
measures achieved by the systems trained in the single con-
text focused evaluations (i.e., drum solo, drum mixture, and
multi-instrument mixture evaluation) demonstrating that a
system trained in multiple contexts can not outperform sys-
tems trained solely in one situation. The BRNN-MT peak-
picking strategy again does not improve the performance
of any of the systems in this evaluation.

5. CONCLUSIONS AND FUTURE WORK

We have presented three new neural network based sys-
tems for ADT in a polyphonic context: First, SA and PC
systems that enable multiple time-step hidden states to be
accessed by the output layer; and second, a CNN system
that allows larger input feature sizes to be used. The re-
sults from the conducted evaluations demonstrate that all
of the newly proposed systems achieve higher accuracies
than the current state-of-the-art systems in polyphonic con-
texts, highlighting the effect of increased access to more
information. Of all the tested systems, the SA performs
best in either the single or multi-context, while the CNN
systems perform best in situations in which the context is
unseen. A possible future step would be to combine the
SA and CNN systems into a single system possibly allow-
ing the system to work in both situations (i.e., single and
multiple contexts). An open source version of the newly
proposed ADT systems can be found within the ADT li-
bray (ADTLib). 1
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