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Fig. 7: Illustration of an RNN-based ADT system. (a) Spec-
trogram of the drum mixture. (b) Spectrogram frames are
sequentially used as input features for a pretrained RNN. (c)
Activations of the first hidden layer. (d) Activations of the
second hidden layer. (e) Activations of the output layer.

network is thought of being unfolded in time for the length
of the time series sequence. Unfolded RNNs become very
deep networks, depending on the sequence length used for
training. Since deep networks are harder to train, often only
subsequences of the time series data are used for training.
In Fig. 7c and Fig. 7d, we show the hidden layer activations
in a trained RNN. Darker shades of gray encode higher
absolute activation. On closer inspection, some structure is
visible as the activations tend to be stronger simultaneously
to drum sound events occurring in the input. Finally, Fig. 7e
displays the output activations according to our example drum
recording. The output activations nicely indicate the onset
times of drum sound events. For our example signal, the
RNN-based activations are even more pronounced and spiky
than the ones obtained via NMFD (cf. Fig. 6).
For the evaluation in Sect. VII, we use a simple baseline RNN,
similar to the plain RNNs in [76], [78]. The meta-parameters
used in our experiments are given in Table IV.

Fig. 8: An overview of an unfolded bidirectional RNN. The
solid (forward) connections are also found in a standard RNN
while the bidirectional RNN contains additional backward
connections (dashed arrows). xt and ŷt are the inputs and
outputs at time step t, with the circles representing the layers
of the network.

C. Bidirectional RNNs (tanhB)

Southall et al. [78] introduced a system based on Bidirec-
tional RNNs (BRNN) [105] for ADT. BRNN layers consist of
two RNN sub-layers, one with recurrent connections in forward
direction (t− 1→ t) and the other with recurrent connections
in backward direction (t+ 1→ t) as shown in Fig. 8. These
allow the network to take past as well as future information
into consideration for the output at time step t, which has
been shown to be beneficial for many different tasks. As a
downside of BRNNs, the entire sequence to be processed must
be available in advance, making them generally unsuitable for
real-time applications. By using small subsequences of the
input stream it is possible to partly circumvent this issue.
The network configuration for the BRNNs used in [78] is
given in Table IV. Each drum instrument under observation is
treated as an independent classification problem using separate
neural networks with softmax output layers. This approach
allows to easily remove and add additional observed drum
instrumentation.

D. RNNs with Label Time-Shift (ReLUts)

Vogl et al. [76] confirmed that BRNNs perform better than
RNNs, but also showed that equal results can be achieved
with RNNs using a label time-shift (25 ms). For this, all drum
instrument annotation labels are shifted in time +25 ms (for a
more detailed explanation see [76] ). This shift allows an RNN
to access information before and after the true start of drum
sound events. One major benefit of using time shifts (instead
of BRNNs) is that the method enables online application (with
only a short delay). The network transcribes all three drum
instruments using a sigmoid output layer with three neurons.
This approach exploits the advantages of Multi-Task Learning
(MTL) [106] by using a common model for different tasks
which can improve overall performance. The meta-parameters
of the network configuration are given in Table IV.

E. Long Short-Term Memory (LSTM) (lstmpB)

In addition to recurrent connections, LSTM cells [107]
feature an internal memory (in the following denoted as c),
which allows the network to learn long-term dependencies. The
internal memory is accessed and updated using three gates
(input gate i, forget gate f , and output gate o) controlled by
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Fig. 9: Overview of LSTMP (a) and GRU (b) cell architec-
tures. Converging connections represent concatenation of the
respective data. Diverging connections represent copies of
the same matrix. Dashed lines in the LSTM cell represent
peephole connections for LSTMPs. The application of weights
and biases is omitted for simplicity and the output arrows show
connections to both the next layer and time step.

the input xt, the hidden state ht−1 and, in case of LSTMs
with peephole connections (LSTMPs), the cell memory c.
The inclusion of c as a gate input allows the long-term
dependencies stored within the cell memory to influence the
flow of information through the gates. The model for an RNN
layer with LSTMP architecture is specified as follows (see also
Fig. 9a):

it = σ(Wi ·
[
xt,ht−1, ct−1

]
+ bi), (22)

ft = σ(Wf ·
[
xt,ht−1, ct−1

]
+ bf), (23)

c̃t = tanh(Wc ·
[
xt,ht−1, ct−1

]
+ bc), (24)

ct = ft � ct−1 + it � c̃t, (25)

ot = σ(Wo ·
[
xt,ht−1, ct

]
+ bo), (26)

ht = ot � tanh(ct). (27)

In these equations, the subscripts are used to denote to which
of the internal gates the weights and biases are associated to.
In the work of Southall et al. [80] bidirectional LSTMs with
peephole connections (BLSTMP) are used in an architecture
similar to [78]. The corresponding meta-parameters of the
network configuration are given in Table IV.

F. Gated Recurrent Unit (GRU) (GRUts)

Similar to LSTMPs, Gated Recurrent Units (GRU) [108] can
be seen as a modification of standard LSTMs. GRUs have a
significantly lower number of parameters compared to LSTMs.

This is achieved by reducing the number of gates, using only an
update gate z and a reset gate r, as well as merging the memory
and the hidden state (ht−1). The model for an RNN layer with
GRU architecture is specified in the following equations (see
also Fig. 9b):

zt = σ(Wz ·
[
xt,ht−1

]
+ bz), (28)

rt = σ(Wr ·
[
xt,ht−1

]
+ br), (29)

h̃t = tanh(Wh ·
[
xt, rt � ht−1

]
+ bh), (30)

ht = zt � ht−1 + (1− zt)� h̃t. (31)

In [77], Vogl et al. implement RNNs using GRUs combined
with label time-shift (30 ms). The corresponding meta-
parameters of the network configuration are given in Table IV.

VII. EVALUATION

In this section, we provide the details of the evaluation we
conducted with the state-of-the-art ADT systems introduced in
the last two sections. Specifically, we implemented ten systems
from publications within the last five years (cf. Table II) in
order to assess and compare their capabilities in a unified
experimental framework. The selected algorithms are listed in
Table IV, where we refer the reader to the original papers as
well as the corresponding paragraphs in this article. Whenever
implementational details are omitted, they are equivalent to
the descriptions in the original works. The source code of the
implemented systems can be found online.6,7,8

A. Evaluation Datasets

As indicated earlier, we used two publicly available corpora
of drum recordings for our experiments. We processed and
partitioned the available corpora in such a way that they directly
correspond to the three most relevant ADT tasks introduced
in Sect. I-C. In particular, these are Drum Transcription of
Drum-only recordings (DTD), Drum Transcription in the
presence of Percussion (DTP), and Drum Transcription in
the presence of Melodic instruments (DTM). Table V gives
an overview of the content of these datasets; additional
information is provided in the following paragraphs.

D-DTD: This dataset is intended to evaluate DTD performance,
i.e., transcription of recordings containing only the three drum
instruments KD, SD, HH. A real-world application scenario
for this task would be the transcription of single track drum
recordings in a studio. This dataset uses the latest version of
the IDMT-SMT-Drums corpus [69].

D-DTP: This dataset is intended to assess DTP performance,
i.e., transcription of recordings containing other percussion
instruments in addition to the drum instruments under
observation. A user aiming to transcribe recordings of a large

6https://github.com/cwu307/NmfDrumToolbox, last accessed:10/02/2017
7https://github.com/CarlSouthall/ADTLib, last accessed:10/02/2017
8https://github.com/richard-vogl/dt demo, last accessed:10/02/2017
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TABLE IV: Overview of all implemented systems included in our evaluation.

Type Abbrev. Reference Sect. Parameters

NMF- SANMF Dittmar and Gärtner [69] V-D R = 3, L = 30, β = 4
based NMFD Lindsay-Smith et al. [65] V-E R = 3, L = 30,M = 10

PFNMF Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20
AM1 Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20
AM2 Wu and Lerch [74] V-C RD = 3, RH = 10 (DTD), RH = 50 (DTP & DTM), L = 20

RNN- RNN Vogl et al. [76] VI-B 1 hidden layer, D = 200, tanh, RMSprop with initial µ = 0.005, sigmoid outputs, bias init 0,
based Southall et al. [78] mini-batch size = 8 sequences of length 100, weight init uniform ±0.01

tanhB Southall et al. [78] VI-C 2 hidden layers, D = 50, tanh, Adam with initial µ = 0.05, softmax outputs, bias init 0,
mini-batch size = 10 sequences of length 100, weight init uniform ±1, dropout rate 0.25

ReLUts Vogl et al. [76] VI-D 1 hidden layer, D = 100, ReLU, RMSprop with initial µ = 0.001, sigmoid outputs, bias init 0,
mini-batch size = 8 sequences of length 100, weight init uniform ±0.01, dropout rate 0.2

lstmpB Southall et al. [80] VI-E 2 hidden layers, D = 50, BLSTMP, Adam with initial µ = 0.05, softmax outputs, bias init 0
mini-batch size = 10 sequences of length 100, weight init uniform ±1, dropout rate 0.25

GRUts Vogl et al. [77] VI-F 2 hidden layers, D = 50, GRU, RMSprop with initial µ = 0.007, sigmoid outputs, bias init 0,
mini-batch size = 8 sequences of length 100, weight init uniform ±0.1, dropout rate 0.3

TABLE V: Overview of the three datasets used for our evaluation.

Dataset Reference Total KD SD HH Total Avg. Subset 1 Subset 2 Subset 3
#onsets #onsets #onsets #onsets #items Dur. Origin (#items) Origin (#items) Origin (#items)

D-DTD IDMT-SMT-Drums 8722 2309 1658 4755 104 15 s D-DTD-1 D-DTD-2 D-DTD-3
[69] RealDrum (20) TechnoDrum (14) WaveDrum (70)

D-DTP ENST-Drums 22391 6451 6722 9218 64 55 s D-DTP-1 D-DTP-2 D-DTP-3
minus-one [87] Drummer1 (21) Drummer2 (22) Drummer3 (21)

D-DTM ENST-Drums 22391 6451 6722 9218 64 55 s D-DTM-1 D-DTM-2 D-DTM-3
accompanied [87] Drummer1 (21) Drummer2 (22) Drummer3 (21)

drum kit but only being interested in a subset of the drum
instruments is a real-world example of this scenario. Therefore,
we use all items contained in the ENST-Drums minus-one
dataset [87]. In order to use this information for DTP
evaluation, we only consider the annotations for KD, SD,
and HH for our performance metrics (see Sect. VII-C).
In contrast to D-DTD, this set does not have training
audio of isolated drum sound events for each recording,
but only for the three different drum kits that have been
used in the recordings. More detailed information about the
content of this dataset is provided in the second row of Table V.

D-DTM: This set is intended to evaluate DTM performance,
i.e., transcription of polyphonic music recordings containing
a variety of melodic instruments in addition to the drum
instruments under observation. This scenario represents
transcription of full song recordings, which is the most
demanding task but also the one with highest applicability
to real-world music data. Again, we use all items contained
in the ENST-Drums minus-one dataset. We combined
accompaniment and drum tracks using a mixing ratio of 1/3
and 2/3, respectively. This ratio is chosen for consistency
with prior work [19], [58], and is reasonable as confirmed by
listening experiments. We can readily re-use the ground-truth
transcriptions of D-DTP since the underlying drum recordings
stay the same. We again focus on KD, SD, HH and interpret
the melodic accompaniment and the additional percussion as
interference making the DTM task the most challenging in
our performance comparison.

As shown in the three rightmost columns of Table V,

all three datasets come with a natural split into three
subsets. For the IDMT-SMT-Drums corpus, the subsets
correspond to the different origins of the drum recordings,
namely acoustic drum kits (RealDrum), drum computers
(TechnoDrum), and drum sampler software (WaveDrum). For
the ENST-Drums corpus, the subsets correspond to three
different session drummers, each one playing an individual
acoustic drum kit. As layed out in Table V, we denote the
individual subsets with the respective dataset name, followed
by the suffix -1,-2, and -3. As an example, the subset named
D-DTP-2 refers to the set of all drum recordings played
by the second drummer in the ENST-Drums corpus. In the
next section, we will explain why these different subsets are
important for our evaluation.

B. Evaluation Strategies

The goal of our evaluation is to compare the attainable ADT
performance of NMF-based and RNN-based systems within
a common evaluation framework. As explained in Sect. V,
all ADT systems employing NMF-variants require informed
initialization of their spectral bases with averaged drum sound
spectra. This step is essential and can be interpreted as some
sort of training stage.
Similarly, all ADT systems employing RNN-variants require a
training stage (see Sect. VI), where a large number of input
feature vectors and target output vectors are presented to the
network to adjust the internal parameters. Moreover, both
families of algorithms belong to the cluster of Activation-Based
Methods (FR, AF, ES), whose output activations have to
undergo an ES stage, which we realize via peak picking. As



2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2830113, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XYZ, NO. XYZ, XYZ 2017 21

described in Sect. IV-C, the identification of peak candidates
also depends on meta-parameters that have to be optimized.
In our evaluation, we follow the established standards used for
evaluating machine learning algorithms. First and foremost,
that means we have to partition the entirety of our data into
disjoint sets used for training, validation, and testing. The
training data is used to optimize the internal parameters of the
selected ADT systems, the validation data is used to optimize
hyper-parameters (i.e., the meta-parameters for peak-picking)
and to prevent overfitting of the DNN models, while the test
data is used to measure the performance on unseen data. Note
that parameters of DNNs (i.e., number of neurons, number of
layers, and activation functions) are kept the same as in their
original publications and are thus not optimized during the
process.
We pursue three evaluation strategies explained in the following
paragraphs. In Table VI, we illustrate how the three strategies
apply to the dataset D-DTD. The same principle then applies
for the remaining two datasets D-DTP and D-DTM, the only
difference being that the datasets need to be swapped.

Eval Random: This strategy evaluates the ADT performance
within the “closed world” of each dataset D-DTD, D-DTP,
and D-DTM individually. In order to maximize the diversity
of the data, all items (regardless of the subset partitions) are
randomly split into non-overlapping training, validation and
testing set.

Eval Subset: This strategy also evaluates the ADT
performance within the ”closed world” of each dataset but
using a three-fold subset cross-validation. To this end, each of
the three subsets (see Table V) is evenly split into validation
and testing sets. The union of all items contained in the
remaining two subsets serves as training data. A single subset
is used for the validation and testing set in order to maintain
sufficient training data.

Eval Cross: This strategy evaluates ADT performance
within the ”open world” and the generalization capabilities of
the systems across the different datasets. To this end, each of
the datasets (in full) is used as the testing data for the systems
trained, using the other two corresponding datasets, in the
Eval Random evaluation strategy.

C. Parameters and Performance Metrics

The FR considered in our evaluation is computed via STFT
with a blocksize of N = 2048 and a hopsize of N

4 = 512.
Since all items have a sampling rate of 44.1 kHz, the frequency
resolution of the STFT is approximately 21.5 Hz and the
temporal resolution is approx. 11.6 ms. As window function,
we use a symmetric Hann-window of size N .
For performance metric, we use the standard F-measure as
discussed in Sect. II-F with a tolerance window of 50 ms. This
choice of tolerance window is consistent with many previous
studies on ADT [69], [74], [78] and onset detection [93]
(see Sect. II-F for more discussions on tolerance window). A

TABLE VI: Summary of the three evaluation strategies applied
to the dataset D-DTD (the same principle also applies for D-
DTP and D-DTM by swapping them). The given percentages
denote random selection of items contained in the respective
dataset or subset. The curly brackets denote the union of the
enclosed subsets.

Evaluation
Strategy

Training Validation Testing

Eval Random 70% D-DTD 15% D-DTD 15% D-DTD

Eval Subset {D-DTD-2, D-DTD-3} 50% D-DTD-1 50% D-DTD-1
{D-DTD-1, D-DTD-3} 50% D-DTD-2 50% D-DTD-2
{D-DTD-1, D-DTD-2} 50% D-DTD-3 50% D-DTD-3

Eval Cross 70% D-DTP 15% D-DTP 100% D-DTD
70% D-DTM 15% D-DTM 100% D-DTD

(a)

RNN tanhB ReLUts lstmpB GRUts SANMF NMFD PFNMF AM1 AM2
0.4

0.5

0.6

0.7

0.8

0.9

1

A
vg

. F
-M

ea
su

re

D-DTD D-DTP D-DTM

(b)

RNN tanhB ReLUts lstmpB GRUts SANMF NMFD PFNMF AM1 AM2
0.4

0.5

0.6

0.7

0.8

0.9

1

A
vg

. F
-M

ea
su

re

D-DTD Eval Random D-DTD Eval Subset D-DTD Eval Cross

Fig. 10: Summary of our evaluation. (a) F-measure for the
ADT task for different datasets and different algorithms using
the Random scenario. (b) The F-measure similar to (a). This
time, however, different evaluation strategies are used with
D-DTD dataset only.

reduction of the tolerance window, as shown in [65], generally
leads to a degradation in performance.

VIII. RESULTS AND DISCUSSIONS

To highlight the essence of our evaluation, Sect. VIII-A
yields a top-down summary of the main findings. Sect. VIII-B
and Sect. VIII-C provide a more detailed discussion. For the
sake of completeness and reproducibility, the table with all
evaluation results can be found on our complementary website9.

A. Results Summary

In Fig. 10a, we assess how well the selected systems can
cope with ADT tasks of increasing complexity. To this end,
we show the average F-measure across our three datasets in
the evaluation scenario Eval Random. This evaluation scenario
provides the most ideal case, in which the training data is
likely to be representative of the test data. As expected, the

9http://www.audiolabs-erlangen.de/resources/MIR/
2017-DrumTranscription-Survey/, last accessed 2017/10/02
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(a) D-DTD with Eval Random (b) D-DTD with Eval Subset

(c) D-DTP with Eval Random (d) D-DTP with Eval Subset

(e) D-DTM with Eval Random (f) D-DTM with Eval Subset
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Fig. 11: Evaluation results (Eval Random and Eval Subset) of dataset (a)(b) D-DTD (c)(d) D-DTP (e)(f) D-DTM

highest results are achieved with the least complex dataset D-
DTD. From the family of RNN-based methods, lstmpB is the
best-performing system with approximately 0.97 F-measure,
i.e., almost perfectly solving the DTD task. From the family of
NMF-based methods, NMFD scores best but falls short of all
RNN-based systems. For the more challenging dataset D-DTP,
the performance of all systems drops, except for PFNMF
variants. Although they do not surpass the RNN-systems,
they seem to have an advantage when dealing with additional
percussion instruments. Finally, for the most challenging D-
DTM dataset, GRUts is the only system that surpasses 0.8
F-Measure. Once again, the performance of all other systems
deteriorates. Only the PFNMF-variants can partly compensate
for the performance drop, with AM1 scoring best among the
NMF-methods.
In Fig. 10b, we assess the generalization capabilities of the
evaluated systems. To this end, we stay with the dataset D-
DTD and sweep through our evaluation scenarios. This dataset
is the simplest among the three, which gives the measure of the
best case scenario. We observe that the RNN-based systems are
quite susceptible to mismatches in the training data. Performing
RNN-training on the Eval Subset data already leads to a slight
decrease. The performance drop is even more pronounced
when the training is based on the Eval Cross data. In contrast,
the NMF-based methods either stay stable or improve their
performance through the different training scenarios. This can
be attributed to the adaptivity inherent to NMF.
It should be noted that we present here the averaged results,
i.e., the Eval Subset training results are averaged over the test
splits of D-DTD-1, D-DTD-2, and D-DTD-3. Likewise, the
Eval Cross training results are averaged over training with
D-DTP and D-DTM. More detailed results are provided in
Fig. 11 to Fig. 12.
Based on the above results, the following trends can be
concluded: First, RNN-based systems generally outperform
NMF-based systems. Even the basic RNN system (included

as a baseline) performs on a par with the other systems in
most cases. Since RNNs exploit the temporal dependencies in
the input data, they have the potential to learn the underlying
structure and temporal context. However, for less challenging
data, NMF-based system may provide competitive results
without requiring a computationally expensive training session.
Second, the margin between the strongest and weakest systems
decreases as the signals get increasingly difficult. This result
indicates the typical vulnerability against the interference of
other instruments that is common for all state-of-the-art systems.
Third, the differences between different training strategies are
less pronounced for NMF-based systems, whereas for RNN-
based systems, the performance drop from Eval Random over
Eval Subset to Eval Cross is noticeable. Since Eval Random
offers more diversity (i.e., more training examples similar to
the ones in the test set), it is expected to be more advantageous
for RNNs. On the contrary, when the test data contains unseen
examples, RNNs become less reliable.

B. Eval Random vs. Eval Subset Results

In Fig. 11a to Fig. 11f, we depict the F-measure scores
achieved across all three datasets. The results obtained via
Eval Random are always presented in the left panels. In that
case, the box plots summarize the statistics of individual results
of KD, SD, and HH. The results obtained via Eval Subset are
presented in the right panels, with the box plots summarizing
the statistics of different subsets.
In Fig. 11a and Fig. 11b, it can be found that the two families
of algorithms react differently under the different evaluation
strategies. In Eval Random the best performing system is
lstmpB; in Eval Subset the best performing system is NMFD.
Additionally, for RNN-based systems, switching from Eval
Random to Eval Subset decreases the overall performances; for
NMF-based systems, however, the result is the exact opposite.
In Fig. 11c, the best performing systems are GRUts and
lstmpB. Similar to the D-DTD dataset, switching from Eval
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Fig. 12: Evaluation results (Eval Cross) of dataset (a)(b) D-DTD with systems trained on D-DTP and D-DTM (c)(d) D-DTP with
systems trained on D-DTD and D-DTM (e)(f) D-DTM with systems trained on D-DTD and D-DTP

Random to Eval Subset , as shown in Fig. 11d, introduces a
noticeable drop in the overall performances for RNN-based
systems; for NMF-based systems, the discrepancy between
the two evaluation strategies is relatively small. An interesting
phenomenon is the steep performance-drop of the RNN-systems
for subset D-DTP-1. This is possibly caused by the special
sound characteristic of the drum kit in that subset, which is
not well reflected in the other two subsets; this may imply the
tendency of overfitting with RNN-systems. NMF-systems, on
the other hand, adapt better on D-DTP-1. This is possibly due
to their ability to separate superimposed sound sources.
In Fig. 11e, the results generally follow the same trend in
Fig. 11c with a slightly inferior performance for all systems.
Note that in Fig. 11f, the combination of dataset D-DTM and
Eval Subset training is used, which represents a challenging
evaluation scheme that is common in previous work [58], [74],
[76], [78]. In this case, the best performing system is lstmpB.
However, the gap between the best performing system and
the others is marginal. Specifically, the NMF-based system
AM2 achieved similar performance as the RNN-based system
lstmpB. Also, the performance drop for D-DTM-1 can be
observed from all systems, showing that additional harmonic
sounds are problematic to both RNN and NMF systems. All
of the systems tend to achieve the highest performance on
KD, may be due to its distinctive frequency range. On the
other hand, all systems have difficulties with SD, this can be
explained by the large spectral overlap between SD and the
melodic instruments in the dataset D-DTM.

C. Eval Cross Results

In Fig. 12a to Fig. 12f, the results for our cross evaluation
strategy are shown. By using each of the datasets D-DTD
D-DTP and D-DTM as test data once, this evaluation strategy
indicates the capability of the evaluated systems to generalize

across different datasets. The error bar represents the standard
deviation across different instruments.
Results using test data from the D-DTD dataset, is shown in
Fig. 12a and Fig. 12b. The best performing system based on
the averaged F-measure is NMFD for both training datasets
D-DTP and D-DTM). Additionally, the differences between
the two training scenarios seem to be small for most of the
systems.
Fig. 12c and Fig. 12d are based on test data from the D-
DTP dataset. When training with D-DTD the best performing
system is ReLUts. When training with D-DTM the best
performing system is GRUts. Comparing these two training
datasets, D-DTM seems to lead to better performances for most
of the systems.
Fig. 12e and Fig. 12f show the results when using test data
from the D-DTM. Not surprisingly, using training data from
D-DTP achieves slightly better results since the drum kits are
the same in both the test and training dataset.
Based on the results, the following observations can be
made. First, while RNN-based systems outperform NMF-based
systems in many cases, the margin becomes small. In the
most challenging case (D-DTM), NMF-based systems actually
achieve a performance comparable to RNN-based methods,
although on a low level. This finding is consistent with the
results in Fig. 11f, in which the RNN and NMF-based systems
performed similarly under the most challenging combination of
evaluation scenario and test data. This indicates the advantage
of the NMF-based systems, which is the generality for unseen
data. Second, most of the systems tend to perform better when
the test data is less complex than the training data. This result
shows the benefits of having data with higher complexity
(i.e., real-world data of polyphonic music), and it also implies
the need for more representative datasets in order to make
further progress in ADT research (see Sect. III-D). Third,
the performance drop from D-DTD to D-DTP and D-DTM
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indicates that all of the systems suffer from the presence of
additional sounds, which could be due to the superimposed
percussive sounds or harmonic sounds in the background.
Further comparison of results between D-DTP and D-DTM
confirms the influence from the harmonic sounds, and the gap
between D-DTD and D-DTM shows that there is still plenty
of room for improvements for all ADT systems.

IX. CONCLUSION

In this survey paper, we provided an up-to-date review of
research in the field of automatic drum transcription over
the last 15 years. This fills up the gap that existed since the
previous survey [6] that had been published a decade ago, and
it also contextualizes modern ADT systems that are based on
the novel matrix factorization and deep learning approaches.
Furthermore, we conducted a systematic evaluation of state-
of-the-art systems on ADT. This evaluation yields a detailed
analysis and comparison between various systems under well-
controlled experimental conditions.

Based on our experiments, RNN-based methods seem to be
the most promising approaches, and they are recommended
when a large and diverse training dataset with high-quality
annotations is available. NMF-based methods, on the other
hand, provide decent performance with only little training data
required; suitable for cases when large training datasets are
not available. Generally speaking, reliable performances can
be expected from the state-of-the-art systems for the DTD
task; for DTP and especially DTM tasks, however, there is still
plenty of room for future improvement.

In the following sections, we identify and summarize
promising future directions in ADT research.

A. More Data

As highlighted in Sect.III-D, having a substantial collection
of high-quality and representative data is the key to the success
of data-driven approaches. ADT research, as one of many
research areas that rely on publicly available data, is also
in need of more data for making further progress. Having
more annotated music available would provide the necessary
diversity and complexity for training models that generalize
well for real-world music recordings. Since creating human-
annotated datasets is a labor-intensive task, an organized and
distributed effort within the ADT research community should
be highly encouraged. Also, as it is a common practice to
record drums into multiple tracks, building multi-track drum
datasets and exploiting the isolated drum information can be
another interesting direction for future ADT research.

B. Public Evaluation

In addition to publicly available datasets, the research
community also benefits from an open evaluation forum for
sharing the latest technological advances, as exemplified by the
Music Information Retrieval Evaluation eXchange (MIREX)
[109]. Despite the continued success of MIREX, ADT is still
a relatively underrepresented task. Recently, ADT research has

seen a steady growth in the MIR community, and efforts have
been made to revive the ADT MIREX task. However, active
participation from the community is vital for the success of
these efforts.

C. More Instruments

So far, most published approaches focus on only the three
main drum instruments, namely the HH, SD, and KD. For
certain applications, a wider range of instruments in the drum
kits (e.g., tom-tom drums, cymbals, or electronic drum sounds),
as well as other drum instruments (e.g., tablas, congas, or other
percussive sounds) would be desirable. In the state-of-the-
art systems evaluated in this paper, such as NMF-based and
RNN-based methods, the extension is conceivable by adding
more templates or neurons to account for extra instruments.
Nevertheless, the viability of the existing methods for these
instruments needs to be further assessed. Also, suitable datasets
would be required in any case, which remains to be an open-
ended issue at this moment.

D. More Dynamic Details

One of the shortcomings shared by most of the state-of-
the-art systems is the ignorance of dynamics of the drum
events. That is, the intensity (or loudness) of a drum event
is usually ignored in favor of the simple and robust binary
representation of the onsets. Activation-based methods provide
curves which tend to be interpreted as onset intensities, but
this information is usually not encoded in the output of the
transcription. Since dynamics has a strong connection to playing
techniques (as described in Sect.III-B) and expressivity, it
would be a reasonable next step for ADT research.

E. Pre/Post-processing Strategies

Intuitively, ADT tasks should benefit from preprocessing
techniques that suppress the irrelevant components and enhance
the target drum sounds. In that regard, source separation
methods (e.g., HPSS [23]) would be an ideal inclusion that
might lead to better suited FR and overall performance.
An example for such techniques is given in [44], where
performance improvements for the AdaMa algorithm could
be achieved when using Harmonic Structure Suppression to
attenuate the influence of pitched instruments on the detection
of KD and SD. However, other studies incorporating similar
ideas report inconclusive results [19]. A common problem
is that suppression of pitched instruments might lead to
additional artifacts that can have a detrimental effect on the
ADT performance.
Additionally, existing ADT systems including NMF-based (see
Sect. V) and RNN-based (see Sect. VI) approaches implicitly
perform source separation during the optimization process
which reduces the need for such preprocessing. Nevertheless,
with the latest developments in source separation techniques
such as the contributions in Signal Separation Evaluation
Campaign for Music (SiSEC MUS10), new strategies that

10https://www.sisec17.audiolabs-erlangen.de, last accessed 2018/04/10
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are optimal for ADT tasks could be worth exploring. For
post-processing, using LMs in ADT seems to be promising
and currently under-explored, but the limitation regarding the
availability of symbolic data should be taken into consideration
(see next section).

F. Integration of Music Language Models

Current state-of-the-art ADT systems mainly focus on
extracting the onset times of the drum events without taking
into account the musical context. Specifically, most of the
state-of-the-art systems are activation-based methods with a
simple peak-picking process as the final step. While achieving
decent results, these approaches do not benefit from high-level
musical information. The integration of LMs (as mentioned in
Sect.II-D) into ADT systems has been proposed in previous
work [53]. However, results so far are below current systems
without LMs. Furthermore, new types of LMs (e.g.,LSTMs)
have not been tested for ADT. This is mainly due to the
fact that the application of common LMs from the automatic
speech recognition domain is not trivial, and large datasets
for both audio and symbolic data for drums are not publicly
available (as mentioned in Sect.II-D). Although the lack of
large training datasets as well as the adaptation of ASR methods
for music are a challenge, the integration of LMs in modern
ADT approaches might be another direction that can potentially
lead to a breakthrough in ADT.

G. Towards Full Transcripts

To obtain a complete transcription in the format of sheet
music, more information, such as tempo, dynamics, playing
styles, or time signatures are required in addition to onset
times. This implies the importance of integrating various MIR
systems to the processing chain of ADT systems in order to
achieve the ultimate goal of full transcriptions. The research
along this direction is still relatively sparse, however, the
importance of this subject will increase as the MIR systems
mature.

ADT is a research topic that is crucial to the understanding
of rhythmic aspects of music, and has potential impact on
broader areas such as music education and music production.
We hope that this paper may serve as reference for continued
research in the field of automatic drum transcription and
automatic music transcription in general, leading towards the
realization of intelligent music systems in the near future.

ACKNOWLEDGMENT

The authors would like to thank Telecom ParisTech for
making the ENST-Drums dataset publicly available and Fraun-
hofer IDMT for making the IDMT-SMT-Drums dataset publicly
available. Christian Dittmar and Meinard Müller are supported
by the German Research Foundation (DFG-MU 2686/10-
1). The International Audio Laboratories Erlangen is a joint
institution of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and the Fraunhofer-Institut für Integrierte

Schaltungen IIS.
This work has been partly funded by the Austrian FFG under
the BRIDGE 1 project SmarterJam (858514).

REFERENCES

[1] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri,
“Automatic music transcription: challenges and future directions,” Jour-
nal of Intelligent Information Systems, vol. 41, no. 3, pp. 407–434,
2013.
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