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Abstract Deep learning techniques have shown success in learning from raw
high dimensional data in various applications. While deep reinforcement learn-
ing is recently gaining popularity as a method to train intelligent agents, uti-
lizing deep learning in imitation learning has been scarcely explored. Imitation
learning can be an efficient method to teach intelligent agents by providing a
set of demonstrations to learn from. However, generalizing to situations that
are not represented in the demonstrations can be challenging, especially in
3D environments. In this paper, we propose a deep imitation learning method
to learn navigation tasks from demonstrations in a 3D environment. The su-
pervised policy is refined using active learning in order to generalize to un-
seen situations. This approach is compared to two popular deep reinforcement
learning techniques: Deep-Q-networks (DQN) and Asynchronous actor critic
(A3C). The proposed method as well as the reinforcement learning methods
employ deep convolutional neural networks and learn directly from raw visual
input. Methods for combining learning from demonstrations and experience
are also investigated. This combination aims to join the generalization abil-
ity of learning by experience with the efficiency of learning by imitation. The
proposed methods are evaluated on 4 navigation tasks in a 3D simulated en-
vironment. Navigation tasks are a typical problem that is relevant to many
real applications. They pose the challenge of requiring demonstrations of long
trajectories to reach the target and only providing delayed rewards (usually
terminal) to the agent. The experiments show that the proposed method can
successfully learn navigation tasks from raw visual input while learning from
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experience methods fail to learn an effective policy. Moreover, it is shown
that active learning can significantly improve the performance of the initially
learned policy using a small number of active samples.

Keywords Deep Learning · Convolutional Neural Networks · Learning from
Demonstrations · Reinforcement Learning · Active Learning · 3D Navigation ·
Benchmarking

1 Introduction

Recent years have seen a rise in demand for intelligent agents capable of per-
forming complex motor actions. Advances in robotics and computational ca-
pabilities provide opportunities for many potential applications such as assis-
tive robots, autonomous vehicles and human computer interaction. However
the challenge remains to create intelligent agents capable of robust and ef-
fective behavior. Most applications are dynamic and involve many variables
and are therefore not suitable for manually designed policies. It is also dif-
ficult to breakdown and articulate how humans perform tasks in order to
program intelligent agents to replicate this behavior. For instance it is hard
for an experienced driver to describe to another human how to drive well. A
more intuitive and effective method of imparting this knowledge is to show
the student examples of good driving.

Imitation learning is a paradigm where an intelligent agent is taught to
mimic human behavior by supplying the agent with demonstrations provided
by a teacher rather than instructions. By learning from demonstration, the
agent doesn’t require explicit knowledge about the task or the environment
such as objectives or constraints. Instead a generic learning process is advo-
cated where all needed information is inferred from the provided demonstra-
tions. Two major challenges facing imitation learning are 1- Creating adequate
feature representations for learning. 2- Learning a policy that generalizes to
unseen situations. Feature representations are required to encode the demon-
strations in a way that the agent can learn from and also to represent how
the agent perceives its environment from its sensory data. The representations
must be adequate for learning as well as be suitable for real time processing.
Manually designing suitable features for imitation learning is an arduous task
as different representations must be tailored for each task or environment. Es-
pecially in dynamic settings where the representations must be robust against
various scenarios. Generalization to unseen scenarios is also a challenge because
of the dynamic nature of the tasks. This is a common problem because demon-
strations typically show the best way to perform a task and dont offer any
information about recovering from sub-optimal actions. Therefore approaches
are required that can generalize beyond demonstrated behavior without ex-
tensive feedback from a teacher or the environment. This paper builds on the
work reported in [1] and presents a deep active learning method for learning
from demonstrations in navigation tasks. The proposed method addresses the
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challenges of imitation learning by utilizing deep learning to learn feature rep-
resentations and active learning to improve generalization using a relatively
small number of samples. The main extension in this paper is comparing the
proposed methods with state of the art deep reinforcement learning methods
as well as creating methods for combining reinforcement learning with learning
from demonstrations. Utilizing both taught behavior and experience in learn-
ing aims to mitigate the limitations of each approach. By allowing the agent to
explore using trial and error, it is exposed to new scenarios and is able to gen-
eralize without requiring a teacher’s involvement. While demonstrations can
provide a starting point to learn more efficiently than learning from scratch
using trial and error.

The proposed learning method is generic and doesn’t require any prior
knowledge of the task. The only information presented to the agent is the
demonstrations, which are acquired by controlling the agent using a determin-
istic optimal policy. For each frame, the agent’s point of view and the action
performed are captured and used to construct a dataset of observation/action
pairs. A deep convolutional neural network is trained on the captured dataset
to learn a policy that mimics the demonstrated behavior. Since direct imi-
tation can lead to poor generalization, active learning is employed to adapt
to situations that are not represented in the demonstrations. Active samples
are selected based on the confidence of the agent’s current policy. The agent
queries the optimal policy to suggest actions for these instances. The trained
policy interacts with the 3D environment in real time, observing the current
state, extracting features and predicting the action to perform in a timely man-
ner. The proposed learning from demonstration method is compared to two
popular deep reinforcement learning methods: Deep-Q-networks (DQN) which
has shown human level behavior on learning Atari games from raw pixels and
paved the road for deep reinforcement learning methods, and Asynchronous
actor critic (A3C) learning that is considered the state of the art in deep
reinforcement learning and has shown success on a 3D navigation task. More-
over, we investigate methods for combining learning from demonstrations and
reinforcement learning to alleviate the generalization limitations of imitation
methods and help reduce the search space of trial and error methods. Ex-
tensive experiments are conducted on four navigation tasks in the 3D MASH
simulator [2] as well as a simple 2D navigation task to analyze the performance
of the methods used in this paper. The evaluation highlights the challenges
and advantages of the different approaches.

In the next section we provide a background to reinforcement and imitation
learning methods and highlight our motivation. Section 3 reviews related work
in the literature. Section 4 describes the proposed methods. Section 5 details
the conducted experiments and results. The paper is concluded in Section 6
and future steps are discussed.
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2 Background

Deep learning methods have shown great success in learning from high dimen-
sional raw data in a variety of applications. Convolutional Neural Networks
(CNN) are used in many computer vision applications to learn from raw pixels
and achieve state of the art results in various image classification tasks [3, 4].
CNNs are effective because they employ multiple convolution layers that au-
tomatically extract higher level patterns from the input features which are
more useful for learning. Automatically extracting feature representations can
greatly facilitate creating generic learning processes for learning from demon-
stration. Where the same network architecture can extract relevant features
for different situations depending on the provided demonstrations.

A different approach for creating intelligent behavior in agents is learning
from experience. Learning from experience relies on trial and error and uses
reinforcement learning to train a policy based on feedback from a reward func-
tion. Deep reinforcement learning is rapidly gaining attention due to recent
successes in a variety of problems [5, 6, 7, 8, 9, 10]. The combination of deep
learning and reinforcement learning allows for a generic learning process that
does not consider specific knowledge of the task and learns from raw data.
Reinforcement learning (RL) is a popular choice for learning motor actions
because most tasks can be modeled as a Markov decision process. Moreover,
optimizing a reward function arguably provides a better description of a task
than optimizing a policy [11]. Learning from experience can produce robust
policies that generalize to dynamic scenarios by balancing exploration and ex-
ploitation of rewards. However, finding a solution through trial and error may
take too long. Especially in problems that require performing long trajectories
of actions with delayed rewards. In such cases it may be extremely difficult to
stumble upon rewards by chance. And the time to learn a policy to maximize
the rewards exponentially increases. Such challenges are present in many real
life applications and pose limitations to current methods. Another drawback
is that learning through trial and error may result in a policy that solves the
problem differently to how a human would. Performing a task in a manner
that is intuitive to a human observer may be crucial in applications where
humans and intelligent agents interact together in an environment.

On the other hand learning from demonstrations may result in faster learn-
ing and produce a policy that follows the teacher’s way of solving the task
[12]. However, learning a direct mapping between observation and action can
commonly result in a policy that generalizes poorly to unseen scenarios. The
supervised policy only learns to deal with situations covered in the demon-
strations. Since demonstrations only cover the optimal trajectory, if the agent
deviates even slightly from that trajectory at any point (which is expected in
any machine learning application), it finds itself in an unseen situation not cov-
ered by the training data [13]. So essentially the policy is trained using samples
from a distribution that is different to the one it is evaluated on. Therefore, in
many cases, policies need to be refined based on the performance of the ini-
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tially learned policy. Moreover, supervised learning needs a sufficient number
of demonstrations which for deep network architectures may be large.

Navigation is an important skill for intelligent agents due to its relevancy
to a variety of applications. Navigation can be a main task as in autonomous
vehicle applications [14, 15, 16, 17, 18, 19, 20] or as a base skill for other
tasks such as humanoid robots which need to move before performing other
tasks [21, 22]. Navigation tasks present a set of problems where the agent is
typically required to perform long trajectories and receives rewards at the end
of the trajectory. In many applications it is not realistic to design intermediate
rewards and is common in navigation tasks to only provide terminal rewards
after reaching the target. Navigation from visual input also poses an extra
challenge as the view of the agent changes constantly as it moves around the
environment making it more difficult to observe relations between subsequent
states. This is in contrast for example to object manipulation tasks where a
static view contains all the information needed by the agent, and changes from
one frame to the next can be more easily tracked.

3 Related Work

In this section we present related work and review methods that utilize deep
learning in imitation learning and reinforcement learning methods. This sec-
tion also surveys different methods proposed in the literature to combine learn-
ing from demonstrations and experience.

3.1 Navigation

From an early stage, Artificial Intelligence (AI) research has accorded special
interest to navigation problems as many potential applications rely on au-
tonomous navigation. Learning from demonstrations lends itself to navigation
problems as it is difficult, even for experts, to identify an optimal strategy
for agents to follow in complex environments. Prioritizing different aspects
of navigation such as speed, safety and avoiding obstacles can be better in-
ferred from demonstrations [11]. An early work [14] proposed a method for
learning autonomous control of an aerial vehicle from demonstrations. Since
then several papers have proposed learning autonomous aerial navigation us-
ing demonstrations [23] and reinforcement learning [15][16][24]. In [19] a robot
learns how to navigate through a maze based on its sensory readings. The
information available to the robot is a stream from an infrared (IR) sensor
and input from a controller operated by a teacher. The agent learns to map its
sensory data directly to the motor primitives provided by the controller. The
IR data provides information about the proximity of objects. This sensory in-
formation doesn’t allow the agent to differentiate between different objects. In
[25] a laser sensor is utilized to enable the agent to detect and identify relevant
objects. Instead of mapping the sensory data directly to motor primitives, the
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agent learns to identify sub-goals from its observations. A more detailed repre-
sentation of the environment can be provided by visual data. High dimensional
visual data can be efficiently provided to intelligent agents thanks to advances
in computational resources and communication technology. An agent learns to
play a racing game from visual data in [26]. A teacher plays the game using a
controller, and the controller’s input is captured along with the game’s video
stream to create a training dataset. The video stream is stored as raw pixels
and down sampled versions of the frames are input into a neural network.
In [9] a deep reinforcement learning algorithm is used to teach an agent in a
racing simulator from raw visual features. The learned policy maps the high
dimensional visual input to multiple continuous outputs such as steering and
pressing the acceleration pedal. Another racing application is demonstrated in
[27] where the training algorithm uses features extracted from the simulator
(such as the position and speed of the car). It is shown that learning from
demonstration can be used to handle high degree of freedom low level actions,
however, features such as those extracted from the simulator are difficult to
produce in real world applications. Learning from visual information is not
limited to the point of view of the agent. In [17] an imitation learning method
is proposed to train a vehicle to navigate over long distances by learning from
overhead data captured from satellite and aerial footage. Recently, state of the
art deep reinforcement learning methods have been evaluated on 3D navigation
tasks [28][29]. However, these benchmark tools are not publicly released.

3.2 Deep learning from demonstrations and experience

Creating feature representations is one of the major challenges in developing
intelligent agents; especially in dynamic environments. Engineering features
that are robust in all situations facing the agent is very difficult. Therefore
deep learning methods are suitable for such tasks due to their ability to learn
from raw sensory data. Recently deep reinforcement learning methods have
been gaining a lot of attention due to recent successes. One of the first success-
ful deep reinforcement learning methods is Deep-Q-Networks (DQN) [30, 5] in
which a convolutional neural network is used to estimate the Q-function from
raw visual data. In order to scale Q-learning to a complex model such as CNNs,
a replay buffer of training samples is collected from the performing policy and
random mini batches from the buffer are used to perform off-policy training.
This buffer is important as it allows for random sampling of instances from
different situations within the task. This technique has shown human level per-
formance on several Atari games and paved the road for deep reinforcement
learning methods. A similar concern is raised in [31] where a reservoir of Liquid
State Machines (LSM) based method is proposed to overcome over correlation
between the training samples and the network’s sensitivity to the input. For a
survey of reservoir-based methods refer to [32]. Since Q-functions provide an
estimated reward for each possible action, Q-learning methods can only be ap-
plied to tasks with discrete actions. To use deep reinforcement learning in tasks
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with continuous action spaces, [9] adapt the contributions of DQN are adapted
to an actor-critic reinforcement learning method. This algorithm consists of
an acting step, in which a convolutional neural network outputs an action in
continuous space, and a critic step where the rewards from the environment
are used to evaluate the performed action. This approach is demonstrated to
successfully learn tasks that require continuous input such as racing simulators
from raw pixels. In [29] a number of asynchronous deep reinforcement learning
methods are proposed. Instead of the replay buffer, these methods enforce di-
versity in the training samples by creating parallel threads in which multiple
agents are acting; each in its own environment. Discarding the replay buffer
and relying on parallel online learning allows both on-policy and off-policy re-
inforcement learning methods to be adapted to this approach. The best results
from the methods proposed in this work belonged to Asynchronous advantage
actor-critic (A3C) and set a new state of the art on the Atari benchmark
and showed success on a 3D navigation task. A3C has been evaluated using
a feed forward network similar to the one used in DQN and a Long-short-
term-memory (LSTM) network that considers the past when predicting a new
action. A version of A3C has been modified in [10] to take an image of the
target as input in addition to the current view of the agent. The results show
that this extra information significantly decreases the time required to reach
the target.

Although most efforts focus on incorporating deep learning in reinforce-
ment learning methods, examples of good behavior provided by an expert
can significantly reduce the policy space and result in more efficient learn-
ing. If sufficient training samples are available, deep learning can be used to
learn an effective policy from demonstrations. A drone is trained to navigate
through cluttered environments in [33] using a dataset of good and bad ex-
amples (crashes). A camera mounted on the drone provides images of the
environment in front of it. These images are used by a deep neural network
to decide whether to move forward or not. If the drone doesn’t move forwards
it will turn to face a new direction and feed the new images to the network
to make a decision. The deep network used for training follows the AlexNet
architecture[4] and uses 2 output nodes to perform the binary classification. In
[8], demonstrations for the Atari Benchmark used in [30] are generated using
an offline Monte Carlo policy. These demonstrations are used to train a deep
convolutional neural network in a supervised manner where the network pre-
dicts the likelihood of performing actions rather than expected rewards. The
results show that the supervised policy learned from demonstrations outper-
forms DQN on Atari games. Similarly in [34], DQN is compared to learning
from demonstrations on a game of ’Pacman’. The demonstrations were pro-
vided by the authors playing through the game. The results show that the
imitation learning approach resulted in an agent that can play the game ef-
fectively, while DQN failed to learn a well performing policy. Most of the
research that utilize demonstrations with deep learning do so in combination
with learning from experience to get the benefits of both approaches.
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3.3 Combining learning from demonstrations and experience

A common paradigm in combining learning from demonstrations and experi-
ence is to train the agent using reinforcement learning while using demonstra-
tions to provide information that helps the reinforcement learning process.
One such method is apprenticeship learning [11] where demonstrations are
used to infer a reward function rather than to directly train a policy. There-
fore apprenticeship learning doesn’t need to receive explicit rewards from the
environment. Instead, it is assumed that the demonstrator is attempting to
solve the task in a manner that optimizes an unknown reward function. The
demonstrations are then used to learn an estimation of this reward function.
The learned reward function provides feedback to the reinforcement learning
algorithm in order to learn a policy. This approach in addition to not requiring
an explicit reward system, has the advantage of creating a policy that follows
the demonstrator’s priorities. However, insufficient demonstrations that don’t
cover possible scenarios can affect the generalization ability of the agent by
creating an inadequate estimation reward function. Deep learning has been
integrated with apprenticeship learning to train the reinforcement learning
algorithm from raw pixels using a convolutional neural network [35].

In [6] supervised learning is used in two different ways to assist deep rein-
forcement learning to learn to play the board game ’GO’. Firstly a dataset of
previous games is used to train a supervised convolutional neural network to
play the game. The weights of the network are used to initialize the network
used for reinforcement learning, so the agent starts exploring from a good
starting policy. Secondly a set of recorded games is used to train a network
to predict whether the game will end in a win or a loss given the current
state. This evaluation function provides feedback to the reinforcement learn-
ing algorithm so it can learn from the estimated consequences of each action.
This method significantly outperforms direct imitation [36] and has shown the
ability to beat human experts.

Guided policy search [37] allows combining learning from demonstrations
with policy search reinforcement learning. A model based approach generates
guiding samples from demonstrations using differential dynamic programming
(DDP). A model-free policy search algorithm then uses these sample trajecto-
ries to explore areas in which it is likely to be rewarded. By following the guid-
ance of demonstrations the agent has faster access to rewards, which expedites
learning through reinforcement learning. In [7] supervised and reinforcement
learning are combined to perform deep end-to-end training on a number of ob-
ject manipulation tasks. This approach doesn’t require a dedicated teacher as
the demonstrations are generated using a reinforcement learning policy. This
policy is trained with knowledge of the positions of relevant objects. Generated
trajectories of successful behavior are used to train a supervised convolutional
neural network. The agent now learns the task from visual input with no in-
formation about the positions of objects. In [38] demonstration are used to
initialize reinforcement policies. Because RL agents require a large number of
trials before it achieves acceptable performance, using RL in many real world
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applications may not be practical. Therefore demonstrations are used to train
an initial policy using supervised loss as well as temporal difference (TD) loss.
DQN is then used to retrain the policy by continuing to optimize the TD loss.
This method shows significantly faster learning than using DQN from scratch,
and outperforms using RL only on a number of Atari games.

3.4 Active learning

Instead of using demonstrations to expedite reinforcement learning, a different
approach would be to improve the generalization ability of supervised methods.
This requires using the supervised policy’s performance to generate corrective
feedback. In active learning, the agent is allowed to act according to its initially
learned policy and queries the expert when in situations of low confidence. The
expert provides the agent with the optimal action which enables it to continue
exploring this previously unrepresented situation. These active samples are
collected and used to re-train the policy, thus improving its weakest areas.
In [21] active learning helps a robot to explore navigation tasks. With each
action predicted by the robot’s policy, an estimate of the policies confidence in
this action is calculated. In unfamiliar situations where the policies confidence
is lower than a certain threshold, the robot queries a teacher for the correct
action. These active samples help the robot explore unseen scenarios based on
its initial policy and improves its ability to generalize. Due to the nature of
imitation learning applications, it can be difficult for the teacher to provide
active feedback when queried mid trajectory. Therefore, in some applications
the teacher can prompt the active corrections in contrast to traditional active
learning. For example, in [39] the teacher identifies errors in the robot’s actions
and physically corrects the robot’s movement during the performance. These
adjustments are identified by the learner and used as active demonstrations.
However, learner queries can still be employed to improve action trajectories.
In [40] this problem is reduced to independent and identically distributed (IID)
active learning and allows the agent to query the teacher at any step in the
trajectory. Another special version of active learning can be seen in human-
robot cooperation tasks. The robot and human are mutually dependent in
their attempts to achieve a common goal. So as the human adapts to the
robot’s action, the robot in return needs to adapt to the updated scenario.
In [41] human robot interaction occurs in rounds with an episode of active
learning taking place between each round. The active learning stage updates
the robot’s policy to accommodate for human behavior unseen in its initial
training. While in the interaction round, the human modifies their behavior
according to the robots actions. This process is repeated until the mutual
actions of the interacting parties converge into a smooth cooperative behavior.
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4 Methods

This section presents the proposed method for learning from demonstration us-
ing active learning and deep neural networks. Methods for combining learning
from demonstrations and experience using deep networks are also described.

4.1 Deep Active Imitation Learning

The proposed method is divided into three processes: 1- Collecting Demon-
strations. 2- Supervised training of the neural network. 3- Active learning
to refine the initially learned policy. This novel method combines supervised
deep learning with data aggregation using active learning to produce a robust
imitation learning approach with a relatively small number of training sam-
ples. Table 1 summarizes key differences between the proposed method, Deep
Active Imitation (DAI), and other approaches that use deep learning that
learn from raw pixels, Deep-Q-Networks (DQN) [30] and Deep Guided Policy
(DGP) [7]. The table shows differences in the approaches such as the methods
used to generalize the policy to unseen scenarios, the methods used to gather
demonstrations and how the states are constituted from the captured frames.
Moreover, it shows differences in the tasks and environments in which the dif-
ferent approaches are utilized. The viewpoint is the perspective from which
the state of the environment is captured. Having a fixed point of view may
help keep track of changes in the state while having a dynamic viewpoint can
be more challenging as the scene changes completely with small movements in
the viewpoint. The trajectory refers to the sequence of steps typically needed
to successfully complete the task. A longer trajectory can be harder to learn
as small errors mid trajectory can propagate and cause failure to reach the
target. The environments refers to the settings in which the experiments are
conducted. The environment can be randomized at every run, so the agent is
faced with unfamiliar states. The more random the environment, the more the
agent’s policy needs to generalize to the changing circumstances.

Table 1: A comparison of deep learning agent approaches

Method DAI DQN DGP
Input Pixels Pixels Pixels

Generalization Active learning Q-learning Policy Gradient
State Representation Greyscale frame 4 Greyscale frames RGB frame

Demonstration Source Teacher Reinforcement learning N/A
Viewpoint Dynamic Static Static
Trajectory Long Various Shorter

Environment 3D simulator 2D simulator Real world
Randomization Extensive Extensive Limited

We begin by describing the process of collecting demonstrations. The demon-
strations are collected from the point of view of the agent while being controlled
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by the teaching policy. A teacher providing demonstrations may be assumed
to be optimizing an unknown optimal function. Therefore as the teaching pol-
icy we use a deterministic optimal policy π∗ to control the agent. This policy
has access to information from the simulator such as the position of the agent
and the target in 3D space in order to deterministically calculate the optimal
action. For each frame t the view of the agent is captured as well as the ac-
tion chosen by the optimal policy. This pair (xt, yt) is added to the dataset of
demonstrations D = (x, y) where xi is a 120 × 90 image and yt is the action
predicted by π∗(xt). Only one frame is used in an instance (xt, yt) as opposed
to a sequence of consecutive frames which is usually used in deep reinforcement
learning. Many AI applications are formulated as a Markov Decision Process
(MDP) where the current state on its own is sufficient to predict the action
to perform. And while deep reinforcement learning methods [30][5] commonly
represent the state by a sequence of frames, in the navigation tasks at hand
the current view of the agent is enough for the optimal policy to make a de-
cision. Next the captured dataset D is used to train the policy π such that
u = π(x, α). Where x is a 120×90 image and u is the action predicted by policy
π for input x and α is the set of policy parameters that are changed through
learning. The policy is learned using a deep convolutional neural network. The
network used has 3 convolution layers with rectifier unit activation functions.
Each layer automatically extracts higher level features from its input. The in-
put to the first convolution layer is a luminance map of the captured 120x90
image. This transformation allows us to use one channel for greyscale instead
of three channels for the RGB colors. Each convolutional layer is followed by
a pooling layer to further reduce the dimensionality. Following is a fully con-
nected layer with a rectifier unit activation function and finally an output layer
which directly represents the action available to the agent. Figure 1 and Table
2 show the architecture of the network

Fig. 1: Architecture of the neural network used to train the agent

Finally Active learning is used to adapt the initial policy learned from
demonstrations to new situations that arise from the agent’s behavior. The
agent is allowed to act in the environment according to its current policy. The
agent’s confidence in its actions is estimated in order to identify weaknesses in
the initial policy. In each frame the agent’s network provides a probability for
each possible action. If probabilities to perform all actions are similar, then it
is implied that the agent is not confident about which action to take in the
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Table 2: Neural network architecture

Layer Size of activation volume

Input 120 * 90

Conv1 7 * 9 * 20

Conv2 5 * 5 * 50

Conv3 4 * 5 * 70

FC 500

Output(FC) 3

current state. The opposite is the case if one action is far more probable than
the rest. The confidence of the agent is estimated as the entropy of the action
probabilities.

H(X) = −
∑
i

P (xi) log2 P (xi) (1)

Where X is a vector representing the output of the final layer in the net-
work, P (xi) is the probability of taking action i. The agent queries the optimal
policy if its confidence is lower than a certain threshold. The action returned
by the optimal policy and the current frame are recorded in a dataset of ac-
tive samples. The active samples represent situations that were unseen in the
initial training data but are likely to appear when executing the current pol-
icy. Thus active learning helps the agent generalize to relevant scenarios. The
training dataset is augmented with the active dataset and used to update the
agent’s policy. The policy is updated by keeping the network weights learned
during supervised learning when training the network using the augmented
dataset. Initializing the weights in this way results in faster and easier con-
vergence as retraining the network from scratch with the augmented dataset
can be time consuming [42]. The training set used in this step includes both
the active samples and the samples originally collected from demonstrations.
If the network is only updated with the active samples, the initial policy is
forgotten and replaced by one solely learned from the active samples, which
is not sufficient [43]. This is known as the catastrophic forgetting phenomena
[44] and can have severe effects on the agent’s performance if the network was
trained online using the acquired active samples.

Algorithm 1 shows the proposed method.

4.2 Combining Deep Learning from Demonstrations and Experience

In this section we propose methods for combining learning from demonstra-
tions and experience. The policy is learned using DQN [30] while using teacher
demonstrations to expedite reinforcement learning. While a demonstrated in-
stance is represented as a pair (x, y), in reinforcement learning additional at-
tributes are added to represent an instance as a tuple (s, a, r, s′). s describes
the current state of the agent in its environment and corresponds to x in
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Algorithm 1 Active Deep Imitation Learning Algorithm
1: Given: A policy π trained on a Data set D = (xi, yi)

Confidence threshold β
2: while Active Learning do
3: x = current frame
4: u = π(x, α)
5: H(X) = −

∑
i

P (ui) log2 P (ui)

6: if H(X) < β then
7: y = Query(x)
8: perform action y
9: add (x, y) to D

10: else
11: perform max(u)

12: Update π using D

demonstrations. a is the action taken by the agent and belongs to the same
set of possible actions as y. r is a reward provided by the environment for
performing action a in state s and s′ is the resulting new state. Reinforcement
learning assumes the task takes place in an environment ε. An experience is
represented as a tuple (s, a, r, s′) where s is the state, a is the action taken
at state s, r is the reward received for performing action a and s′ is the new
state resulting from that action. To combine learning from demonstrations
and experience, the agent is trained using deep reinforcement learning while
demonstrations are used to facilitate the training process. The reinforcement
learning algorithm follows [5] and uses a convolutional neural network to learn
discounted rewards for performed actions. The network optimizes a Q function
Q(s, a) that predicts an estimated reward for the input state-action pair. The
Q function is learned recursively using the Bellman equation.

Q(s, a) = Es′ ε[r + γmaxa′Q(s′, a′)|s, a] (2)

Where γ is a discount parameter and maxa′Q(s′, a′) is the largest estimated
reward available to the agent at the next state s′. In the case where s is a
terminal state which ends the task, Q(s, a) = r as there is no future state.
This ends the recursive learning of Q.

The learning method is model free and doesn’t require a working model of
the environment but rather just the experience tuples (s, a, r, s′). The method
also learns off-policy; that is the learned policy is different from the performed
policy. Therefore an optimal policy π∗ which provides the optimal action choice
a∗ = π∗(s) can be used to provide demonstrations through off-policy explo-
ration to guide the agent to reward dense areas in the search space. We investi-
gate two methods for utilizing demonstrations in deep reinforcement learning.
The first is to simply initialize the Q network with weights learned from su-
pervised learning with a data set of demonstrations. Supervised learning is
conducted as in section 3.1 on a network with the same architecture as the Q
network. The last layer uses a linear activation function instead of the softmax
function used for classification in Section 3.1 as the Q network predicts contin-
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uous rewards for each available action. The agent uses random actions and its
current policy to explore the environment, so initializing the network helps the
agent explore behaviors similar to the teacher’s. The second approach is to use
demonstrations from the optimal policy π∗ to guide the agent’s exploration.
The performance policy alternates between at = π∗(st) and random actions,
to encourage exploration beyond the teacher’s demonstrations. Note that the
choice between using demonstrations and random actions is performed once
before each episode not before each action. It is easier in most applications
for the teacher to provide demonstrations by performing the whole trajec-
tory. This way the teacher is not required to produce an optimal action in
the middle of the trajectory (such as in active learning techniques).The per-
formance policy gradually shifts towards using the learned policy π where
at = maxaQ(st, a;π) i.e. choose the action with the greatest predicted reward
according to the trained neural network. In this approach the information
from demonstrations is independent of the agent’s learning process, while in
the first approach the initialized policy changes with training.

Algorithm 2 Learning from demonstration and experience
1: Given: Teacher policy π∗

Exploration factor α
Performance policy π̂ alternates between π∗ and random choice according to α
Network Q(s, a) with random weights

2: for episodes do
3: for timestep t = 1 : T do
4: a∗t = π̂(st)
5: With probability ε, at = a∗t
6: Otherwise at = maxaQ(st, a;π)
7: Perform at and get rt,st+1

8: Given the tuple (st, at, rt, s′) train Q(s, a):
9: if si+1 is terminal:

10: yi = ri
11: else
12: yi = ri + γmaxa′Q′(st+1, a′; θ) + F (si, ai, st+1)
13: Optimize π using gradient descent for loss = yt −Q(st, at;π)

Algorithm 2 summarizes learning from experience using guiding demon-
strations. The demonstrations are provided as in traditional learning by demon-
stration problems by simply performing the task in an optimal manner. Unlike
[6], no specially designed labeled dataset is needed to pre-train Q(s’,a’), which
makes the training process more generic and streamlined. The task is assumed
to be an MDP where the current state represents all past information (no
extra context is needed to make a decision). Therefore, a single frame is used
as the agent’s observation and the resulting policy is stationary (i.e. doesn’t
require information about the current position in the trajectory).
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5 Experiments

This section describes the experiments conducted to evaluate the methods
detailed in section 3. We present, discuss and analyze results comparing direct
imitation learning, active learning and reinforcement learning methods. The
experiments are conducted in the framework of mash-simulator [2] as well as
a 2D Grid navigation task.

5.1 Grid Navigation Task

This task is a simplified representation of navigation tasks which facilitates
testing and analysis of learning algorithms in controlled manner. The environ-
ment is constructed of a grid where each cell is a state in the MDP and the
agent is allowed to move between cells using 4 actions (Go Left, Go Right,
Go forward, Go Back). Each state is represented by an 84 × 84 image of the
number which reflect the number of this cell in the grid. These states are auto-
matically generated given the dimension of the grid in terms of cells. The goal
of the agent is to reach a target cell on the grid. Grids of dimensions 5 × 5,
15 × 15 and 30 × 30 are used in this paper. This task is simple in that the
environment is static i.e. performing the same trajectory results in the same
outcome. Therefore, the task doesn’t pose the challenges of generalization. An-
other simplified aspect is having finite well defined states. However, the task
presents other features which are relevant to real navigation tasks. Namely
that it requires learning from raw visual data and requires long trajectories of
dependent actions to achieve the target. The environment offers no intermedi-
ate positive feedback while the agent is performing the task and only supplies
a positive terminal reward when the target is reached. This is challenging as
in a 30× 30 grid, the shortest path to reach a reward consists of 57 steps. To
give perspective, in a photo-realistic 3D environment which is used to train
deep reinforcement learning agents [28], the shortest path to reach the reward
is typically less than 20 actions. Figure 2 illustrates this task on a grid of size
5 × 5. The agent’s starting position is shown by the blue marker while the
target state is highlighted in green.

To train the imitation learning policy, a data set of demonstrations is col-
lected by having a deterministic optimal policy control the agent. Pairs of state
and action are captured and added to the training set. The demonstrations
are used to train a deep neural network in a supervised manner. To evaluate
the deep reinforcement learning algorithms DQN and A3C, the agent explores
the environment using trial and error and receives a positive reward (+1) if
it reaches the target and a negative reward (-1) if it selects an action that
would take it out of the grid. In this case the agent’s position is not changed.
The algorithms are run for 1000 epochs, each epoch consisting of 2500 steps.
A testing step is conducted after each epoch where the result is 1 if the agent
reached the target within a step limit and 0 otherwise.
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Fig. 2: Illustration of the Grid Navigation Task

5.2 Mash Simulator

Mash simulator [2] is a framework for evaluation of vision based learning meth-
ods. It contains a number of tasks and environments designed for navigation.
For each task, success and failure criteria as set, as well as a reward function
and a teaching policy which considers 3D information from the simulator. The
experiments in this paper are evaluated on 4 tasks.

5.2.1 Reach the flag

The goal of this task is to reach a flag which is placed randomly in a room. The
task is considered successful if the agent reaches the flag within an allocated
time limit.

Fig. 3: sample images from “Reach the flag”

5.2.2 Follow the line

The goal of this task is to follow a pattern drawn on the floor which leads to
the target. The pattern shows the direction in which the agent should move in
order to reach the target. The task fails if the agent moves out of the patterned
area.
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Fig. 4: sample images from “Follow the line”

5.2.3 Reach the correct object

The goal of this task is to reach an object while avoiding another similar
looking object. The task fails if the wrong object is reached or if a time limit
is exceeded before finding the correct object.

Fig. 5: sample images from “Reach the correct object”

5.2.4 Eat all disks

The objective of this task is to collect as many disks as possible within a time
limit. Several black disks are laid out in a large room and new disks appear
once one is collected by the agent. Unlike other tasks, there is no failure criteria
but only a score at the end of the given time.

Fig. 6: sample images from “Eat all disks”

Figures 3 - 6 show sample images of the 4 tasks. The images are shown in
the same quality and size (120× 90) size produced by the simulator and used
by the agent in the experiments.

For supervised learning, each task is trained on 20000 samples. Active
learning is conducted using an active sample size of 5% and 10% of the train-
ing data. Reinforcement learning algorithms are trained for 100 epochs of
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250000 steps each. A3C utilizes 8 parallel processes. And frame skipping of
5. Frame skipping can greatly help reinforcement learning by shortening the
trajectory and enhancing exploration through taking bigger steps. However,
delicate navigation can limit the number of frames to skip. For instance, in the
”Follow the line” task, navigating the narrow corners of the patterned corridor
fails when using high frame skipping values even while following the optimal
policy.

5.3 Inter-process Communication

For both Simulators, the agent is decoupled from the simulator and the learn-
ing algorithm. This allows for generic independent modules and facilitates
interchanging tasks and learning algorithms. A TCP connection is used to
communicate between the different components.

Fig. 7: Dataset Collection Flowchart

Figure 7 shows the process of collecting demonstrations. The agent re-
quests the current state from the simulator and receives an image and an
optimal action. The agent saves the state action pair and sends the action
back to the simulator for execution. The simulator updates the state and the
process is repeated. The collected dataset is used to train the neural network
offline. Figure 8 shows the process of the agent performing a task based on the
learned policy. Figure 9 presents the process of learning from experience used
in combining reinforcement learning and imitation. The agent communicates
with the simulator to receive the state of the environment and the reward and
sends them to the learning network. The learning network uses this informa-
tion to decide the next action and update the policy. The prediction action is
sent to the agent which in turn communicates it to the simulator.
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Fig. 8: Imitation Agent Playing Flowchart

Fig. 9: Reinforcement learning Flowchart

5.4 Results

Firstly, the results for experiments on the Grid task are presented. Since this
task presents no states that are unseen in the demonstrations, for all grid
sizes, the supervised policy was able to consistently solve the problem using
only 5 demonstrations. Figure 10 shows results comparing DQN and A3C on
the three grid sizes. Since success in this task is binary, the score counts how
many epochs up to the current epoch have resulted in successful test sessions.
This evaluation method produces a graph that shows the improvement and
stability of the learned policy over training epochs.

The results on the Grid tasks show that considering static tasks, learning
from demonstrations can be successful with far viewer training instances than
learning from experience. Moreover, learning from experience becomes expo-
nentially more difficult as the size of the grid increases. This is evident in the
failure of A3C to learn on the 30×30 grid. This failure stems from the delayed
rewards which makes obtaining feedback less frequent. The agent learns from
the more readily available negative rewards to avoid the edges of the grid but
is not able to reach the target.

Following, the results for experiments on the Mash simulator are presented.
The same network and parameters are used to learn all tasks. The agent’s
performance is evaluated by performing each task in the simulator for 1000
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Fig. 10: DQN and A3C results on the Grid Navigation Task

rounds. For the first 3 tasks a success rate is calculated as the percentage of
rounds in which the agent successfully completed the task out of 1000 rounds.
For the fourth task “Eat all disks”, the evaluation measure used is the number
of disks eaten in 1000 rounds. The results for deep reinforcement learning
methods are reported after 100 epochs of training. For the imitation network,
the classification error on an unseen test set is also reported. The test set
consists of 20000 samples collected from the teacher’s demonstrations.

Table 3 shows the results for ”Reach the flag”, ”Reach the correct object”
and ”Follow the line”. The Success rates are reported for supervised learning,
DQN and A3C as well test error for supervised learning. Supervised learning
showed good performance on ”Reach the flag” with a success rate of 96.2%.
On ”Follow the line” it resulted in a 40.7% success rate. This is attributed to
the failure criteria in ”Follow the line” where a small deviation can result in
the agent leaving the designated path and failing the round. While in ”Reach
the flag” the round is not failed unless the time limit is reached. If the agent
makes an error in prediction and approaches the walls there is room for re-
covery. As the details of the walls become clearer the agent acts according
to its learned policy and continues to search for the flag. Supervised learning
resulted in a success rate of 53.1% on ”Reach the correct object”. Qualitative
analysis shows that the agent fails to distinguish between the two objects and
approaches them both resulting in a high failure rate. This could be attributed
to the fact that the demonstrating policy doesn’t avoid the wrong object if it
stands between the agent and the target and only demonstrates avoiding the
wrong object from a distance. Therefore, there are insufficient data to teach
the agent to avoid the wrong object. The demonstrating policy performs the
task with an 80.2% success rate. A better demonstrator which actively avoids
the wrong object in all cases could result in a better performance for the
trained agent. This highlights direct imitation’s lack of generalization beyond
the provided demonstrations. Both reinforcement methods failed to learn a
robust policy to solve any of the 3 tasks. Qualitative analysis shows that all
successful attempts during testing were achieved by chance without any clear
pattern in the learned policy. Since ”Follow the line” requires a longer tra-
jectory and is not as fault tolerant as the other tasks, it is less suitable for
random exploration. Thus reaching the target by chance is more difficult and
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the success rate is 0%. The test errors for all 3 tasks are relatively low and
don’t reflect the failure rates. This shows that small prediction errors can lead
the agent to face situations that are not represented in the demonstrations and
therefore propagate erroneous behavior. Since the agent in “Reach the flag”
was able to correct its behavior following wrong prediction, we evaluate the
effect of the time limit on the agent’s success. Figure 11 shows the success rate
against different time limits represented as percentages of the original time
limit. The graph shows that the success rate improves with longer time limits,
which shows that continuing to follow the learned policy can result in success
even after sub-optimal behavior.

Table 3: Direct Imitation results

Task reach the flag reach object follow the line

Direct imitation 96.20 % 53.10% 40.70%

DQN 6.40 % 6.00% 0.00%

A3C 7.60 % 8.9% 0.00%

error 2.48% 4.06% 0.86%

Fig. 11: Results for “reach the flag” task with increasing time limits

Table 4 shows results for ”Eat all disks”. The table compares the scores
achieved by direct imitation, DQN, A3C and the optimal policy. The results
show that direct imitation achieves 97.9% of the score achieved by the opti-
mal policy while again learning from experience failed to produce an effective
policy.

Figures 12 and 13 show results for the 4 tasks in terms of rewards received
for DQN and A3C respectively over 100 epochs. The test results are reported
every 10 epochs and show rewards averaged over the test rounds. The graphs
show no pattern of improving the performance with the increasing number of
epochs.
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Table 4: “Eat all disks” results

Task Direct Imitation Optimal policy DQN A3C

score 1051 1073 51 45

error 1.70% - - -
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Fig. 12: Results for DQN on Navigation tasks in MASH simulator
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Fig. 13: Results for A3C on Navigation tasks in MASH simulator

In Figure 14, the proposed active learning method is evaluated on “Follow
the line”. Active learning is not used on the other tasks as the demonstrat-
ing policies keep track of the target’s location even if it not in the current
frame. This contradicts with the approach of learning solely from the current
visual data and requires either incorporating memory in the learning process
or replacing the policy that provides active samples. The graph compare the
success rate and test error of direct imitation against those of active learning
using 5% and 10% of the training data. The results show that active learning
significantly improves the success rate of the agent. Increasing the size of the
active dataset is shown to further improve the performance. Comparing the
improvement in classification error against that in success rate emphasizes the
point that poor agent behavior stems from situations that are not represented
in the teacher’s demonstrations.
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Fig. 14: Results for active learning on “Follow the Line” task

Next we evaluate combining learning from demonstrations and experience.
The two methods proposed in section 3.2 to help DQN using demonstrations
are compared to traditional DQN on the “Reach the flag” task. ’Initialized
DQN’ initializes the policy network of DQN with the parameters learned from
supervised learning while ’DQN demonstrations’ refers to using demonstra-
tions from the optimal policy to perform off-policy rollouts. Figure 15 shows
the average rewards every 10 epochs for 100 epoch. The graph shows that
utilizing demonstrations using the two proposed methods did not enhance the
performance of DQN. The initial policy learned from demonstrations is quickly
overwritten and thus provides no benefit to the learning policy or the rollout
policy. This happens as there are no constraints to preserve the initial policy
once DQN training starts. Guiding the agent by utilizing demonstrations in
exploration also did not show any improvement. By looking at the probability
distribution of the output layer of the network, we attribute this failure to
the fact that the cost function used in DQN training doesn’t consider output
nodes other than the performed action. Therefore, when applying a rollout
policy of optimal actions, the probabilities of non-used actions change arbi-
trarily. A cost function that includes all actions could be considered, but since
DQN uses a periodically updated target network, the learned parameters for
the performed actions will be overwritten with every update.

Overall the results of the proposed learning from demonstrations method
show good performance on 3 out of the 4 tasks. They demonstrate the ef-
fectiveness of active learning to significantly improve a weak policy with a
limited number of samples. Even without active learning the agent can learn
a robust policy for simple navigation tasks. Comparisons with deep reinforce-
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Fig. 15: Results for combining learning from demonstrations and experience on “Reach the
flag”

ment learning methods show that learning from demonstrations can learn the
same task with substantially fewer training instances. Results of deep rein-
forcement learning methods showed that learning becomes more difficult with
longer trajectories and that they failed to learn the 4 tasks on mash simulator.

6 Conclusion and future directions

In this paper, we propose a framework for learning autonomous policies for
navigation tasks from demonstrations. A generic learning process is employed
to learn from raw visual data without integrating any knowledge of the task.
This method is compared to two state of the art deep reinforcement learning
methods. Active learning is employed to help the agent generalize to unseen
situations. Methods for combining learning from demonstrations and experi-
ence are also investigated to improve the generalization ability of the agent
while taking advantage of provided demonstrations. The experiments are con-
ducted on a testbed that facilitates reproduction, comparison and extension
of this work. The results show that CNNs can learn meaningful features from
raw images of 3D environments and learn a policy from demonstrations. They
also show that active learning can significantly improve a learned policy with
a limited number of samples. Moreover, it is shown that learning from demon-
strations can be successful with significantly fewer instances than learning from
experience and outperforms deep reinforcement learning methods on the 4 3D
navigation tasks used. The comparison between learning from demonstrations
and experience highlights the limitations of both techniques. Direct imitation
can generalize poorly if no appropriate active samples are available. While
learning by trial and error from scratch can be ineffective in tasks with long
trajectories and sparse rewards.

In the future we aim to further investigate tackling the generalization prob-
lem in imitation learning methods. More general active learning methods are to
be investigated in order to work with a larger variety of tasks. Incorporating
memory of past actions in imitation learning would allow for active learn-
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ing with different expert policies. Although initial results were not successful,
integrating learning with experience and demonstrations can help with gen-
eralization without requiring teacher involvement. In the next step we aim to
investigate using guiding demonstrations with reinforcement learning methods
that use different cost functions and do not require target networks. Further-
more adapting the online learning methods in [45] can speed up retraining
while overcoming the catastrophic forgetting phenomenon. This can also po-
tentially allow one network to learn multiple tasks.
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