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Abstract The ability to diagnose cancer rapidly with

high sensitivity and specificity is essential to exploit

advances in new treatments to lead significant reductions in

mortality and morbidity. Current cancer diagnostic tests

observing tissue architecture and specific protein expres-

sion for specific cancers suffer from inter-observer vari-

ability, poor detection rates and occur when the patient is

symptomatic. A new method for the detection of cancer

using 1 ll of human serum, attenuated total reflection—

Fourier transform infrared spectroscopy and pattern

recognition algorithms is reported using a 433 patient

dataset (3897 spectra). To the best of our knowledge, we

present the largest study on serum mid-infrared spec-

troscopy for cancer research. We achieve optimum sensi-

tivities and specificities using a Radial Basis Function

Support Vector Machine of between 80.0 and 100 % for all

strata and identify the major spectral features, hence bio-

chemical components, responsible for the discrimination

within each stratum. We assess feature fed-SVM analysis

for our cancer versus non-cancer model and achieve 91.5

and 83.0 % sensitivity and specificity respectively. We

demonstrate the use of infrared light to provide a spectral

signature from human serum to detect, for the first time,

cancer versus non-cancer, metastatic cancer versus organ

confined, brain cancer severity and the organ of origin of

metastatic disease from the same sample enabling stratified

diagnostics depending upon the clinical question asked.

Keywords ATR-FTIR � Serum � Diagnostics � Cancer �
Glioma � Spectroscopy � Rapid

Introduction

Attenuated total reflection—Fourier transform infrared

spectroscopy is rapid, cost-effective, simple to operate and

can be handheld. Biomolecules exhibit responses to dif-

ferent wavelengths of light, the resulting spectrum can be

thought of as the sample ‘fingerprint’, spectroscopic anal-

ysis allows for objective classification on a molecular level

[1]. ATR-FTIR is an excellent vibrational spectroscopic

technique for the analysis of biofluids (e.g. serum) due to

its rapidity and ease of translation to the clinical environ-

ment, i.e. ATR-FTIR requires no sample preparation when
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analysing serum [2]. During ATR-FTIR the infrared light is

directed through an internal reflection element (IRE) with a

high refractive index (e.g. diamond/germanium) enabling

an evanescent-wave to extend beyond the IRE surface

penetrating the sample, which must be in intimate contact

with the IRE surface [2]. A rapid spectroscopic serum-

screening regime would significantly reduce current diag-

nosis times and greatly increase the chance of successful

treatments [3–4]. Blood serum is a primary carrier of small

molecules in the body; it holds all secreted molecules from

different tissues in response to different physiological

needs, dysfunctions and pathological states [5].

Currently, in the UK, 38 % of people living with a brain

tumour visited their GP more than five times before being

diagnosed [6]. In addition, 23 % of newly diagnosed cancer

patients came from emergency presentations, with 1 year

survival rates much lower than those diagnosed via other

routes [6].Current diagnosis relies upon time consuming

and subjective histopathological examination. Diagnostic

error occurs in up to 50 % of cases, which can result in

additional testing, diagnostic delays and incorrect diag-

noses [7]. Prior to diagnosis the patient will have to be

symptomatic in order to be referred. Metastatic brain dis-

eases are the most common form of intracranial neoplasm

in adults and are predicted to develop in 20–40 % of cancer

patients [8]. Identifying the primary site of origin increased

the therapeutic success, however, in approximately 15 %

of metastatic cancer cases the location of the primary is

unknown [8]. Blood is the most ubiquitous fluid used for

diagnosis. Most current blood tests detect single biomark-

ers that are of limited suitability for screening [9], as cancer

is a heterogeneous disease a set of markers would provide

significantly more information that any one marker.

Previous spectroscopic research has provided evidence

of the benefits of applying spectroscopy to clinical prob-

lems [8, 10], and recently to the spectroscopic diagnosis of

diseases via biofluid analysis [11–12]. We have shown the

potential of ATR-FTIR spectroscopy for the rapid diag-

nosis of brain tumour severity using a 1 ll volume of

patient serum and within 10 min enabling diagnosis of high

grade glioma, low grade glioma and non-cancer with

severities and specificities on average of 93.75 and

96.53 % respectively [11–12]. Ollesch et al. have devel-

oped a robotic spotting system in combination with vac-

uum drying for the application of blood-derived substances

which would offer the ability of rapid screening [13].

A number of studies assess the role of spectroscopy for

the diagnosis of disease. Owens et al. successfully dis-

criminated between patients with ovarian cancer and non-

cancer using blood serum and plasma with Raman and

ATR-FTIR spectroscopy [14]. Gajjar et al. has shown the

ability of ATR-FTIR to differentiate between patients

diagnosed with either ovarian or endometrial cancer from

non-cancer controls using blood serum samples. Classifi-

cation results were as high as 96.7 % for ovarian cancer

and 81.7 % for endometrial cancer [15]. Backhaus et al.

distinguished between breast cancer serum and non-cancer

controls achieving a sensitivity and specificity of 98 and

95 % respectively [16].

This study reports, for the first time, the ability to pro-

vide stratified multiple diagnoses from human serum to

greatly enhance the capability and information obtained for

a simple, effective, reproducible and repeatable technique.

We report the application of ATR-FTIR spectroscopy for

stratified serum spectroscopic diagnostics capable of

diagnosing at different levels; from general cancer versus

non-cancer, metastatic cancer versus primary brain cancer,

glioma versus meningioma, the severity of the tumour

(high-grade glioma vs. low-grade glioma) and the organ of

origin of brain metastases using only 1 ll of a patient

serum sample and within 10 min of serum application. This

will provide a rapid diagnostic process capable of

deployment in situ from primary to tertiary care systems

depending upon the information required by different

clinical settings.

Materials and methods

Serum samples

Blood samples were collected from 433 patients over the

range of cancer groups analysed. Table 1 provides demo-

graphic information based on cancer group. The average

age is 57.77 and 44.77 years for the cancer and non-cancer

patient sample sets, respectively. Full sample data can be

found in supplementary information Table S2. The

research described in this paper was performed with full

ethical approval (Walton Research Bank BTNW/WRTB

13_01/BTNW Application #1108). All blood samples were

collected pre-operatively. The serum tubes were left to clot

at room temperature for a minimum of 30 min and maxi-

mum of 2 h from blood draw to centrifugation. Separation

of the clot was accomplished by centrifugation at 1,200 g

for 10 min and 500 ll aliquots of serum dispensed. All

serum samples were snap frozen using liquid nitrogen and

stored at -80 �C. S1 shows a flow diagram of the analysis

and pre-processing steps, including which patient samples

are in each classification. Non-cancer (control) serum

samples were collected from individuals who presented no

symptoms of cancer at a Royal Preston Hospital (UK)

blood donation event, as well as those presenting to the

clinic for elective surgery.

We previously investigated the reproducibility of the

serum spectrum and the length of time required for a

reproducible spectrum to be obtained from a 1 ll volume

464 J Neurooncol (2016) 127:463–472

123



of whole serum. At room temperature, 1 ll of serum has

been found to dry after 8 min through repeat drying

experiments. The reproducibility of serum spectral data

using ATR-FTIR is high and exhibits minimal variance,

especially after pre-processing, for 150 spectra collected

from 50 different human pool serum spots (3 spectral

repeats per spot). We found that the largest variance of the

ATR-FTIR spectrum was at 1637.27 cm-1 with a standard

deviation (STD) of 0.0050 and the smallest variance at

3735.33 cm-1 with a STD of 0.0038 from 150 collected

spectra. After noise reduction (30 principal components)

and vector normalization these STD values were reduced to

0.0043 and 0.00123 respectively [12].

Instrumentation

All spectra were collected using an Agilent Cary-600

Series FTIR spectrometer with a PIKE Technologies

MIRacleTM single-reflection ATR configured with a dia-

mond (Di) crystal plate. 1 ll volumes of human serum

were pipetted onto the ATR-FTIR crystal using an

Eppendorf Research-Plus 0.5–10.0 ul pipette. After spec-

tral collection from each 1 ll dried serum spot, Virkon

disinfectant (fisher-scientific) and 99.5 % ethanol (thermo-

scientific) were used consecutively to remove the serum

film from the crystal.

ATR-FTIR diagnostic model

All whole serum samples were thawed prior to spectral

collection at room temperature. Spectra were collected in a

random order within the serum sample sets. For each

sample, a 1 ll serum spot was pipetted onto the ATR-FTIR

crystal and allowed to dry for 8 min, at which time three

spectra were collected. Prior to spectral collection, a

background absorption spectrum was collected (for atmo-

spheric correction) before the 1 ll of serum was pipetted

onto the ATR-FTIR crystal. A single background was

collected per sample replicate. Spectra were acquired in the

range of 4000–600 cm-1, at a resolution of 4 cm-1 and

averaged over 32 co-added scans. In total, 3897 ATR-FTIR

spectra were collected from all serum samples.

Data handling and analysis

Initially agilent’s resolutions-pro FTIR software was used

for data handling after which the spectra were imported for

further analysis and processing into MatlabTM using in–

house written and open source protocols.

For all spectra acquired, the fingerprint region

(1800–1000 cm-1) was selected for multivariate analysis.

A principal component based noise reduction, using the

first 50 principal components of the data was performed on

the spectra to improve the signal-to-noise ratio. Following

noise reduction, all spectra were vector normalised. Using

LIBSVM and in-house written protocols [www.csie.ntu.

edu.tw/*cjlin/libsvm] in MATLABTM, an n-fold cross

validation was performed (n = 5) on the training data to

determine the optimum values for the cost and gamma

functions. Supplementary information S3 shows the opti-

mum cost and gamma functions for each stratum (e.g.

cancer vs. non-cancer). The optimum cost and gamma

values were used to train the support vector machine

(SVM) in a one-versus-rest mode using a randomly

selected training set consisting of 2/3 of the patient asso-

ciated spectral data. The remainder of the data (1/3) was

used to create the test set which was then projected into the

model, and confusion matrices were calculated giving an

overall SVM classification based on the true and predicted

data class labels. For each stratum 525 combinations of 2/3

training and 1/3 test were performed based upon patient

membership, thus, all spectra from one patient was either in

the train set or the test set. Sensitivities and specificities

were calculated for each combination in order to under-

stand the effect of patient membership in test and training

sets based upon sensitivity and specificity.

Table 1 Total subject number

of tumour grade, age range,

mean age and gender of patient

samples

Tumour grade Number of subjects Age range/mean age Gender

Non-cancer 122 16–89/44.77 years 64 Male, 58 female

All cancer 311 19–82/57.77 years 133 Male, 178 female

Glioma 87 19–81/49.90 years 52 Male, 35 female

Low-grade glioma 23 19–60/38.35 years 11 Male, 12 female

High-grade glioma 64 25–81/61.44 years 41 Male, 23 female

Meningioma 47 24–78/55.98 years 13 Male, 34 female

Metastasis 177 25–82/59.45 years 68 Male, 109 female

Lung metastasis 84 25–82/59.32 years 36 Male, 48 female

Breast metastasis 36 27–76/50.92 years 0 Male, 36 female

Melanoma Metastasis 25 25–80/56.00 years 14 Male, 11 female
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Feature extraction

The main function of feature extraction is to elucidate and

rank the relevant discriminatory spectral information from

recorded ATR-FTIR data. Per stratum, all pre-processed

spectral data were variably ranked (30 %) with information

gain. Variable ranking highlights the wavenumber vari-

ables that are most salient between the spectral classes. In

the case of the cancer versus non-cancer stratum, 130

wavenumber variables associated to six spectral regions

were selected (Table 4). Following variable ranking, the

ranked wavenumber regions were user selected on a 2D

plot of the mean spectrum, upon which feature extraction

(FE) was performed. FE was performed whereby spectral

descriptors such as RMS energy, peak kurtosis, peak skew,

peak centroid, peak frequency and peak amplitude can be

extracted from each user selected spectral band, thus the

relevant spectral band shapes involved in the discrimina-

tion between classes are able to be captured. The feature

information is ranked and scored in descending order to

describe how each feature of the model explains the dif-

ference between the groups of recorded spectral data. The

most discriminatory features highlighted during feature

extraction were then used for a feature based SVM (FE-

SVM). Using LIBSVM and in house written protocols

[www.csie.ntu.edu.tw/*cjlin/libsvm] in MATLABTM, an

n-fold cross validation was performed (n = 5) on the

cancer versus non-cancer spectral training data to deter-

mine the optimum values for the cost and gamma func-

tions. FE-SVM was performed using all 130 spectral

features followed by the top 30 and top 2 features for the

cancer versus non-cancer data set.

Sensitivity and Specificity

Sensitivity and specificity were calculated using Eqs. 1 and

2 respectively:

Sensitivity ¼ True Positives

True Positivesþ False Negatives
ð1Þ

Specificity ¼ True Negatives

True Negativesþ False Positives
ð2Þ

where,True Positives is the a patient with the target disease

has five or more spectra out of the nine spectra collected

from three different serum spots (three spectra per spot)

correctly identified.

True Negatives is the a patient without the target disease

who has five or more spectra out of the nine spectra col-

lected from three different serum spots (three spectra per

spot) correctly identified.

False Positives is the a patient without the target disease

who has five or more spectra out of the nine spectra

collected from three different serum spots (three spectra

per spot) that have been incorrectly identified as the target

disease.

False Negatives is the a patient with the target disease

who has five or more spectra out of the nine spectra col-

lected from three different serum spots (three spectra per

spot) that have been incorrectly classified as not the target

disease.

Kappa values

Kappa values were calculated using Eq. 3:

K ¼ ðpo � peÞ
ð1� peÞ

ð3Þ

where, K is the Kappa Value, Po is the observed agreement,

Pe is the expected agreement (chance agreement), po and pe
were calculated using Eqs. 4 and 5 respectively

ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ ð4Þ

TPþ FP=SUM ALL

� �
� TPþ FN=SUM ALL

� �h i

þ FN þ TN=SUM ALL

� �
� FPþ TN=SUM ALL

� �h i

ð5Þ

where, TP is the true positives, TN is the true negatives, FP

is the false positives, FN is the false negatives, SUM ALL

is the TP ? TN ? FP ? FN.

Using a patient based spectral diagnosis (correct clas-

sification of at least five out of nine spectra from three

different patient serum spots) when compared to clinical

diagnosis of that patient following a multidisciplinary team

(MDT) meeting.

Results and discussion

Rapid stratified serum spectroscopic diagnostics

ATR-FTIR spectra from 433 patients (3897 spectra) were

analysed to investigate sensitivities and specificities pos-

sible on a patient level. 525 iterations with different

training and test spectral datasets (split 1/3 test and 2/3

training on a patient basis) were used to analyze the power

of the RBF-SVM analysis. Supplementary information S4

displays a histogram of the range of sensitivities and

specificities achieved for the cancer versus non-cancer

stratum (histograms for all other strata are displayed in

supplementary information S5). The sensitivity and speci-

ficity range for cancer versus non-cancer is 81–97 % and

51–95 % respectively with sensitivity and specificity ran-

ges of 46–80 % and 60–93 % respectively for metastatic
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cancer versus brain cancer, 48–100 % and 31–100 %

respectively for glioma versus meningioma, 50–100 % and

2–100 % respectively for high-grade glioma versus low-

grade glioma and 28–95 % and 68–98 % for the metastatic

origin stratum. Table 2 shows the mean, mode and opti-

mum sensitivities and specificities for each stratum. The

optimum sensitivity and specificity is the sensitivity and

specificity that best describes the sample set based upon

disease grouping.

The optimum, mode and mean sensitivities and speci-

ficities observed for all strata range from 51.4 to 100 %

respectively, with the optimum sensitivities and specifici-

ties achieving 86.3–100 %. The cancer versus non-cancer

stratum achieved a mean sensitivity and specificity of 89.8

and 77.5 % respectively, metastatic cancer versus brain

cancer of 79.7 and 64.0 % respectively, glioma versus

meningioma of 66.7 and 82.1 % respectively, high grade

glioma versus low grade glioma of 80.9 and 48.5 %

respectively and the origin of metastasis of 64.8 and

86.9 % respectively.

These results show the power of ATR-FTIR spec-

troscopy to diagnose disease states based upon a stratified

approach; however variance still exists in the spectral

datasets due to the selection of patient populations in the

test and training set. For each stratum, sensitivity and

specificity variance exists between classification model

iterations. This shows that certain patient partitions provide

better classification for the remaining test patient data set.

A reason for this is redundant data maximizing the spectral

variance within a group within the data variables of the

spectral fingerprint region i.e. patient data containing

higher intra-group spectral variance partitioned together to

form the training set would produce poorer classification

models.

Feature extraction for stratified serum spectroscopic

diagnostics

To maximize classification accuracy the most salient fea-

tures of a spectrum can be extracted and ranked based on

their similarity to a target set, thus assigning scores on the

feature’s ability to discriminate between classes, maxi-

mizing inter-group differences [17].The spectral features

used are the peak centroid (measure of the peak’s central

point), peak skew (measure of asymmetry in the peak’s

shape), peak kurtosis (a measure of the shape of a peak

relating peaked vs. flat-topped), peak amplitude and root-

mean-squared (RMS) energy. These features were extrac-

ted from pre-defined sub-bands of each spectrum and the

corresponding inter-band ratios between features were then

ranked, using the information gain metric, based upon the

resulting score.

Following feature extraction and variable ranking the

most discriminatory characteristics of the spectrum (from

1800 to 900 cm-1) were extracted (Table 3 displays the

most discriminatory regions with proposed biomolecular

assignments) highlighting spectral components relating to

proteins, lipids, carbohydrates and nuclear material.

Interestingly the features observed for the 2-class strata,

enabling classification of cancer versus non-cancer,

Table 2 Mean, mode and optimum sensitivities and specificities obtained for each stratum

Model Optimum

sensitivity (%)

Optimum

specificity (%)

Mean

sensitivity

(%)

Mean

specificity

(%)

Mode

sensitivity

(%)

Mode

specificity

(%)

Cancer versus non-cancer 97.1 95.1 89.8 77.5 89.4 78.0

Metastatic cancer versus brain cancer 80.0 93.2 79.7 64.0 64.4 80.0

Glioma versus meningioma 100.0 100.0 81.1 66.7 82.1 75.0

High grade glioma (HGG) versus low

grade glioma (LGG)

100.0 100.0 80.9 48.5 85.0 50.0

Metastatic model Optimum

sensitivity (%)

Optimum

specificity (%)

Mean sensitivity

(%)

Mean specificity

(%)

Mode sensitivity

(%)

Mode specificity

(%)

Metastatic lung

cancer

95.4 95.9 79.0 85.7 81.4 84.9

Metastatic skin

cancer

84.4 94.4 63.9 82.0 64.4 80.3

Metastatic breast

cancer

78.6 98.9 51.4 90.1 50.0 90.9

Metastatic model

mean

86.3 98.3 64.8 86.0 65.3 85.4

J Neurooncol (2016) 127:463–472 467

123



metastatic versus brain cancer, glioma versus meningioma

and high-grade glioma versus low-grade glioma (top 10

features for each 2-class stratum are displayed in supple-

mentary information S6) which focus on the detection and

diagnosis of primary brain cancer are originating from the

Amide I (vibrations originating from a–helix structures, b-
pleated sheets, turns and random coil (mC = O (80 %),

mC–N (10 %), CNN (10 %)) [18] and Amide II—vibra-

tions originating from a–helix structures, b-pleated sheets,

turns and random coil [d N–H (60 %), m C–N (40 %)], C–

O stretch of lipids/proteins, CH2 of lipids/proteins and

contributions from nuclear materials (DNA/RNA via PO2
-

stretches) spectral regions [18–27]. These spectral regions

have been described previously in research discriminating

between brain cancer states using tissue spectroscopy [22,

25]. The former highlighted the Amide I (1655 cm-1),

Amide II (1547 and 1582 cm-1), carbohydrate

(1173 cm-1), glycogen (1014 cm-1) and phosphate

regions as describing the majority of difference between

infrared spectra of tissue origination from non-cancerous

patients and tumour subtypes.

The features observed for the metastatic stratum (top 10

features for each primary site displayed in supplementary

information S7), enabling discrimination between the

organs of origin of the metastatic cancer (lung vs. mela-

noma vs. breast), focusing upon secondary brain tumours

are originating from vibrations of C–O, C=O and C–H

associated with lipids and protein macromolecules, con-

tributions associated with nucleic material (DNA/RNA via

PO2
-) and minimal contributions from the Amide spectral

regions. This correlates with research performed by Gazi

et al. [23, 24] when utilizing FTIR microscopy to investi-

gate discrimination of metastatic prostate cancer tissue and

organ confined prostate cancer. Gazi et al. show increases

in biomolecular intensities of carbohydrate, phosphate and

lipid hydrocarbon intensities between organ confined

prostate cancer and prostate cancer bone metastases tissue

specimens. Krafft et al. highlight spectral features at 1026,

1080 and 1153 cm-1 as molecular markers for brain

metastases of the primary tumour renal cell carcinoma, the

intensity at 1735 cm-1, assigned to the carbonyl vibrations

(C=O) of ester groups as indicative of brain metastases of

breast cancer, an increase in Amide II intensity and

broadening of the Amide I low wavenumber shoulder near

1625 cm-1 for brain metastases of lung cancer and an

intensity minimum near 1400 cm-1 for brain metastases of

colorectal cancer when performing IR spectroscopic

imaging of brain tissue [25]. The similar regions observed

for the tissue spectroscopic studies as compared to serum

based spectroscopic studies provide corroborating evidence

or the power of the analysis as the serum biochemical

profile is understood to reflect the tissue status.

In order to examine the ability of feature extraction to

improve the diagnostic capability of stratified serum diag-

nostics a 525 iteration feature-fed SVM was performed

using all of the 130 features discovered during the feature

extraction process, the top 30 features and the top 2 fea-

tures for the cancer versus non-cancer stratum, based on a

variable ranking process. All 130 features are displayed in

supplementary information Table S8. Highlighting the

spectral regions described previously.

Supplementary information S9 displays the histograms

showing the sensitivity and specificities achieved when

analysing 525 iterations of a 130 feature-fed SVM (A), 30

feature-fed SVM (B) and 2 feature-fed SVM (C) for the

cancer versus non-cancer stratum. When compared to the

full fingerprint region SVM shown in supplementary

information S3 the range of sensitivities and specificities

observed achieve higher percentages and occur over a

smaller range, when compared to the SVM analysis of data

from the full spectral fingerprint region, from 81 to 97 %

and 51–95 % respectively for -the fingerprint region SVM

and from 82 to 98 % and 66–97 % respectively for the 130

feature-fed SVM, 81–98 % and 66–95 % for the top 30

feature-fed SVM respectively and 81–96 % and 51–95 %

for the top 2 feature-fed SVM respectively.

The mode sensitivity and specificity for the full finger-

print region SVM of the cancer versus non-cancer stratum

was 89.4 and 78.0 % respectively compared to mode sen-

sitivities and specificities of 92.3 and 80.5 % when using

Table 3 Discriminatory spectral regions with biomolecular assignments

Wavenumber region (cm-1) Assignments

1008–1230 C–O stretch, deoxyribose/ribose, DNA, RNA (PO2
-), C–C stretch, C–H bend

1315–1384 CH3/CH2 bending

1380–1465 CH3 lipids/proteins and COO- of amino acids

1460–1590 Amide II of proteins (a—helix structures, b—pleated sheet structures, turns, random coils),

d N–H (60 %), m C–N (40 %)

1600–1706 Amide I of proteins (a—helix structures, b—pleated sheet structures, turns, random coils),

m C=O (76 %), m C–N (14 %), CNN (10 %)

1700–1799 d C=O of lipids

468 J Neurooncol (2016) 127:463–472
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130 spectral features. The top 30 features achieved 91.3

and 82.9 % when using 30 features and 89.4 and 70.7 %

when using 2 spectral features (Table 4). The mean sen-

sitivity and specificity for the feature extracted models

follows the same trend with all 130 features achieving

91.5 % sensitivity and 83.0 % specificity, 30 features

achieving 90.6 % sensitivity and 81.9 % specificity and 2

features achieving 88.7 % sensitivity and 77.7 % speci-

ficity. The mean sensitivities and specificities achieved

using full fingerprint region SVM are similar to those that

can be achieved using the top 2 spectral features of 89.8 %

sensitivity and 77.5 % specificity. The top 2 spectral fea-

tures that describe the differences between the cancer

versus non-cancer disease groupings are RMS energy of

C-O groups, PO2
-, RNA/DNA (1176–1242 cm-1) versus

vibrations PO2
- stretch of nucleic acids, RNA/DNA

(1020–1115 cm-1) and the skew of the C-O groups, PO2
-,

RNA/DNA (1176–1242 cm-1) versus the CH2 of lipids/

proteins and Amide II (1483–1537 cm-1) [18–27].

We achieved the optimum sensitivities and specificities

from our model consisting of all 130 spectral features for

cancer versus non-cancer. Features are ranked in order of

how representative they are of the original data, thus a

reduction in the diagnostic ability from 2 spectral features,

compared to all 130 or top 30, is not surprising due to the

reduction in spectral information available during feature-

fed-SVM.

The ability to select and rank spectral features enables

the extraction of data that describes the differences within

the disease groupings without addition of added variance

based upon other contributing factors from the patients and

enables biochemical differences, via spectral peaks, to be

observed whereas a full spectral SVM does not. In addi-

tion, the selection of spectral features, based upon the

collection of the full FTIR spectrum, allows for targeting of

the most discriminatory regions during a sparse frequency

collection approach [28, 29], and reduction in the pro-

cessing power required for classification of disease states

providing a quicker and more efficient spectroscopic

diagnostic process.

Clinical impact

Vibrational spectroscopy can provide rapid, label-free and

objective analysis for clinical practice [26, 27]. This proof

of principle project provides substantial translational lab-

oratory research to enable the development of clinical

serum spectroscopic diagnostics. The rapidity, ease-of-use,

low sample volume, reproducibility and detection charac-

teristics shown by this methodology would provide for a

rapid and responsive diagnostic tool that can be used

throughout the patient pathway [28]. As such the potential

clinical impact of serum spectroscopic diagnostics for brain

tumours can be:

(1) Robust, rapid diagnostic test with high sensitivity

and specificity that can distinguish brain tumours

from non cancerous disease prompting more timely

onward referral of patients for further testing

(2) A test capable of monitoring response to treatment

(surgery, radiotherapy, chemotherapy) and detection

of recurrent disease enabling serial sample and

testing with less cost, resource and radiation expo-

sure compared to conventional methods. In addition

such a test may overcome the time lag required to

observe changes in tumour size and characteristics

on MRI.

Kappa values

In order to understand the reliability of a diagnostic model

the Kappa value is used to assess the inter-observer

agreement whilst correcting for chance (see Materials and

Methods), where a Kappa value of\0 indicates a less than

chance agreement, 0.01–0.20 slight agreement, 0.21–0.40

fair agreement, 0.41–0.60 moderate agreement, 0.61–0.80

substantial agreement and 0.8–1.00 almost perfect agree-

ment [30]. Figure 1 shows Kappa values from a range of

currently used diagnostic tests and proposed spectroscopic

diagnoses.

Figure 1 shows a Kappa value of 0.12(A) when com-

paring the histopathological diagnosis of glioblastoma of

34 patients between local, institutional and central neuro-

oncopathology reporting concluding that concordance was

sub-optimal when comparing local and central review,

however the Kappa value did increase to moderate agree-

ment (k = 0.51) when comparing institutional and central

review [31]. For mammography(B, D, F, G) a review of 31

community radiologists concerning 30 women with cancer

and 83 without was undertaken to assess the advantages of

Table 4 Optimum, mean and mode sensitivities and specificities for the cancer versus non-cancer stratum using 130, 30 and 2 spectral features

Model Optimum

sensitivity (%)

Optimum

specificity (%)

Mean

sensitivity (%)

Mean

specificity (%)

Mode

sensitivity (%)

Mode

specificity (%)

All 130 features 98.1 97.6 91.5 83.0 92.3 80.5

Top 30 features 98.1 95.1 90.6 81.9 91.3 82.9

Top 2 features 96.2 95.1 88.7 77.7 89.4 70.7
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single versus double interpretation comparing the Kappa

values from 465 pairs of radiologist and 31,465 pairs of

unique pairs. The mean Kappa values for identify non-

cancer radiologist when diagnosing non-cancer was

0.30(B) for single interpretation increasing to 0.34(C) on

double interpretation and for cancer was 0.59(F) for single

interpretation increasing to 0.70(G) for double interpreta-

tion [32]. The correlation between Gleason score at biopsy

and prostatectomy of 371 patients undergoing radical

prostatectomy revealed a Kappa value of 0.42(D) based

upon prostate cancer histopathology concluding that this

concordance lies within classical clinical standards [33]

and a peer review assessment of 1086 abnormal cervical

smears evaluating laboratory cytology performance

achieved an overall Kappa value of 0.62(H) when assessing

10 cytologists diagnoses [34]. The Kappa values above are

derived from tests that require interpretation from tissue

architecture or other diagnostic markers showing a range of

Kappa values from 0.12 to 0.70 for these currently used

diagnostic tests. It is also interesting to consider a risk

factor based test that is performed within the primary care

centre in order to direct future treatment and patient care.

Examples of such measures are the Framingham Risk

Score (FRS) and the European Systemic Coronary Risk

Evaluation (SCORE) system for assessing high

cardiovascular risk. FRS is widely used within the USA

and SCORE is widely used throughout Europe, when

comparing the diagnosis of SCORE against that of FRS a

Kappa value of 0.42 equating to moderate agreement was

achieved [35]. As can be seen from this literature analysis

there exists a range of Kappa values from slight agreement

to substantial agreement for currently used diagnostic

procedures. Kendall et al. used Raman spectroscopy to

identify and classify neoplasia in Barrett’s oesophagus

when analysing tissue in vitro, in a study utilizing three

pathologists to provide a consensus opinion the Kappa

value using Raman spectroscopy achieved 0.89(I) [36]. The

Kappa values for the ATR-FTIR (J-N) stratified serum

diagnostic tests show similar high levels of agreement

when comparing against the diagnosis provided following a

multidisciplinary team meeting. For cancer versus non-

cancer(J) Kappa = 0.77, metastatic versus brain

cancer(K) Kappa = 0.90, glioma versus menin-

gioma(L) Kappa = 0.79, high grade Glioma versus low

grade Glioma (M) Kappa = 0.70 and the average meta-

static model(N) Kappa = 0.74 (lung Kappa = 0.81, skin

Kappa = 0.67 and breast Kappa = 0.75). All strata within

the stratified serum diagnostics approach showed Kappa

values in the substantial and almost perfect agreement

ranges.

Fig. 1 Kappa values for a range of currently used diagnostic tests and

proposed spectroscopic diagnoses (A) comparing the histological

diagnosis of glioblastoma between local, institutional and central

neuro-oncopathology reporting, (B and C) mean Kappa values for

breast mammograms using single and double interpretations for non-

cancer diagnosis, (D) correlation between Gleason score on biopsy

and following prostatectomy, (E) correlation between two commonly

used CV risk algorithms Framingham Risk Score (FRS) and European

Systemic Coronary Risk Evaluation System (SCORE) compared, (F

and G) mean Kappa values for breast mammograms using single and

double interpretations for cancer diagnosis, (H) peer review of

abnormal cervical smears, (I) Raman spectral prediction of Barrett’s

neoplasia in vitro compared to consensus pathology opinion (n = 3

pathologists), (J-N) Kappa values for ATR-FTIR spectroscopic

diagnosis based upon optimum sensitivity models over all strata

when comparing against clinical diagnosis following multidisci-

plinary team (MDT) meeting
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Conclusions

The stratified diagnostic methodology discussed has the

potential to be intertwined with current healthcare proto-

cols to benefit patient outcomes through early cancer

diagnosis. Blood is routinely collected from patients for

diagnostic and monitoring purposes, creating no require-

ment for dedicated sample collection for objective spectral

diagnoses. Serum ATR-FTIR spectroscopy involves no

sample preparation and is cost-effective due to the minimal

use of consumables (to remove the dried serum film from

IRE), thus it is a beneficial diagnostic tool with little

financial burden.

Rapid stratified serum diagnostics enables the diagnosis

of cancer depending on the information required by dif-

ferent multiple clinical settings from a single sample.

Using only 1 ll of human serum, a 433 patient dataset

(3897 spectra) and collecting spectra within 10 min from

serum application to the ATR crystal, we have success-

fully discriminated, for the first time, between cancer

versus non-cancer, cancer severity and the origin of

metastatic disease from serum with high sensitivities and

specificities. In addition, the feature extraction performed

has identified the salient spectral information, reduced

patient variance and allows for targeting the most dis-

criminatory regions during spectral collection, thus

reducing collection times. This research examines the

ability of feature extraction to improve diagnostic ability

by extracting discriminatory features of the original

spectral data. The proposed stratified diagnostic approach

has substantial and almost perfect inter-observer agree-

ment Kappa values, supporting the use of our diagnostic

models in a clinical setting. We believe the ability to

reduce the time to diagnosis based upon a relatively non-

invasive diagnostic test, with significant inter-observer

agreement and one that is capable of deployment across

clinical situations (dependent upon the diagnostic question

posed) would provide rapid patient entry to the clinical

process, profiling of at-risk population cohorts, as well as

enabling close clinical follow up throughout resulting in a

reduction in mortality and morbidity and increases

healthcare efficiency.
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