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ABSTRACT

The usage of ornaments is key attribute that defines the style of
a flute performances within the genre of Irish Traditional Music
(ITM). Automated analysis of ornaments in ITM would allow for
the musicological investigation of a player’s style and would be
a useful feature in the analysis of trends within large corpora of
ITM music. As ornament onsets are short and subtle variations
within an analysed signal, they are substantially more difficult to
detect than longer notes. This paper addresses the topic of onset
detection for notes, ornaments and breaths in ITM. We propose
a new onset detection method based on a convolutional neural
network (CNN) trained solely on flute recordings of ITM. The
presented method is evaluated alongside a state-of-the-art gen-
eralised onset detection method using a corpus of 79 full-length
solo flute recordings. The results demonstrate that the proposed
system outperforms the generalised system over a range of musi-
cal patterns idiomatic of the genre.

1. INTRODUCTION

Figure 1: Player with Rudall and Rose eight-key simple
system flute manufactured from cocus wood.

Irish Traditional Music (ITM) is a form of Folk music
that developed alongside social dancing and has been an
integral part of Irish culture for hundreds of years (Boul-
lier, 1998). ITM consists of various subgenres and is

played with a wide variety of traditional instrumentation,
including melody instruments such as fiddles, bagpipes, tin
whistles, accordions and flutes. Figure 1 presents an ITM
performer with a wooden simple system flute.

Determining the stylistic differences between players
is an important first step towards understanding how the
music and culture associated with ITM has developed.
Within traditional music, mastery is determined by tech-
nical and artistic ability demonstrated through individu-
ality and variation in performances. Individual playing
style is comprised of several features, including variations
in melody, rhythmic phrasing, articulation, and ornamen-
tation (McCullough, 1977; Hast & Scott, 2004; Keegan,
2010; Köküer et al., 2014).
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Figure 2: Frequency over time of cut and strike articu-
lations showing change of pitch. Long and short rolls,
cranns and single trills are also shown with pitch devia-
tions. Eighth-note lengths are shown for reference.

Automated identification of a player’s style would be
useful in the musicological investigation of various trends
within the ITM timeline. A first step towards automated
style identification is the detection of onsets related to



notes and ornaments. This study continues the work of Ali-
MacLachlan et al. (2016) by evaluating notes and single-
note ornaments known as cuts and strikes. We also inves-
tigate breaths and the cut and strike elements of multi-note
ornaments known as short roll, long roll, crann and sin-
gle trill as described in Larsen (2003). Figure 2 depicts
single-note and multi-note ornaments over time.

Onset detection algorithms are used to identify the start
of musically relevant events. Ornament onset detection for
Irish traditional flute recordings is a difficult task due to
their subtle nature; ornaments tend to be played in a short
and soft manner, resulting in onsets characterised by a long
attack with a slow energy rise (Gainza et al., 2005; Böck &
Widmer, 2013).

1.1 Related work

There are relatively few studies concentrating on onset de-
tection of flute signals within ITM. Gainza et al. (2004)
and Kelleher et al. (2005) used instrument-optimised band-
specific thresholds alongside a decision tree to deter-
mine note, cut or strike based on duration and pitch.
Köküer et al. (2014) also analysed flute recordings, us-
ing an instrument-specific filterbank and a fundamental
frequency estimation method using the YIN algorithm by
De Cheveigné & Kawahara (2002) to minimise inaccu-
racies associated with octave doubling. More recently,
Jančovič et al. (2015) presented a method for transcription
of ITM flute recordings with ornamentation using hidden
Markov models and Beauguitte et al. (2016) evaluated note
tracking using a range of methods on a corpus of 30 tune
recordings.

Onset detection techniques used in existing flute sig-
nal analysis have largely relied upon algorithms utilising
signal processing, while state-of-the-art generalised on-
set detection methods use probabilistic modelling. Ali-
MacLachlan et al. (2016) evaluated 11 methods that had
previously performed well in the MIREX wind instrument
class. OnsetDetector achieved the highest precision and
F-measure scores. The use of bidirectional long short-term
memory neural networks allows this model to learn the
context of an onset based on past and future information,
resulting in high performance in the context where soft on-
sets and features with small pitch deviations are coupled
with other spurious events.

1.2 Motivation

The approach undertaken in this paper extends upon
the work published in Ali-MacLachlan et al. (2016)
in which onsets were detected through the use of the
OnsetDetector system Eyben et al. (2010). Inter-onset
segment classification was performed using an classifica-
tion method based on a feed-forward neural network.

The OnsetDetector system was trained on a broad
range of music making it effective at detecting a variety
of instrument onsets. While note onset detection accu-
racy was very successful, ornament detection accuracies
proved to be quite low by comparison. In an attempt to

improve onset detection for ITM, we implemented an on-
set detection method based on a convolutional neural net-
work (CNN) and trained this model specifically on ITM
flute recordings. As we believe that the detection of or-
nament onsets to be context-dependent, we evaluate detec-
tion accuracy in relation to events that occur immediately
before and after the detected events. This evaluation allows
us to determine where onset detection errors occur and al-
lows us to observe limitations in the detection of notes,
cuts, strikes and breaths, in the context of traditional music
being played authentically at a professional level.

The remainder of this paper is structured as follows:
Section 2 outlines the proposed onset detection method and
Section 3 presents our evaluation methodology and dataset.
Section 4 presents the results of this evaluation and Section
5 presents conclusions and future work.

2. METHOD

Our onset detection method is based on a convolutional
neural network (CNN) classification method. CNNs share
weights by implementing the same function on sub-regions
of the input. This enables CNNs to process a greater
number of features at a lower computational require-
ment compared to other neural network architectures (i.e.,
multi-layer perceptron). High onset detection accuracies
have been achieved by CNNs using larger input features
(Schluter & Böck, 2014).

Figure 3 gives an overview of the implemented CNN
architecture. The input features are first fed into two sets of
convolutional and max pooling layers containing dropouts
and batch normalisation. The output is then reshaped into
a one-dimensional format before being run through a fully-
connected layer and a softmax output layer.

2.1 Convolutional and max pooling layers

The output h of a two-dimensional convolutional layer
with a rectified linear unit transfer function is calculated
using:

hfij = r

(
L−1∑
l=0

M−1∑
m=0

W f
mlx(i+l)(j+m) + bf

)
(1)

where x is the input features, W and b are the shared
weights and bias and f is the feature map. L and M are
the dimensions of the shared weight matrix and I and J
are the output dimensions of that layer. The equation for
the rectifier linear unit transfer function r is:

r(φ) = max(0, φ) (2)

The output of the convolutional layer hwas then processed
using a max pooling layer which resulted in a I

a by J
b out-

put where a and b are the dimensions of the sub-regions
processed. A dropout layer (Srivastava et al., 2014) and
batch normalisation (Ioffe & Szegedy, 2015) were then im-
plemented.
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Figure 3: Overview of the proposed implemented CNN system with different input feature sizes.

2.2 Fully-connected layer

A fully-connected layer consists of neurons which are
linked to all of the neurons in previous and future layers.
The output Y of a fully connected layer with a rectified
linear unit transfer function is calculated using:

Y = r(Wcz + bc) (3)

where z is the input, Wc is the weight matrix and bc is
the bias. For the softmax output layer the rectified linear
unit r transfer function is swapped for the softmax function
which is calculated using:

softmax(φ) =
eφ∑
eφ

(4)

2.3 Implementation

The CNN was implemented using the Tensorflow Python
library (Abadi et al., 2016) with training data consisting of
target activation functions created from ground truth an-
notations. A frame-based approach was taken where each
frame is assigned 1 if it contains an onset or 0 if it does not.

2.4 Input features

Before processing by the CNN, the audio files must be seg-
mented into frame-wise spectral features. An N sample
length audio file was segmented into T frames using a Han-
ning window of γ samples (γ = 1024) and a hop size of
γ
2 . A frequency representation of each of the frames was
then created using the discrete Fourier transform resulting
in a γ

2 by T spectrogram. Various centred on the frame to
be classified.

As classification is performed on the frame at the centre
of the input features, a potentially crucial parameter is the

number of input frames ψ. To determine the most efficient
number of frames to use as the input for the CNN, five
different values for ψ were used (ψ = [5, 11, 21, 41, 101])
creating the CNN5, CNN11, CNN21, CNN41, CNN101 versions
respectively.

2.5 Layer sizes

The layer sizes used for the different input features are in-
dicated at the bottom of Figure 3. The size of all layers are
consistent across systems apart from the second dimension
k of the second max pooling layer. k is set to 1, 2, 3, 5 and
10 for the different input features sizes respectively.

2.6 Peak picking

The onsets must be temporally located from within the ac-
tivation function Y output from the CNN. To calculate on-
set positions, the method from Southall et al. (2016) is
used. A threshold τ is first determined using the mean
across all frames and a constant λ:

τ = λȲ (5)

The current frame t is determined to be an onset if its mag-
nitude is greater than those of the surrounding two frames
and above threshold τ .

O(t) =

{
1, yt = max(yt−1:t+1) & yt > τ,
0, otherwise.

(6)

Finally, if an onset occurs within 25ms seconds of another
then it is removed.

2.7 Training

The training data is divided into 1000 frame mini-batches
consisting of a randomised combination of 100 frame re-



Player Album(s) Reels Jigs Polkas Hornpipes
Harry Bradley The First of May 8 4 4
Bernard Flaherty Flute Players of Roscommon Vol.1 2
John Kelly Flute Players of Roscommon Vol.1 1 1
Josie McDermott Darby’s Farewell 2 2 2

Catherine McEvoy
Flute Players of Roscommon Vol.1,
Traditional Flute Playing in the Sligo-Roscommon Style

4

Matt Molloy Matt Molloy, Heathery Breeze, Shadows on Stone 5 2
Conal O’Grada Cnoc Bui 13 1 10
Seamus Tansey Field Recordings 4
Michael Tubridy The Eagle’s Whistle 2 9
John Wynne Flute Players of Roscommon Vol.1 3

Table 1: Dataset recordings showing player, album source and tune type.

gions from the feature matrix. The Adam optimiser is used
to train the neural networks with an initial learning rate
of 0.003. Training is stopped when the validation set ac-
curacy does not increased between iterations. To ensure
training commences correctly, the weights and biases are
initialised to random non-zero values between ±1 with
zero mean and standard deviation equal to one. The per-
formance measure used is cross entropy and the dropout
probability d is set to 0.25 during training.

3. EVALUATION

As the performance of the proposed method depends heav-
ily on the accuracy of the chosen onset detection method,
the aim of our first evaluation is to determine the quality of
existing timing data. We then perform an evaluation of our
onset detection method by comparing it against the most
successful method found in Ali-MacLachlan et al. (2016).

3.1 Dataset

The corpus for analysis consists of 79 solo flute recordings
by nine prominent traditional flute players. Four common
types of traditional Irish tune are represented: reels, jigs,
hornpipes and polkas. Individual players are discussed in
Köküer et al. (2014) and players, tune type and recording
sources are detailed in Table 1.

The dataset contains annotations for onset timing infor-
mation and labels for notes, cuts, strikes and breaths, and
is comprised of approximately 18,000 individual events.
First notes of long rolls, short rolls and cranns were also
identified and labelled.

3.2 Onset detection evaluation

The ground truth annotation process was completed using
multiple tools as the project evolved (Köküer et al., 2014;
Ali-MacLachlan et al., 2015) resulting in inconsistencies
being found in onset placement and labelling. We there-
fore improved the quality of these annotations by compar-
ing ground truth onsets against true positive and false neg-
ative onsets obtained using OnsetDetector (Eyben et al.,
2010). Events outside a 50ms window of acceptance were
evaluated by an experienced flute player, allowing events to

be checked for onset accuracy. Patterns containing impos-
sible sequences of events were identified and eliminated
by checking each event in context with previous and sub-
sequent events.

To obtain the results for the OnsetDetector system
on the updated dataset all tracks were processed with
the output onset times compared against the annotated
ground truth. We assess the accuracy relating to the
OnsetDetector method before and after annotation cor-
rection and the number of spectrogram frames used as in-
put.

We then evaluate the OnsetDetector system against
the implemented CNN systems the dataset is divided by
tracks into a 70% training set (55 tracks), 15% validation
set (12 tracks) and 15% test set (12 tracks). The training
set is used to train the five versions of the CNN (CNN5,
CNN11, CNN21, CNN41, and CNN101) onset detector using
the different input feature sizes, the validation set is used
to prevent over-fitting and the test set is used as the unseen
test data. The OnsetDetector results for the 12 test tracks
are compared to the results from the 5 CNN versions. F-
measure, precision and recall are used as the evaluation
metrics with onsets being accepted as true positives if they
fall within 25ms of the ground truth annotations.

4. RESULTS

4.1 Onset detection results

P R F
OnsetDetector
Before annotation improvement 83.06 75.10 78.75

OnsetDetector
After annotation correction 85.86 78.46 81.85

CNN5 87.06 84.71 85.73
CNN11 88.07 84.73 86.25
CNN21 88.82 88.26 88.46
CNN41 88.84 86.63 87.58
CNN101 88.72 86.21 87.32

Table 2: Precision (P), Recall (R) and F-measure (F) for
OnsetDetector (Eyben et al., 2010) before and after an-
notation improvement, CNN5, CNN11, CNN21, CNN41, and
CNN101.



True Positives
Label
Code

Musical Pattern Event Context
Onset

Detector
CNN21 Total

111 note note note single notes 1097 1124 1184
211 note cut note single cuts 229 269 310
121 cut note note single cuts 133 237 270
112 note note cut single cuts 192 198 220
114 note note breath single notes 96 99 106
411 note breath note single notes with breath 21 53 88
311 note strike note single strike, end of roll 55 42 76
122 cut note cut trill 13 48 63
141 breath note note single notes 55 56 61
131 strike note note single strike, end of roll 16 33 57
123 cut note strike rolls 14 33 36
261 note cut note start of long roll 27 30 30
153 cut note strike start of short roll 8 22 24
511 note cut note note before start of short roll 18 21 23
612 note note cut note before start of long roll 20 20 21
142 breath note cut breath before single cut 19 20 20
241 breath cut note breath before single cut 12 17 19
412 note breath cut breath before single cut 3 11 19
115 note note cut two notes before start of short roll 16 17 18
271 note cut note start of crann 15 16 18
116 note note note two notes before start of long roll 16 16 17
113 note note strike single strike 14 13 15
117 note note note two notes before start of crann 14 14 14
712 note note cut note before start of crann 13 12 14
132 strike note cut cut after roll 3 9 12

Table 3: Results comparing OnsetDetector and CNN21 onset detectors for all event classes in the context of events
happening prior and subsequent to the detected onset. Label codes of patterns with under 70% accuracy for CNN21 shown
in bold. Patterns with under 10 total onsets omitted.
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Figure 4: Accuracy of OnsetDetector and CNN21 onset detectors for each event class above 10 onsets.

Table 2 presents the overall precision, recall and F-
measure performance for the OnsetDetector and five
CNN versions. The results indicate that all versions of
the CNN achieve higher results than the OnsetDetector.
The CNN21, which uses 10 spectrogram frames prior and

subsequent to the middle frame achieves the highest recall
and F-measure. The CNN41 achieves a slightly higher pre-
cision than the CNN21, however achieves lower recall ac-
curacy. The performance across the five CNN versions is
fairly similar, illustrating that the moderate to higher values



for the ψ parameter (ψ = [21, 41, 101]) are most appropri-
ate for the task. The high performance of this approach is
likely due to two factors. First, as CNNs are capable of
processing large input feature sizes, they incorporate more
context into the detection of a single frame. Second, as the
CNNs are trained solely on traditional flute signals there
is less variation in the represented classes, which has the
potential of improving accuracy.

4.2 Note, cut and strike onset detection accuracy

Table 3 presents the onset detection results for each class
of musical pattern with over 10 onsets in the test cor-
pus of 12 tunes. The mean pattern precision across all
classes was 79.22 for CNN21 in comparison with 59.86 for
OnsetDetector.

The classes consist of three event types where the cen-
tral event is identified in bold. For example, label code 211
(note cut note) is a detected cut with a note before it and
note after it, which exists within the event context of short
and long roll or a single cut. The number of correctly de-
tected onsets (true positives) is found as a percentage of the
overall number of annotated onsets of that pattern. Label
codes with an accuracy of less that 70% are shown in bold.

Notes Cuts Strikes Breaths
OnsetDetector 76.31 77.78 72.37 19.83
CNN21 89.57 91.29 55.26 59.06

Table 4: Accuracy of OnsetDetector and CNN21 onset
detectors for note, cut, strike and breath classes above 10
onsets.

As can be seen in Figure 4 and Table 3, low accura-
cies were found for strikes and notes following strikes. As
a strike is played by momentarily tapping a finger over a
tonehole, the pitch deviation is often much smaller than
that of a cut and the event time is often shorter, making
it more difficult to detect. Breaths are also difficult to de-
tect in commercial recordings because it is usual to apply
a generous amount of reverb effect at the mixing stage, re-
sulting in a slow release masking a defined offset. Table
4 further illustrates inaccuracies in the detection of strikes
and breaths by showing the accuracy for each single event
class - note, cut, strike and breath. The note class also in-
cludes the notes at the start of ornaments such as long roll
and crann and the cut class includes cuts at the start of short
rolls.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an onset detection method
based a convolutional neural network (CNN) and is trained
solely on Irish flute recordings. The results from the eval-
uation show that this method outperformed the existing
state-of-the-art generalised trained OnsetDetector. We
have also improved the annotations of a ITM dataset by
employing a process of automatic onset detection followed
by manual correction as required. To evaluate the effec-
tiveness of this approach, the top performing CNN version

(CNN21) method is compared to the OnsetDetector by
(Eyben et al., 2010), most successful method found in Ali-
MacLachlan et al. (2016).

In future research, we aim to develop note and orna-
ment classification methods with additional features and
attempt other neural network architectures in order to cap-
ture trends that appear in time-series data. We plan to re-
lease a corpus of solo flute recordings that will allow a
deeper study into differences in playing style, and to ex-
tend this corpus to include other instruments. We also
plan to investigate the generality of the proposed system to
other instruments characterised by soft onsets such as the
tin whistle and fiddle. The dataset used in this paper will
also be released shortly, alongside Köküer et al. (2017).
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