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Abstract Microstructure evolution around highly reactive interfaces in processing of nanocrystallised 

multilayered metallic materials have been investigated and discussed in the present work. Conditions leading to 

grain refinement during co-rolling stage of the duplex processing technique are analysed using the multi-level 

finite element based numerical model combined with three-dimensional frontal cellular automata. The model was 

capable to simulate development of grain boundaries and changes of the boundary disorientation angle within the 

metal structure taking into account crystal plasticity formulation. Appearance of a large number of structural 

elements, identified as dislocation cells, sub-grains and new grains, has been identified within the metal structure 

as a result of metal flow disturbance and consequently inhomogeneous deformation around oxide islets at the 

interfaces during the co-rolling stage. These areas corresponded to the locations of shear bands observed 

experimentally using SEM-EBSD analysis. The obtained results illustrate a significant potential of the proposed 

modelling approach for quantitative analysis and optimisation of the highly refined non-homogeneous 

microstructures formed around the oxidised interfaces during processing of such laminated materials. 

 

1. Introduction 

Severe plastic deformation (SPD) leading to significant refining of the grain size is well 

known approach these days allowing for obtaining novel properties in metallic materials. The 

yield stress σy is strongly related to the grain size which is described by the Hall-Petch equation 

[1]: 

𝜎𝑦 = 𝜎0 +
𝑘

√𝑑
      (1) 

where σ0 is the grain interior resistant to deformation, k is the strengthening coefficient and d 

is the average grain diameter. Ghassemali et al. [2] recently showed that sub-grain formation 

together with specimen dimensions may also influence the mechanical respond of metals. 

Investigation has been also undertaken to evaluate an apparent grain size effect on the cell-

substrate interactions in order to evaluate potential of these advanced materials to be applied 

as biomedical implants [3]. It is considered that absorption of proteins mediating the cell 

adhesion, enhancement of subsequent cell functioning and tissue growth can be altered by 

refining of the grain size to the nano-level [4]. Currently known SPD techniques, such as ECAE 

(Equal Channel Angular Extrusion), HPT (High Pressure Torsion), ARB (Accumulative Roll-

Bonding) and SMAT (Surface Mechanical Attrition Treatment) usually allow for modification 

only of the surface layer of metallic materials. The usual thickness of the modified surface layer 

characterised by such significant grain refinement is not in excess of hundred microns [5, 6]. 

The small volume fraction of the refined to the nano-level grains within a structural metallic 

material is not sufficient for noticeable improvement of the bulk mechanical properties. To 

address this issue, the volume fraction of the ultrafine-grain structure within the material should 

be significantly increased.  
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Duplex techniques are attempted to be developed combining grain size refining processes 

based on SPD with a subsequent thermomechanical processing in order to produce 

multilayered bulk structures with improved yield and ultimate tensile strengths, while 

conserving an acceptable ductility measured as elongation to failure. Examples of such 

processes are shown in Fig. 1. Fig. 1a schematically illustrates angular accumulated drawing 

(AAD) process recently developed at AGH University of Science and Technology [7]. It is 

based on combining drawing, bending, burnishing, shearing and torsion. The main idea of the 

AAD process is to produce severe plastic deformation effects by applying a combination of 

inhomogeneous accumulation of work hardening effects. This method allows for obtaining 

severely refined microstructures distributed mainly at the surface layer of the metallic 

materials. SMAT technique is known for improvement of mechanical properties through 

formation of nanocrystallites at the surface layer (Fig 1b) [8]. The multistage drawing 

technique is used for production of steel magnesium composites in applications for which 

increased specific strength is required (Fig. 1c) [9]. Finally, the duplex technique based on 

combination of surface nanocrystallisation, generally known as SMAT, with subsequent rolling 

in order to produce multilayered bulk structures is presented (Fig. 1d) [10]. 

 

 

 

However, in duplex technique, the impurities deposited on the surface of the materials 

cause bonding imperfections due to interfacial oxidation during the rolling processing stage at 

high temperatures. As a consequence, either the oxide islets or continuous oxide layers are 

formed at the interfaces [11]. The interface oxidation occurring during duplex processes can 

influence the microstructure development around the interfaces depending on whether the 

oxide scale is a continuous layer or a layer of discontinuous oxide clusters with heterogeneous 

thicknesses. Effectively, the oxide scale becomes a part of the microstructure development of 

Fig 1   Schematic representation of the duplex technique components: a) angular accumulated 

drawing (AAD) [after 7], surface mechanical attrition treatment (SMAT) [after 8], multistage 

drawing [after 9] and subsequent rolling [after 10]. 



such nano-crystallised multilayered structures. Shear banding has been observed near metal-

metal contact between the oxide clusters at the interfaces [12]. The shear banding can be 

considered as some kind of bonding enhancement creating channels for the base metal of the 

different laminates to come into contact through the oxidised interface. The similar 

phenomenon was also observed in roll-bonding of aluminium alloys at high temperatures [13], 

where the difference in mechanical properties of oxides and metal and also dimensions of the 

oxide fragments have been recognised as important technological factors. As it was shown 

elsewhere [14], the greater the difference in hardness, the higher the probability of shear 

banding formation across the oxidised interface. Temperature, texture and grain size were also 

mentioned by the same authors among other factors influencing the shear banding. The 

behaviour of the highly reactive interfaces during the processing of nanocrystallised multi-

layered materials has recently been investigated numerically using the developed multi-level 

thermomechanically coupled finite element (FE) based model [15]. The macro-level part of the 

model representing the multilayered nanocrystallised metallic material has been linked to the 

meso-level part representing the oxidised interface within the material. The results of the 

analysis supported the possibility of strain localisations formed around the oxide islets at the 

interface between nanocrystallised fcc 316L austenitic stainless steel plates during the hot 

rolling stage of the duplex processing technique. The similar deformation zones after the hot 

rolling stage did not appear near continuous oxide layers. They also have not been noticed in 

the vicinity of the deliberately imbedded oxide fragments during the modelling trials favouring 

the conclusion that the initially continuous oxide layers failed during the rolling pass because 

of their lower ductility at 550oC than the one for nanocrystallised metal.   

A computer modelling of microstructure evolution around the oxide clusters during co- 

thermomechanical processing is fraught with difficulties mainly due to a lack of proper 

numerical tools allowing representation of the dislocation structures making prediction at 

micro- and meso-level a great challenge. Modelling approaches based on cellular automata 

(CA) seems occupy the first place among the numerical methods applicable to quantitative 

analysis of microstructure evolution. CA based modelling is currently used for analysis of 

crystallization (solidification) [16 – 20], dynamic and static recrystallization [21 – 28], phase 

transformation [23, 29] and also grain refinement [30 – 38]. Usually, these are simple and 

relatively fast two-dimensional (2D) models consisting of a few elements and connections. 

They are much simpler for designing, implementation and easier for visualization. However, 

at least five main problems are left partly unresolved in such simplified 2D approaches, among 

of them are kinetics of transformation, location of nuclei, grain growth rate, deformation of 

grains and crystallographic orientation. 3D CA are free of these problems, however, they are 

more complex and require much more time and memory for simulations. One of the possible 

modifications, known as frontal cellular automata (FCA) approach, allowing for significant 

reduction of the calculation time, is used in this paper. Conception of FCA was described by 

the authors in details elsewhere along with a simplified model not taking into consideration a 

real deformation process [30]. The CA models were developed progressively distributing the 

effects of deformation on slip planes and slip directions according to the crystal plasticity 

theory [31, 32]. They have been applied for modelling of accumulative roll-bonding (ARB) 

[33] and MaxStrain technology [37]. Then later, the CA model has been effectively applied for 

analysis of microstructure evolution in different combined metal forming processes consisting 

of accumulative angular drawing, multi-pass linear wire drawing and wire flattening designed 

for obtaining ultrafine-grained microstructure [38]. 
The objective of this work is to understand the evolution of microstructure around the oxidised 

interfaces during the consecutive rolling stage of the duplex processing on the basis of the advanced 

multi-level numerical analysis supported by experimental studies of the grain refinement. In the 

simulations, the meso-level of the previously developed multi-level FE based model is combined 



with the state-of-the-art 3D FCA numerical model allowing for both the appearance of new 

boundaries and rotation of dislocation cells (sub-grains and grains) simultaneously. 

  



  

2. Multi-level numerical modelling 

 

Oxidation inevitably takes place between different metallic laminates at the interfaces 

during subsequent rolling at elevated temperatures. A detailed multi-level FE based numerical 

investigation supported the possibility of strain localisations formed around the oxide islets at 

the interface between nanocrystallised fcc 316L austenitic stainless steel plates during the 

subsequent rolling stage of the duplex processing technique, the effect earlier noticed 

experimentally [11, 15]. It favoured the conclusion that the scale failed during the rolling pass 

having lower ductility than the underlying nanocrystallised metal at the relatively low 

temperatures, up to 550oC. It has been shown that the rolling reduction of 45% was not 

sufficient for significant extrusion of nanocrystallised metal into the voids between fragmented 

oxide scale leaving unfilled gaps between the steel plates of the laminate causing bonding 

imperfections at the laminate interfaces during the processing. The voids around 20µm thick 

scale fragments can remain unclosed during the rolling even at 55% rolling reduction posing 

additional risk of damage within the transition layers near the sides of the elongated oxide 

clusters. Although the developed model was advanced enough to be able to include into 

analysis few micrometre thick scale clusters, voids and complicated profile of the interface, it 

did not reflect all physical phenomena taking place at the oxidised interfaces, particularly it did 

not consider microstructure evolution around the interfaces of the steel laminate as part of the 

mentioned co-operative relationships. For this reason, the meso-component of the multi-level 

FE model described in details earlier [15] has been linked to the FCA based model capable to 

simulate the microstructural changes during plastic deformation taking into account crystal 

plasticity formulation (Fig. 2).  

   

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The multi-level modelling setup used in the work is composed of three following models: 

macro- and meso- both FE based models and FCA model linked together. The macro- and 

meso- FE based models are rigorously thermo-mechanically coupled within the 

Abaqus/Standard commercial software. The strains are confined to the plain contacting surface 

normal to the rolling direction in this 2D FE approach that can be assumed for rolling of the 

 

50 µm 

c) FCA model 

Fig. 2. Scheme of combined FE/FCA based multi-level model setup 



relatively thin plates. The approach allows for calculation of the distribution of velocities, 

strains, strain rates, stresses and temperature around the oxidised interface in the middle part 

of the specimen. All parameters used in the FE calculations were introduced on the basis of the 

available experimental data and are summarised elsewhere [15]. They include the thermal and 

mechanical properties of the coarse grain, transition and nanocrystalline layers for the 

corresponding three layers of the 316L stainless steel, the heat loss to the environment through 

convection and radiation, the heat loss due to conduction to the rolls, the heat generated during 

deformation of the rolled material and the relevant friction coefficients between the roll and 

steel surfaces. The stress-strain curve representing the constitutive behaviour of each layer has 

been assumed as a function of the equivalent strain 𝜺̅ and the temperature T (Table 1). The rolls 

were assumed to be rigid bodies. The macro-level model setup consisted of 8800 CPE4RT 

elements representing two plates undergoing flat rolling. Each plate included both the coarse 

grain and the transition layer. The macro-level model allowed for calculation of strains, strain 

rates, stresses and temperatures in the middle part of the specimen. The field variables from 

the macro- model were transferred to the meso-level model as boundary conditions. The meso-

level model setup included nanocrystallised layers consisted of 9600 CPE4T elements and also 

oxide scale fragments consisted of 292 CPE3T elements. The dimensions of the oxide scale 

fragments were assumed to be similar to those observed experimentally, about 30– 120 μm in 

length and 10–20 μm in thickness. They were assumed to be adherent to the metal surface when 

the clearance between two contacted surfaces becomes zero. The possibility of viscous sliding 

between the scale fragments and the metal surface arising from the shear stress during the 

deformation was assumed in the modelling in an analogous manner to grain-boundary sliding 

in high-temperature creep. The calculation of the viscosity coefficient was based on a 

microscopic model for stress directed diffusion around irregularities at the interface depending 

on the temperature, the volume diffusion coefficient and the diffusion coefficient for metal 

atoms along the oxide metal interface and the interface roughness parameters.  

 

Table 1 The stress-strain curves representing the constitutive behaviour of the corresponding 

layers of the 316L stainless steel applied for the modelling [15].  

 

Layer: Flow stress: 

Coarse grain 1.1733.0 095.01255335 Tc    

Transition 1.1502.0 095.0481775 Tt    

Nanocrystalline 1.10712.0 095.03381803 Tn    

 

 

3. FCA model of grain refinement 

The 3D FCA model used in this work has been described in details elsewhere [30, 32, 36] 

and is only briefly summarised here. The model of grain refinement uses two different CA. 

The first one presents spatial discretization of the representative volume. In the case under 

consideration, cellular space of 600×320×320 cells represents volume of 75×64×81 µm3. The 

cells belong to the corresponding grain having appropriate properties. Some of the properties 

are associated with the cells, others related to the grains. Dislocation density is not associated 

with the cells. All cells have the same shape and size and are changed uniformly. Grain 

refinement is modelled including the following two stages, namely: formation of new 

boundaries and rotation of structural elements. The grains are considered in the second CA 

model, where every grain, sub-grain and dislocation cell has their own structure of CAs. The 

grain model of 316L austenitic stainless steel, having fcc crystal structure and 12 slip systems, 



is represented by twelve one-dimensional (1D) CAs while number of cells in the 1D CA 

depends on the resolution and grain size in the appropriate direction. It is crucial in the analysis 

of nanocrystalline materials to be able modelling the evolution of dislocation density and 

substructure arrangement. The evolution of dislocation density is calculated for every cell and 

is based on crystal plasticity modelling approach, where the effects of deformation are caused 

by dislocation motion on active slip systems and by distortion of the crystal lattice. The 

designed 1D CAs use the information from the crystal plasticity module simulating generation 

and growth of the dislocation substructure. Corresponding crystallographic orientation of each 

grain gives basis for determination of the active slip systems. Growth of dislocation density 

leads to appearing of low-angle boundaries (LAB) when the density reaches its critical value. 

The LAB divides the grain into dislocation cells. Although the dislocation cells inherit CA 

model from their parent grain, they are considered independently in further analysis. The 

dislocation structure evolves at different rates due to differences in the slip rate for the different 

slip directions. The formed structure containing the dislocation cells is considered as an initial 

state for modelling of rotation of the dislocation cells, sub-grains and grains during subsequent 

straining. 

The material spin of a polycrystalline material is the sum of the plastic spin and the lattice 

spin. It is defined as the skew-symmetric tensor obtained by decomposing the prescribed 

velocity gradient in a rotation and a deformation component:  
lp WWW  ,      (2) 

where Wp is the plastic spin and Wl is the lattice spin representing macroscopic rotation also 

called the constitutive spin or the rotation rate of the Mandel-frame. It is assumed that the 

plastic spin could be related to the rate of slip in slip systems of the lattice: 

s

ij

s

s

p PW 
.

 ,     (3) 

where 
s.

 is the glide velocity for the active slip system s, and s

ijP  is the skew part of the Schmid 

tensor defined by the slip plane and the slip direction. 

 

3.1. Data transfer from FEM to FCA 

From various sets of the rolling process parameters applied in the FE modelling, one set 

was selected to illustrate the capabilities of the FCA calculations. To ensure compliance with 

the results obtained in the experimental studies, the set selected for the simulation contains the 

process parameters identical to those applied in the real rolling process allowing for obtaining 

multilayered nanocrystallised metallic material with discontinuous oxide scale islets. Thus, the 

initial temperature of 550 °C and 55% rolling reduction were selected for the FCA modelling. 

The oxide scale thickness was assumed to be 10 μm in correspondence to the results of 

microscopic observations. The data from FE calculations were transferred for CA simulations 

using several files. Each file is assumed to contain records of a calculation step for the number 

of nodes corresponding to the chosen area of the FE mesh. The quantitative information about 

the whole deformation process is divided into six consecutive stages corresponding to the 

different time moments and is saved in six files. The consecutive stages correspond to six 

different time moments of the deformation during the rolling pass and can be expressed as the 

percentage of progress, namely 0, 37, 50, 62, 75 and 100%.  The files contain the nodal 

coordinates, three components of the strain tensor and the effective strain. The regular 

rectangular FE mesh allowed for easier adaptation of the obtained FE data for the following 

FCA modelling. The FE mesh was progressively refined toward the oxidised interface in the 

applied model. The finest mesh was assumed in the area near the oxide scale, where grains of 

the metallic structure are expected to be smaller while the strains in the area supposed to be 



higher. Thus, the domain with fine and coarse 2D mesh, as it is shown in Fig. 3, has been 

transferred to 3D FCA model, which had initially uniform cells.  

 

 

The size of the FE domain transferred for FCA simulation was x×z = 75 µm ×80 µm and it 

contained two subdomains. The first subdomain containing 60×12 square elements with the 

side length of 1.25 µm covered the area of 75×15 µm2 and the second one containing 15×13 

square elements with the side length of 5 µm covering the area of 75×65 µm2 around the 

laminate interface. The following 3D CA was developed basing on this data with the 

geometrical sizes of x×y×z = 75 µm ×64 µm ×80 µm. The third dimension y of the CA was 

chosen taking into account the average size d of the coarse grains at the beginning of the 

process, in such way that y = 3÷4 d. There were total nx×ny×nz = 600×320×320 = 61 440 000 

cells created, where nx, ny and nz are the corresponding numbers of cells in x, y and z direction. 

The corresponding initial sizes of the cells are cx×cy×cz = 0.125 µm ×0.2 µm ×0.25 µm. The 

choice of the cell sizes is a compromise between a desirable resolution and a number of the 

cells, i.e. between the accuracy of fine grains representation, the memory capacity and the 

computational time. Therefore, each square element of the first FE subdomain has been 

transformed into 3D substructure with 10×320×5 cells, while 40×320×20 cells represented 

each element of the second subdomain. Such substructures remain rigidly connected with the 

corresponding finite element. Nodal coordinates of the element define corresponding 

coordinates of the cells with two-linear interpolation, and also the components of the strain 

tensor and the effective strain for every cell. Therefore, every cell within the x-z cross-section 

is of unique shape with the associated strain tensor and the effective strain during and after the 

deformation. At the same time, they have the same shape in y direction with the corresponding 

strain tensor and the effective strain. Such transfer of the coordinates from FEM to FCA allows 

for obtaining the same shapes and sizes in this two methods. On the other hand, due to high 

isotropic behaviour of the applied algorithm, the calculation method used in FCA allows for 

elimination of the cell shape and size influence on the modelling results.  

 

Fig. 3. Highlighted nodes of the FE meso model domain situated around the oxidised 

interface containing information used for FCA modelling 



3.2. Initial microstructure 

The study is devoted to the microstructure evolution during the second stage of the duplex 

process. Modelling of microstructure evolution begins from development of a representative 

initial microstructure. The initial microstructure observed at the surface layer of the steel 

sample after the SMAT process is presented in Fig. 4. It has to be noted that the microstructure 

presented further in the text both from using EBSD orientation maps and figures representing 

the results of FCA simulations are coloured according to Inverse Pole Figure (IPF). The two 

areas with significant difference in the grain size can be observed at the presented cross-section 

of the steel sample subjected to SMAT. The area with very fine grains can be observed at the 

surface of the sample while the second one, where much coarser grains with signs of twins are 

observed, is situated deeper inside the specimen. The boundary between the mentioned two 

areas is distinctly visible. However, there is almost no visible transient zone between them. The 

representative not homogeneous initial microstructure developed in the FCA model should 

reflect all the mentioned important peculiarities of the real microstructure while omitting less 

important details. It is not a common task and the development requires implementation of 

additional to the standard methodology procedures described elsewhere [39]. Periodic 

boundary conditions, commonly applied in CA simulations of microstructure evolution, cannot 

be applied when deformation and grain size are not uniform. Generally, such conditions can 

only be applicable along one direction, for instance along y axis, while the grain size in any 

other direction should be somewhat reduced to eliminate a boundary effect on the grain size.  

 

 
 

The algorithm for the initial microstructure development has been modified in this study to 

take into account parameters of the real not homogeneous microstructure observed at the 

surface layer of the samples after SMAT. The microstructure is modelled using nucleation and 

free grain growth. Taking into account that the grain size depends on the nucleation process, 

mainly on a number of nuclei in a volume unit, the probability of nucleon appearance has been 

assumed as a function of the desirable grain size in this location. This function contains three 

components, each component reflects one coordinate dependence. The dependence on x and y 

coordinates compensate the boundary effect. The dependence on z coordinate (along the 

thickness) divides the modelling space additionally on three domains with different grain sizes. 

Fig. 4. Image of the initial microstructure obtained using EBSD technique at the cross 

section of 316L steel sample after SMAT coloured according to Inverse Pole Figure (IPF). 

 

Surface layer – fine grains 

5 µm 

Deeper layer – coarse grains  



The average grain size was about 12 µm in the first domain and about 3 µm in the last one 

while the middle domain played a role of the transition area between them. Preliminary 

computations, however, exhibited that the introduction of the appropriate nucleation function 

is not enough for development of the initial microstructure, and some corrections to the grain 

growth algorithm were necessary. First of all, the grain growth rate has been made dependent 

on the desirable grain size. Then, the grain growth rate was additionally decreased after the 

grain reached the desirable size. It has to be noticed that even such rigorous correction of the 

grain growth algorithm did not allow obtaining smooth transition between the two areas with 

significant difference in grain size.  

The initial 3D microstructure representation reflecting the main peculiarities of the real 

structure observed using EBSD investigations is presented in Fig. 5. Comparison of the 

modelled initial microstructure with the real one observed after the SMAT shows some 

differences, which were recognized as acceptable for the purpose of the modelling. The main 

part of the 3D representative cell has the microstructure very similar to the real one in 

connection with both size and shape of the grains. However, the modelled grain structure has 

no twins and it is more homogeneous with regard to the internal crystallographic orientation. 

The surface of modelled structure is plane and continuous. The grains situated in the surface 

part of the layer and characterized with fine grain sizes are generally coarser in the model than 

in the real material. It is connected with resolution of the model where some margin has been 

deliberately assumed for possible further refinement during deformation in the consecutive 

rolling stage. Such an assumption can be considered as reasonable because the grain size 

considered in the FCA simulation has no feedback on the properties and character of the 

material flow during the deformation. In addition, obtaining plain border between two areas 

with different grain sizes is fraught with difficulties. 

 

 



 

3.3. Grain refinement 

Grain refinement is modelled by considering both formation of the new boundaries and 

rotation of the structural elements (grains). Formation of the new boundaries is modelled in the 

following way. First, the active slip systems are determined for each grain (crystal) based on 

the grain orientation and the strain tensor. Then, the strain is decomposed on the slip fraction 

for the active slip systems. The appeared low-angle boundaries (LAB) divide the grain into 

several sub- regions, such as dislocation cells. They inherit CA model from the parent grain 

and they are considered as independent structural elements. Every new LAB divides an old 

grain on two structural elements. Because the slip rate is different for the different slip 

directions and the different grain orientation, both appearance and evolution of the structural 

elements progress at different rates. Firstly, LABs appear in one slip direction. Then, they 

appear in other directions.  

Dislocation density changes in each cell of 1D CA with the strain fraction and this is the 

product of two components: deterministic and stochastic. The deterministic component 

describes evolution of the dislocation density as hardening and dynamic recovery while the 

stochastic component is represented by the normal distribution with a small dispersion.  

In the earlier modelling approach described elsewhere [33], the cells changed their state 

and new LABs appeared during the deformation when the dislocation density in the cell walls 

reached a critical value. The cells in a LAB have an influence on their neighbourhood. 

Considering the deformation mechanism as movement of dislocations, LABs act as barriers for 

the movement. Thus, all dislocations move toward or away from the LABs. Positive feedback 

occurs in the LAB cell and all its neighbours when the new LAB cell appears. The dislocation 

density of the LAB cells increases because of this positive feedback that causes an increase of 

the strain hardening. At the same time, the dislocation density decreases very fast in all 

neighbouring cells. In the later developments [40, 41], instead of a critical value of the 

dislocation density, the new boundaries with the highest dislocation density chosen from all 

1D CA determine appearance of the new LAB. In this approach, the number of the new 

boundaries is defined by the equation, which determines an expected grain size. Such an 

approach proved to be significantly more stable than the one based on an introduction of the 

Fig. 5. Initial microstructure developed for FCA modelling, a – isometric view; b – x-z 

plane. 
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constant critical value allowing for better controlled solution. In the model, four variables were 

proposed for consideration of the effects of strain on appearance of the new dislocation cells 

[36]. Although such an approach is useful for modelling of grain refinement during uniform 

strain deformation, it fails when the grain size and the strain are not uniform. Moreover, any 

influence of the size of the refined grains on the refinement rate are not considered. 

In the present study, it is assumed that the grain size during the severe deformation is 

inversely proportional to square root of the strain (d ~ε-0.5). Hence, by application of the 

incremental calculations, the following dependence can be obtained for calculation of the 

current desirable grain size d:  

 

 













minmin

min
0

ddd

dd
ad

d
ac , (4) 

where d0 is the initial or current grain size before deformation, εac is the accumulative effective 

strain and a is the adjusted material coefficient, which can be treated as a coefficient of 

proportionality for the considered material. The coefficient sets a rate of the grain refinement. 

The minimal grain size dmin has been added because of both the cell resolution and natural 

limitations of grain refinement in materials posing a restriction on the grain size that can be 

obtained in the model. In spite of divisions on smaller substructures, rotation of the structural 

elements is also considered in the simulation. The rotation is defined by the crystallographic 

orientation and depends on the applied deformation. It is assumed that the structural elements 

are rotated by a small randomly defined angle, which is represented by following equation [39, 

40]: 

   r0 , (5) 

where Δϑ is the rotation angle, ϑ0 is the rotation factor (it can be a function of the strain), r is a 

randomly chosen number from the uniform distribution within the range of [-1,1] and Δε is the 

effective strain increment. The rotation factor ϑ0 can be a function of the strain. It introduces 

the scale or the rate of grains rotations and defines how quickly the microstructure reaches its 

final state of grain boundary misorientations. The rotations change grain boundary 

misorientation angles while the grain boundary misorientation angle in its turn defines whether 

the structural element is treated as a dislocation cell, a sub-grain or a grain. 

 

1. Results of CA simulation 

 

The minimal grain size dmin, the rotation factor ϑ0 and the coefficient a were changed in 

the study of grain refinement during the consecutive rolling stage of the duplex processing. The 

modelling results corresponding to the following three data sets of the above mentioned 

parameters are presented in this section to demonstrate their influence on the final 

microstructure: 

1) a = 2.5 µm, dmin = 0.5 µm, ϑ0 = 2.0o 

2) a = 1.5 µm, dmin = 0.4 µm, ϑ0 = 2.0o     (6) 

3) a = 0.75 µm, dmin = 0.4 µm, ϑ0 = 4.0o 

As indicated previously, the quantitative information about the whole deformation 

process has been divided into the five consecutive stages. The results of CA modelling obtained 

for the set 3 are presented in Fig. 6 – 8. They are the closest to the available experimental data. 

The initially created microstructure with randomly orientated grains includes only grains 



separated by the high angle boundaries (HAB). Then, consecutive deformation stages were 

simulated. Deformation of the initial microstructure and the first signs of appearance of new 

LABs can be observed at the end of the first stage (Fig. 6). The appeared LABs are scarcely 

presented and can be noticeable mainly in the case of the data set 3. The LABs separate grains 

into clusters that can be considered as dislocation cells. The model does not explicitly 

distinguish the structural elements, such as grains, sub-grains or dislocation cells. However, 

they can be determined on the basis of a mis-orientation angle between CA cells. 

    

Fig. 6. Microstructure of 316L steel around oxidised interface predicted after the first stage of 

deformation during co-rolling (isometric view – left; x-z plane – right; data set 3). 

 

After the consecutive deformation stages, the number of appeared LABs increases. The 

maximum frequency of the LAB appearance remains nearly the same while a rotation rate is 

relatively small. Then, the rotation of CA cells influences an increase of the boundary mis-

orientation angle resulting in their gradual transformation into the sub-grains (Fig. 7). Further 

rotation during deformation leads to additional increase of the mis-orientation angles. As a 

result of such microstructure evolution, the first LABs have been transformed into HABs after 

the fourth deformation stage (Fig. 7e, f). Such rotation of the new dislocation cells leads to 

changes in their crystallographic orientation. It can be noticeable in Fig. 7c, d representing the 

predicted microstructure of the material around the oxidised interface after the third stage of 

deformation, where the colour scheme reflects the Euler angles describing the grain orientation. 

 



 

 

Fig. 7. Microstructure of 316L steel around oxidised interface predicted after the second (a, 

b), third (c, d) and fourth (e, f) consecutive stages of deformation during co-rolling (a, c, e –

isometric view; b, d, f – x-z plane; data set 3). 

Comparing the results obtained for the mentioned above three data sets applied in the 

FCA modelling, it can be noticed that in spite of some similarities, the minimal grain size dmin, 

the rotation factor ϑ0 and the coefficient a play a significant role in grain refinement during the 

consecutive rolling stage of the duplex processing (Fig. 8 and 11). The amount of LABs 

predicted for the chosen data sets during such deformation is much lower for data set 1 

corresponding to higher coefficient a (Fig. 8a, b). The decreasing of minimal final grain size 

dmin and the coefficient a (data set 2) allows for obtaining finer final microstructure (Fig. 8c, 

d). A further decrease in the coefficient a coupled with doubling of the rotation factor ϑ0, 

corresponding to the parameters from data set 3, resulted in faster development of the refined 

microstructure (Fig. 8e, f). For all parameter data sets, the predicted LABs and HABs were 



accumulated in the areas corresponding to the locations of the shear bands between the oxides 

observed experimentally. 

 

 

Fig. 8. Microstructure of 316L steel around oxidised interface after the last stage of 

deformation during co-rolling predicted for data set 1 (a, b), data set 2 (c, d) and data set 3 

(e, f). (a, c, e –isometric view; b, d, f – x-z plane). 

 

It is assumed in the developed FE model that the oxide islets situated at the interfaces of 

the metallic laminate have lower ductility than the adjacent metallic layers. They almost retain 

their shape during such deformation presenting an obstacle to metal flow during rolling. As a 

consequence, highly inhomogeneous deformation takes place leading to formation of strain 

localisations and inhomogeneous microstructure in these areas (Fig. 6 – 8). The zones of strain 

localisation start at the sides of oxide islets spreading further around the islets. As it was 

observed experimentally, shear bands can be present in such zones around the oxide fragments, 

indicated by letters A and C in Fig. 9a, c. Similar zones characterised by high density of 



boundaries can also be identified using the obtained modelling results (Fig. 9b – letters A and 

C). Moreover, it has been shown both experimentally and numerically, that the coarse grains 

initially observed well above the oxidised interfaces between the scale fragments retain their 

sizes after the rolling operation practically without newly formed LABs (letter B in Fig. 9a, b). 

Similarly, the initially fine grains response differently to the applied inhomogeneous 

deformation depending on the area. The fine grains situated near the interface between the scale 

fragments are highly deformed during the rolling operation and characterised by the 

extensively changed shape (letters A in Fig. 9b), while the grains located immediately above 

the middle of the scale fragment change their size insignificantly and are characterised with 

appearance of the newly formed LABs (letter D in Fig. 9b).  

 

 

Fig. 9. EBSD orientation map of the cross-section area near the oxide islets after co-rolling 

coloured according to Inverse Pole Figure (IPF) (a) and Euler angles (c) compared with 

obtained modelling results (b). Arrows A and C indicate shear bands and refined grains, 

arrow B – coarse grains, arrow D - newly formed LABs ; b, c - HABs (black) and LABs 

(red) are shown. 

As it has been shown above, the grain refinement in the FCA modelling is controlled by 

the set of three parameters, namely the minimal grain size dmin, the rotation factor ϑ0 and the 

coefficient a (eq. 6). They influence number of the newly appeared grain boundaries and 



structural elements (Fig. 10a), and also average size of the structural elements (Fig. 10b). 

However, the values obtained are averages and they do not reflect inhomogeneity of the final 

structure. For example, average sizes of the structural elements calculated assuming date set 3 

for the areas A-D, shown in Fig. 9b, are respectively the following: A – 0.6, B – 9.8, C – 1.1, 

D – 2.6 m, while the average size calculated for the whole representative volume is 1.3 m.   

 
  

Fig. 10. The total number of the structural elements including dislocation cells, sub-grains 

and new grains (a) and the their average size (b) predicted during co-rolling assuming 

three data sets of the FCA model parameters (eq. 6) 

As it can be seen from Fig. 11 illustrating distribution of the grain boundary 

disorientation angle predicted for the different stages of the co-rolling process, only HABs 

can be identified within the steel structure before the rolling operation. At the beginning of 

the deformation, a small amount of new LABs appeared. Their formation significantly 



increases in the second part of the rolling process, particularly during stages 4 and 5, which 

results from strain accumulation within steel matrix around the oxide islets. At the same 

time, the amount of HABs increased slightly. 

 

 

Fig. 11 Distribution of the grain boundary disorientation angle predicted during different 

stages of the co-rolling process assuming data set 3 (eq. 6) of the FCA model parameters. 

 

Summary 

 

The application of the multi-level FE based model coupled with three-dimensional FCA 

for the grain refinement simulation is discussed in the paper. The presented results are related 

to microstructure evolution of 316L austenitic stainless steel around highly reactive interfaces 

in the co-rolling stage of the duplex technique applied for processing of nanocrystallised 

multilayered metallic materials. The FCA part of the model is capable to simulate development 

of grain boundaries and disorientation angles within the metal structure during plastic 

deformation taking into account crystal plasticity formulation. 

The results of the numerical analysis supported by the experimental evidence showed the 

large number of structural elements appeared in the zones around oxide islets at the interfaces 

during co-rolling. The appearance of the structural elements, identified as dislocation cells, 

sub-grains and new grains, was due to metal flow disturbance and consequently 

inhomogeneous deformation. These areas corresponded to the locations of shear bands 

observed experimentally. It has been shown that the number of the appeared structural elements 

increases for higher rotation factor ϑ0, lower final minimal grain size dmin and lower coefficient 

a. The mentioned parameters define grain refinement in the FCA model. The number of the 

structural elements significantly rises at the end of the rolling stage. The amount of LABs in 

the areas around interfaces increased notably comparing to the amount of the identified HABs.   



The proposed multi-level model that consists of three parts offers an effective numerical 

tool for prediction of the microstructure evolution around the oxidised interfaces during 

processing of the laminated metallic materials for different structural applications. A 

reasonably good agreement achieved between the modelling results and the results of SEM-

EBSD analysis illustrates a significant potential of the proposed modelling approach for 

quantitative analysis and optimisation of the highly refined non-homogeneous microstructures 

formed around the oxidised interfaces during the processing route. The modelling approach 

opens up new research opportunities toward improvement of its predictive accuracy, such as 

including more accurate consideration of strain localisation taking into account appearance of 

twins, shear and micro- bands allowing extension of its applicability to other materials.     
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