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Abstract. This paper presents a novel model for simulating peer pres-
sure effect on energy awareness and consumption of families. The model
is built on two well-established theories of human behaviour to obtain
realistic peer effect: the collective behaviour theory and the theory of cog-
nitive dissonance. These theories are implemented in a collective agent-
based model that produces fine-grained behaviour and consumption data
based on social parameters. The model enables the application of dif-
ferent energy efficiency interventions which aim to obtain more aware
occupants and achieve more energy saving. The presented experiments
show that the implemented model reflects the human behaviour theo-
ries. They also provide examples of how the model can be used as an
analytical tool to interpret the effect of energy interventions in the given
social parameters and decide the optimal intervention needed in different
cases.

1 Introduction

Increased energy consumption generated from fossil fuels is causing high car-
bon emissions and increased global temperature which is mainly attributed to
human actions rather than nature [1]. A significant part of the human effect
is accounted for the residential sector which consumes high percentages of the
world’s electricity consumption (23-31%) [2]. Although many technological and
structural improvements are suggested to decrease energy consumption, occu-
pants’ behaviour plays an important role in this matter [3]. A human solution
is based on peer pressure, knowing that human actions are mostly affected by
the behaviour of others [4]. Hence, it is suggested that policy makers work on
stimulating peer pressure to encourage energy efficient behaviour.

This paper presents an Agent-Based Model (ABM) that studies the collective
peer pressure effect on energy consumption in a family environment (hereafter
family pressure). The occupant agent’s peer effect behaviour is inspired by two
theories of human social behaviour: collective behaviour by Granovetter [5] and
cognitive dissonance by Festinger [6]. The model then adds two types of interven-
tions that aim to enhance the occupants’ energy awareness and thus reduce their
consumption. The presented model offers a tool that enables analysing the out-
comes of energy efficiency interventions in different social conditions. The paper
is organised as follows. The next section presents related work including similar
ABMs. The used human behaviour theories and available energy interventions



are presented in Section 3.1. Section 4 presents the ABM that simulates fam-
ily pressure and energy efficiency interventions, and explains how the behaviour
theories were adapted to the application at hand. Section 5 presents the re-
sults of simulating a number of scenarios showing how the model can be used
to determine the efficiency of interventions in these scenarios. Finally, Section 6
concludes the paper with a summary and pointers for future directions.

2 Related Work
Agent-based modelling is considered the most suitable technique to simulate so-
cial interaction [7]. An agent-based model is composed of a group of autonomous
software components, called agents, which take decisions based on their state and
rules of behaviour. The collective agents’ decisions cause changes in the environ-
ment which is observed and analysed [8]. The technique has been widely used to
study occupants energy consumption behaviour.

Among existing ABMs, there are few that simulate occupants’ behaviour
change due to peer effect. Azar and Menassa [9] propose a model that adds
occupants’ energy consumption characteristics and interaction to traditional en-
ergy simulation tools. The peer effect model is based on the level of influence of
individuals and the number of occupants in each level of consumption. However,
the used behaviour change model is not theoretically grounded. Models that in-
volve human behaviour simulations need to be validated using huge amounts of
real data, and if not available, need to be based on well established and accepted
human behaviour theories. Another ABM that simulates social interactions is
Chen et al. [10] who explore the effect of peer network structures on the energy
consumption in a residential community. The occupant agents decrease their
consumption when the consumption of connected occupants is less than that of
the agent. On the other hand increasing the agent’s consumption is based on a
constant probability that represents the percentage of occupants who increase
their consumption with no effect from peers. However, it is more logical that
peer effect happens in both directions so that high energy consumers may affect
others and cause them to increase their consumption in the same way low energy
consumers may affect others. Network structures were also studied in Azar and
Menassa [11] which is applied in an office environment. The model uses the rela-
tive agreement theory which is applied in a community of heterogeneous culture
and values. Thus, behaviour change starts between close individuals. However,
in a family environment, which is the case in the current paper, it is common
that family members have similar culture and values. Therefore, other behaviour
change theories need to be applied which will be detailed in Section 3.1.

Studies in [10] and [11] vary the structure of peer networks based on the
fact that not all individuals in a community are connected. While in a family
environment, family members are always connected at least at night. Therefore,
in the current model, the agents are structured in a fully connected network.
Another difference between the currently proposed model and existing models [9–
11] is related to the occupant awareness modelling. Existing models characterise
occupants by one attribute which is the average yearly/monthly consumption.
This attribute does not only reflect the awareness of occupants, but also the



time they spend in the building. Hence, it is hard to distinguish if high energy
consumption is due to low awareness or daily occupancy. However, the proposed
model separates daily human behaviour of occupants (which is based on social
parameters) from their energy awareness. More details will follow in Section 4.

3 Background: Behaviour Change Theories and Energy
Interventions

3.1 Behaviour Change Theories

Humans beings can be highly affected by the behaviour of others. Based on this
observation, the theory of collective behaviour was formalised in Granovetter’s
threshold model [5] to explain the diffusion of a behaviour due to social con-
tagion. The model follows a simple decision rule, where individuals choose to
adopt a behaviour when the percentage of others doing the behaviour exceeds
a threshold. This threshold represents a complex combination of norms, values,
motives, beliefs, etc. Once the threshold is exceeded, it is considered that the
net benefit of the behaviour exceeds the perceived costs. The threshold model
has been widely used in several applications such as effective targets to influ-
ence collective behaviour [12]. The other human behaviour theory used in this
model is cognitive dissonance by Festinger [6]. Dissonance is defined as the in-
consistency that happens between the individual’s knowledge, opinion, beliefs,
or attitudes, which are the cognitive factors that drive behaviour. Based on the
fact that dissonance is uncomfortable, Festinger [6] proves that humans try to
reduce it by adapting their behaviour or changing one or more of the cognitive
factors. One of the major sources of dissonance are social groups. Therefore,
observing others doing a behaviour that is very different from the individual’s
behaviour or spreading a general belief that a specific behaviour is not accepted,
drives members of a social group to adapt their behaviour, thus reducing the
uncomfortable dissonance. Besides, as the magnitude of dissonance increases, it
is expected that the tendency to reduce it will increase. The magnitude of dis-
sonance is affected by (1) the number of others who hold a different behaviour,
and (2) the level of difference between the individuals’ behaviours.

3.2 Energy Efficiency Interventions and Peer Pressure

Given the high percentage of energy consumption in residential buildings, re-
search and policy makers efforts have been focused on promoting energy efficient
behaviour, technologies, and structural improvements. This paper is focused on
the behavioural aspect by modelling energy efficiency interventions. The target
of interventions is to motivate occupants to adopt energy efficiency behaviour by
working on their values, attitudes, beliefs, and knowledge [13]. Interventions can
be of many forms such as goal setting, information (workshops, mass media cam-
paigns, and home audits), rewards, and feedback [13]. In many occasions, these
interventions take advantage of the peer pressure effect by comparing ones be-
haviour with the behaviour of others. Peer pressure is the influence that members
of the same community have on each other which leads to change in behaviour.
This effect is shown to be the most influential reason of environmental behaviour



change [4]. This is because information received from personal relationships are
better recognised and remembered than other sources of information [14].

4 Methodology

4.1 The Agent-Based Model

The proposed family pressure model is based on the ABM developed in Abdal-
lah et al [15,16]. The model simulates energy consumption behaviour of families.
Every occupant is represented by an agent that acts in a house environment and
interacts with appliances. The inputs of the model are the social parameters in-
cluding family size, ages, and employment types (full/part-time job, unemployed,
retired and school). Besides, the energy awareness type of occupants determines
the probability of performing energy saving actions (e.g. turning off devices when
not in use). This can be one of four types: ‘Follower Green’, ‘Concerned Green’,
‘Regular Waster’, and ‘Disengaged Waster’. Each of these types is reflected in
the model as a continuous attribute called ‘energy awareness’ between 0 and 100
based on a normal distribution as shown in the 2nd and 3rd column of Table 1.

Table 1: Mean and Standard Deviation of Awareness Types

Awareness Type Mean µ
Standard

Deviation σ
Value (a) Abbreviation Category

Follower Green 0.74 0.041 1 F Green
Concerned Green 0.72 0.043 2 C Green
Regular Waster 0.41 0.033 3 R Waster

Disengaged Waster 0.25 0.057 4 D Waster

The ABM is supported by probability distributions from an integrated prob-
abilistic model based on large sets of real data. The distributions are used to
generate realistic occupancy and activities based on the given social parame-
ters. The simulation time is determined by the day of the week (d) and 144
time steps per day (t) each representing 10 minutes. During the simulation, the
occupant agent selects an occupancy state (ostd) which can be away, active at
home, or sleeping, for a duration (dr). The occupancy state is selected based on
the occupant’s previous state os(t−1)d, age, employment type (emp), day (d),
and time (t) as shown in functions (1) and (2). When the occupant agent is ac-
tive at home, it performs activities from the following set {Using the computer,
Watching television, Listening to music, Taking shower, Preparing food, Vac-
uum cleaning, Ironing, Doing dishes, Doing laundry}. The decision of doing an
activity for a specific duration (dr) depends on the occupant’s age, employment
type (emp), day (d), and time (t) as shown in function (3).

OS : age, emp, os(t−1)d, t, d→ ostd (1)

age, emp, ostd, t, d→ dr (2)
AC : age, emp, t, d→ actd, dr (3)

Every activity that the occupant performs is associated to an appliance a.
Appliances are modelled as dummy agents that only react to occupant agents
actions (turn ON and OFF). When the occupant agent starts an activity, it
turns the associated appliance ON. When the activity ends, it chooses to turn
the appliance ON or OFF based on its energy awareness attribute (ea) and any



other occupant (Oa) who is sharing the same appliance according to functions 4
and 5. For more details about the previous model, readers are referred to [15,16].

TOa : actd → turnOna (4)

actd, Oa, ea→ {keepOn, turnOff}a (5)

4.2 The Family Pressure Model

The family pressure model is composed of two sub-models: behaviour change
sub-model, and energy efficiency interventions sub-model.

Behaviour Change Sub-Model The occupants behaviour change is moti-
vated by Granovetter’s threshold model [5] such that the occupant agents change
their behaviour when a threshold is exceeded. Although Granovetter’s model
explains the effect of social pressure on behaviour, it does not fit to the family
pressure effect on energy efficient behaviour for two reasons. First, the model is
applied in a public community which has different values and motives, therefore
different thresholds. However in a family setting, we consider that family mem-
bers have similar values and motives based on the fact that they have chosen
to live together or were raised together. Therefore, when adapting Granovetter’s
model to the application at hand, we consider one global threshold for the whole
family. This does not revoke the fact that people react differently because we
have set the global threshold as a probabilistic one [17] – so once the thresh-
old is exceeded the individuals adopt the behaviour with a probability. Second,
the threshold model considers binary decisions. However, energy consumption
behaviour is a continuous behaviour that is performed at different levels. This
difference led us to explore the well-established theory of cognitive dissonance
by Festinger [6] which is used to adapt the threshold model to the energy con-
sumption application. Based on the two factors that affect the magnitude of
dissonance outlined in Section 3.1, we adapt the definition of the threshold to fit
the energy consumption behaviour. The first factor goes along with Granovet-
ter’s threshold definition such that more adopters of a given behaviour leads
to changing others’ behaviour. The second factor is used to overcome the in-
applicability of the threshold model with the energy efficiency behaviour being
continuous. Therefore, we define the threshold as the difference between the
individual’s awareness type and the average of other’s awareness types.

The time step in this model is set to 4 weeks of simulation time since indi-
viduals usually take time to observe the behaviour of others. In order to express
awareness types in numerical values, every awareness type is given an integer
value as shown in the 4th column of table 1. For a family composed of N occu-
pants, every time step T , each occupant agent i calculates the difference diff Ti

between its awareness type ai and the average awareness types of others aj ,
where j ∈ [1, N ] : j 6= i using equation (6).

diff Ti = ai − (

N∑
j=1,j 6=i

aj)/(N − 1) (6)



Behaviour change happens if |diff Ti| exceeds the global threshold d where d ∈
[0, 4]. A high threshold implies low sensitivity to cognitive dissonance and a low
threshold implies high sensitivity to cognitive dissonance. The global threshold
d is a probabilistic threshold such that the occupant changes behaviour with
probability p where p ∈ [0, 1]. This attribute is referred to as threshold lag [18]
which explains the stochastic nature of human behaviour due to uncertainty and
differences in the speed of reaction, where a higher value of p means a higher rate
of change. p is set to 0.5 as a middle point between high and low rate of change
throughout the simulations in this paper. Once behaviour change is decided, the
awareness type of the occupant changes towards the average of other’s awareness
types assuming that the occupant is adapting her/his behaviour to be similar to
others. Behaviour change is done by stepping between the awareness types one
step at a time either to the green side (green effect) or the waster side (waster
effect). The behaviour change process step is outlined in algorithm 1 which is
repeated for every agent i at every time step T.

Algorithm 1: Behaviour Change Step

calculate diff Ti using equation (6)
if |diffTi| ≥ d then

select random number rand
if rand ≤ p then

if diffTi > 0 then
ai = ai − 1

else
ai = ai + 1

Algorithm 2: Intervention Behaviour
Change Step

calculate diff Ti using equation (6)
if diffTi > 0 then

if |diffTi| ≥ dg then
select random number rand
if rand ≤ p then

ai = ai − 1

if diffTi < 0 then
if |diffTi| ≥ dw then

select random number rand
if rand ≤ p then

ai = ai + 1

Energy Efficiency Interventions Sub-Model This paper distinguishes be-
tween family-level interventions, and occupant-level interventions. Each of these
interventions can be of any form as outlined in Section 3.2, but they differ in the
number of occupants to target. The family-level intervention targets the family
in general by changing its overall norms, values and beliefs. It can be applied by
promoting the energy efficient behaviour such as giving financial incentives or
repressing the wasting behaviour such as incurring charges [12]. The occupant-
level intervention targets the least aware occupant/s in the family and leads to
increasing their awareness levels. These two types of interventions are considered
to observe how the collective family pressure can help in achieving more aware
occupants, thus less energy consumption. It also allows policy makers to de-
cide the needed combination and intensity of interventions based on each family
composition (in terms of awareness levels and social parameters).

When the family-level intervention happens, the overall norms, values and
beliefs of the family change. The family-level intervention has two intensities
which represent the efficiency or effort made to achieve better results. There-
fore, Ip ∈ [1, 4] is defined as the promotion intensity and Ir ∈ [1, 4] as the
repression intensity. These two types of family-level interventions are reflected



by two thresholds: one that affects the promotion of green effect dg ∈ [0, 4] and
another that affects the repression of waster effect dw ∈ [0, 4]. Therefore, the
intervention increases dw by Ir thus increasing the cost to adopt waster be-
haviour and/or decreases dg by Ip thus increasing the benefit of adopting the
green behaviour as outlined in Granovetter [5]. dg and dw change in effect of
the intervention based on equations (7) and (8) given the initial threshold d. For
deciding behaviour change, dg is checked when there is a possibility to change
towards the green side (diff Ti > 0), and dw is checked when there is a possibility
to change towards the waster side (diff Ti < 0) as shown in Algorithm 2. The
occupant-level intervention does not change the threshold of the family because
it targets specific occupants. It aims to change the awareness of occupants while
the regular behaviour change step in Algorithm 1 is applied. The intervention
can have an intensity Io ∈ [1, 3] and can be applied to a member of the family i
at a specific time step T according to equation (9).

dg = d− Ip : dg ∈ [0, 4] (7)

dw = d + Ir : dw ∈ [0, 4] (8)

ai(T+1) = aiT − Io : aiT ∈ [0, 4] (9)

5 Experiments and Discussion

This section presents a number of experiments with different input parameters to
show how varying these inputs can result in different intervention outcomes. It is
worth to mention that this paper only presents a number of significant scenarios
as a proof-of-concept while achieving the purpose of the paper. Abbreviations of
awareness types (5th column of Table 1) are used to identify the initial awareness
of the family, such that a four occupant family with one ‘Follower Green’ and
three ‘Disengaged Wasters’ is denoted by FDDD. In every simulation run, 100
households were simulated to capture the stochastic effect of the threshold lag
1. The scenarios are run for a year and the resulting average yearly consump-
tion and converged awareness types are recorded. These types were categorised
based on the number of Green occupants in the family (represented in the fig-
ures by different colours in the bars). The categories of the awareness types are
determined by the last column of Table 1.

5.1 Family Pressure Convergence

The aim of this experiment is to observe the resulting awareness types as an
effect of family pressure based on different thresholds. Figure 1 shows the results
of three scenarios: (a)FFFD, (b)FCRD, and (c)FDDD. The last scenario of every
bar graph (d=4) shows the initial category of the family because diff Ti can be
maximum 3, thus no change in awareness types.

In scenario (b), the family remained with two green occupants at thresholds
2 and 3, besides, in (a) and (c) the family remained the same at threshold 3 and
changed only one occupant at threshold 2. This indicates that the family does

1 The model was validated by running a number of scenarios with different random
numbers seed where the results came out to be similar
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Fig. 1: Family Awareness Types Convergence

not change significantly when the threshold is high (d = 2 and 3). However, at
low thresholds (d = 0 and 1), the family converged mainly towards the dominant
awareness type. For example, in (a) the convergence was mostly towards ‘4 green
occupants’, because initially there were three green occupants. A similar obser-
vation was noticed in (c). In scenario (b) where there is no dominant awareness
type, the convergence was with equal probabilities either to all green occupants
or all waster occupants (‘no green occupants’ category) with higher convergence
to the extremes at threshold 0. These results indicate that the proposed model
reflects the theory of cognitive dissonance and collective behaviour which agree
that people tend to change their behaviour to conform with the behaviour of
others. It is worth noting that in (a) and at threshold 0, around 20% of the
households converged to ‘no green occupants’. This means that the only waster
occupant succeeded to change the behaviour of the other three green occupants.
This phenomenon is explained in the cognitive dissonance theory which states
that dissonance can be reduced by either adapting with others, or convincing the
others to adapt with the individual. This explains how the three green occupants
converged to wasters in effect of one waster occupant as in (a) and vice versa in
(c). Festinger [6] mentions that in this case, the overall cognitive elements of the
surrounding environment change, but this is easy when the individual can find
others who hold the same behaviour, which explains the low percentage of this
convergence (20% in our experiment).

5.2 Family-level Intervention

In this experiment, family-level interventions are applied to scenario (c) of the
experiment 1 (FDDD) as it has the most waster occupants after convergence. For
each threshold, the possible intensities of family-level interventions are applied
keeping the thresholds dg and dw in their limits [0, 4]. The aim of this experiment
is to show the effect of promotion and repression interventions when varying their
intensities. Figure 2 shows the results with initial thresholds 0, 1 and 2.

It is noticed at thresholds 1 and 2 that the number of green occupants in-
creases as the promotion intensity (Ip) increases, which is not the case with
repression intensity (Ir) where most of the occupants stayed wasters. This in-
dicates that repression intervention is less efficient than the promotion inter-
vention. This is attributed to the high number of waster occupants, such that
encouraging them to adopt the green behaviour is more effective than repress-
ing the only green occupant from getting affected by waster occupants. Another
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Fig. 2: Family-level Intervention Convergence (Scenario FDDD)

indication from varying intervention intensities is inferring the minimum inten-
sity needed to increase the possibility of getting 4 green occupants. For example
at threshold 0, repression intensity 2 is enough to get ‘4 green occupants’ with
probability more than 0.95. This allows to identify the minimum effort needed
while achieving the maximum number of green occupants.

5.3 Occupant-level Intervention

This experiment studies the effect of occupant-level interventions which directly
change the awareness of least aware occupants. Scenario FFFD with threshold
0 is selected to get the minimum intensity required to prevent the ‘no green
occupants’ convergence (as shown in scenario (a) in section 5.1). As the family
initially has one waster occupant, the intervention is applied for one occupant
with different intensities. Besides, the intervention can be applied at specific
times of the year, therefore it can be an ‘early intervention’ at T = 2, ‘mid-year
intervention’ at T = 6 or ‘late intervention’ at T = 9. This determines the best
intervention time just before the waster occupant affects other green occupants.
Figure 3 shows the results while varying the intervention time and intensity.
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Fig. 3: Occupant-level Intervention Convergence (Scenario FFFD d = 0)

It is observed that as earlier the intervention and as higher its intensity,
as more green occupants are obtained. The early interventions with intensities
2 and 3 are the most effective with no waster occupants after a year. This is
expected because the waster occupant is affected by the external intervention at
an early stage, thus leading to 4 green occupants. However, in all other scenarios,
waster occupants are observed even at higher intensities. This shows that one
intervention per year is not enough to make an impact on families with only one
waster occupant. This suggests to perform continuous interventions to maintain
the green effect and combine them with family-level interventions. Note the this



experiment was performed with very low threshold of the family (d = 0) so
occupants can easily influence each other.

5.4 Effect of Interventions on Families with Varied Social
Parameters

In our previous paper [16], it was concluded that social parameters affect the
energy waste of the family. Although the previous model does not simulate family
pressure, we showed that energy waste in large families is less than small families.
On the basis of this conclusion, the current experiment tests if a family-level
intervention is more efficient in big families than small families. For this purpose,
the family-level intervention is applied on (a) a two-occupant family and (b) a
four-occupant family. Figures 4a and 4b show the awareness types convergence
of scenarios (a) and (b) respectively with an equivalent initial numbers of green
and waster occupants (FD and FFDD) and threshold d = 0. Figure 4c shows
the resulting energy saving percentage when compared to the no-intervention
scenario (Ir = 0) and the convergence time which is the time it takes the family
to reach a stable state where the occupants are no more affected by each other.
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Fig. 4: Effect of Family-level Intervention on Two and Four Occupant Families (d = 0)

In Figure 4c at intervention intensities 1 and 2, the percentages of saving for
big families are 9% and 16% respectively, which are more than that of small fam-
ilies (i.e. 1% and 11%). This is also observed in the awareness types convergence
(Figures 4a and 4b) where the ‘4 green occupants’ category is more dominant in
(a) than the ‘2 green occupants’ category in (b). However, at intensities 3 and
4, the savings of small families are 21% and 25% respectively, which dominates
that of big families (i.e. 16% and 15%)(Figure 4c). Besides, all of the occupants
in scenarios (a) and (b) converged to green occupants as shown in Figures 4a
and 4b. This is explained by the lower convergence time of small families (fig-
ure 4c). This means that a higher intensity intervention converges small families
quicker than big families which consequently leads to higher saving. Thus, the
family-level intervention can result in maximum saving at low intensity in big
families as opposed to small families. While a high intensity intervention is more
efficient in small families as it leads to a larger and quicker saving than big fami-
lies. This experiment can be repeated with varied social parameters, thresholds,
and intervention types to obtain the most efficient intervention in every case.

5.5 Discussion

The model proposed in this paper simulates peer pressure effect on energy aware-
ness levels and consumption of families. The peer effect behaviour of occupants



is based on two human behaviour theories opposed to other models that do not
use existing theories [9]. The behaviour theories were adapted to comply with
the energy consumption behaviour and family environment, while other models
use different theories that simulate office environments [11]. Beside, the current
model offers different options of input including social parameters (family size,
employment types, ages), awareness levels, values and beliefs that affect the
energy consumption behaviour, and intervention options. We proved in the ex-
periments that these inputs affect the outcome of interventions. The experiments
focused on demonstrating the application of the model in pre-specified scenarios.
The model can ideally be used to study the impact of any intervention planned
by governing bodies on the outcome (i.e. energy saving). This can be done by
estimating unknown parameters, running the model with initial parametrisation
of known and unknown parameters. Then a search mechanism (e.g. grid search)
is applied to best estimate the unknown parameters, minimising the difference
between the model’s synthesised data and the observed real data. If the search
space is large, in case of having too many unknown parameters, computational
intelligence methods like Genetic Algorithm can be applied. Revealing these un-
known parameters can help in determining the reason why interventions are
effective in some cases, but not in others.

6 Conclusion and Future Work

This paper presented an ABM that simulates energy awareness peer pressure in
a family setting. The model uses the collective behaviour theory and the theory
of cognitive dissonance to reflect realistic peer effect. Different energy efficiency
interventions can be applied and the resulting awareness types and savings are
observed. The presented experiments show that the human behaviour theories
are well-reflected in the model. Besides, they show how the model can offer an
analytical tool for governing bodies to analyse the effect of interventions and
make decisions of how to target different families to get the best results.

A variation of this model is to make the effect of members depend on how
often they are in contact in the house, which makes the interaction more real-
istic. This can be easily achieved because the ABM simulates individuals’ daily
availability at home in a 10-minute time step. The current model have not con-
sidered a weighting attribute which determines the level of relation between the
occupants which affects the level of influence. This attribute can be added in
the future where the intervention may be targeted at a specific relationship if it
proves efficient. Also the modelling of behaviour change can be done at the en-
ergy awareness level, not at the awareness type level. This can enhance model’s
capability to simulate more fine-grained behaviour change. These enhancements
are expected to produce an even more realistic model that reflects the quality
and rate of daily interactions among the family members.
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