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Abstract—Product Line Engineering (PLE) offers the benefits 
of reducing costs and time to market by reusing requirements 
and components. Current PLE methods, however, mainly focus 
on the software aspects and are lacking in support for many 
system level concerns like physical and non-functional require-
ments (Quality of Service attributes) that play an important role 
in the development of Embedded Real-Time Systems (RTS). 
This paper proposes a new method to support a combination of 
variability modelling (a key feature of PLE) and model-based 
requirement engineering (in SysML) for Embedded RTS. It 
provides four main contributions: 1. it extends the Orthogonal 
Variability Model (OVM) to support the separation of function-
al, physical and non-functional variability; 2. it proposes a 
mechanism for the evolution of variability; 3. stakeholders’ 
specifications for variable requirements are extended by the 
proposed approach; 4. it increases the consistency of system 
models by directly using SysML Activity Diagrams and Block 
Definition Diagrams as a base model for refining variability 
models for requirement representation. The proposed method is 
illustrated by an Aircraft Engine Control System case study. 

Index Terms—Product Line, Requirement Engineering, 
Embedded Real-Time System, Variability Modelling. 

I. INTRODUCTION  
To meet the requirements of competitive pressures, Em-

bedded Real-Time Systems (RTS) need to leverage advanced 
technology to offer a capability that can reduce development 
costs and shorten development times. Traditionally, Model-
Based System Engineering (MBSE) uses modelling languages 
such as Unified Modelling Language (UML) and Systems 
Modelling Language (SysML) to meet these demands by de-
termining the system requirements and foreseeing the risks at 
an early stage [1]. 

Nowadays, fewer industrial projects start to develop sys-
tems from scratch. Today’s systems development rather tends 
to use and upgrade existing designs to produce new products 
[2]. For coping with demand, Product Line Engineering (PLE) 
has drawn a great deal of attention, as it improves time to 
market, cost, quality and productivity by identifying common-
alities and variabilities between existing systems to provide 
reusability [3]. As P. Clements and L. Northrop [3] mentioned, 

PLE is managed by a requirement engineering-change man-
agement process. The key feature of PLE is variability model-
ling [4]. This distinguishes PLE from traditional System Engi-
neering approaches by explicitly considering system diversity, 
including requirement diversity, for reusability purposes. It 
refers to the ability of systems requirements to be configured, 
customised and extended for specific contexts [5]. Due to the 
importance of variability modelling in PLE, a great number of 
researchers focus on addressing the challenges that come with 
it. The earliest variability method, Feature-Oriented Domain 
Analysis (FODA) [6], can be traced back to the 1990s. In the 
years between 1990 and 2014, several variability modelling 
methods and systematic literature reviews [7-11] were pub-
lished, taking into account different contexts, aspects, devel-
opment stages and purposes. Specifically, the systematic liter-
ature review paper by V. Alves, N. Niu, C. Alves and G. 
Valença [10] focused on requirement engineering for Software 
Product Line. However, many Product Line Engineering pub-
lications on System Engineering are actually focussed on only 
the software aspect [12]. While Software Product Line Engi-
neering is important in the systems domain, System Engineer-
ing is a much broader discipline; it includes the consideration 
of hardware aspects (mechanical and electrical engineering) as 
well as the overall integration of hardware and software com-
ponents [13].  

Distinct from other systems, an Embedded RTS depends 
not only on the right logical results of computations, but also 
upon the response to the result being produced within a re-
quired time [13]. Non-functional requirements (quality attrib-
utes, in other words) such as response time, reliability and so 
on play a significant role during system requirement engineer-
ing, because they describe the conditions under which the Re-
al-Time System’s components should operate, leading to al-
ternative design decisions [14] [15]. However, most of the 
Software PLE approaches concentrate on the functional as-
pects [16]. Introducing quality attributes to Software PLE not 
only makes it more adaptable for Embedded RTS require-
ments engineering but also provides metrics to compare vari-
ants for optimising the configuration of an Embedded RTS 
product line. 



Therefore the aim of this paper is to propose a practical 
variability modelling method that can be combined with mod-
el-based requirement engineering in the Embedded RTS do-
main. To fulfil this aim, the proposed requirement variability 
model should represent and separate functional, physical and 
non-functional requirements clearly.  

The rest of the paper is structured as follows: Section II 
provides information on fundamental concepts of Product 
Line Engineering, summarises related works and traditional 
requirement modelling approaches for the Embedded RTS 
(without reusability concerns); Section III introduces the pro-
posed modelling approach; Section IV provides a case study 
of an Aircraft Engine Control System to further explain the 
proposed method and the applied modelling tool; Section V 
discusses the contributions of the proposed method and the 
differences between it and related works. Finally, a conclusion 
to this paper and information about future work are provided. 

II. BACKGROUND AND RELATED WORKS 
This section gives an introduction on Product Line Engi-

neering and variability modelling classification. This is fol-
lowed by the introduction of traditional Embedded RTS re-
quirement modelling methods. Numerous methods exist for 
model-based requirement engineering for Embedded RTS and 
variability modelling. This section briefly introduces related 
works by classification group. 

A. Classification of Variability Modelling Methods 
As previously mentioned, variability modelling is the key 

feature of PLE. It defines how the system requirements of a 
product line asset can vary [17]. This paper adopts A. Metzger 
and K. Pohl’s classification [9]: “integrated variability docu-
mentation” and “orthogonal variability documentation”. 

“Integrated variability documentation” refers to the mod-
elling methods that represent the commonalities and variabili-
ties of systems together in the same model. For example, the 
feature model [6] illustrates common and variable features 
(via an optional feature) of a system on a feature diagram. As 
S. Sepúlveda, C. Cares and C. Cachero [18] stated, feature 
modelling is the most common method of variability model-
ling in Software Engineering. It is a tree-like structure which 
represents both the commonality and variability features of 
products in a product line. Each feature model consists of a 
root that is the software product family, and leaves that are the 
components that can be selected [19].    

“Orthogonal variability documentation” involves the sepa-
ration of commonalities and variabilities into different dia-
grams. Variability is treated as the first class and based on the 
concept of the variant and the variation point. The variation 
point describes where variability occurs. A variant is an in-
stance of a variable item [20]. In addition, orthogonal variabil-
ity documentation only handles variants on its diagram, and is 
linked with commonality models or artefacts. It has attracted a 
lot of attention in recent publications [12] [21], because it does 
not require changing the complexity of development artefacts 
and can be combined with different development artefacts [20]. 
For this classification, most recent efforts, such as the Orthog-

onal Variability Modelling (OVM) [22] (which was adopted 
as ISO/IEC standard #26550 in 2013) are examples. It repre-
sents variability in terms of variation points and variants. The 
variation points and variants can be linked to a base model 
specified by UML or SysML. Common Variability Language 
(CVL) [23] is an Object Management Group (OMG) standard 
proposal for variability modelling. It consists of a user-centric 
layer and a product realisation layer. The user-centric layer is 
used for high-level variability representation in terms of the 
feature model. The realisation layer defines lower level opera-
tions for transformation from the base model to a new, solved 
model [23]. It specifies how an individual feature is imple-
mented on the base model. 

B. Integrated Variability Documentation 
A number of works consider feature modelling with the 

variability of non-functional requirements. For example, E. 
Bagheri, M. Asadi, D. Gasevic and S.  Soltani [28] extend 
feature models with the meta-class to represent non-functional 
requirements. L. Etxeberria and G. Sagardui [29] create a 
quality feature tree in a feature model to represent non-
functional requirements. Another paper by L. Belategi, G. 
Sagardui and L. Etxeberria [30] also uses a quality feature tree 
to model non-functional requirements and a MARTE profile 
for platform resource representation. In addition, MARTE is 
also utilised for quality analysis in the design stage.   

There is another trend in integrated variability documenta-
tion, which is extending UML or SysML by stereotypes to 
support variability representation. For instance, AspectSM [31] 
extends the UML State Machine Diagram and Class Diagram 
with stereotypes for variability modelling. It organises these 
models in two packages: the software package contains the 
State Machine Diagram to model the core behaviours and 
functional behaviours; the hardware package contains the 
Class Diagram for representing hardware configurations. Non-
functional behaviours are modelled as class attributes via 
MARTE.  

Some approaches merge feature models with UML or 
SysML. Feature models are used for the high-level abstraction 
of variability, and then UML or SysML is used for refinement. 
S. Trujillo et al. [32] proposed combining the feature model 
with extended SysML (by stereotypes for variability model-
ling). The feature model handles high-level requirements. 
Structural and behavioural variability is handled by variation 
point notation. 

In practice, industrial projects often start with legacy sys-
tems and software requirements. As the paper by C. Dumitres-
cu et al. [33] suggests, variability should be compatible with 
legacy documents. Using the integrated variability documenta-
tion method requires changing the complexity of development 
artefacts by introducing both commonality and variability into 
existing models [9]. 

C. Orthogonal Variability Documentation 
To address the challenges of the integrated variability 

method mentioned above, some approaches use an orthogonal 
way of modelling variability. M. Huhn and S. Bessling [34] 
combine CVL with SysML, using a SysML Internal Block 



Diagram to model the structural design and safety require-
ments. Functional requirement variability is represented in the 
user-centric layer as a feature model. Similarly, P. Queiroz 
and R. Braga [35] also use CVL with SysML and MARTE. 
For requirement variability modelling, it utilises a SysML 
Requirement Diagram with a CVL feature in the user-centric 
layer. However, it takes on the disadvantages of integrated 
variability documentation, and in particular the fact that the 
CVL’s user-centric layer is a feature model.  

Unlike CVL, OVM only models variability in parts. Some 
researchers have implemented OVM with SysML in industrial 
settings [36] [12] [37]. While OVM allows variation points 
and variants to link with base models (SysML) to illustrate the 
variability of different requirement types, such as functional, 
physical and non-functional requirements. However, it is hard 
to identify whether a variability requirement is functional, 
non-functional or physical if it is only based on a variability 
model of OVM. 

D. Requirement Modelling for Embedded Real-Time Sys-
tems 
According to S. Friedenthal, A. Moore and R. Steiner [1], 

conventionally engineers model system requirements using 
SysML Requirement Diagrams, which are graphical represen-
tations of textual system requirements. SysML Activity Dia-
grams, which show sequences of the elementary actions of 
systems, are then generated to model system behaviours. A 
SysML Block Definition Diagram can be used to represent 
hardware architecture. 

As M. Rashid, M. W. Anwar and A. M. Khan [24] men-
tion, requirement modelling is the most important activity for 
Embedded Real-Time System Engineering, so requirements 
are modelled with different verification and validation con-
cerns. Some approaches [25] [26] have been proposed to mod-
el system requirements with SysML Activity Diagrams to 
facilitate the verification of requirements. For example, E. 
Andrade, P. Maciel, G. Callou and B. Nogueira [26] use the 
Activity Diagram in SysML and combine it with the Model-
ling and Analysis of Real-Time and Embedded Systems 
(MARTE) to verify the functional, timing and low-power re-
quirements of the embedded system. MARTE [27] is a UML 
profile which is used for the modelling and verification of 
non-functional requirements of Embedded RTS. Activity Dia-
grams are used for requirement modelling by E. Andrade, P. 
Maciel, G. Callou and B. Nogueira [26]. MARTE is used for 
timing and energy value representation with stereotypes of 
best-case and worst-case response times. The Activity Dia-
gram, with quantitative data, is then translated into a Time 
Petri Net with Energy constraints (ETPN) for non-functional 
property estimation.  

In summary, integrated variability documentation requires 
more effort than orthogonal variability documentation when 
being adopted for large scale industries that apply re-use of 
numerous legacy requirements. The reason for this is that in-
tegrated variability documentation requires changing existing 
models to express both commonality and variability. For exist-
ing orthogonal variability methods, there are also some chal-

lenges which need to be solved to enable modelling require-
ment variability in Embedded RTS: 

x V. Alves, N. Niu, C. Alves and G. Valença [10] sug-
gest that requirement engineering with PLE should 
consider multiple stakeholder aspects including those 
of customers, systems engineers, software engineers 
and hardware engineers. However, current orthogonal 
variability methods cannot illustrate which stakehold-
er is responsible for a certain variation point or variant. 

x According to L. Chen, L and M. A. Babar [38], who 
investigated the industrial challenges of PLE, variabil-
ity of requirements exists not only in space (differ-
ences between systems) but also over time (differ-
ences between times). Current orthogonal variability 
methods do not support the specification of the evolu-
tion of variability. 

x Most requirement variability modelling is based on 
UML Use Case Diagrams or SysML Requirement Di-
agrams. As stated above, using SysML Activity Dia-
grams for requirement modelling in Embedded RTS 
facilitates requirement verification and validation. 
Therefore modelling requirement variability for Em-
bedded RTS using SysML Activity Diagram is more 
beneficial when it comes to verification and validation. 
However, current requirement modelling methods that 
use SysML Activity Diagrams do not support consid-
eration of the variability aspect. 

III. PROPOSED APPROACH 
This section introduces the proposed method for modelling 

requirement variability for Embedded RTS. To cope with the 
challenges mentioned above, this proposed method adopts 
OVM as its core variability modelling means, and extends it to 
support representations of variability types, stakeholders and 
the evolution of variability. Adopting OVM also leads to a 
model that is less complex than integrated variability docu-
mentation methods [9]. This approach also integrates the pro-
posed variability model with SysML in order to support re-
quirement engineering with a variability aspect in the Embed-
ded RTS domain.  

The meta-model of the proposed requirement variability 
model for Embedded RTS is represented in Figure 1. In Soft-
ware Engineering, a meta-model is a mechanism for represent-
ing a well-formed formula or the abstract syntax of a model-
ling language [39]. In order to show the unique features of our 
proposed method using OVM, the diagram uses dark grey to 
highlight the extension points, as shown in Figure 1. The light 
grey parts of the diagram are the modifications that the pro-
posed approach makes to the existing OVM. The top of Figure 
1 shows the variability modelling method, whilst the bottom 
section illustrates how the variability model links with differ-
ent types of requirement artefacts (also called the base model) 
for requirement modelling. In general, the variability model-
ling part provides a separate view of the system requirements 
that are variable. It consists of different types of variation 
points and variants, such as functional, physical and non-
functional. Each variation point has information about binding 



 

Figure 1. The meta-model of the Embedded RTS requirement variability modelling approach 

 

time and stakeholders. The requirement modelling part shows 
the commonality and variability of system requirements 
through SysML Activity Diagrams and Block Definition Dia-
grams. The existing legacy system requirement models are not 
changed. The variable requirements are introduced by adding 
variable artefacts (refinements of each variant) to existing 
models. The definitions and semantics of each concept of the 
meta-model are introduced as follows: 

A. Variability Modelling 
x “Variation point” has the same meaning as in OVM, 

i.e. describes where variability occurs. However, the 
proposed method extends it with stakeholder, state, 
type and binding time information. This is the starting 
point for building a variability model. The functional 
variation point can be linked or refined using a Fea-
ture Level requirement diagram (SysML Activity Di-
agram). This proposal adopts the concept of state in 
[49]. The “state” of the variation point indicates 
whether the variation point can be modified to accept 
new variants during future development. Normally the 
state “Open” is used to show that the variation point is 
modifiable. In contrast, “Close” means the variation 
point cannot be changed.    

x “Stakeholder” is a tag that works on a variation point 
to identify the people who are responsible for this var-
iation point. For example, domain experts may man-
age functional variation points. Customers may inter-

act with physical resource variation points, especially 
on system level interfaces. 

x “Type” is a tag for the variation points, which repre-
sents whether it is related to functional, physical or 
Quality of Service (QoS) attributes (non-functional). 
Variants are of the same type as their linked variation 
points. 

x “Binding time” is a tag that indicates when a certain 
variation point should be instantiated. It is important 
to specify when to bind a specific variant to its varia-
tion point [47]. A typical binding time might be “Do-
main Requirement Stage”, which means “determine 
the variation point when considering requirement 
commonality and variability”, or “Application Re-
quirement Stage”, which means “decisions on the var-
iation points are made when specific customers’ re-
quirements arrive”. 

x “Scalability” refers to a hierarchy representation in the 
structure to reduce the complexity of diagrams. As re-
ported, there are hundreds or even thousands of com-
mon and variable models in real industry situations 
[38] [40]. It is impossible to represent all this infor-
mation in one diagram. Therefore, modelling require-
ments or variability in a hierarchical manner reduces 
the complexity of requirement and variability dia-
grams and satisfies real industrial needs. 

x “Variant” is the instance of a variable item [20]. As 
stated above, evolution variability refers to variability 



 

Figure 2. The Gas Turbine Engine [51] 

 

over time. In order to represent this information, the 
proposed approach uses “Time in Use” to describe the 
valid period of the variant. In addition, the variant can 
link with different requirement artefacts for further re-
finement, such as SysML Activity Diagrams and 
Block Definition Diagrams, via “Dependency on Ar-
tefacts”. 

x Dependency between variation points and variants is 
mainly kept the same as in OVM, except for the con-
ditional constraints extension. Sometimes, the variant 
exists only in certain conditions or context [48]. 
“Conditional constraints” illustrate a suitable situation 
that instigates the variant for the linked variation point. 
For example, the variant “Reliable Sensor” should be 
selected when the Conditional Constraint is 
et >£10000”. “Dependency to Artefacts” is used to 
link requirement artefacts to variants. 

B. Requirement Modelling 
x “Functional Requirement Artefacts” refer to the 

SysML Activity Diagram to represent functional re-
quirements. Unlike the traditional SysML model, 
which uses Requirement Diagrams for requirement 
specifications, the proposed method uses Activity Di-
agrams in a hierarchical structure. Each activity in the 
Activity Diagram represents either a functional re-
quirement or a group of requirements at the “Func-
tional Level”. The “Feature Level” is a higher-level 
abstraction and it is used to group functions to facili-
tate the reuse of requirements. “Component Level” 
requirements can be transformed into “Low-Level 
Software Requirements” for the software team. This 
approach has been developed by the Rolls-Royce 
Control and Data Services team who are supporting 
the current research. The details of this are beyond the 
scope of this paper. The reason for using Activity Di-
agrams instead of Requirement Diagrams for func-
tional requirement specification is twofold: firstly, it 
increases the consistency of system models and allows 
functional requirements to be refined into system be-
haviours through a “parent to child” relationship (hi-
erarchy) in the Activity Diagram; secondly, require-
ment verification methods that are based on Activity 
Diagrams can then be used when an individual prod-
uct is to be generated from the product line [25] [26].  

x The “Physical Requirement Artefact” uses a SysML 
Block Definition Diagram to represent physical re-
quirements. The Block Definition Diagram also al-
lows the representation of a physical resource struc-
ture. 

x The “NFR Artefact” refers to the representation of 
non-functional requirements in terms of stereotypes. 
These stereotypes are implied on the Activity Dia-
gram and Block Definition Diagram to show the non-
functional requirements and their relationships with 
functional and physical requirements. The addition of 
quality attributes also provides a starting point for per-

forming automated non-functional analysis on the sys-
tem model. However, quality attributes analysis is be-
yond the scope of this paper. 

IV. CASE STUDY 
This section introduces a case study of an Engine Control 

System to demonstrate the proposed approach. Initially, a tex-
tual description of Engine Control System requirements, in-
cluding commonalities and variabilities is given. Then our 
proposed model for Engine Control System requirements en-
gineering is introduced.   

A. Engine Control System 
A simplified gas turbine engine is introduced by I. Habli, T. 

Kelly and I. Hopkins [41]. As Figure 2 shows, it has a fan and 
a compressor to absorb a large volume of air. The air is mixed 
with fuel and ignited in a combustion chamber. Prior to com-
bustion, the air is compressed to up to 40 times atmospheric 
pressure. After combustion, the combustion exhaust gases are 
forced (expand) through a turbine to provide thrust.  

According to L. C. Jaw and J.D. Mattingly [42], the Full 
Authority Digital Electronic Controls System (FADEC) has 
become the standard engine control system for modern gas 
turbine engines. FADEC helps pilots to monitor and control 
engine parameters and warns them when abnormal conditions 
occur. 

The high levels of common and variable functional and 
physical requirements of engine control systems are intro-
duced by I. Habli [43]. The content of this paper simplifies 
these for clear explanation purposes. Specifically, the common 
functional requirements at high levels of abstraction are: Sense 
Inputs, Condition Inputs, Input Selection Logic, Process Out-
puts, Fuel Metering and Over-speed Protection. The details of 
these functional requirements can be found in a paper by M. 
Dowding [44]. The variable functional requirements are Air-
craft Communication and Health Monitoring. The common 
physical resources are Fuel Pump, Electronic Engine Control-



 

Figure 3. Variability model of Engine Control System 

 

 

 

 

Figure 4. Variation Point <<VPExtension>> stereotype 

 

ler and Engine Databus. The variable physical resources re-
quirement is “inlet air temperature (T1) and pressure (P1), 
which use passive or smart sensors”. The difference is that 
smart sensors increase the reliability of T1 and P1 measure-
ments. In addition, smart sensors simplify wiring and reduce 
weight, as they can communicate with the Electronic Engine 
Control via the Engine Databus. The other variable physical 
resource requirement is Aircraft Interface. 

B. Variability Model of Engine Control System 
The initial step for requirement variability modelling is 

generating the variability model. This is shown in Figures 3 
and 4. This model only represents the variability of the system 
requirements. The common requirements are modelled by a 
base model (SysML), which is given in part C of this section.  

Variation points illustrate where variability occurs and are 
represented by triangles labelled “VP” in Figure 3. The top 
variation point on the left-hand side, “Aircraft Communica-
tion”, describes where the requirements are variable. Its vari-
ants are: “Communicate via VHF radio”; “Communicate via 
satellite” and “Communicate via wireless”. The variant meta-
class is represented by label “V” in Figure 3. The variability 
dependency meta-class illustrates the relationships between 
variation points and variants. For example, a dotted line shows 
that the relationship is optional, which means it can be omitted. 
The cardinality “1…1” between these three variants indicates 
that only one of them can be selected for variation point “Air-
craft Communication”. The stereotype <<VExtension>> of 
variants represents the valid usage time of each functional 
requirement variant. It initiates the “time in use” concept in 
the meta-model. For example, the variation “Communicate via 
wireless” is there to provide scope for future capabilities.   

 Figure 4 shows examples of stereotype <<VPExtension>> 

for different types of variation point. The proposal uses this 
stereotype to represent its extensions on OVM variation points, 
because it allows existing OVM modelling tools to support 
our methods. The stereotype consists of the tag definitions 
“Type Name”, “Stakeholder”, “Binding Time” and “State”. 
These tag definitions initiate the type, stakeholder, binding 
time and state concepts in the meta-model. The top of Figure 4 
shows that the variation point “Aircraft Communication” is 
functional. It is managed by Domain Requirement Experts. Its 
variations should be decided during Application Requirement 
Engineering. This means that when specific customer re-
quirements arrive, the variants should be selected. The “Open” 
state of this variation point shows it can be modified to add a 
new variant.  

In addition, the top right-hand side of Figure 3 represents 
the conditional (health monitoring) constraints concept of the 
meta-model. This indicates that physical requirements of 
“Smart Sensor” should be selected only when high reliability 
is required, as indicated in the middle-left section of Figure 3.  

C. The Base Requirement Model 
After creating the variability model, the next step is build-

ing the base requirement model. For functional requirement 
modelling, SysML Activity Diagrams are used.  

Figure 5 describes the details of the functional require-
ments base model. This diagram is based on a model de-



 

Figure 5. Functional requirement base model 

 

 

 

Figure 6. Physical requirement base model 

 

 

 

Figure 7.  Non-Functional requirements representation 

 

scribed in M. Dowding [44], and this paper treats this existing 
work as a legacy model. Because of the advantage of the or-
thogonal variability modelling method, the original model 
does not require significant changes, just the addition of new 
variable elements. In this case, the variable requirements are 
“Health Monitoring” and “Aircraft Communication” and are 
highlighted in grey in Figure 5. After the creation of the func-
tional requirement base model, the next step is linking the 
variants and variation points to the base model.  For example, 
the variant “Health Monitoring” in the variability model links 
with the activity “Health Monitoring” via the artefact depend-
ency concept in the meta-model. 

Similarly, the physical requirements base model is mod-
elled using a SysML Block Definition Diagram, as illustrated 
in Figure 6. The legacy models are kept the same. The variants 
are introduced by adding alternatives to the physical require-
ment base model, then linking variable blocks to variation 
points and variants. The variable physical requirements are 
highlighted in grey in Figure 6. 

 Figure 7 shows how to represent the variability of non-
functional requirements on each functional and physical re-
quirement. As is shown, the stereotype <<Performance>> has 
“MinResponse” and “MaxResponse” implemented on func-
tional requirements. “MinResponse” refers to the minimum 
response time and “MaxResponse” means the maximum re-
sponse time. The variable performance attributes are repre-
sented by modelling the performance attributes of variants. 
Reliability requirements are presented by applying the stereo-
type <<Reliability>> to the blocks of the physical require-
ments diagram. The tag “Failure Probability” shows the 
chance of failure occurring in a certain resource. After the 
implementation of these stereotypes, the next step is linking 
them to the associated variants. With regards to non-functional 
attribute analysis, this is still in a development stage. However, 

traditional single system methods (without reusability), such 
as RBA [50] for timing analysis, can be used after each indi-
vidual target system has been derived from the product line 
model this method creates. 

D. Modelling Tool 
The modelling tool used for the proposed method is Arti-

san Studio [45]. This modelling tool was selected not only 
because of the successful cases of using it reported in the in-
dustrial paper by H. G. C. Góngora, M. Ferrogalini and C. 
Moreau [21], but also because it is based on ISO/IEC standard 
#26550 [46]. The core of this standard is OVM, an extension 
of which the proposed method is based on. Additionally, Arti-



san Studio also supports Embedded Real-Time System Model-
ling with SysML, which is used as a base model in the pro-
posed method. It is worth highlighting that the tool is ad-
vanced in terms of product derivations. Unlike tools that re-
quire the manual deletion of unselected options, users can 
select from the proposed variability models in Artisan and 
automatically derive the target system’s requirements. 

V. DISCUSSION 
This paper’s proposal mainly provides a practical method 

that can cope with the challenge of combining Software PLE 
with MBSE for Embedded RTS during the domain require-
ment engineering stage. It is illustrated by a meta-model and 
implemented by extending OVM with stereotypes (Figures 3 
and 4). Therefore it can be adopted by any tool that supports 
OVM. The result of this method is a domain requirement 
model (e.g. all models introduced in the case study section), 
which can be used to derive the target system’s requirements 
by configuring variants according to the specific requirements 
of customers. Methods for automatically generating a target 
system’s design and products will be the subject of future 
work by the authors. 

Variability modelling assignment is based on the OVM 
method but extends it to support requirement engineering for 
Embedded RTS. According to V. Alves, N. Niu, C. Alves and 
G. Valença [10], the most commonly used variability model-
ling methods are feature-based methods. Different approaches 
based on feature concepts have been proposed during the last 
two decades for solving different research challenges. Howev-
er, all these approaches face limitations when they are imple-
mented in large-scale companies, as feature-based methods 
have to represent both commonality and variability. In con-
trast, OVM only represents variable parts, which reduces the 
number of elements that need to be described for variability 
modelling. Moreover, OVM supports the representation of 
variability in a separate diagram. It reduces the effort required 
to upgrade non-reusable legacies to PLE models. 

Although OVM has a flexible design so it is able to com-
bine with any type of modelling language diagram, it was pro-
posed for the software domain. In the OVM proposal [22], 
different examples are illustrated that variants in variability 
models can be linked with different UML diagrams for re-
quirement engineering. These variants are sometimes physical 
variants, such as “Colour Camera Surveillance”, “B/W Cam-
era Surveillance” or “Infrared Surveillance”, and are linked 
with UML Use-case Diagrams, Sequence Diagrams, Class 
Diagrams and Data Flow Diagrams. It cannot be denied that 
physical resources have an impact on software design. How-
ever, this is not enough for Systems Engineering, as physical 
resources should be detailed in interfaces and their connec-
tions. It leads to physical variability in terms of physical inter-
faces and connections. The original OVM links these physical 
options with software or functional options via artefact de-
pendencies. This is confusing, because physical variants 
should be linked to physical artefacts. In addition, it leads to 
the problem of product line engineers having to analyse all 
physical, functional and non-functional interactions at the be-

ginning of PLE. For a large-scale company, which has thou-
sands of variants, it is impossible to carry out this analysis at 
the beginning stage. Therefore this paper proposes a concept 
that represents different types of variability separately. The 
engineers who are responsible for physical variability only 
handle physical variable models and related low-level arte-
facts. Engineers’ specifications are also extended by the pro-
posed method to cope with the challenge of multiple stake-
holders’ representations that is identified in [10].  

Variability does not only exist between different systems. 
This paper’s proposed method copes with the evolution chal-
lenge of variability modelling (identified in OVM [22] and 
[38]) by introducing a specification of variants’ usage periods.  

This paper is not the first to use MBSE with SPLE (such 
as related works [34] [35]). However, it is different from oth-
ers that focus on how to combine existing variability model-
ling methods with MBSE, as it focuses on modifying existing 
variability modelling methods to support MBSE in the re-
quirement stage. Moreover, the Embedded RTS is different 
from other related works’ research contexts as the temporal 
requirements play an important role. This paper also provides 
a glimpse of how to handle non-functional variability, which 
is a challenge to OVM [22]. Detailed timing attribute analysis 
is the next stage of research. Unlike traditional MBSE, the 
paper proposes directly using SysML Activity Diagrams and 
Block Definition Diagrams in requirement engineering to re-
duce the efforts involved in system design and increase the 
consistency of system models. The reason for this is that do-
main requirement models can be directly used in the design 
stage by refining models for more detailed designs. The Rolls-
Royce Control and Data Services team has defined an internal 
modelling standard for creating system and software require-
ment models which uses the aforementioned SysML activity 
modelling approach. The approach is now being applied in 
several civil aero-engine control system development projects. 
Early benefits are being seen in terms of reduced numbers of 
requirements expressing the same functionality as legacy text-
based requirements capture. Reduced reworking at the system-
software requirement handover stage is also apparent, arising 
from the alignment of the SysML activity model used for the 
capture of system requirements allocated to software with the 
underlying software architecture model (expressed in UML). 

VI. CONCLUSIONS AND FUTURE WORKS 
Product Line Engineering can be applied to Embedded 

RTS development to reduce the costs and schedules [33]. Re-
quirement engineering is critical for Embedded Real-Time 
Systems, as a good requirement plan leads to less changes and 
risks being identified during the implementation stage. How-
ever, current Product Line Engineering methods mainly focus 
on the software domain. The Embedded RTS domain is 
broader than the software domain in that physical require-
ments and non-functional requirements (Quality of Service 
attributes) play important roles. 

This paper has proposed a method that supports a combi-
nation of variability modelling (which is a key feature of PLE) 
and model-based requirement engineering for Embedded RTS. 



The proposed method extends OVM, which has the advantage 
of reducing the efforts of introducing variability into existing 
documents. More specifically, it extends OVM with the sup-
port of not only the separation of types of variation points and 
variants, but also representation of the evolution of variability. 
In addition, stakeholders’ information specifications are also 
covered by the proposed method in that it allows the identifi-
cation of which role is responsible for certain down-selection 
decisions. Unlike traditional SysML modelling methods, this 
paper suggests directly using Activity Diagrams, stereotypes 
and Block Definition Diagrams to model functional, non-
functional and physical requirements. In this way, it increases 
model consistency, as the requirements and system design are 
carried out using the same kind of diagram. The proposed 
method is illustrated by the Aircraft Engine Control System. 

The challenge of combining Model-Based System Engi-
neering with variability modelling in the design stage and 
ways of implementing quality analysis are the next stage of 
this work.  
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