
Model-Based Systems Engineering with
Requirements Variability for Embedded Real-Time

Systems

Mole Li, Firat Batmaz, Lin Guan
Loughborough University

Loughborough, UK
m.li@lboro.ac.uk

Alan Grigg, Matthew Ingham
Rolls-Royce Controls and Data

Services
Derby, UK

alan.grigg@controlsdata.com

Peter Bull
Birmingham City University

Birmingham, UK
peter.bull@bcu.ac.uk

Abstract—Product Line Engineering (PLE) offers the benefits
of reducing costs and time to market by reusing requirements
and components. Current PLE methods, however, mainly focus
on the software aspects and are lacking in support for many
system level concerns like physical and non-functional require-
ments (Quality of Service attributes) that play an important role
in the development of Embedded Real-Time Systems (RTS).
This paper proposes a new method to support a combination of
variability modelling (a key feature of PLE) and model-based
requirement engineering (in SysML) for Embedded RTS. It
provides four main contributions: 1. it extends the Orthogonal
Variability Model (OVM) to support the separation of function-
al, physical and non-functional variability; 2. it proposes a
mechanism for the evolution of variability; 3. stakeholders’
specifications for variable requirements are extended by the
proposed approach; 4. it increases the consistency of system
models by directly using SysML Activity Diagrams and Block
Definition Diagrams as a base model for refining variability
models for requirement representation. The proposed method is
illustrated by an Aircraft Engine Control System case study.

Index Terms—Product Line, Requirement Engineering,
Embedded Real-Time System, Variability Modelling.

I. INTRODUCTION
To meet the requirements of competitive pressures, Em-

bedded Real-Time Systems (RTS) need to leverage advanced
technology to offer a capability that can reduce development
costs and shorten development times. Traditionally, Model-
Based System Engineering (MBSE) uses modelling languages
such as Unified Modelling Language (UML) and Systems
Modelling Language (SysML) to meet these demands by de-
termining the system requirements and foreseeing the risks at
an early stage [1].

Nowadays, fewer industrial projects start to develop sys-
tems from scratch. Today’s systems development rather tends
to use and upgrade existing designs to produce new products
[2]. For coping with demand, Product Line Engineering (PLE)
has drawn a great deal of attention, as it improves time to
market, cost, quality and productivity by identifying common-
alities and variabilities between existing systems to provide
reusability [3]. As P. Clements and L. Northrop [3] mentioned,

PLE is managed by a requirement engineering-change man-
agement process. The key feature of PLE is variability model-
ling [4]. This distinguishes PLE from traditional System Engi-
neering approaches by explicitly considering system diversity,
including requirement diversity, for reusability purposes. It
refers to the ability of systems requirements to be configured,
customised and extended for specific contexts [5]. Due to the
importance of variability modelling in PLE, a great number of
researchers focus on addressing the challenges that come with
it. The earliest variability method, Feature-Oriented Domain
Analysis (FODA) [6], can be traced back to the 1990s. In the
years between 1990 and 2014, several variability modelling
methods and systematic literature reviews [7-11] were pub-
lished, taking into account different contexts, aspects, devel-
opment stages and purposes. Specifically, the systematic liter-
ature review paper by V. Alves, N. Niu, C. Alves and G.
Valença [10] focused on requirement engineering for Software
Product Line. However, many Product Line Engineering pub-
lications on System Engineering are actually focussed on only
the software aspect [12]. While Software Product Line Engi-
neering is important in the systems domain, System Engineer-
ing is a much broader discipline; it includes the consideration
of hardware aspects (mechanical and electrical engineering) as
well as the overall integration of hardware and software com-
ponents [13].

Distinct from other systems, an Embedded RTS depends
not only on the right logical results of computations, but also
upon the response to the result being produced within a re-
quired time [13]. Non-functional requirements (quality attrib-
utes, in other words) such as response time, reliability and so
on play a significant role during system requirement engineer-
ing, because they describe the conditions under which the Re-
al-Time System’s components should operate, leading to al-
ternative design decisions [14] [15]. However, most of the
Software PLE approaches concentrate on the functional as-
pects [16]. Introducing quality attributes to Software PLE not
only makes it more adaptable for Embedded RTS require-
ments engineering but also provides metrics to compare vari-
ants for optimising the configuration of an Embedded RTS
product line.

Therefore the aim of this paper is to propose a practical
variability modelling method that can be combined with mod-
el-based requirement engineering in the Embedded RTS do-
main. To fulfil this aim, the proposed requirement variability
model should represent and separate functional, physical and
non-functional requirements clearly.

The rest of the paper is structured as follows: Section II
provides information on fundamental concepts of Product
Line Engineering, summarises related works and traditional
requirement modelling approaches for the Embedded RTS
(without reusability concerns); Section III introduces the pro-
posed modelling approach; Section IV provides a case study
of an Aircraft Engine Control System to further explain the
proposed method and the applied modelling tool; Section V
discusses the contributions of the proposed method and the
differences between it and related works. Finally, a conclusion
to this paper and information about future work are provided.

II. BACKGROUND AND RELATED WORKS
This section gives an introduction on Product Line Engi-

neering and variability modelling classification. This is fol-
lowed by the introduction of traditional Embedded RTS re-
quirement modelling methods. Numerous methods exist for
model-based requirement engineering for Embedded RTS and
variability modelling. This section briefly introduces related
works by classification group.

A. Classification of Variability Modelling Methods
As previously mentioned, variability modelling is the key

feature of PLE. It defines how the system requirements of a
product line asset can vary [17]. This paper adopts A. Metzger
and K. Pohl’s classification [9]: “integrated variability docu-
mentation” and “orthogonal variability documentation”.

“Integrated variability documentation” refers to the mod-
elling methods that represent the commonalities and variabili-
ties of systems together in the same model. For example, the
feature model [6] illustrates common and variable features
(via an optional feature) of a system on a feature diagram. As
S. Sepúlveda, C. Cares and C. Cachero [18] stated, feature
modelling is the most common method of variability model-
ling in Software Engineering. It is a tree-like structure which
represents both the commonality and variability features of
products in a product line. Each feature model consists of a
root that is the software product family, and leaves that are the
components that can be selected [19].

“Orthogonal variability documentation” involves the sepa-
ration of commonalities and variabilities into different dia-
grams. Variability is treated as the first class and based on the
concept of the variant and the variation point. The variation
point describes where variability occurs. A variant is an in-
stance of a variable item [20]. In addition, orthogonal variabil-
ity documentation only handles variants on its diagram, and is
linked with commonality models or artefacts. It has attracted a
lot of attention in recent publications [12] [21], because it does
not require changing the complexity of development artefacts
and can be combined with different development artefacts [20].
For this classification, most recent efforts, such as the Orthog-

onal Variability Modelling (OVM) [22] (which was adopted
as ISO/IEC standard #26550 in 2013) are examples. It repre-
sents variability in terms of variation points and variants. The
variation points and variants can be linked to a base model
specified by UML or SysML. Common Variability Language
(CVL) [23] is an Object Management Group (OMG) standard
proposal for variability modelling. It consists of a user-centric
layer and a product realisation layer. The user-centric layer is
used for high-level variability representation in terms of the
feature model. The realisation layer defines lower level opera-
tions for transformation from the base model to a new, solved
model [23]. It specifies how an individual feature is imple-
mented on the base model.

B. Integrated Variability Documentation
A number of works consider feature modelling with the

variability of non-functional requirements. For example, E.
Bagheri, M. Asadi, D. Gasevic and S. Soltani [28] extend
feature models with the meta-class to represent non-functional
requirements. L. Etxeberria and G. Sagardui [29] create a
quality feature tree in a feature model to represent non-
functional requirements. Another paper by L. Belategi, G.
Sagardui and L. Etxeberria [30] also uses a quality feature tree
to model non-functional requirements and a MARTE profile
for platform resource representation. In addition, MARTE is
also utilised for quality analysis in the design stage.

There is another trend in integrated variability documenta-
tion, which is extending UML or SysML by stereotypes to
support variability representation. For instance, AspectSM [31]
extends the UML State Machine Diagram and Class Diagram
with stereotypes for variability modelling. It organises these
models in two packages: the software package contains the
State Machine Diagram to model the core behaviours and
functional behaviours; the hardware package contains the
Class Diagram for representing hardware configurations. Non-
functional behaviours are modelled as class attributes via
MARTE.

Some approaches merge feature models with UML or
SysML. Feature models are used for the high-level abstraction
of variability, and then UML or SysML is used for refinement.
S. Trujillo et al. [32] proposed combining the feature model
with extended SysML (by stereotypes for variability model-
ling). The feature model handles high-level requirements.
Structural and behavioural variability is handled by variation
point notation.

In practice, industrial projects often start with legacy sys-
tems and software requirements. As the paper by C. Dumitres-
cu et al. [33] suggests, variability should be compatible with
legacy documents. Using the integrated variability documenta-
tion method requires changing the complexity of development
artefacts by introducing both commonality and variability into
existing models [9].

C. Orthogonal Variability Documentation
To address the challenges of the integrated variability

method mentioned above, some approaches use an orthogonal
way of modelling variability. M. Huhn and S. Bessling [34]
combine CVL with SysML, using a SysML Internal Block

Diagram to model the structural design and safety require-
ments. Functional requirement variability is represented in the
user-centric layer as a feature model. Similarly, P. Queiroz
and R. Braga [35] also use CVL with SysML and MARTE.
For requirement variability modelling, it utilises a SysML
Requirement Diagram with a CVL feature in the user-centric
layer. However, it takes on the disadvantages of integrated
variability documentation, and in particular the fact that the
CVL’s user-centric layer is a feature model.

Unlike CVL, OVM only models variability in parts. Some
researchers have implemented OVM with SysML in industrial
settings [36] [12] [37]. While OVM allows variation points
and variants to link with base models (SysML) to illustrate the
variability of different requirement types, such as functional,
physical and non-functional requirements. However, it is hard
to identify whether a variability requirement is functional,
non-functional or physical if it is only based on a variability
model of OVM.

D. Requirement Modelling for Embedded Real-Time Sys-
tems
According to S. Friedenthal, A. Moore and R. Steiner [1],

conventionally engineers model system requirements using
SysML Requirement Diagrams, which are graphical represen-
tations of textual system requirements. SysML Activity Dia-
grams, which show sequences of the elementary actions of
systems, are then generated to model system behaviours. A
SysML Block Definition Diagram can be used to represent
hardware architecture.

As M. Rashid, M. W. Anwar and A. M. Khan [24] men-
tion, requirement modelling is the most important activity for
Embedded Real-Time System Engineering, so requirements
are modelled with different verification and validation con-
cerns. Some approaches [25] [26] have been proposed to mod-
el system requirements with SysML Activity Diagrams to
facilitate the verification of requirements. For example, E.
Andrade, P. Maciel, G. Callou and B. Nogueira [26] use the
Activity Diagram in SysML and combine it with the Model-
ling and Analysis of Real-Time and Embedded Systems
(MARTE) to verify the functional, timing and low-power re-
quirements of the embedded system. MARTE [27] is a UML
profile which is used for the modelling and verification of
non-functional requirements of Embedded RTS. Activity Dia-
grams are used for requirement modelling by E. Andrade, P.
Maciel, G. Callou and B. Nogueira [26]. MARTE is used for
timing and energy value representation with stereotypes of
best-case and worst-case response times. The Activity Dia-
gram, with quantitative data, is then translated into a Time
Petri Net with Energy constraints (ETPN) for non-functional
property estimation.

In summary, integrated variability documentation requires
more effort than orthogonal variability documentation when
being adopted for large scale industries that apply re-use of
numerous legacy requirements. The reason for this is that in-
tegrated variability documentation requires changing existing
models to express both commonality and variability. For exist-
ing orthogonal variability methods, there are also some chal-

lenges which need to be solved to enable modelling require-
ment variability in Embedded RTS:

x V. Alves, N. Niu, C. Alves and G. Valença [10] sug-
gest that requirement engineering with PLE should
consider multiple stakeholder aspects including those
of customers, systems engineers, software engineers
and hardware engineers. However, current orthogonal
variability methods cannot illustrate which stakehold-
er is responsible for a certain variation point or variant.

x According to L. Chen, L and M. A. Babar [38], who
investigated the industrial challenges of PLE, variabil-
ity of requirements exists not only in space (differ-
ences between systems) but also over time (differ-
ences between times). Current orthogonal variability
methods do not support the specification of the evolu-
tion of variability.

x Most requirement variability modelling is based on
UML Use Case Diagrams or SysML Requirement Di-
agrams. As stated above, using SysML Activity Dia-
grams for requirement modelling in Embedded RTS
facilitates requirement verification and validation.
Therefore modelling requirement variability for Em-
bedded RTS using SysML Activity Diagram is more
beneficial when it comes to verification and validation.
However, current requirement modelling methods that
use SysML Activity Diagrams do not support consid-
eration of the variability aspect.

III. PROPOSED APPROACH
This section introduces the proposed method for modelling

requirement variability for Embedded RTS. To cope with the
challenges mentioned above, this proposed method adopts
OVM as its core variability modelling means, and extends it to
support representations of variability types, stakeholders and
the evolution of variability. Adopting OVM also leads to a
model that is less complex than integrated variability docu-
mentation methods [9]. This approach also integrates the pro-
posed variability model with SysML in order to support re-
quirement engineering with a variability aspect in the Embed-
ded RTS domain.

The meta-model of the proposed requirement variability
model for Embedded RTS is represented in Figure 1. In Soft-
ware Engineering, a meta-model is a mechanism for represent-
ing a well-formed formula or the abstract syntax of a model-
ling language [39]. In order to show the unique features of our
proposed method using OVM, the diagram uses dark grey to
highlight the extension points, as shown in Figure 1. The light
grey parts of the diagram are the modifications that the pro-
posed approach makes to the existing OVM. The top of Figure
1 shows the variability modelling method, whilst the bottom
section illustrates how the variability model links with differ-
ent types of requirement artefacts (also called the base model)
for requirement modelling. In general, the variability model-
ling part provides a separate view of the system requirements
that are variable. It consists of different types of variation
points and variants, such as functional, physical and non-
functional. Each variation point has information about binding

Figure 1. The meta-model of the Embedded RTS requirement variability modelling approach

time and stakeholders. The requirement modelling part shows
the commonality and variability of system requirements
through SysML Activity Diagrams and Block Definition Dia-
grams. The existing legacy system requirement models are not
changed. The variable requirements are introduced by adding
variable artefacts (refinements of each variant) to existing
models. The definitions and semantics of each concept of the
meta-model are introduced as follows:

A. Variability Modelling
x “Variation point” has the same meaning as in OVM,

i.e. describes where variability occurs. However, the
proposed method extends it with stakeholder, state,
type and binding time information. This is the starting
point for building a variability model. The functional
variation point can be linked or refined using a Fea-
ture Level requirement diagram (SysML Activity Di-
agram). This proposal adopts the concept of state in
[49]. The “state” of the variation point indicates
whether the variation point can be modified to accept
new variants during future development. Normally the
state “Open” is used to show that the variation point is
modifiable. In contrast, “Close” means the variation
point cannot be changed.

x “Stakeholder” is a tag that works on a variation point
to identify the people who are responsible for this var-
iation point. For example, domain experts may man-
age functional variation points. Customers may inter-

act with physical resource variation points, especially
on system level interfaces.

x “Type” is a tag for the variation points, which repre-
sents whether it is related to functional, physical or
Quality of Service (QoS) attributes (non-functional).
Variants are of the same type as their linked variation
points.

x “Binding time” is a tag that indicates when a certain
variation point should be instantiated. It is important
to specify when to bind a specific variant to its varia-
tion point [47]. A typical binding time might be “Do-
main Requirement Stage”, which means “determine
the variation point when considering requirement
commonality and variability”, or “Application Re-
quirement Stage”, which means “decisions on the var-
iation points are made when specific customers’ re-
quirements arrive”.

x “Scalability” refers to a hierarchy representation in the
structure to reduce the complexity of diagrams. As re-
ported, there are hundreds or even thousands of com-
mon and variable models in real industry situations
[38] [40]. It is impossible to represent all this infor-
mation in one diagram. Therefore, modelling require-
ments or variability in a hierarchical manner reduces
the complexity of requirement and variability dia-
grams and satisfies real industrial needs.

x “Variant” is the instance of a variable item [20]. As
stated above, evolution variability refers to variability

Figure 2. The Gas Turbine Engine [51]

over time. In order to represent this information, the
proposed approach uses “Time in Use” to describe the
valid period of the variant. In addition, the variant can
link with different requirement artefacts for further re-
finement, such as SysML Activity Diagrams and
Block Definition Diagrams, via “Dependency on Ar-
tefacts”.

x Dependency between variation points and variants is
mainly kept the same as in OVM, except for the con-
ditional constraints extension. Sometimes, the variant
exists only in certain conditions or context [48].
“Conditional constraints” illustrate a suitable situation
that instigates the variant for the linked variation point.
For example, the variant “Reliable Sensor” should be
selected when the Conditional Constraint is
et >£10000”. “Dependency to Artefacts” is used to
link requirement artefacts to variants.

B. Requirement Modelling
x “Functional Requirement Artefacts” refer to the

SysML Activity Diagram to represent functional re-
quirements. Unlike the traditional SysML model,
which uses Requirement Diagrams for requirement
specifications, the proposed method uses Activity Di-
agrams in a hierarchical structure. Each activity in the
Activity Diagram represents either a functional re-
quirement or a group of requirements at the “Func-
tional Level”. The “Feature Level” is a higher-level
abstraction and it is used to group functions to facili-
tate the reuse of requirements. “Component Level”
requirements can be transformed into “Low-Level
Software Requirements” for the software team. This
approach has been developed by the Rolls-Royce
Control and Data Services team who are supporting
the current research. The details of this are beyond the
scope of this paper. The reason for using Activity Di-
agrams instead of Requirement Diagrams for func-
tional requirement specification is twofold: firstly, it
increases the consistency of system models and allows
functional requirements to be refined into system be-
haviours through a “parent to child” relationship (hi-
erarchy) in the Activity Diagram; secondly, require-
ment verification methods that are based on Activity
Diagrams can then be used when an individual prod-
uct is to be generated from the product line [25] [26].

x The “Physical Requirement Artefact” uses a SysML
Block Definition Diagram to represent physical re-
quirements. The Block Definition Diagram also al-
lows the representation of a physical resource struc-
ture.

x The “NFR Artefact” refers to the representation of
non-functional requirements in terms of stereotypes.
These stereotypes are implied on the Activity Dia-
gram and Block Definition Diagram to show the non-
functional requirements and their relationships with
functional and physical requirements. The addition of
quality attributes also provides a starting point for per-

forming automated non-functional analysis on the sys-
tem model. However, quality attributes analysis is be-
yond the scope of this paper.

IV. CASE STUDY
This section introduces a case study of an Engine Control

System to demonstrate the proposed approach. Initially, a tex-
tual description of Engine Control System requirements, in-
cluding commonalities and variabilities is given. Then our
proposed model for Engine Control System requirements en-
gineering is introduced.

A. Engine Control System
A simplified gas turbine engine is introduced by I. Habli, T.

Kelly and I. Hopkins [41]. As Figure 2 shows, it has a fan and
a compressor to absorb a large volume of air. The air is mixed
with fuel and ignited in a combustion chamber. Prior to com-
bustion, the air is compressed to up to 40 times atmospheric
pressure. After combustion, the combustion exhaust gases are
forced (expand) through a turbine to provide thrust.

According to L. C. Jaw and J.D. Mattingly [42], the Full
Authority Digital Electronic Controls System (FADEC) has
become the standard engine control system for modern gas
turbine engines. FADEC helps pilots to monitor and control
engine parameters and warns them when abnormal conditions
occur.

The high levels of common and variable functional and
physical requirements of engine control systems are intro-
duced by I. Habli [43]. The content of this paper simplifies
these for clear explanation purposes. Specifically, the common
functional requirements at high levels of abstraction are: Sense
Inputs, Condition Inputs, Input Selection Logic, Process Out-
puts, Fuel Metering and Over-speed Protection. The details of
these functional requirements can be found in a paper by M.
Dowding [44]. The variable functional requirements are Air-
craft Communication and Health Monitoring. The common
physical resources are Fuel Pump, Electronic Engine Control-

Figure 3. Variability model of Engine Control System

Figure 4. Variation Point <<VPExtension>> stereotype

ler and Engine Databus. The variable physical resources re-
quirement is “inlet air temperature (T1) and pressure (P1),
which use passive or smart sensors”. The difference is that
smart sensors increase the reliability of T1 and P1 measure-
ments. In addition, smart sensors simplify wiring and reduce
weight, as they can communicate with the Electronic Engine
Control via the Engine Databus. The other variable physical
resource requirement is Aircraft Interface.

B. Variability Model of Engine Control System
The initial step for requirement variability modelling is

generating the variability model. This is shown in Figures 3
and 4. This model only represents the variability of the system
requirements. The common requirements are modelled by a
base model (SysML), which is given in part C of this section.

Variation points illustrate where variability occurs and are
represented by triangles labelled “VP” in Figure 3. The top
variation point on the left-hand side, “Aircraft Communica-
tion”, describes where the requirements are variable. Its vari-
ants are: “Communicate via VHF radio”; “Communicate via
satellite” and “Communicate via wireless”. The variant meta-
class is represented by label “V” in Figure 3. The variability
dependency meta-class illustrates the relationships between
variation points and variants. For example, a dotted line shows
that the relationship is optional, which means it can be omitted.
The cardinality “1…1” between these three variants indicates
that only one of them can be selected for variation point “Air-
craft Communication”. The stereotype <<VExtension>> of
variants represents the valid usage time of each functional
requirement variant. It initiates the “time in use” concept in
the meta-model. For example, the variation “Communicate via
wireless” is there to provide scope for future capabilities.

 Figure 4 shows examples of stereotype <<VPExtension>>

for different types of variation point. The proposal uses this
stereotype to represent its extensions on OVM variation points,
because it allows existing OVM modelling tools to support
our methods. The stereotype consists of the tag definitions
“Type Name”, “Stakeholder”, “Binding Time” and “State”.
These tag definitions initiate the type, stakeholder, binding
time and state concepts in the meta-model. The top of Figure 4
shows that the variation point “Aircraft Communication” is
functional. It is managed by Domain Requirement Experts. Its
variations should be decided during Application Requirement
Engineering. This means that when specific customer re-
quirements arrive, the variants should be selected. The “Open”
state of this variation point shows it can be modified to add a
new variant.

In addition, the top right-hand side of Figure 3 represents
the conditional (health monitoring) constraints concept of the
meta-model. This indicates that physical requirements of
“Smart Sensor” should be selected only when high reliability
is required, as indicated in the middle-left section of Figure 3.

C. The Base Requirement Model
After creating the variability model, the next step is build-

ing the base requirement model. For functional requirement
modelling, SysML Activity Diagrams are used.

Figure 5 describes the details of the functional require-
ments base model. This diagram is based on a model de-

Figure 5. Functional requirement base model

Figure 6. Physical requirement base model

Figure 7. Non-Functional requirements representation

scribed in M. Dowding [44], and this paper treats this existing
work as a legacy model. Because of the advantage of the or-
thogonal variability modelling method, the original model
does not require significant changes, just the addition of new
variable elements. In this case, the variable requirements are
“Health Monitoring” and “Aircraft Communication” and are
highlighted in grey in Figure 5. After the creation of the func-
tional requirement base model, the next step is linking the
variants and variation points to the base model. For example,
the variant “Health Monitoring” in the variability model links
with the activity “Health Monitoring” via the artefact depend-
ency concept in the meta-model.

Similarly, the physical requirements base model is mod-
elled using a SysML Block Definition Diagram, as illustrated
in Figure 6. The legacy models are kept the same. The variants
are introduced by adding alternatives to the physical require-
ment base model, then linking variable blocks to variation
points and variants. The variable physical requirements are
highlighted in grey in Figure 6.

 Figure 7 shows how to represent the variability of non-
functional requirements on each functional and physical re-
quirement. As is shown, the stereotype <<Performance>> has
“MinResponse” and “MaxResponse” implemented on func-
tional requirements. “MinResponse” refers to the minimum
response time and “MaxResponse” means the maximum re-
sponse time. The variable performance attributes are repre-
sented by modelling the performance attributes of variants.
Reliability requirements are presented by applying the stereo-
type <<Reliability>> to the blocks of the physical require-
ments diagram. The tag “Failure Probability” shows the
chance of failure occurring in a certain resource. After the
implementation of these stereotypes, the next step is linking
them to the associated variants. With regards to non-functional
attribute analysis, this is still in a development stage. However,

traditional single system methods (without reusability), such
as RBA [50] for timing analysis, can be used after each indi-
vidual target system has been derived from the product line
model this method creates.

D. Modelling Tool
The modelling tool used for the proposed method is Arti-

san Studio [45]. This modelling tool was selected not only
because of the successful cases of using it reported in the in-
dustrial paper by H. G. C. Góngora, M. Ferrogalini and C.
Moreau [21], but also because it is based on ISO/IEC standard
#26550 [46]. The core of this standard is OVM, an extension
of which the proposed method is based on. Additionally, Arti-

san Studio also supports Embedded Real-Time System Model-
ling with SysML, which is used as a base model in the pro-
posed method. It is worth highlighting that the tool is ad-
vanced in terms of product derivations. Unlike tools that re-
quire the manual deletion of unselected options, users can
select from the proposed variability models in Artisan and
automatically derive the target system’s requirements.

V. DISCUSSION
This paper’s proposal mainly provides a practical method

that can cope with the challenge of combining Software PLE
with MBSE for Embedded RTS during the domain require-
ment engineering stage. It is illustrated by a meta-model and
implemented by extending OVM with stereotypes (Figures 3
and 4). Therefore it can be adopted by any tool that supports
OVM. The result of this method is a domain requirement
model (e.g. all models introduced in the case study section),
which can be used to derive the target system’s requirements
by configuring variants according to the specific requirements
of customers. Methods for automatically generating a target
system’s design and products will be the subject of future
work by the authors.

Variability modelling assignment is based on the OVM
method but extends it to support requirement engineering for
Embedded RTS. According to V. Alves, N. Niu, C. Alves and
G. Valença [10], the most commonly used variability model-
ling methods are feature-based methods. Different approaches
based on feature concepts have been proposed during the last
two decades for solving different research challenges. Howev-
er, all these approaches face limitations when they are imple-
mented in large-scale companies, as feature-based methods
have to represent both commonality and variability. In con-
trast, OVM only represents variable parts, which reduces the
number of elements that need to be described for variability
modelling. Moreover, OVM supports the representation of
variability in a separate diagram. It reduces the effort required
to upgrade non-reusable legacies to PLE models.

Although OVM has a flexible design so it is able to com-
bine with any type of modelling language diagram, it was pro-
posed for the software domain. In the OVM proposal [22],
different examples are illustrated that variants in variability
models can be linked with different UML diagrams for re-
quirement engineering. These variants are sometimes physical
variants, such as “Colour Camera Surveillance”, “B/W Cam-
era Surveillance” or “Infrared Surveillance”, and are linked
with UML Use-case Diagrams, Sequence Diagrams, Class
Diagrams and Data Flow Diagrams. It cannot be denied that
physical resources have an impact on software design. How-
ever, this is not enough for Systems Engineering, as physical
resources should be detailed in interfaces and their connec-
tions. It leads to physical variability in terms of physical inter-
faces and connections. The original OVM links these physical
options with software or functional options via artefact de-
pendencies. This is confusing, because physical variants
should be linked to physical artefacts. In addition, it leads to
the problem of product line engineers having to analyse all
physical, functional and non-functional interactions at the be-

ginning of PLE. For a large-scale company, which has thou-
sands of variants, it is impossible to carry out this analysis at
the beginning stage. Therefore this paper proposes a concept
that represents different types of variability separately. The
engineers who are responsible for physical variability only
handle physical variable models and related low-level arte-
facts. Engineers’ specifications are also extended by the pro-
posed method to cope with the challenge of multiple stake-
holders’ representations that is identified in [10].

Variability does not only exist between different systems.
This paper’s proposed method copes with the evolution chal-
lenge of variability modelling (identified in OVM [22] and
[38]) by introducing a specification of variants’ usage periods.

This paper is not the first to use MBSE with SPLE (such
as related works [34] [35]). However, it is different from oth-
ers that focus on how to combine existing variability model-
ling methods with MBSE, as it focuses on modifying existing
variability modelling methods to support MBSE in the re-
quirement stage. Moreover, the Embedded RTS is different
from other related works’ research contexts as the temporal
requirements play an important role. This paper also provides
a glimpse of how to handle non-functional variability, which
is a challenge to OVM [22]. Detailed timing attribute analysis
is the next stage of research. Unlike traditional MBSE, the
paper proposes directly using SysML Activity Diagrams and
Block Definition Diagrams in requirement engineering to re-
duce the efforts involved in system design and increase the
consistency of system models. The reason for this is that do-
main requirement models can be directly used in the design
stage by refining models for more detailed designs. The Rolls-
Royce Control and Data Services team has defined an internal
modelling standard for creating system and software require-
ment models which uses the aforementioned SysML activity
modelling approach. The approach is now being applied in
several civil aero-engine control system development projects.
Early benefits are being seen in terms of reduced numbers of
requirements expressing the same functionality as legacy text-
based requirements capture. Reduced reworking at the system-
software requirement handover stage is also apparent, arising
from the alignment of the SysML activity model used for the
capture of system requirements allocated to software with the
underlying software architecture model (expressed in UML).

VI. CONCLUSIONS AND FUTURE WORKS
Product Line Engineering can be applied to Embedded

RTS development to reduce the costs and schedules [33]. Re-
quirement engineering is critical for Embedded Real-Time
Systems, as a good requirement plan leads to less changes and
risks being identified during the implementation stage. How-
ever, current Product Line Engineering methods mainly focus
on the software domain. The Embedded RTS domain is
broader than the software domain in that physical require-
ments and non-functional requirements (Quality of Service
attributes) play important roles.

This paper has proposed a method that supports a combi-
nation of variability modelling (which is a key feature of PLE)
and model-based requirement engineering for Embedded RTS.

The proposed method extends OVM, which has the advantage
of reducing the efforts of introducing variability into existing
documents. More specifically, it extends OVM with the sup-
port of not only the separation of types of variation points and
variants, but also representation of the evolution of variability.
In addition, stakeholders’ information specifications are also
covered by the proposed method in that it allows the identifi-
cation of which role is responsible for certain down-selection
decisions. Unlike traditional SysML modelling methods, this
paper suggests directly using Activity Diagrams, stereotypes
and Block Definition Diagrams to model functional, non-
functional and physical requirements. In this way, it increases
model consistency, as the requirements and system design are
carried out using the same kind of diagram. The proposed
method is illustrated by the Aircraft Engine Control System.

The challenge of combining Model-Based System Engi-
neering with variability modelling in the design stage and
ways of implementing quality analysis are the next stage of
this work.

ACKNOWLEDGMENT
The author would like to thank Rolls-Royce Controls and

Data Services team who are supporting the current research.
Special thanks also go to Atego for providing a licence for the
modelling tool Artisan Studio.

REFERENCES
[1] Friedenthal, S., Moore, A., & Steiner, R. (2008). A Practical

Guide to SysML: Systems Modeling Language.
[2] Fortune, J. (2009). Estimating systems engineering reuse with

the constructive systems engineering cost model. In Angeles,
University of Southern California. Doctor of Philosophy.

[3] Clements, P., & Northrop, L. (2002). Software product lines:
practices and patterns.

[4] van der Linden, F. J., Schmid, K., & Rommes, E. (2007).
figureSoftware product lines in action: the best industrial
practice in product line engineering. Springer Science &
Business Media.

[5] Van Gurp, J., Bosch, J., & Svahnberg, M. (2001). On the notion
of variability in software product lines. In Software
Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on (pp. 45-54). IEEE.

[6] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., &
Peterson, A. S. (1990). Feature-oriented domain analysis
(FODA) feasibility study (No. CMU/SEI-90-TR-21).
CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST.

[7] Chen, L., & Babar, M. A. (2011). A systematic review of
evaluation of variability management approaches in software
product lines. Information and Software Technology, 53(4),
344-362.

[8] Chen, L., Ali Babar, M., & Ali, N. (2009, August). Variability
management in software product lines: a systematic review. In
Proceedings of the 13th International Software Product Line
Conference (pp. 81-90). Carnegie Mellon University.

[9] Metzger, A., & Pohl, K. (2014, May). Software product line
engineering and variability management: Achievements and
challenges. In Proceedings of the on Future of Software
Engineering (pp. 70-84). ACM.

[10] Alves, V., Niu, N., Alves, C., & Valença, G. (2010).
Requirements engineering for software product lines: A
systematic literature review. Information and Software
Technology, 52(8), 806-820.

[11] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., &
Wąsowski, A. (2012, January). Cool features and tough
decisions: a comparison of variability modelling approaches. In
Proceedings of the sixth international workshop on variability
modelling of software-intensive systems (pp. 173-182). ACM.

[12] Dumitrescu, C., Mazo, R., Salinesi, C., & Dauron, A. (2013,
August). Bridging the gap between product lines and systems
engineering: an experience in variability management for
automotive model based systems engineering. In Proceedings
of the 17th International Software Product Line Conference
(pp. 254-263). ACM.

[13] Kopetz, H. (2011). Real-time systems: design principles for
distributed embedded applications. Springer Science &
Business Media.

[14] Belategi, L., Sagardui, G., & Etxeberria, L. (2011, May).
Model based analysis process for embedded software product
lines. In Proceedings of the 2011 International Conference on
Software and Systems Process (pp. 53-62). ACM.

[15] Myllärniemi, V., Savolainen, J., Raatikainen, M., & Männistö,
T. (2015). Performance variability in software product lines:
proposing theories from a case study. Empirical Software
Engineering, 1-47.

[16] Myllärniemi, V., Raatikainen, M., & Männistö, T. (2012,
September). A systematically conducted literature review:
quality attribute variability in software product lines. In
Proceedings of the 16th International Software Product Line
Conference-Volume 1 (pp. 41-45). ACM.

[17] Metzger, A., Pohl, K., Heymans, P., Schobbens, P., & Saval, G.
(2007, October). Disambiguating the documentation of
variability in software product lines: A separation of concerns,
formalization and automated analysis. In Requirements
Engineering Conference, 2007. RE'07. 15th IEEE International
(pp. 243-253). IEEE.

[18] Sepúlveda, S., Cares, C., & Cachero, C. (2012, June). Towards
a unified feature meta-model: A systematic comparison of
feature languages. In Information Systems and Technologies
(CISTI), 2012 7th Iberian Conference on (pp. 1-7). IEEE.

[19] Czarnecki, K., & Wasowski, A. (2007, September). Feature
diagrams and logics: There and back again. In Software
Product Line Conference, 2007. SPLC 2007. 11th International
(pp. 23-34). IEEE.

[20] Reinhartz-Berger, I., & Figl, K. (2014, September).
Comprehensibility of orthogonal variability modelling
languages: the cases of CVL and OVM. In Proceedings of the
18th International Software Product Line Conference-Volume 1
(pp. 42-51). ACM.

[21] Góngora, H. G. C., Ferrogalini, M., & Moreau, C. (2015). How
to Boost Product Line Engineering with MBSE-A Case Study
of a Rolling Stock Product Line. In Complex Systems Design
& Management (pp. 239-256). Springer International
Publishing.

[22] Böckle, G., & van der Linden, F. J. (2005). Software product
line engineering: foundations, principles and techniques. K.
Pohl (Ed.). Springer Science & Business Media.

[23] Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G. K., &
Svendsen, A. (2008, September). Adding standardized
variability to domain specific languages. In Software Product

Line Conference, 2008. SPLC'08. 12th International (pp. 139-
148). IEEE.

[24] Rashid, M., Anwar, M. W., & Khan, A. M. (2015). Towards
the Tools Selection in Model Based System Engineering for
Embedded Systems-A Systematic Literature Review. Journal of
Systems and Software.

[25] Jarraya, Y., Soeanu, A., Debbabi, M., & Hassaine, F. (2007,
March). Automatic verification and performance analysis of
time-constrained SysML Activity Diagrams. In Engineering of
Computer-Based Systems, 2007. ECBS'07. 14th Annual IEEE
International Conference and Workshops on the (pp. 515-522).
IEEE.

[26] Andrade, E., Maciel, P., Callou, G., & Nogueira, B. (2009,
February). A methodology for mapping SysML Activity
Diagram to time petri net for requirement validation of
embedded real-time systems with energy constraints. In Digital
Society, 2009. ICDS'09. Third International Conference on (pp.
266-271). IEEE.

[27] OMG. (2008). UML profile for MARTE: Modelling and
analysis of real-time embedded systems (Beta 2 ed.) Object
Management Group Inc.

[28] Bagheri, E., Asadi, M., Gasevic, D., & Soltani, S. (2010).
Stratified analytic hierarchy process: Prioritization and
selection of software features. In Software Product Lines:
Going Beyond (pp. 300-315). Springer Berlin Heidelberg.

[29] Etxeberria, L., & Sagardui, G. (2008, September). Variability
driven quality evaluation in software product lines. In Software
Product Line Conference, 2008. SPLC'08. 12th International
(pp. 243-252). IEEE.

[30] Belategi, L., Sagardui, G., & Etxeberria, L. (2011, May).
Model based analysis process for embedded software product
lines. In Proceedings of the 2011 International Conference on
Software and Systems Process (pp. 53-62). ACM.

[31] Ali, S., Yue, T., Briand, L., & Walawege, S. (2012). A product
line modelling and configuration methodology to support
model-based testing: an industrial case study (pp. 726-742).
Springer Berlin Heidelberg.

[32] Trujillo, S., Garate, J. M., Lopez-Herrejon, R. E., Mendialdua,
X., Rosado, A., Egyed, A., & De Sosa, J. (2010). Coping with
variability in model-based systems engineering: An experience
in green energy. In Modelling Foundations and Applications
(pp. 293-304). Springer Berlin Heidelberg.

[33] Dumitrescu, C., Tessier, P., Salinesi, C., Gerard, S., Dauron,
A., & Mazo, R. (2014). Capturing variability in model based
systems engineering. In Complex Systems Design &
Management (pp. 125-139). Springer International Publishing.

[34] Huhn, M., & Bessling, S. (2013). Enhancing product line
development by safety requirements and verification. In
Foundations of Health Information Engineering and Systems
(pp. 37-54). Springer Berlin Heidelberg.

[35] Queiroz, P., & Braga, R. (2014). Combining MARTE-UML,
SysML and CVL to build unmanned aerial vehicles. The Ninth
International Conference on Software Engineering Advances,
Nice, France. 334-340.

[36] Hallerbach, A., Bauer, T., & Reichert, M. (2010). Capturing
variability in business process models: the Provop approach.
Journal of Software Maintenance and Evolution: Research and
Practice, 22(6-7), 519-546.

[37] Sellier, D., Mannion, M., & Mansell, J. X. (2008). Managing
requirements inter-dependency for software product line
derivation. Requirements engineering, 13(4), 299-313.

[38] Chen, L., & Babar, M. A. (2010). Variability management in
software product lines: an investigation of contemporary
industrial challenges. In Software Product Lines: Going
Beyond (pp. 166-180). Springer Berlin Heidelberg.

[39] Seidewitz, E. (2003). What models mean. IEEE software,
20(5), 26-32.

[40] Bosch, J. (2005). Software product families in Nokia. In
Software Product Lines (pp. 2-6). Springer Berlin Heidelberg.

[41] Habli, I., Kelly, T., & Hopkins, I. (2007, September).
Challenges of establishing a software product line for an
aerospace engine monitoring system. In Software Product Line
Conference, 2007. SPLC 2007. 11th International (pp. 193-
202). IEEE.

[42] Jaw, L. C., & Mattingly, J. D. (2009). Aircraft engine controls:
design, system analysis, and health monitoring. American
Institute of Aeronautics and Astronautics.

[43] Habli, I. (2009). Model-based assurance of safety-critical
product lines (Doctoral dissertation, University of York).

[44] Dowding, M. (2002). Maintenance of the Certification Basis
for a Distributed Control System–Developing a Safety Case
Architecture. MSc Report, Department of Computer Science,
University of York, UK.

[45] Atego. (2015). Artisan studio. Retrieved from
http://www.atego.com/download-center/products/category/
artisan-studio/

[46] ISO. (2013). ISO/IEC 26550:2013 Software and systems
Engineering—Reference model for product line engineering
and management ISO International Standards.

[47] Bashroush, R., Spence, I., Kilpatrick, P., Brown, J., & Gillan,
C. (2008). A multiple views model for variability management
in software product lines.

[48] Ali, R., Dalpiaz, F., & Giorgini, P. (2010). A goal-based
framework for contextual requirements modelling and analysis.
Requirements Engineering, 15(4), 439-458.

[49] Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2004).
Covamof: A framework for modelling variability in software
product families. In Software Product Lines (pp. 197-213).
Springer Berlin Heidelberg.

[50] Grigg, A., & Guan, L. A Scalable Approach to Real-Time
System Timing Analysis.

[51] Aainsqatsi, K. (2008). File:Turbofan operation lbp.svg.
Retrieved 7/30, 2015, from
https://commons.wikimedia.org/wiki/File:Turbofan_operation_
lbp.svg.

