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Abstract: Single crystal silicon (SCS) diaphragms are widely used as pressure sensitive elements
in micromachined pressure sensors. However, for harsh environments applications, pure silicon
diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical
properties. To survive at the elevated temperature, the silicon structures must work in combination
with other advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI), for improved
performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS
microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at
high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms
and was verified by the experiments. The evolution of the deformation was obtained by studying the
surface profiles at different anneal stages. The slow continuous deformation was considered as creep
for the diaphragms with a radius of 2.5 mm at 600 ˝C. The occurrence of plastic deformation was
successfully predicted by the model and was observed at the operating temperature of 800 ˝C and
900 ˝C, respectively.
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1. Introduction

Single crystal silicon (SCS) is an excellent material for sensor applications because of its good
mechanical properties, high purity and crystalline perfection [1]. For example, SCS diaphragms are
widely used as pressure sensing elements for the micromachined pressure sensors. The magnitude
of the pressure is normally determined by measuring the resultant strain or displacement of the
diaphragm, which requires the diaphragms to work in the small deflection range under moderate
pressure for a better linearity. It is well-known that SCS is a temperature-sensitive material and
exhibits no plasticity or creep at normal temperature. Therefore, the conventional SCS-based sensors
are free from hysteresis [2]. These diaphragms can also be shaped with high precision with the
aid of the advanced silicon micromachining technology. With the rapid industrial development,
high-temperature pressure sensors are demanded. However, traditional silicon sensors are incapable
of working in high-temperature environments due to the deterioration in both electrical and mechanical
properties. However, traditional silicon sensors are incapable of working in high-temperature
environments due to the deterioration in both electrical and mechanical properties. For example,
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pure silicon sensors containing p-n junctions, for the electrical isolation cannot work properly at the
temperature above 150 ˝C [3]. It is usually thought that conventional silicon-based electronics function
at a temperature below 250 ˝C [4]. Meanwhile, silicon undergoes brittle-to-ductile transition at a
temperature between 520 ˝C and 600 ˝C [5]. The stressed SCS components are therefore susceptible to
creep at elevated temperatures. The continuous deformation may result in unacceptable dimensional
change, as observed by Mehra et al. in a micromachined silicon combustor [6].

In order to be used in high temperature applications, silicon has been combined with other
advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI). SiC exhibits good
mechanical stability and stable electronic properties at temperatures up to 600 ˝C [7]. When the cost of
a full SiC sensor is very high, it is advised that SiC components in SCS-based sensors are employed.
Young et al. used the SiC diaphragm to form a capacitive pressure sensor [8]. Wu et al. implemented
the SiC piezoresistors on silicon substrate [9]. The performances of these combined sensors were tested
at temperatures up to approximately 400 ˝C. The SOI wafers contain an oxide layer between the device
layer and the silicon substrate. Rather than using the p-n junctions, the SOI-based piezoresistive sensor
designed by Guo et al. used the buried oxide layer to isolate the piezoresistors from the substrate and
from each other [10]. The silicon diaphragm with carefully designed dimensions was used to sense the
external pressure. The sensor showed a very low-pressure hysteresis up to 500 ˝C.

The mechanical behavior of the pressurized silicon diaphragm is partly dependent on the material
properties of SCS. The yield strength in silicon has been studied by the conventional bending test
and tensile test [11–14]. The creep properties for Si have previously been investigated using the
uniaxial compression test and the four-point bending test [15–18]. When it comes to the silicon
microstructures, however, it is found that the plastic behavior relates to the specimen size, the specimen
orientation and the fabrication routes [19–21]. To optimize the fabrication using silicon wafer bonding,
Huff et al. previously performed bulge test experiments on micromachined silicon membranes with
the temperatures ranging from 900 ˝C to 1150 ˝C [22]. However, the creep effect in SCS microstructures
has seldom been studied.

In order to extend the operating temperatures of existing SCS microstructures, this work
investigates the mechanical behavior of pressurized SCS diaphragms at the temperature range of
600 ˝C–900 ˝C. Firstly, the design of the test samples and the fabrication process are presented,
followed by the details of thermal treatment and profile measurement. Based on the reported critical
resolved shear stress of silicon, the occurrence of the plastic deformation is then predicted using the
orthotropic properties of silicon by the finite element method. After that, the maximum deflections for
the diaphragms with radii from 0.5 mm to 2.5 mm are reported with respect to different annealing
temperatures. The slip bands were observed on the surface of the plastically deformed diaphragm
by the microscope. Finally, based on the evolution of the measured profiles, the size effect and the
temperature effect on the diaphragm behavior are discussed.

2. Experimental Details

2.1. Microfabrication of SCS Diaphragms with Sealed Cavity

The testing sample of the SCS diaphragm with a sealed cavity is illustrated in Figure 1, along with
the crystal orientation of silicon. The silicon diaphragm is 50 µm thick and is bonded to the silicon
substrate. The cavity with a depth of 300 µm under the diaphragm is sealed in a vacuum. The radius
of the diaphragm is determined by the size of the cavity, and is in the range from 0.5 mm to 2.5 mm.
The edges of the die are along <110> directions in the (100) plane.

The fabrication of the testing samples has been reported in our previous work [23]. The process
flow is briefly illustrated in Figure 2. The process starts with a 4-inch-diameter boron-doped <100>
prime silicon wafer and a 4-inch-diameter <100> bond-and-etch-back-silicon-on-insulator (BESOI)
wafer (step 1). The BESOI wafer has a 50 ˘ 0.5-µm thick single crystal silicon (SCS) device layer and
a 0.5-µm ˘ 5% thick silicon dioxide layer on a 400 ˘ 5 µm thick SCS handle wafer. The SCS device
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layer is <100> oriented silicon with boron doping resistivity of 0.001–0.002 ohm-cm. Then, a thin layer
of photoresist is deposited on the prime silicon wafer and patterned. In step 3, the front side of the
patterned wafer is etched using the deep reactive-ion etching (DRIE). After that, the silicon substrate is
bonded to a (100)-oriented BESOI wafer by the silicon fusion bonding method [24]. Then, the silicon
handle layer of the BESOI wafer was completely etched away by the KOH wet-etching process (step 5).
Finally, the samples were made ready for the subsequent tests after the wet etching of the silicon
dioxide layer in an HF solution.
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Figure 1. Schematic drawing of SCS diaphragm with sealed cavity (a) top view (inset is the crystal
orientation of the device); (b) cross-section view.
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Figure 2. Process flow for fabricating SCS diaphragms with sealed cavity.

Due to the pressure difference between the atmosphere and the sealed cavity, the silicon
diaphragms deflected toward the substrate once they were made ready for test. The availability
of the wet-etching method and the BESOI wafer allowed good control over the diaphragm thickness,
as shown in Figure 3. The resulting diaphragm also had well-defined sidewalls. However, the
manufacturing processes were not ideal. On the one hand, the boron dopant in silicon could have
introduced internal stress in the diaphragms [25]. On the other hand, air may have been trapped inside
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the cavities, or the temperature for annealing may not have been evenly distributed during the wafer
bonding process. The fabrication imperfections could have had an effect on the diaphragm behavior,
and therefore need to be considered when the experimental data is evaluated.Sensors 2016, 16, 204 4 of 12 
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Figure 3. SEM image of a microfabricated SCS diaphragm (cross-sectional view).

2.2. Thermal Treatment and Profile Measurement of SCS Diaphragms

The probable failure modes associated with the silicon microstructures at elevated temperatures
are the plastic deformation or creep. The direct observation of the diaphragm deflection during
annealing is experimentally very difficult. However, the brittle failure leads to the permanent change
of the diaphragm deformation, and can be detected by studying the evolution of the surface profiles
with annealing processes. Based on this concept, a series of experiments were conducted to investigate
the size effect and the temperature effect on the deformation of the silicon diaphragms.

The microfabricated SCS diaphragm was annealed in a furnace filled with nitrogen gas of
atmospheric pressure for three different durations (namely Stage A, Stage B and Stage C) at each
temperature tested in this study. In each annealing process, the furnace temperature rose from 20 ˝C
with a ramp-up rate of 5 ˝C/min. Then, it was maintained at the annealing temperature for a duration
specified in Table 1. The annealing duration was kept short in Stage A so that deformation due to
plasticity could be observed. Based on the testing results after annealing Stage A, the annealing
durations for Stage B and C were carefully designed in accordance with the operating temperature.
By assuming that the creep rate is positively related to the annealing temperature, the annealing time
at lower temperature was kept longer so that the deformation caused by creep could be measured.
After that, the furnace was cooled down gradually to 20 ˝C with a ramp-down rate of ´5 ˝C/min.

Table 1. The list of anneal time and temperature.

Anneal
Temperature

Anneal Time (hour)

Stage A Stage B Stage C

600 ˝C 1 68 68
800 ˝C 1 15 15
900 ˝C 1 10 10

The surface profiles of the test samples were measured with a white light interferometer. All the
measurements were taken under the atmospheric pressure at a temperature of 20 ˝C. At room
temperature, silicon is brittle and the Young’s modulus is high. Elastic deformation was measured
before annealing Stage A, and the magnitude was proportional to the atmospheric pressure. After
annealing, as the samples cooled down to the room temperature, the silicon became brittle again. If the
diaphragm deflected plastically during annealing, the measured data afterwards would consist of the
plastic deformation and the atmosphere induced elastic deformation. Therefore, the high temperature
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behavior of the diaphragm can be determined by comparing its surface profile tested before and after
the different annealing stages.

3. Theoretical Prediction of Plastic Deformation

3.1. Resolved Shear Stress in SCS

The plastic deformation in the single crystal silicon was caused by the dislocation slip, which
was initiated by the shearing stress resolved on the slip plane in the slip direction. Wherever the
acting resolved shear stress obtained from the operating temperature field exceeded the critical value
(the yield strength), the crystallographic slip began. Because of the face-centered-cubic structure of
silicon, the dislocations glided along <011> directions on the dense atomic planes {111}. There are a
total of 12 primary slip systems for SCS. For each slip system s, the crystallographic orientation of the
slip plane ns and the slip direction ls are listed in Table 2.

Table 2. The primary slip systems of single crystal silicon [26].

s 1 2 3 4 5 6 7 8 9 10 11 12

ns 111 111 111 111 111 111 111 111 111 111 111 111
ls 101 011 110 101 011 110 011 110 101 110 101 011

The resolved shear stress on a slip system s is the scalar product between the orientation tensor,
ms, and the macroscopic stress tensor, σ [27]:

τs “ ms : σ (1)

where ms is given by:

ms
ij “

1
2
pns

i ls
j ` ns

j l
s
i q (2)

3.2. FEA Modeling

The pressure-induced stress in the test samples can be calculated by the aid of COMSOL
Multiphysics 3.5a in 3-dimensional domain. Since the test samples were free to expand during
high temperature annealing, there was no thermally induced stress. At the same time, the temperature
dependence of the elastic properties of silicon was ignored in the modeling because its effect on the
stress field is very small compared to the effect of the applied pressure. The resolved shear stress for
all the slip systems could then be obtained by applying the Cauchy stress.
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Due to the orthotropic properties of SCS, the stress field of one slip system is different from that
of the other [28]. It was found that the maximum resolved shear stress occurred at the edge of the
diaphragm for the slip system 12, as shown in Figure 4. Because the test structure had two planes of
symmetry, only a quarter of the geometry is modeled. The external pressure was applied on the upper
surface of the sample. The bottom and the substrate sidewall were rigidly fixed. Since the definition
of the resolved shear stress refers to the [100] crystal orientation, the x-axis of the model coordinate
system aligns with crystallographic direction <100> in the (100) wafer plane. This model ignores the
temperature dependence of the stiffness coefficients. The simulated stress is therefore not related to
the operating temperature. Therefore, it is assumed that the maximum resolved shear stress in the test
structure remained the same at elevated temperatures.

3.3. Occurrence of Plastic Deformation

The slip of the dislocation began when the resolved shear stress reached the yield strength at
the operating temperature. The onset of the plastic deformation could then be predicted simply by
comparing the maximum resolved shear stress with the yield strength at each operating temperature,
as shown in Figure 5. Here in this analysis, the yield strength for the dislocation-free silicon was used
with a strain rate of 5 ˆ 10´3 cm/min [12]. It can be seen that the maximum resolved shear stresses
varied from 13 MPa to 207 MPa, well below the yield strength of 300 MPa at 700 ˝C. Consequently, all
of the micromachined diaphragms would not fail by plastic deformation. At 800 ˝C, the yield strength
decreases to about 120 MPa. The plastic deformation would have happened for the diaphragms with a
radius from 1.75 mm to 2.5 mm. At 900 ˝C, the diaphragms with a radius in the range of 1.2–2.5 mm
are very likely to deform plastically. When the operating temperature increases to 1000 ˝C, the plastic
deformation can be serious for the diaphragms with a radius larger than 0.5 mm. The results suggest
that the higher the operating temperature and the larger the diaphragm radius, the more likely the
plastic deformation is.
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3.4. The Plastic Zone

The region where the plastic deformation is likely to take place can also be predicted by the FEA
model, as highlighted by the red color in Figure 6. It can be seen that, at 800 ˝C, the slip of dislocations
might occur at the region close to the diaphragm edge. When the annealing temperature increases
to 900 ˝C, almost the entire region of the diaphragm seems to be affected by the plastic deformation.
Therefore, it is expected that the resultant deformation is more obvious at 900 ˝C than that at 800 ˝C.
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4. Experimental Results and Discussion

4.1. Plastic Deformation and Creep at High Temperature

For the pressurized SCS diaphragms annealed at 600 ˝C, the evolution of their averaged maximum
deflections at different annealing stage is recorded in Table 3. It can be seen that, when the radius is
2 mm and under, there is no measurable differences among the deflections. Therefore, the deformation
is considered elastic, and the effect of creep can be ignored.

Table 3. The averaged maximum deflections (µm) with respect to the diaphragm radius at 600 ˝C.

Total
Annealing

Time
0.5 mm 0.75 mm 1 mm 1.25 mm 1.5 mm 1.75 mm 2 mm 2.5 mm

Before
annealing 0 h 0.094 0.381 1.247 2.842 5.803 10.706 17.366 36.718

After
annealing A 1 h 0.097 0.398 1.226 2.841 5.804 10.756 17.542 37.457

After
annealing B 69 h 0.095 0.388 1.205 2.822 5.780 10.681 17.833 61.817

After
annealing C 137 h 0.090 0.390 1.208 2.811 5.775 10.621 17.990 74.780

For the diaphragms with the radius of 2.5 mm, they showed very different behavior, as indicated
by the two samples’ surface profiles shown in Figure 7. For silicon, 600 ˝C is exactly the threshold
temperature of creep. Because there were no apparent changes for the deflections in the anneal Stage A,
the noticeable deformation increases afterwards are contributed by the mechanism of creep. Since the
elastic deflections before annealing are quite similar, it is supposed that the volumes of the air sealed
in the cavities are quite the same. Meanwhile, these two samples are located close to the wafer center.
Therefore, any structural differences caused by the fabrication imperfections or any slight variations in
temperature could either speed up or slow down the creep process.

Table 4 shows the averaged maximum deflections of pressurized SCS diaphragms annealed at
800 ˝C. When the radius is 1.5 mm or under, there are no measurable differences among the deflections.
It is the elastic deformation that happened during annealing. However, the deflection becomes larger
when the radius increases to 1.75 mm or larger, as shown in Figure 8. It can be seen that the deflections
induced in the anneal Stage A are quite obvious. Therefore, it is the plastic deformation that dominates
in the diaphragm behavior. The data also shows that there is no measurable creep in the anneal Stage C.
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Figure 7. Surface profiles of SCS diaphragm cross-sections with a radius of 2.5 mm measured after the
annealing processes at 600 ˝C, showing a different behavior.

Table 4. The averaged maximum deflections (µm) with respect to the diaphragm radius at 800 ˝C

Total
Annealing

Time
0.5 mm 0.75 mm 1 mm 1.25 mm 1.5 mm 1.75 mm 2 mm 2.5 mm

Before
annealing 0 h 0.087 0.375 1.149 2.895 5.902 10.790 17.517 37.090

After
annealing A 1 h 0.086 0.378 1.143 2.866 6.001 11.926 37.902 109.251

After
annealing B 16 h 0.084 0.383 1.156 2.877 6.027 13.491 38.518 110.096

After
annealing C 31 h 0.088 0.386 1.164 2.886 6.056 13.532 38.507 110.950
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Figure 8. Surface profiles of SCS diaphragm cross-sections with a radius of (a) 1.75 mm and (b) 2 mm
measured after the annealing processes at 800 ˝C.

When the annealing temperature was increased to 900 ˝C, neither plastic deformation nor creep
effect was evident when the diaphragm radius was 1 mm or smaller, as indicated in Table 5. For others,
the plastic deformation is quite noticeable in the anneal Stage A and B. It should be noted that,
in the anneal Stage C, negative creep took place for the diaphragms with a radius of 2 mm and
2.5 mm, as shown in Figure 9. Negative creep has been previously observed during the bending
of the boron-doped silicon [29]. The suggested mechanism to account for this phenomenon is the
redistribution of the vacancies and impurities in the transverse field of mechanical stress. In this case,
the effect of the negative creep should not be ignored. When the diaphragm radius increases to 2 mm
and 2.5 mm, the elastic deformation under atmosphere is large. The middle surface is appreciably
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strained in order to resist the lateral load. Therefore, when the thermal energy was high enough at
900 ˝C, the vacancies and the impurities redistributed under the transverse stress during anneal. As a
result, the vertical displacement decreased.

Table 5. The averaged maximum deflections (µm) with respect to the diaphragm radius at 900 ˝C.

Total
Annealing

Time
0.5 mm 0.75 mm 1 mm 1.25 mm 1.5 mm 1.75 mm 2 mm 2.5 mm

Before
annealing 0 h 0.091 0.394 1.164 2.884 5.887 10.755 17.308 37.211

After
annealing A 1 h 0.092 0.403 1.172 2.936 6.342 17.549 39.135 110.107

After
annealing B 11 h 0.089 0.400 1.176 3.192 10.665 35.278 86.778 134.680

After
annealing C 21 h 0.085 0.416 1.190 3.220 10.749 35.449 85.980 130.516
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Figure 9. Surface profiles of SCS diaphragm cross-sections with a radius of 2.5 mm measured after the
annealing processes at 900 ˝C.

For the diaphragm presented in Figure 9, the microscopic photo of the deformed surface after
annealing for 21 h is shown in Figure 10. The slip bands appeared as bright and dark lines as shown in
Figures 2 and 3. In region a, a high density of the visible lines are oriented parallel to the [110] direction,
while, in the region b, the visible lines are oriented parallel and perpendicular to the [110] direction.
The discrepancy in the arrangement of the slip bands is caused by the different number of working
slip systems. Because silicon is orthotropic, the induced stresses vary from place to place. The photos
suggest that the induced stress activates more slip systems at the specimen corner (region b) than the
side (region a).
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Figure 10. Top view optical microscope photo of diaphragm with a radius of 2.5 mm after annealing
900 ˝C for 21 h.
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4.2. Discussion

The experimental results reveal that larger diaphragms have a higher risk of plastic deformation.
Once the pressure applied on the test sample is determined, the larger the diaphragm radius, and the
higher the stresses are induced. As a result, the slip of the dislocations is more likely to be activated
once the critical value is achieved.

Meanwhile, high temperature adds to the risk of elastic failure. When it comes to creep, raising
temperature increases the diffusion rate of the silicon atoms in the pressurized diaphragms and
therefore speeds up the creep progress. For plastic deformation, raising temperature decreases the
value of the critical resolved shear stress (CRSS). Therefore, the pressurized diaphragms are more
likely to deform plastically in a high-temperature environment. The higher the operating temperature,
the larger the plastic deformation is. For the diaphragms with a radius of 2.5 mm, the maximum
deformation is about 101 µm after annealing at 600 ˝C for 137 h, while it is about 112 µm after annealing
at 800 ˝C for 31 h, and is about 135 µm after annealing at 900 ˝C for 21 h. The creep at 600 ˝C has a low
deformation rate.

The experimental results and the FEA prediction of the plastic deformation in the silicon
diaphragms are compared and illustrated in Figure 11. The mechanical behavior is summarized
as a function of the diaphragm radius and the operating temperature. It indicates that the
predicted behavior is in good agreement with the experimental observation at 600 ˝C, 800 ˝C and
900 ˝C. Furthermore, this model is successful in predicting the plastic zone. However, a quantative
approximation of the plastic deflection is complicated.

Sensors 2016, 16, 204 10 of 12 

 

4.2. Discussion 

The experimental results reveal that larger diaphragms have a higher risk of plastic deformation. 
Once the pressure applied on the test sample is determined, the larger the diaphragm radius, and the 
higher the stresses are induced. As a result, the slip of the dislocations is more likely to be activated 
once the critical value is achieved.  

Meanwhile, high temperature adds to the risk of elastic failure. When it comes to creep, raising 
temperature increases the diffusion rate of the silicon atoms in the pressurized diaphragms and 
therefore speeds up the creep progress. For plastic deformation, raising temperature decreases the 
value of the critical resolved shear stress (CRSS). Therefore, the pressurized diaphragms are more 
likely to deform plastically in a high-temperature environment. The higher the operating 
temperature, the larger the plastic deformation is. For the diaphragms with a radius of 2.5 mm, the 
maximum deformation is about 101 µm after annealing at 600 °C for 137 h, while it is about 112 µm 
after annealing at 800 °C for 31 h, and is about 135 µm after annealing at 900 °C for 21 h. The creep at 
600 °C has a low deformation rate.  

The experimental results and the FEA prediction of the plastic deformation in the silicon 
diaphragms are compared and illustrated in Figure 11. The mechanical behavior is summarized as a 
function of the diaphragm radius and the operating temperature. It indicates that the predicted 
behavior is in good agreement with the experimental observation at 600 °C, 800 °C and 900 °C. 
Furthermore, this model is successful in predicting the plastic zone. However, a quantative 
approximation of the plastic deflection is complicated.  

 
Figure 11. Evaluation of the prediction using the experimental observation. 

5. Conclusions 

Because the plastic deformation is a very complicated process, this work is focused on the 
mechanical aspect of the phenomenon. A series of experiments was performed to investigate the 
effect of size and temperature on the deformation of the silicon microstructures. The samples for 
testing were fabricated by the micromachining technology with good control over diaphragm 
thickness. By comparing the surface profiles obtained before and after a number of annealing 
processes, the trend of the diaphragm deformation is obtained. The results are fairly good for 
engineering applications. 

The occurrence of the plastic deformation was predicted by comparing the resolved shear stress 
induced by pressure with the yield strength of SCS, which is a valuable criterion for predicting the 
elastic failure of SCS microstructures in high temperature applications. The prediction was verified 
by the experimental results. The accuracy of the FEA modelling can be improved by including the 
exact material properties and experimental conditions. When the plastic deformation can be avoided 
in the primary design, the creep deformation must be tested if the device is to operate at a 
temperature over 600 °C for a long period of time.  

The experimental results provide good reference data for designing the sensing diaphragm for 
high-temperature pressure sensors. The profile data imply that either increasing the size or raising 

Figure 11. Evaluation of the prediction using the experimental observation.

5. Conclusions

Because the plastic deformation is a very complicated process, this work is focused on the
mechanical aspect of the phenomenon. A series of experiments was performed to investigate the effect
of size and temperature on the deformation of the silicon microstructures. The samples for testing
were fabricated by the micromachining technology with good control over diaphragm thickness.
By comparing the surface profiles obtained before and after a number of annealing processes, the trend
of the diaphragm deformation is obtained. The results are fairly good for engineering applications.

The occurrence of the plastic deformation was predicted by comparing the resolved shear stress
induced by pressure with the yield strength of SCS, which is a valuable criterion for predicting the
elastic failure of SCS microstructures in high temperature applications. The prediction was verified by
the experimental results. The accuracy of the FEA modelling can be improved by including the exact
material properties and experimental conditions. When the plastic deformation can be avoided in the
primary design, the creep deformation must be tested if the device is to operate at a temperature over
600 ˝C for a long period of time.

The experimental results provide good reference data for designing the sensing diaphragm for
high-temperature pressure sensors. The profile data imply that either increasing the size or raising
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the temperature adds to the risk of creep and plastic deformation. The diaphragms with smaller
dimensions are more likely to survive in high-temperature environments. However, reducing the
radius decreases the sensitivity of the diaphragm to pressure. Therefore, the dimension should be
decided so that the device lifetime and sensitivity are well balanced. At the same time, the transduction
mechanism needs to be chosen carefully so that the signal change caused by the external pressure can
be sensed with a desired resolution.
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