
An Intelligent audio workstation in the browser

Nicholas Jillings

Digital Media Technology Lab,

Birmingham City University

Birmingham, B4 7XG

nicholas.jillings@bcu.ac.uk

Ryan Stables

Digital Media Technology Lab,

Birmingham City University

Birmingham, B4 7XG

ryan.stables@bcu.ac.uk

ABSTRACT
Music production is a complex process requiring skill and
time to undertake. The industry has undergone a digital
revolution, but unlike other industries the process has not
changed. However, intelligent systems, using the semantic
web and signal processing, can reduce this complexity by
making certain decisions for the user with minimal interac-
tion, saving both time and investment on the engineers’ part.
This paper will outline an intelligent Digital Audio Work-
station (DAW) designed for use in the browser. It outlines
the architecture of the DAW with its audio engine (built on
the Web Audio API), using AngularJS for the user interface
and a relational database.

1. INTRODUCTION
Audio production is predominantly performed inside a

Digital Audio Workstation (DAW), running on a computer.
Historically, this was limited to high-end recording studios,
but over time have been integrated into the home studio.
Despite the digital revolution, where music production has
moved away from bulky hardware onto software-defined mix-
ing environments, the actual process of mixing has not
changed. In intelligent production systems, audio param-
eters and decisions are controlled by autonomous processes,
rather than directly by the mix engineer. This should re-
duce the burden of production into a computer, lowering the
knowledge required by an end user. To achieve this, intelli-
gent systems require a knowledge-base to drive the decision
making process [4]. These can be stored in a knowledge
based data store, such as an ontology or RDF. Ontologies
exist for describing the music production environment [6, 14]
allowing a system to understand a device or process.

This paper will outline the structure of an intelligent
browser-based DAW, along with the audio, database, and
user interface interactions. The paper will then outline the
unique aspects and opportunities a browser-based solution
can provide for audio research and analysis. The paper con-
cludes with new results from a mixing study [8] using the
software.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

2. ARCHITECTURE
A Digital Audio Workstation is built around three core

concepts: the audio engine, the user interface (UI) and the
data-store. The audio engine expands the web audio API
functionality into logical DAW blocks, such as tracks and au-
dio regions. The UI interprets the audio engine and presents
this information to the user. The interface is built using An-
gularJS1 to supply a modular data-view of the audio engine
model. Behind all of this is a relational database to store the
mixing session data, user interactions and audio file data. A
DAW can be represented as a Model-View-Presenter work-
flow. The model is the audio engine and relational database.
The database only communicates with the engine to provide
control information and receive interaction data. The user
interface is the view, controlled by AngularJS. As with all
web products, the Presenter is the browser, which may be-
have di↵erently between brands, models and devices.

2.1 Audio Engine
The audio engine is the core of any audio software, where

each N-sample block of audio is passed through a predefined
network of processors. An audio engine for a DAW must
create several discrete modules to link together, such as the
track, audio buses, master bus, plugins, sends and audio
regions. The Web audio API facilitates the development of a
modular audio engine. Figure 1 shows this in a track object,
with send points, JSAP SubFactory [9] and output stages.
The Web Audio API gain node can be used extensively as
a computationally inexpensive summation point. The API
sums all inputs together on arrival into a node and all the
browsers optimize out any gain nodes with the gain value at
unity or zero.2.

2.2 User Interface
Having a well-defined model simplifies the view creation

process. The user interface is built using AnuglarJS, which
facilitates the building of dynamic HTML pages. Each view
element is bound onto the model to provide an interaction
and feedback. For instance the solo and mute buttons pro-
vide user feedback on the current state whilst also giving a
simple interaction to toggle the state. A DAW traditionally
has two views, the timeline and mixer. To reduce the poten-
tial training / adjustment time for participants the presented
browser DAW retains these views. Both views interact with
the same underlying model but are rendered with di↵erent
controls. The timeline view, shown in Figure 2, places audio

1https://angularjs.org/
2https://padenot.github.io/web-audio-perf/



Track Object

Input

Pre EQ Hook

JSAP Start

Pre Send Hook

Fader

JSAP SubFactory

Post Send Hook

JSAP End Delay Comp. Panning

Figure 1: Structure of a track object in the DAW built using the Web Audio API.

Figure 2: The DAW presented in Firefox 51, show-
ing the Timeline view

regions onto a movable background, delineated with times-
tamps indicating when regions will play. However this view
removes the channel-based controls such as volume and pan-
ning. The mixer view gives all of the controls but the user
looses the timeline view of regions.

An important mechanism in music production is UI
feedback, through updating interface elements. This in-
cludes track meters, session clocks, and moving play-
heads. These elements are all triggered by using the
requestAnimationFrame from the HTML Living standard3.
This adds the passed function into an animation queue which
is executed at the next rendered animation frame. Execut-
ing a function and updating on an arbitrary time-frame will
either update too frequently, wasting resources, or too sparse
causing jitter and missed-frames. By processing these inter-
actions on animation requests, the interface is kept smooth
and dynamically scales the amount of track data.

3. TIMING AND EVENTS
Timing for Web Audio has been studied before in

JavaScript [5, 12]. However, in a DAW environment, there
is an increased amount of timing requirements than just au-
dio scheduling. The user interface needs to be updated fre-
quently to redraw the session clock, play-head bar and track
meters. These tasks are vital to both the process and the
user experience.

The DAW needs to schedule several events including au-
dio playback and automation. However it also needs to
handle partial playback of audio regions as well as future

3https://html.spec.whatwg.org/multipage/webappapis.
html

playback scheduling. Starting and stopping the play-head
is a major event in a DAW, requiring canceling playback of
bu↵ers, resetting the play-head to the start, signaling plug-
ins to clean up any temporary information and rescheduling
any automations. Pausing and resuming of playback when
mixing can be handled by suspending and resuming the au-
dio context. For rendering, audio tails can be preserved.
Scheduling of playback is also simplified as the positioning
of bu↵ers can be evaluated before they arrive, removing the
need for lookahead approaches.

The Web Audio API is powerful for these events, with
both scheduling and cancel agents on parameters and
bu↵ers, along with linear and exponential ramping. How-
ever outside the API, it is di�cult to interact with. For
example, there is no clear indication of an upper limit of
the distance to schedule, nor is there any way to collect the
interim data which is needed for user interaction. To update
the user interface with indication of the current automation
state, the interface itself needs to calculate the automation
at a given time, such as fader animation on automation read-
ing Even if all automation techniques are just linear points,
this is still a significant programming overhead that could
be avoided by the web audio API.

Timing is also critical in parallel worker scripts. Some
events, such as the track volume meters, require analysis of
the audio frame. To keep the main JavaScript thread clear,
and to improve the user experience, the audio processing for
meters in the DAW is sent to Web Worker4 threads, running
the JS-Xtract [7] feature extraction library. This allows us
to return the requested audio features such as the RMS Am-
plitude and the spectral centroid by default. These workers
operate asynchronously and call a passed callback function
on returning data. To not block the drawing of meters, the
meter is only updated when new data is returned. However,
as more tracks are created in the DAW, more pressure is
imposed on the web workers. The impact of running multi-
ple instances of active workers has an undefined impact on
browsers [13], with some browser / platform combinations
performing significantly better than others.

4. INTELLIGENCE
The DAW is intended to be used as a deployment platform

for intelligent tools such as automatic mixing, cross-adaptive
audio e↵ects [10] and semantic audio processing [11]. How-
ever, we also use the DAW to gather large datasets of music
production data. As more participants use the DAW for

4https://html.spec.whatwg.org/multipage/#toc-workers



K
ic

k

S
na

re

O
ve

rh
ea

ds

To
m

s

Pe
rc

us
si

on

B
as

s

Pi
an

o

El
ec

G
ui

ta
r

A
cG

tr
1

Le
ad

 V
ox

B
ac

ki
ng

 V
ox

 1

B
ac

ki
ng

 V
ox

 2

TrackName

-24

-22

-20

-18

-16

-14

-12

-10

-8
Re

la
tiv

e 
Lo

ud
ne

ss
 (

LU
)

Figure 3: Loudness of the track relative to the final
mix

their own projects, we are able to create production rules
that can inform the next generations of intelligent music
production. An on-line DAW is unique iteration of a tradi-
tional systems, as it is permanently connected to a relational
database. This enables continuous, passive data collection of
all user interactions over the web[1]. Auditory experiments
on the web have been used before and can be as accurate as
laboratory conditions so long as adequate selection of par-
ticipants takes place [2].

In an early experiment, we were able to use the DAW to
discover trends in users producing balance mixes [8]. The
results showed that performing a mix on an excerpt of a
song takes 100-150 actions over 8-16 minutes of work (an in-
teraction every 4-10 seconds). Figure 3 shows that for some
tracks there is a high degree of agreement in the loudness
that they should have in the mix (Bass, Electric guitar and
Overheads). However, for other tracks there is a very large
variance, indicating these tracks may have more influence on
mixing taste, rather than a fundamental track (Percussion,
Snare and Piano). Overall, vocals were generally quite high
in the mix, although not as high as previous studies indicate
[3].

4.1 User interactions and grouping
Table 1 presents additional analysis of the data presented

in [8]. Here, we show the amount of user actions on a specific
parameter of tracks in the DAW.

The highest proportion of user interactions with the UI
was for on auditioning the audio. 43.8% of all parameter
movements modified the volume and pan positions. This
indicates the vast majority of user interaction is from active
mixing. Interestingly, 11.465% of interactions involved the
use of solo button (enabling and disabling solo’s), but only
2.559% were mute actions. Similarly, only a very small num-
ber of interactions involved changing the track name from
the default “Track N ” label.

Figures 4 and 5 show the results of applying hierarchi-
cal clustering to the track groupings, to identify similarities
in the way instruments are combined in the mix. Figure 4
operates over the track names for the song Queen’s Light.
There were 13 entries in total for this song, and three promi-

Action Number %
Play/Pause/Stop 1,318 33.066%
Set Volume 1,247 31.284%
Set Pan position 500 12.543%
Toggle Solo 457 11.465%
Set Track Group 221 5.544%
Toggle Mute 102 2.559%
Add Bus 67 1.681%
Add Send to track 66 1.655%
Alter Track Name 8 0.201%

Table 1: Count of all action types when creating a
balance mix.

Figure 4: Hierarchical clustering of track groupings
in Queen’s Light by track name.

nent groups of tracks appear which can be attributed to the
Drums (cyan), percussive (red) and synthesisers (green) of
the mix. The bass guitar is mostly independent and has a
high distance from the other instruments in the mix. Fig-
ure 5 operates over all of the sessions and looks at the in-
strument name, not track name, where there are 4 main
clusters. Again the drums (cyan), then guitars / sustaining
instruments (red). The green is split into two groups, the
upper set are vocal or vocal-like instruments and the lower
is percussion-based instruments.

5. CONCLUSION
In this paper we have presented our intelligent Digital

Audio Workstation developed in the browser using the Web
Audio API. We have shown how using the audio engine as
a model facilitates the representation the audio structure
through multiple client views. We have also shown where
shortfalls of the current Web Audio API may cause limita-
tions in such a user interaction intensive environment.

An online platform like the one presented here is useful
for both the deployment of intelligent systems and for the
collection of data, both actively and passively. The online
DAW captures session information in far greater detail, en-
abling behavior analysis and extracting the context around
decision making processes by the engineer. This is shown in
our experiments, where we can identify trends in grouping
and mixing data.



Figure 5: Hierarchical clustering of all sessions by
the instrument name.

5.1 Future Work
The online DAW can be operated as a traditional mix-

ing interface or can be modified for targeted experiments.
The balance experiments in [8] use a restricted environ-
ment where JSAP plugins were not available, nor any edit-
ing of the audio regions. Likewise other restrictions may
include removing track names, applying restrictions to cre-
ating/deleting tracks or buses, banning solo/mute, disabling
volume/pan controls, amongst others. This allows the DAW
to be used in more bespoke ways for specific data collection
tasks. Equally, more subverted tests may include changing
the information of parameters from RMS to other audio fea-
tures, or not displaying a waveform but some other waveg-
uide in the audio regions, such as spectral centroid.

The DAW can also gather o↵-line information from audio
files, including the audio features. Combined with semantic
information from the session (such as genre and BPM) and
the user-labeled track names and instruments, a database of
known instrument features can be created. This can be fed
into a machine learning algorithm to build a classifier which
is user-corrected.

6. REFERENCES
[1] M. H. Birnbaum. Human research and data collection

via the internet. Annual Review of Psychology,
55:803–832, October 2003.

[2] M. Cartwright, B. Pardo, G. J. Mysore, and
M. Ho↵man. Fast and easy crowdsourced perceptual
audio evaluation. In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 619–623, March 2016.
[3] B. De Man, B. Leonard, R. King, and J. D. Reiss. An

analysis and evaluation of audio features for
multitrack music mixtures. In 15th International

Society for Music Information Retrieval Conference

(ISMIR 2014), October 2014.
[4] B. De Man and J. D. Reiss. A semantic approach to

autonomous mixing. Journal of the Art of Record

Production, 8, December 2013.
[5] B. Dias, H. S. Pinto, and D. M. Matos. BPMtimeline:

Javascript tempo functions and time mappings using
an analytical solution. In Proceedings of the 2nd Web

Audio Conference. Georgia Institute of Technology,
April 2016.

[6] G. Fazekas and M. B. Sandler. The studio ontology
framework. In Proceedings of the 12th International

Society for Music Information Retrieval Conference

(ISMIR 2011), pages 471–476, October 2011.
[7] N. Jillings, J. Bullock, and R. Stables. Js-xtract: A

realtime audio feature extraction library for the web.
In International Society for Music Information

Retrieval Conference, 2016.
[8] N. Jillings and R. Stables. Investigating music

production using a semantically powered digital audio
workstation in the browser. In Audio Engineering

Society Conference: 2017 AES International

Conference on Semantic Audio, Erlangen, Germany,
June 2017. Audio Engineering Society.

[9] N. Jillings, Y. Wang, J. D. Reiss, and R. Stables.
JSAP: A plugin standard for the web audio api with
intelligent functionality. In Audio Engineering Society

Convention 141. Audio Engineering Society, 2016.
[10] E. Perez-Gonzalez and J. Reiss. Automatic

equalization of multichannel audio using
cross-adaptive methods. In Audio Engineering Society

Convention 127. Audio Engineering Society, 2009.
[11] R. Stables, S. Enderby, B. De Man, G. Fazekas, and

J. Reiss. Safe: A system for the extraction and
retrieval of semantic audio descriptors. In 15th

International Society for Music Information Retrieval

Conference (ISMIR 2014), 2014.
[12] J. Sullivan. Alternatives to lookahead audio

scheduling. In Proceedings of the 2nd Web Audio

Conference. Georgia Institute of Technology, April
2016.

[13] J. Verdú, J. J. Costa, and A. Pajuelo. Dynamic web
worker pool management for highly parallel javascript
web applications. Concurrency and Computation:

Practice and Experience, 28(13):3525–3539, September
2015.

[14] T. Wilmering, G. Fazekas, and M. B. Sandler. The
audio e↵ects ontology. In Proceedings of the 14th

International Society for Music Information Retrieval

Conference (ISMIR 2013), pages 215–220, November
2013.


