
IT PROFESSIONAL (IEEE) 1

Securing Microservices
Antonio Nehme, Vitor Jesus, Khaled Mahbub, and Ali Abdallah,

Birmingham City University, School of Computing and Digital Technology,
Birmingham, UK

Abstract—Microservices has drawn significant interest in recent years and is now successfully finding its way into different
areas, from Enterprise IT to Internet-of-Things to even Critical Applications. This article discusses how Microservices can
be secured at different levels and stages considering a common software development lifecycle.

Keywords—Microservices, Containers, Security.

F

1 INTRODUCTION

Designing applications changed throughout the
years, from the early client/server architec-
tures to service-oriented architectures (SOA)
and, now, what can be seen as a new SOA
paradigm [1], [2], Microservices. Whereas a
main driver for SOA was the need to reuse
software components, Microservices goes fur-
ther for two broad reasons. First, it fully allows
the so-called Conways Law which means the
application closely follows the structure of the
enterprise, such as its processes and work-
flows [3], [4]. Second, it confines the complexity
of each application component to a number of
small but highly manageable components.

Microservices, per se, is not a new architec-
tural style when thinking of SOA: it is rather
SOA implemented following current trends
and technologies such as automation of in-
frastructure operations with DevOps and the
adoption of containers [1], [5], [4]. In terms of
sectors we see Microservices being introduced
in all types of applications, from Business Logic
to Internet-of-Things to Critical Applications
and Utilities [6].

As a new fast growing application devel-
opment architecture, yet still maturing, new
challenges are introduced, and security comes
at the forefront. This paper discusses Microser-
vices from a security perspective. Rather than
addressing this topic from a specific angle,
we try to lay out a comprehensive approach,
that is, we discuss all phases of a typical

project lifecycle and related Security context:
design, development and testing, business-as-
usual (maintenance, verification, monitoring,
etc.), infrastructure and interfaces with external
parties.

Being a direct evolution of SOA, but also an
application development practice, security for
Microservices needs to be progressive where
it shares commonalities with general software
development security. In contrast, new ap-
proaches are needed to cope with the fun-
damentally different approach to application
development. In this sense, this paper guides
the reader from architectural design (specific to
Microservices) to implementation and mainte-
nance (general to software development) and
puts less focus as we progress to the general
aspects of Software Security. Since we do not
assume previous knowledge of Microservices,
this paper also discusses the fundamentals of
this paradigm, and how it evolved from SOA,
and lists key references to its background.
This is complemented with a set of references
concerning industry initiatives, known security
challenges and lessons learned so far, relevant
projects and standardization efforts.

The structure of this article is as follows. We
start by introducing Microservices and point-
ing the reader to seminal works and best-
practices along with its limitations; we then
draft a reference model to guide our analysis.
In section 3, we break down Microservices in its
key components and provide a Security analy-
sis using a top-down approach: the individual



IT PROFESSIONAL (IEEE) 2

components of a microservice, the application
architecture, the supporting infrastructure, key
management, networking aspects, containers,
and external interfaces. We also discuss Mi-
croservices from the perspective of the software
lifecycle. Moreover, we review current guid-
ance for security controls, and illustrate with
recent guidance from NIST [7]. In Section 4, we
draw the essential lines of a secure deployment
and modify our reference model to take into
account our findings and recommendations.
The last section concludes the article.

2 MICROSERVICES
In SOA, services are mostly implemented as
monolithic applications. Consider a point of
sale (POS) system: when somebody pays a bill,
a transaction is sent along with a balance check;
given the availability of funds, the person's
credit gets updated, and email notifications
are sent as receipt of payment. This is done
through API calls. Past SOA applications typ-
ically rely on a monolithic architecture which
means that the source code is deployed as a
single executable artifact and developed using
one programming language or framework [8].

While monolithic implementations of SOA
enabled rich applications, their limitations soon
became apparent:

◦ Large monolithic applications are com-
plex and hard to maintain [8].

◦ Maintaining the codebase of a large appli-
cation introduces time-consuming tasks
such as long building and deploying
phases, since a small change affects the
entire application [8].

◦ Regular and fast delivery cycles are im-
practical.

◦ The entire life of the application is limited
to the initial choices of technologies [8].

◦ There is inefficient allocation of resources
given that scaling one popular service
requires resources to be allocated to the
entire system [8], [9].

◦ Monolithic applications are more prone to
single points of failure [9].

A clear solution is to decompose monolithic
applications into small and independently de-
ployable services with each as simple as pos-
sible, performing one small business function,

and running independently from others [4].
The resulting components, in larger numbers
but individually much simpler, communicate
with each other, in order to achieve the same
level of functionality as in a large monolithic
architecture.

Figure 1. Microservices and Overarching Chal-
lenges

Due to their granular nature, microservices
entail different components summarized in Fig-
ure 1. Microservices need to scale while re-
maining discoverable and interoperable. State
changing events need to be handled by an
event store. Orchestration and choreography,
which include communication, are key compo-
nents that are dependent on interoperability,
discovery, scalability and event handling. Fi-
nally, the entire application needs to be secured,
tested and monitored.

2.1 Features of a Microservice Architecture
Microservices architectural style is considered
an evolution of the traditional SOA monolithic
implementation. It emphasises on dividing sys-
tems into small services (the microservices)
that perform cohesive business functions [10].
Cohesive in this context means implementing
functionalities only related to the concern of
the business function that a microservice im-
plements. Microservices have to be loosely cou-
pled, meaning that each service should have
the ability to be deployed on its own [8]. It
should also have a bounded context so that a
service should function without knowing any-
thing about other services [8], [3]. Each should
also be autonomous and independently deploy-
able [11], [3].



IT PROFESSIONAL (IEEE) 3

With this approach, complex systems are de-
veloped by joining independent microservices,
distributed across different systems, which
communicate with each other via lightweight
mechanisms over a network [10]; This implies,
for example, favoring REST interfaces over the
complexity and heavy processing weight of
SOAP.

Each of these services typically has its own
management and its own database which is
often referred to as polyglot persistence. It
ensures loose coupling between microservices
and allows each service to use the database that
best suits its needs [12]. A further advantage is
that this allows factorising the workload among
different services which scale independently on
demand [13], thus fit to be used, for example, in
a cloud environment [4]. Finally, it also allows
each service to use any convenient environment
necessary. Applications for Internet-of-Things
can exploit this feature to the fullest when
compared to monolithic applications [12].

2.2 Handling the Scale Complexity of De-
ployment: Containers
Each microservice should be kept as simple as
possible which has the further advantage of re-
quiring fewer resources. Given the independent
deployability requirement, this currently poses
a problem as the lowest-spec server (e.g., on a
public cloud provider) is usually too expensive
for the resources a microservice needs. Also,
setting up virtual machines becomes a complex
matter with the diversity of dependencies [14].

Containers are used to mitigate this prob-
lem. In a typical setting, many containers, each
running a service, run on the same kernel and
hardware while being (logically) isolated from
each other [15].

A popular implementation of containers is
Docker, and it is supported by many tools like
Kubernetes [11]. Docker containers are rela-
tively easy to clone with the availability of its
registry services, DockerHub.

2.3 End-to-End Coordination of Microser-
vices
In order to achieve application consistency and
correctness, microservices are required to co-
operate and communicate. Similar concepts in

SOA still apply. There are two main mecha-
nisms: orchestration, requiring a central ser-
vice (the conductor) to send requests and or-
ganise the workflow, and choreography, where
each service reacts according to events or trig-
gers [16].

Orchestration is normally executed at the
gateway level which is a single entry point to
the system which makes it ideal for storing
logs and auditing tasks. As for choreography,
an event store can be used with the ability
to store and publish events. Events should be
divided in categories to which microservices
can subscribe.

In terms of infrastructure, a typical end-to-
end model is depicted in Figure 2. For read-
ability, we abstain from using formal software
tools. As shown in the figure, the gateway
handles requests from a diversity of external
clients. Also by having a central position, it can
return tailored responses according to the client
type [16]. It also handles access management by
communicating with an authorization server.
The gateway forwards requests to be processed
by microservices. To achieve a particular busi-
ness functionality, microservices communicate
with each other by producing and consuming
events using an Event Broker, whose role is
to publish and store state changing events.
As shown in the figure, each microservice can
publish and subscribe to events of different
categories. An event broker is an autonomous
application and, due to its role, is essential in
auditing and monitoring.

To illustrate with the POS use-case previ-
ously introduced, Transactions, Balance, and
Notifications could be examples of microser-
vices. Users, machines, and other services au-
thenticate by giving their credentials. A request
to the authentication server verifies the authen-
tication material. If valid, a transaction gets sent
with an amount to a Transactions microser-
vice. This triggers an event for the Balance
microservice which, given available funding,
publishes another event allowing the transac-
tion to complete. The Transaction service listens
to this event, allows the transaction to com-
plete, and publishes an event of a successful
transaction on a channel to which Balance and
Notifications services are subscribed. Balance



IT PROFESSIONAL (IEEE) 4

Figure 2. Representative model of a Microservices-based Application

gets updated and a notification gets sent to the
user.

3 BEYOND THE PROMISE: SECURITY
CHALLENGES

Security is multidimensional in the sense that
it needs to be present at multiple layers of an
application and at all stages of its development.
For microservices, our security model has four
broad dimensions:

◦ the microservice components themselves,
from design to implementation.

◦ the application architecture and the poten-
tial need of specific security components
or elements, such as instrumentation and
detection.

◦ the underlying infrastructure, such as the
Operating Systems and the network.

◦ external interfaces used for inter-domain
communication, where multiple third-
parties may need to cooperate, each with
its own security controls.

We now elaborate on each of these dimensions.

3.1 Secure and Trusted Components

Authentication and authorization are essential
steps towards securing services. Microservices
should only be invoked after requesting au-
thentication and, ideally, authorisation if levels
of privileges are available. OAuth (currently in
version 2.0) and OpenID Connect are frame-
works that lend themselves to typical imple-
mentation of microservices that use RESTful
APIs [17]. In essence, an access token is issued
by an authorization server to a trusted client
application. Note that trust is directly relatable
to the coordination model. Verifying the access
token at the gateway level makes it vulnerable
to the Confused Deputy Problem [16]. This
comes from microservices trusting the gateway
based on its mere identity (sometimes even an
IP address), which makes it open to misuse if
compromised. Having access control enabled
and scopes of the access token checked by
microservices prior to responding to a request
is a possible mitigation. Note that having a
dedicated service acting as an authorization



IT PROFESSIONAL (IEEE) 5

server provides three main benefits: decoupling
and isolation in case of the system is compro-
mised, separation of concerns, and an auditing
point [17]. OpenID Connect is built on top of
OAuth 2.0, and uses JWT (JSON Web Tokens)
as an identity token [18], [17].

3.2 Secure Architecture

A common model for microservices uses API
Gateways. Being a dedicated element that does
not directly participate in the application itself,
it can also act as an Intrusion Detection System
(IDS). However, IDS for microservices can be
challenging as the signatures for the services
need to be, typically, customised to the appli-
cation, depending on the level of traffic inspec-
tion. Availability is also a key component of a
Security model; it can be achieved by having
elements to detect (by querying, for example)
services that are down. If the case, the gateway
and the coordination logic should be updated
in order to action failover mechanisms.

Moreover, architectural decisions should be
carefully thought of to avoid incidents similar
to Netflix compromise in 2015, which was due
to allowing access to all users cookies from
any subdomain. This allowed an adversary to
use netflix.com services from one compromised
subdomain [19].

A final mention should be made to key man-
agement. Given the large number of services,
managing cryptographic material is likely to re-
quire using Key Vaults and hardware modules.

3.3 Secure Infrastructure

By infrastructure, one means network, servers,
devices, specialised elements (such as gate-
ways) and the containers themselves along
with Operating Systems.

More than any other paradigm, Microser-
vices depend on fast network messaging given
the granularity of each component. Further,
inter-service traffic should follow policies de-
rived from the application logic. Finally, note
that several applications, each with a large
number of services, can coexist together in the
same infrastructure and network. Starting at
the network level becomes essential, given that

microservices brings the potential of increas-
ing the attack surface when compared to a
monolithic architecture [8]. Moreover, due to
the containerisation trend, special attention is
required for the risk of inadvertently using
0-day vulnerabilities in the components that
come from public repositories like Dockerhub.
A survey by BayanOps in 2015 revealed that
three out of four official Docker images created
during that year have relatively easy to exploit
vulnerabilities which can potentially have high
impact [20]. A good approach is to use Docker
Security Scanning add-on prior to using im-
ages. Another good practice is to plan security
roles within containers rather than running root
users.

A further challenge is filtering and monitor-
ing traffic for microservices at a level close to
the application, as deep-inspection rules need
to be made custom to the application. Com-
mon web attacks such as SQL injection, are
easily detected by commercial Web-application
firewalls; however, these are not particularly
suitable for microservices.

Containers firewalls attempts do exist, how-
ever, with Project Calico being an example. This
project can be integrated with Kubernetes, and
allows creating policies and firewall rules at the
pods level. Pods, holding containers, will scale
with the firewall rules.

Overall, securing the network and server
infrastructure can use a mix of current tech-
nologies to protect up to the container level.
Past the container or hypervisor, application
security becomes challenging as discussed in
the next section.

3.4 Securing the Development Lifecycle
and Governance

At this stage, a microservices architecture
should draw on well-known secure software
development best practices as, in the end of
the day, this is software development as usual.
Automated testing and verification becomes
crucial as typically these applications are de-
veloped using Agile methodologies and rely on
fast iteration cycles. In general, a comprehen-
sive Secure Software Development Lifecyle (S-
SDLC) comprises of



IT PROFESSIONAL (IEEE) 6

Figure 3. Typical Deployment of Microservices

◦ early risk assessment before design starts
(e.g., handling trust, cryptographic ma-
terial, etc), relevant at the architecture
layout phase but also when selecting and
assessing tools and frameworks for their
own S-SDLC

◦ adding accessory functions to the core
functionality in order to support security
monitoring, auditing, testing and inter-
faces with external security elements [5]

◦ development with security in mind, fol-
lowing each language and framework rec-
ommendations and, ideally, third-party
code reviews

◦ deployment of the application along with
security tests and verification tools that
should be continuous and periodic and
include vulnerability management

◦ secure and safe retirement of components
and modules

NIST SP 800-190 [7] is in draft stage and
offers guidance regarding containers. In a nut-

shell, the takeaway advice consist of
◦ Always use container-specific OSes,

which are hardened to reduce attack
surface.

◦ Execute highly critical microservices in
especially hardened containers and mon-
itor them in depth.

◦ Handle trust by specialised hardware, a
root point, which holds container images,
cryptographic material, registries and any
critical information.

◦ Enforce separation of duties (which in-
volves access control) and segregation of
traffic and roles between services and ap-
plications.

4 A SECURE REFERENCE MODEL

Given all considerations so far, we now attempt
a modification of our reference model (Figure
2) in order to embed security – Figure 3.

The changes from the purely functional ar-
chitecture of Figure 2 reside on three aspects:



IT PROFESSIONAL (IEEE) 7

◦ Network elements are inserted in order
to apply policies at the network level,
from simple traffic rules to deep-packet
inspection looking for malicious traffic or
drawing intelligence. Policies should also
be defined, enforced and verified to seg-
regate inter-service communication and
access. The token verification checks the
validity of the access token rather than
fully trusting the gateway, and policies
can define the access rights of the to-
ken. This is a mitigation against potential
vulnerabilities arising from the gateway
being a confused deputy if compromised.

◦ A subsystem of monitoring, testing and
verification is added. These components
should interface directly the instrumenta-
tion components at the microservice level
(represented by gears). These agents are,
ideally, an integral part of the skeleton
of any service and should be enrichened
with service-specific metrics. The contain-
ers themselves are to be monitored but
one also expects support from the under-
lying OS.

◦ A root of trust supports bootstrapping
processes by holding containers images,
cryptographic material, and configura-
tions. This is used to ensure authenticity
of software components and security con-
figurations.

Any request from the outside world must
pass through a Firewall and IDS, container fire-
walls should inspect requests from the gateway
or any potential internal traffic. Access tokens
should also be verified for authenticity at the
microservices level and processed for access
control by microservices policy rules. Further,
Every critical part of the system should be
systematically monitored and container images
and configurations must be validated against
trusted hardware and software images.

5 CONCLUSIONS AND OUTLOOK

Microservices is a powerful and promising
paradigm for distributed applications that, nev-
ertheless, present security challenges on its
own. Whereas current technologies and tech-
niques are directly applicable, others need to

be developed and adopted in order to reach the
needed level of security maturity. In this article
we provided a comprehensive discussion of Se-
curity for Microservices by looking at different
angles and, wherever possible, reusing current
practices. It is clear that Microservices still need
to mature at different levels such as, for exam-
ple, the lacking or unavailability of specialised
elements (such as firewalls or IDSes) that are
aware of its specificity. Coexistence and multi-
tenancy is also a challenge in terms of security
since many services are expected to run on
the same hardware and need isolation. Another
direction for future work concerns availability
of industry guidance of which the recent NIST
draft is a good example.

REFERENCES

[1] O. Zimmermann, “Microservices tenets:
agile approach to service development and
deployment,” Computer Science-Research
and Development, vol. 32, no. 3, pp. 301–
310, 2016.

[2] D. I. Savchenko, G. I. Radchenko, and
O. Taipale, “Microservices validation:
Mjolnirr platform case study,” in
Information and Communication Technology,
Electronics and Microelectronics (MIPRO),
2015 38th International Convention on.
IEEE, 2015, pp. 235–240.

[3] M. Fowler and J. Lewis, “Microser-
vices,” ThoughtWorks. http://martinfowler.
com/articles/microservices. html, 2014.

[4] J. Th”̈ones, “Microservices,” IEEE Software,
vol. 32, no. 1, pp. 116–116, 2015.

[5] M. Fowler, “Microservices prerequisites,”
Martin Fowler, 2016.

[6] C. Fetzer, “Building critical applications
using microservices,” IEEE Security & Pri-
vacy, vol. 14, no. 6, pp. 86–89, 2016.

[7] M. Souppaya, J. Morello, and K. Scarfone,
“Application container security guide,”
NIST Special Publication, vol. 800, p. 190,
2017.

[8] N. Dragoni, S. Giallorenzo, A. L. Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina, “Microservices: yesterday, today,
and tomorrow,” in Present and Ulterior Soft-



IT PROFESSIONAL (IEEE) 8

ware Engineering. Springer, 2017, pp. 195–
216.

[9] M. Villamizar, O. Garcés, H. Castro, M. Ve-
rano, L. Salamanca, R. Casallas, and S. Gil,
“Evaluating the monolithic and the mi-
croservice architecture pattern to deploy
web applications in the cloud,” in Com-
puting Colombian Conference (10CCC), 2015
10th. IEEE, 2015, pp. 583–590.

[10] N. Alshuqayran, N. Ali, and R. Evans, “A
systematic mapping study in microservice
architecture,” in Service-Oriented Comput-
ing and Applications (SOCA), 2016 IEEE 9th
International Conference on. IEEE, 2016, pp.
44–51.

[11] R. Heinrich, A. van Hoorn, H. Knoche,
F. Li, L. E. Lwakatare, C. Pahl, S. Schulte,
and J. Wettinger, “Performance engineer-
ing for microservices: Research challenges
and directions,” in Proceedings of the 8th
ACM/SPEC on International Conference on
Performance Engineering Companion. ACM,
2017, pp. 223–226.

[12] D. Namiot and M. Sneps-Sneppe, “On
micro-services architecture,” International
Journal of Open Information Technologies,
vol. 2, no. 9, pp. 24–27, 2014.

[13] A. Sill, “The design and architecture of mi-
croservices,” IEEE Cloud Computing, vol. 3,
no. 5, pp. 76–80, 2016.

[14] C. Ebert, G. Gallardo, J. Hernantes, and
N. Serrano, “Devops,” IEEE Software,
vol. 33, no. 3, pp. 94–100, 2016.

[15] A. Karmel, R. Chadromouli, and M. Iorga,
“Nist definition of microservices, appli-
cation containers and system virtual ma-
chines,” Natl Inst. of Standards and Technol-
ogy (NIST) Special Publication, pp. 800–180,
2016.

[16] S. Newman, Building microservices: design-
ing fine-grained systems. ” O’Reilly Media,
Inc.”, 2015.

[17] S. Patanjali, B. Truninger, P. Harsh, and
T. M. Bohnert, “Cyclops: a micro service
based approach for dynamic rating, charg-
ing & billing for cloud,” in Telecommu-
nications (ConTEL), 2015 13th International
Conference on. IEEE, 2015, pp. 1–8.

[18] T. Saito, Y. Tsunoda, D. Miyata, R. Watan-
abe, and Y. Chen, “An authorization

scheme concealing client’s access from au-
thentication server,” in Innovative Mobile
and Internet Services in Ubiquitous Comput-
ing (IMIS), 2016 10th International Confer-
ence on. IEEE, 2016, pp. 593–598.

[19] Y. Sun, S. Nanda, and T. Jaeger, “Security-
as-a-service for microservices-based cloud
applications,” in Cloud Computing Technol-
ogy and Science (CloudCom), 2015 IEEE 7th
International Conference on. IEEE, 2015, pp.
50–57.

[20] J. Gummaraju, T. Desikan, and Y. Turner,
“Over 30% of official images in docker hub
contain high priority security vulnerabili-
ties,” Technical report, BanyanOps, Tech.
Rep., 2015.

Antonio Nehme is a PhD Student at Birm-
ingham City University
He received a B.S. in Computer Sci-
ence with a minor in Mathematics from
the Lebanese American University. His re-
search interests include microservices se-
curity, threat modelling, identity manage-
ment, trust and risk management.

Vitor Jesus received a degree in Physics
in 2000 from University of Coimbra, Portu-
gal, and a MSc (2007) and a PhD (2012)
in Computer Science and Networks from
University of Aveiro, Portugal, with co-
supervision from Carnegie Mellon Univer-
sity. He is currently a Lecturer at the School
of Computing of Birmingham City Univer-
sity, Birmingham, UK. He has held several

positions in small and large companies in the fields of Data
Analytics, Networks and Security. He holds Security and Data
Privacy certifications. His research interests are in the areas
of Future Internet, IoT/IIoT, CyberSecurity, Data Privacy and
Blockchain applications.



IT PROFESSIONAL (IEEE) 9

Khaled Mahbub (PhD, MEng, BEng) is a
Senior Lecturer in Software Engineering at
Birmingham City University. His research
interests are in the area of Automated Soft-
ware Engineering, focusing on some key
technical issues for the effective realization
of service based systems and cloud based
systems, including run-time security mon-
itoring and secure system design. In the

past Khaled has worked in several EU funded projects including,
CUMULUS (Certification Infrastructure for Multi-Layer Cloud
Services, EU FP7, STREP Project), ASSERT4SOA (Advanced
Security Service cERTificate for SOA, EU FP7, STREP Project),
S-CUBE (The Software Services and Systems Network - FP7
EU Project), Gredia (Grid enabled access to rich media content
- FP6 EU Project), Serenity (System Engineering for Security
& Design, FP6 EU Project), SeCSE (Service Centric System
Engineering, FP6 EU Project). He has published more than
30 papers in different international journals and conference
proceedings with more than 800 citations.

Ali E. Abdallah BSc, MSc, DPhil(Oxon)
Professor of Information Security School of
Computing and Digital Technology in Birm-
ingham City University. He leads informa-
tion security research at BCU focusing on
topics ranging from identity management,
access control and privacy to securing
shared information in virtual organisations
and the development of secure and resilient

software.


