
Adaptive One-Class Ensemble-based Anomaly
Detection: An Application to Insider Threats

Diana Haidar and Mohamed Medhat Gaber
School of Computing and Digital Technology Birmingham City University Birmingham, United Kingdom

Email: {diana.haidar,mohamed.gaber}@bcu.ac.uk

Abstract—The malicious insider threat is getting increased
concern by organisations, due to the continuously growing
number of insider incidents. The absence of previously logged
insider threats shapes the insider threat detection mechanism into
a one-class anomaly detection approach. A common shortcoming
in the existing data mining approaches to detect insider threats
is the high number of False Positives (FP) (i.e. normal behaviour
predicted as anomalous). To address this shortcoming, in this
paper, we propose an anomaly detection framework with two
components: one-class modelling component, and progressive
update component. To allow the detection of anomalous instances
that have a high resemblance with normal instances, the one-
class modelling component applies class decomposition on normal
class data to create k clusters, then trains an ensemble of k
base anomaly detection algorithms (One-class Support Vector
Machine or Isolation Forest), having the data in each cluster
used to construct one of the k base models. The progressive
update component updates each of the k models with sequentially
acquired FP chunks; segments of a predetermined capacity of
FPs. It includes an oversampling method to generate artificial
samples for FPs per chunk, then retrains each model and adapts
the decision boundary, with the aim to reduce the number of
future FPs. A variety of experiments is carried out, on synthetic
data sets generated at Carnegie Mellon University, to test the
effectiveness of the proposed framework and its components. The
results show that the proposed framework reports the highest
F1 measure and less number of FPs compared to the base
algorithms, as well as it attains to detect all the insider threats
in the data sets.

I. INTRODUCTION

Anomaly detection tackles the rare-class problem by build-
ing a model based only on the normal class label, then
predicting whether acquired new data is normal or anomalous.
This class of anomaly detection algorithms is referred to as
semi-supervised anomaly detection in [1]. However, semi-
supervised classification refers to those techniques that operate
having only a small set of labelled instances along with
a typically larger set of unlabelled ones, regardless of the
assigned class [2]. Thus, in this paper, we use the term
anomaly detection to refer to the one-class machine learning
problem.

The ongoing monitoring and logging of the insiders’ activ-
ities establishes huge useful data sets of information to learn
the normal baseline of behaviour. However, the absence of
previously logged malicious insider threats, among the logs of
normal users’ behaviour in an organisation, shapes the insider
threat detection mechanism into a one-class data mining ap-
proach, namely anomaly detection. The topic of insider threat

detection is getting increased concern by organisations, as a
result of the significant number of malicious insider threats
reported in recent years [3]. These threats are attributed to
insiders; current or former employees, contractors, or business
partners in an organisation, who have privileged access to the
network, system, and data. The risk of the malicious activities
carried by insiders is worth a considerable attention more than
that of outsiders, due to the horrendous costly corruption that
it causes to an organisation. Most of the security mechanisms
implemented in an organisation usually tackle the outsider
attacks (e.g. anti-viruses, firewalls, intrusion prevention and
detection systems), which fortunately reduces the risk of
outsiders. However, the privileges given to insiders make the
detection of the malicious insider threats more challenging.
The users within an organisation are aware of the system
and have authorised access to sensitive information, which,
if disclosed, will result in costly consequences.

The machine learning approaches proposed for detecting
insider threats still have a common shortcoming, which is the
great number of false alarms flagged [4], [5], deceiving the ad-
ministrator(s) about suspicious behaviour of many users. This
consumes a valuable time from the administrator’s schedule,
while investigating the suspected users. On the other hand,
it impacts the level of trust between the suspected users and
their senior executives in an organisation. A recent Real-time
Anomaly Detection In Streaming Heterogenity (RADISH)
system, based on k Nearest Neighbours was proposed in
[4]. The experimental results showed that 92% of the alarms
flagged for malicious behaviour are actually benign. We at-
tribute such high number of False Positives (FPs) to the fact
that previously proposed machine learning methods attempt
to find all suspicious behaviours (instances) associated with
any possible insider threat. However, the focus should be on
detecting one or more instance(s) of malicious behaviour(s)
per threat. Designing machine learning methods with such a
relaxing condition, we argue, has the potential to reduce the
frequent false alarming problem.

Taking into consideration this relaxing condition, and to
tackle this shortcoming of the high number of FPs, in this
paper, we propose an anomaly detection framework that
consists of two components: one-class modelling component,
and progressive update component. First, the role of the one-
class modelling component ramifies to decompose the normal
class data into k clusters, and to train an ensemble of k



base anomaly detection algorithms (One-class Support Vector
Machine –ocsvm– or Isolation Forest –iForest–). Each base
model of the ensemble is trained over one cluster, resulting
in an ensemble of k base models. This allows the detection
of anomalous trapper instances that have a high resemblance
with normal instances, which would not be detected by the
algorithm if trained over the whole normal class data. Second,
the role of the progressive update component is to adapt
the decision boundary of each base model with sequentially
acquired FP chunks. It includes a selective oversampling
method to generate artificial samples for FPs per chunk, with
the aim to reduce the number of FPs.

The proposed anomaly detection framework provides the
following major contributions:
• a class decomposition method on the normal class data

to detect the anomalous trapper instances;
• a progressive update method with sequentially acquired

FP chunks to address the shortcoming of high number of
FPs;

• an outlier-aware artificial oversampling method for FPs to
avoid model overfitting by intelligently adapting decision
boundaries of base models of the ensemble fed with the
synthetically oversampled data; and

• a thorough performance evaluation and a statistical sig-
nificance test of a variety of experiments utilising ocsvm
and iForest, validating the effectiveness of class decom-
position, progressive update, and oversampling, compared
to that of base ocsvm and base iForest.

The rest of the paper is organised as follows. In Section
II, we review the related work on the anomaly detection ap-
proaches, including ocsvm and iForest approaches, for insider
threat detection. In Section III, we propose an anomaly detec-
tion framework, with a detailed description of its components.
In Section IV, we describe the utilised data sets [6], and
we present the experimental setup and the refined versions
of evaluation measures. In Section V, we evaluate a variety
of experiments, to assess the effectiveness of the proposed
framework and its components. Finally, we conclude our paper
with a summary in Section VI.

II. RELATED WORK

The approach to address the insider threat problem depends
on whether the organisation historically collected system and
network logs of the users’ activities. If the data is available, it
would either consist of normal instances, or normal instances
with insider threat instances based on whether insider attacks
previously occurred in the organisation. In this paper, we
focus on the cases when data logs for only normal behaviour
are available. Based on this, the insider threat problem may
be addressed from the perspective of anomaly detection. In
the following, we give the related work on the anomaly
detection approaches for insider threat detection, including the
approaches that utilised ocsvm and iForest.

Zargar et al. [7] introduced a Zero-Knowledge Anomaly-
based Behavioural Analysis (XABA) method that learns each

user’s behaviour from raw logs and network traffic in real-
time. Gates et al. [8] used the structure of the file system
hierarchy and access similarity measure techniques to build
user behaviour profiles and detect anomalous behaviour.

To our knowledge, the ensemble-ocsvm proposed by
Parveen et al. [5] is the only approach that utilised ocsvm
to classify data into normal versus anomalous for detecting
malicious insider threats. It acquires data chunks (e.g. daily
logs) of a continuous data stream, where it learns a new
model for each chunk, and continuously updates the ensemble
with the k models having the minimum prediction error. The
results showed the superiority of ocsvm over two-class Support
Vector Machine (two-class SVM) in terms of detecting threats.
Furthermore, the ensemble-based ocsvm with the updating
stream concept achieves better performance than ocsvm with
no updating. The authors extended their work in a follow-
up paper [9], where the ensemble approach was applied on
unsupervised Graph-Based Anomaly Detection (GBAD). The
ensemble-ocsvm outperformed ensemble-GBAD in terms of
FPs.

A recent framework based on a graph approach and iForest
was presented by Gamachchi et al. [10] to isolate suspicious
malicious insiders from the workforce. The graph approach
extracts graph and subgraph properties based on user activities
as well as time dependent features to generate input for iForest.
iForest then calculates anomaly scores to separate anomalous
behaviour of a user from normal behaviour, without profiling
normal behaviour.

A further recent unsupervised ensemble-based anomaly
detection system named PRODIGAL was presented in [11];
a result of five years work on the insider threat detection
problem [12], [13], [14]. iForest is configured as one of the
user-day detectors in PRODIGAL to detect complex insider
threat scenarios in real user activities.

The above methods have shown merit in addressing the
insider threat detection problem, however, as aforementioned,
they do suffer from high false alarms. In this paper, we design
an approach aiming at false alarm reduction, adopting a num-
ber of proposed methods. Details of the proposed approach
are given in the following section.

III. ANOMALY DETECTION APPROACH FOR INSIDER
THREAT DETECTION

This section identifies the feature space in the insider threat
problem and the categories of the feature set extracted. It
then presents the proposed anomaly detection framework for
insider threat detection, and provides a detailed description of
its components.

A. Insider Threat Feature Space

The first step to tackle the insider threat problem is to
identify the feature space. In this paper, we utilised the
synthetic data sets generated by Carnegie Mellon University
- Community Emergency Response Team (CMU-CERT) [6],
where different malicious insider threat scenarios are simu-
lated. The data sets log the behaviour of users as system and



Fig. 1: Conceptual Framework.

network logs (e.g. logons/logoffs, connecting removable media
devices, copying files, browsing websites, sending emails,
etc.). Based on the literature [4], [15], we extract a feature set
from these logs to represent the baseline of users’ behaviour
including malicious insider threat records. The features used
in this work are categorised in four groups: frequency-based
(frequency of logon, frequency of connecting device); time-
based (logon after work hours, device usage after work hours);
Boolean flag={0, 1} (non-empty email-bcc, email to a non-
employee); attribute-based (browsing a particular URL job
websites, WikiLeaks); and others (number of email recipients,
number of attachments to emails, access to sensitive files based
on file extension).

Based on the identified feature set, we create community
behaviour profiles for users, such that each profile represents
the behaviour of users having the same role (e.g. Salesman, IT
admin) over session slots. A session slot defines the period of
time from start time to end time, such that the behaviour logs
of all users in the community during this period of time are
used to extract the identified features. In this work, the session
slot is defined per 4 hours, so that the feature set associated
to each session slot maps to the community users’ behaviour
logged during the 4 hours from start time to end time.

B. Anomaly Detection Framework

In the following, we introduce the proposed anomaly de-
tection framework with its components. Fig. 1 illustrates
two phases: one-class modelling component, and progressive
update component.

1) One-class Modelling Component: The one-class mod-
elling component acquires training data in the initial modelling
phase. It consists of a clustering component that applies k-
means clustering algorithm on the normal class data in order
to create k clusters. It then trains each cluster on a base
algorithm. The result is an ensemble of a base algorithm over
k clusters, resulting in k models. In this work, we utilised
two highly performing anomaly detection algorithms: ocsvm
and iForest, as base algorithms in the proposed framework
to detect malicious insider threats. We adopted ocsvm and
iForest, because each method has been utilised for insider

threat detection, either as a base algorithm for the proposed
approaches [5], [9], [10], [11], or as a benchmark against
which the performance of a deep learning approach was
compared to its performance [16].

a) Clustering Component: Malicious insiders have au-
thorised access to the network, system, and data, and are
aware of the system management and security policies. These
aspects aid the malicious insider to deceive the detection
system, where some anomalous behaviour may have a high
resemblance with the normal user’s behaviour. This manifests
as local anomalous instances located among normal instances.
To address this issue, we apply class decomposition [17]
on the normal class data. The idea is to decompose the
normal class data into clusters and train a detector per cluster,
giving more opportunity for the detector to identify local
anomalous instances with respect to a cluster which might not
be detected over the whole data. We utilise k-means clustering
algorithm to identify patterns in the normal class data, given
its efficiency.

Let Xt={xt1, xt2, ..., xtm} represent the feature vector at
session slot t, where xtf ; 1 � f � m represents the value of
the f th feature. Let y represent the normal class label. Each
instance (i.e. feature vector) Xt either belongs or does not
belong to normal class y. Let N=Xt ∀t;Xt ∈ y represent
the set of instances which belong to the normal class y. If
we apply k-means clustering algorithm on the set N , then N
decomposes into k clusters. Let C={C1, C2, ..., Ck} represent
the set of k clusters.

Fig. 2 represents the normal instances with blue circles,
and the anomalous instances with squares. Let the solid-line
outer circle represent the decision boundary generated by the
base algorithm over the whole normal data to separate the
normal instances from the anomalous instances. Consider k=2,
so that the normal data instances are grouped into 2 clusters.
We construct an ensemble of k base algorithms and train a
base algorithm on each cluster of the k clusters. Let the dash-
line inner circles represent the decision boundaries generated
by each cluster’s base algorithm. Fig. 2 reveals two types of
anomalous instances defined below:
• Borderline and outlier instances: represented by red filled

squares. Those instances are located at the borderline with
respect to the solid-line outer decision boundary, or are
far outliers; and

• Trapper instances: represented by red empty squares.
Those instances are located in a sparse or dense area of
normal instances.

The borderline and outlier anomalous instances can be
easily detected by one of the aforementioned base algorithms
trained over the whole normal data. However, as shown in
Fig. 2, the solid-line outer decision boundary would not be
able to detect trapper instances. As aforementioned, the trapper
instances are located among normal instances, and therefore
the base algorithm would declare normal instances (e.g. iForest
would not assign a high anomaly score).

To address this issue, we propose to decompose the normal
class data into clusters and to train an ensemble of a base



Fig. 2: Clustering normal instances.

algorithm per cluster. So that the trapper instances can be
identified by the base algorithm(s) as anomalous with respect
to cluster(s). Fig. 2 shows that the dash-line inner decision
boundaries, generated by clusters, can detect the trapper in-
stances located in the disjoint area (i.e. sparse area of normal
instances).

Nevertheless, there would still exist some trapper instances
inside the clusters which may not be detected as positives, due
to their existence in an inner dense area of normal instances.

Upon decomposing the normal training data set into k clus-
ters, the role of one-class modelling component ramifies into
training an ensemble of a base algorithm on the k clusters to
generate k initial models. Let M={M1,M2, ...,Mk} represent
the set of models generated by the ensemble. Each initial
model Mi for Ci; 1 ≤ i ≤ k is then used to detect the
malicious insider threats in the testing data set. The decision
dti for a testing instance Xt with respect to Mi comes in
Boolean form of {True, False}. In case of ocsvm, an instance
Xt either belongs or does not belong to the normal class y.
In case of iForest, Xt is identified as an anomalous instance
if its anomaly score is greater than a defined anomaly score
threshold τ . The parameter τ requires to be tuned as examined
later in Section IV.

After that, the ensemble acquires a set of decisions
Dt={dt1, dt2, ..., dtk} for a testing instance Xt to vote whether
Xt is normal or anomalous. Each decision dti ∈ Dt; 1 ≤ i ≤ k
is taken by a model Mi for a cluster Ci in the ensemble. The
voting mechanism is executed as follows: (1) If dti ∈ Dt votes
for anomalous ∀i (i.e. by all models), then the overall decision
Dt declares Xt as anomalous behaviour, and consequently
flags an alarm warning of a malicious insider threat; (2) If
∃dti ∈ Dt votes for normal, then the overall decision Dt

declares Xt as normal behaviour.

2) Progressive Update Component: The importance of the
insider threat problem requires a continuous monitoring of
the implemented detection system by the system’s adminis-
trator(s). A false alarm is a result of a normal behaviour
detected as anomalous by the system. This maps to normal
instances that have a high similarity with anomalous instances,
thus appear as suspicious events. To address this issue and to
minimise the number of false alarms raised, we introduce the
progressive update component. The role of this component
ramifies to progressively update the detection system with
acquired FP chunks. We define an FP chunk as follows:

Definition III.1. FP Chunk An FP chunk is a segment of
capacity c that accumulates test instances declared as FPs. Let
FPchunks={FP1, FP2, ..., FPc} represent an FP chunk acquired
at sequence s, such that Dt for each FPt ∈ FPchunks; 1 ≤ t ≤
c is predicted as a positive (i.e. anomalous instance) while the
actual class label for FPt is normal. Thus, each FPt is declared
as FP.

Consider, in Fig. 1, the set of blue arrows represent the
testing instances declared as FPs, and each segment of blue
arrows represents an FP chunk acquired sequentially. For ex-
ample, the segment of blue arrows at sequence s=1 represents
FPchunk1. We define c as the capacity (size) of FP chunks;
each FP chunk FPchunks can accumulate c number of FPs.
Fig. 1 illustrates FP chunks of capacity c=3; each FP chunk
accumulates 3 FPs.

The progressive update method relies on the continuous
monitoring by the administrator to investigate whether the
flagged alarms are true or false. Along the run of the detection
system, when an alarm is flagged, the administrator is required
to investigate the suspected user and decide whether it is
a malicious insider threat or a false alarm. In the latter
case, the FP (false alarm) is accumulated into the FP chunk.
This procedure continues until the current FP chunk is full
(i.e. capacity c of FP chunk is reached). The FP chunk is
then fed to the progressive update component to oversample
the FP instances in order to generate artificial samples. The
oversampling component is later described in this section. The
set of FP instances together with the set of artificial instances
are then utilised to update the pre-generated models. Let N
represent the pre-generated set of genuine normal instances,
and let As represent the set of artificial instances generated
for FPchunks. Hence, the pre-generated models are retrained
on R=N∪ FPchunks ∪As. Similarly, this process is repeated
progressively for each accumulated FP chunk.

The rationale behind the progressive update method is not
simply to retrain the models with new instances, however, to
enrich the models with recently detected FPs and synthetically
generated artificial samples close (not replicates) to FPs. So
that the decision boundary in each model adapts to the falsely
detected behaviour and minimises the chances of FPs in the
upcoming testing instances.

The idea of continuous monitoring to investigate flagged
alarms to identify FPs has been applied in [16]. The authors
defined cumulative recall measure based on a daily budget.
The term daily budget refers to maximum number of alarms
an analyst can investigate per day to judge whether it is TP
or FP.

a) Oversampling Component: The method of updating
pre-generated models with FP instances in the FP chunks
may not have a significant influence on the decision boundary.
However, the oversampling of FP instances generates artificial
instances, and enriches the updated model with recently ac-
quired FP instances as well as normal artificial samples. In
this way, the recently acquired normal behaviour of a user or
a community will be well represented, and in turn will trigger



the base algorithm to adapt the model’s decision boundary.
The oversampling component is in charge of generating

artificial samples from the FP instances upon the acquirement
of each FPchunks. The task of allocating the number of
samples to be generated for each FP instance in the FPchunks
depends on the degree of outlierness of each FP instance.
Thus, the number of samples to be generated varies among
FP instances. We utilise a density-based method, namely,
Local Outlier Factor (LOF) [18], to calculate the local outlier
factor (score) lof tN for each FP instance FPt in acquired
FPchunks with respect to the k nearest neighbours from
only the set of genuine normal class instances N . lof tN is
tuned for k=

√
1 + card(N) (thumb-rule), where the radicand

1 + card(N) represents the number of instances utilised to
calculate lof tN . The motivation to integrate LOF to calculate
the anomaly score for FP instances, though iForest can provide
it, is that LOF can be used independently of the base algorithm
(ocsvm or iForest).

Let perclof tN represent the percentile rank for each FPt

compared to the set of normal instances N . In Fig. 3a, we
represent the genuine normal instances N by blue filled circles.
We define two types of FP instances, where each type is
oversampled based on its degree of outlierness lof tN :

• Outlier instance: represented by a solid-line red empty
circle. Each FP instance FPt is considered an outlier
instance, if it has a high lof tN value; located far away
from the genuine normal instances N . For example, if
perclof tN=90, this means that the lof tN for FPt is greater
than 90% of the normal instances N .

• Safe instance: represented by a solid-line blue empty
circle. Each FP instance FPt is considered a safe instance,
if it has a low lof tN value; located at or near the borderline
of genuine normal instances N .

In Fig. 3a, the dash-line red circles represent the artificial
samples generated for FP outlier instances, while the dash-
line blue circles represent the artificial samples for FP safe
instances. The idea is that safe instances are given more
chance to generate artificial samples around them, while the
outlier instances are given less chance. This gives the update
component more conservative control on the adaptation of
the decision boundary. Oversampling more safe instances than
outlier instances safeguards the system from fast movement of
the decision boundary due to outliers. Otherwise, more False
Negatives (FN) (i.e. anomalous instances predicted as normal)
in the upcoming FP chunks.

Let perc.over represent the percentage of artificial sam-
ples to be generated, and let numS=(perc.over/100) × c
represent the number of artificial samples to be generated.
The process of generating artificial samples associated to each
FPt ∈ FPchunks instance is executed feature wise over a
number of iterations.

Recall that xt
′

f represents the value of the f th feature of Xt
′

at session slot t′. Likewise, let ptf represent the value of the f th

feature of FPt at session slot t, given that FPt={pt1, pt2, ..., ptm}.
For each feature f ; 1 � f � m, we find the nearest neighbour

(a) Over two features. (b) Over one feature.

Fig. 3: Artificial oversampling of FP instances.

xt
′

f of Xt′ ∈ N for ptf of FPt. In other words, we search the
set of normal instances N at the level of feature f only, and
we find the closest feature xt

′

f for ptf . At the level of feature f ,
there exists two directions: positive (+ve), and negative (−ve).
Thus, ptf may have (1) only +ve neighbours from the set N ,
(2) only −ve neighbours, or (3) both +ve neighbours and −ve
neighbours. We define the positive (+ve) nearest neighbour as
follows:

Definition III.2. Positive nearest neighbour A +ve nearest
neighbour is the closest xt

′

f of Xt′ ∈ N for ptf of FPt, such
that xt

′

f is located in the +ve direction to ptf .

Similarly, the negative (−ve) nearest neighbour is defined.
Fig. 3b illustrates generating artificial samples of FP instances
over one feature (i.e. one dimension). Let the blue filled circle
represent xt

′

f , the blue empty circle represent ptf , and the
dash-line blue circle represent an artificial feature value atf
associated to ptf . The process of generating an artificial feature
value atf is executed as follows:
• If ptf has only a +ve nearest neighbour at the level of

feature f (Fig. 3b.1), then atf is calculated in the +ve

direction along the segment joining ptf and xt
′

f according
to Eq. 1, such that dir= + 1.

• If ptf has only a −ve nearest neighbour at the level of
feature f (Fig. 3b.2), then atf is calculated in the −ve
direction along the segment joining ptf and xt

′

f according
to Eq. 1, such that dir=− 1.

• If ptf has both a +ve nearest neighbour and a −ve
nearest neighbour at the level of feature f (Fig. 3b.3),
then atf can be calculated in the +ve or −ve direction.
A random direction dir is selected at each iteration, and
atf is calculated in the selected direction dir according
to Eq. 1.

atf=ptf + dir × rand(0 : λ× dist(ptf , xt
′

f )) (1)

Note that λ, tuned for λ=.8, denotes a parameter that
controls the distance permitted to generate artificial features
along the segment joining ptf and xt

′

f . The rationale behind
this is to generate the artificial samples a bit closer to the FP
instances and not the normal instances, so that the adapted
decision boundary is influenced by these samples.

Consequently, an artificial sample At={at1, at2, ..., atf} asso-
ciated to an FPt instance is generated at each iteration. The



TABLE I: Definition of Experiments.

E-ocsvm E-iForest Ensemble
ocsvm-U iForest-U progressive Update
E-ocsvm-U E-iForest-U Ensemble+Update
ocsvm-OU iForest-OU Update+Oversampling
E-ocsvm-OU E-iForest-OU Ensemble+Update+Oversampling

steps described are repeated for a number of iterations until
numS of artificial samples are generated.

IV. EXPERIMENTS

The experiments are conducted on the CMU-CERT data sets
in Windows Server 2016 on Microsoft Azure (RAM 140GB,
OS 64−bits, CPU Intel Xeon E5−2673v3). First, MATLAB
R2016b was used to preprocess the data sets and generate
community behaviour profiles per session slots of 4 hours.
Second, we implemented the experiments in R environment
(R− 3.4.1).

A. Description of the Dataset

For this paper, we used r5.2 data set from the insider
threat data sets generated by CMU-CERT. This data set logs
the behaviour of 2000 employees over 18 months. Unlike
the previously released data sets, the communities in the
r5.2 data set consist of multiple malicious insider threats
which map to 4 different scenarios. Among these employees,
we extracted the data logs for employees belonging to the
following communities: Production line worker (com-P) with
17 malicious insider threats, Salesman (com-S) with 22, and
ITAdmin (com-I) with 12. More information regarding CMU-
CERT data sets [19] and simulated scenarios can be found in
[6].

B. Experimental Setup

In Table I, we define a variety of experiments performed
using the aforementioned anomaly detection algorithms. Each
experiment is set up to ocsvm or iForest base algorithms with
or without the following: ensemble method, progressive update
method, and oversampling method. To evaluate the methods,
we performed 10 fold cross-validation on each of the utilised
communities.

The experiments are tuned for different values of param-
eters. ocsvm is evaluated for the kernel values: Linear L,
Polynomial P , and Radial R. On the other hand, iForest
is evaluated for different values of anomaly score threshold
τ={.35, .4, .45}, given the number of iTrees nt=20 and the
subsample size psi. Note that no anomalous instances were
isolated for τ > .5 over the utilised CMU-CERT data sets.
This reflects the complex patterns of malicious insider threat
behaviour in the data set, and the high resemblance of anoma-
lous behaviour with normal behaviour. Although the authors
in [20] pointed out the efficiency of subsampling, psi is tuned
for the whole sample size without extracting a subsample of
the data set. It is either set up to card(N) over the whole
normal training data set, or to card(Ci) over each cluster in
the ensemble case. The rationale of using the whole sample
size in both cases is related to the progressive update method.

It assures that all the FP instances in the progressively acquired
FP chunks are used to update the iForest model.

Regarding the ensemble method, we tuned the number
of clusters k over a set of arbitrarily chosen small values
k={2, 4}, as the goal is to detect the anomalous trapper
instances. However, the results for only k=2 are reported,
due to revealing better performance than k=4. The capacity
of FP chunks is tuned over the values c={20, 40, 60, 80, 100}
to evaluate the effectiveness of updating the model with
early-acquired-early-updated FPs. Regarding the oversam-
pling method, the oversampling percentage is tuned for only
perc.over=200 to test the influence of applying oversampling
to the FP chunks on progressive update method.

C. Evaluation Measures

The ultimate aim of the proposed framework is to detect
all the malicious insider threats, while minimising the number
of FPs. We utilised the following measures to evaluate the
experiments. First, we define default versions of measures
that are evaluated per instance (behaviour): FP designates the
number of normal instances (behaviours) that are detected as
anomalous instances. FP is evaluated with respect to the whole
testing set (not per chunk); and TN designates the number of
normal instances predicted as normal.

Second, we define refined versions of measures that are
evaluated per threat: TPT is used instead of TP to evaluate
the number of threats detected by the system among all the
PT malicious insider threats. TPT is incremented if at least
one anomalous instance (behaviour associated to the threat)
is predicted as anomalous; and FNT is used instead of FN
to evaluate the number of insider threats not detected. Note
that the rationale behind introducing refined versions of some
measures is related to the ultimate aim of the framework,
which is to detect all threats (not necessarily all behaviours),
but to minimise FPs (all false alarms).

As a result, the F1 measure is defined based on the values
of the above defined measures. Note F1 is not close to 1 due to
the use of refined versions of some measures, but this does not
reflect low performance. However, knowing that the maximum
TPT (evaluated per threat) is much less than the minimum FP
(evaluated per behaviour), the defined F1 measure closer to
0.5 reveals significant performance.

V. RESULTS AND DISCUSSION

In this section, we present the results of ocsvm experiments
and iForest experiments in terms of the pre-defined evaluation
measures. We then show the merit of the proposed framework
according to the following objectives:
• Testing the statistical significance of the results using

Wilcoxon Signed-Rank Test;
• Comparing ocsvm experiments and iForest experiments;
• Assessing the influence of the proposed components on

the framework; and
• Assessing the time efficiency of the progressive update

component.



A. Results

Fig. 4 presents the variation of F1 measure as a function of
FP chunk capacity c for ocsvm and iForest based experiments
over the communities. The results are reported with respect to
kernel values and anomaly score threshold τ values for ocsvm
based experiments and iForest based experiments respectively.
Tables III and IV present the minimum FP and the maximum
TPT attained respectively for ocsvm and iForest based ex-
periments over communities. It reports kernel and FP chunk
capacity c associated to the minimum FP and maximum TPT
attained for ocsvm based experiments. On the other hand, it
reports anomaly score threshold τ and c associated for iForest
based experiments. This allows to identify the superior kernel
or τ , and to analyse the influence of FP chunk capacity c on
the progressive update method.

1) ocsvm Experiments: Over com-P, ocsvm-U outperforms
ocsvm as well as all other ocsvm based experiments in terms
of F1 measure, FP, and TPT . ocsvm-U achieves the maximum
F1=0.261;L while reducing the false positives to the minimum
FP=76;L compared to FP=106 in ocsvm. Knowing that PT=17,
ocsvm-U detects all the malicious insider threats TPT=17;P
without missing any threat.

Over com-C, E-ocsvm-U and E-ocsvm-OU report better
performance ∀kernel, where E-ocsvm-U achieves the max-
imum F1=0.318;P with the minimum FP=89;P compared to
FP=120 in ocsvm. E-ocsvm-OU follows it with F1=0.300;L
and FP=90;P. However, E-ocsvm-U attains the maximum
TPT=22;P out of 22, unlike the latter which missed one threat.

Over com-I, E-ocsvm-U reports the best performance in
terms of all measures compared to other ocsvm based experi-
ments. It achieves the maximum F1=0.246;P, while minimising
the number of false positives to FP=52;P knowing that FP=149
in ocsvm. Furthermore, it attains TPT=12 out of PT=12 (same
TPT for other experiments).

2) iForest Experiments: Over com-P, E-iForest-U and E-
iForest-OU gave a significant boost to F1 measure for τ=.45,
where it reaches F1=0.365,0.337 respectively. E-iForest-U
reduces the number of false positives to the minimum
FP=50; .45, however, it detects TPT=16; .35, thus missing one
threat. On the other hand, E-iForest-OU reaches a minimum
FP=57; .45, while detecting all the malicious insider threats
TPT=17; .35.

Over com-C, E-iForest-U reports the best performance in
terms of F1 and FP compared to other iForest based experi-
ments. It achieves the highest F1=0.422; .45, and the minimum
FP=49; .45. However, it reports TPT=21; .35, thus missing the
detection of one malicious insider threat. It is worth to note
that the iForest based experiments with oversampling method
(with or without the ensemble method) attain to detect all the
threats for τ=.35

Over com-I, E-iForest-U shows s significant performance in
terms of all measures. It achieves the maximum F1=0.358; .45,
while minimising the number false positives to FP=43; .45. It
also attains the maximum TPT=12;∀τ (same TPT for other
experiments).

TABLE II: Wilcoxon Signed-Rank Test at .05 significance level.

E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

0.1073 6.101e-09 8.243e-06 8.587e-07 1.687e-06

E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

0.2719 1.945e-04 4.104e-08 0.1165 1.986e-05

B. Statistical Significance: Wilcoxon Signed-Rank Test

To test the significance of the results, we use Wilcoxon
Signed-Rank Test which compares each pair of experiments.
Each ocsvm based experiment and iForest based experiment
is compared with base ocsvm and base iForest respectively.
Table II tabulates the p-value calculated for each experiment at
.05 significance level. With respect to ocsvm, all ocsvm based
experiments, except E-ocsvm (0.1073 > .05), are significantly
different from base ocsvm where p-value < .05. With respect
to base iForest, all iForest based experiments are significantly
different from base iForest, except for E-iForest and iForest-
OU. The results were predictable, because both E-ocsvm and
E-iForest show low performance in terms of the evaluated
measures.

C. Comparing ocsvm Experiments and iForest Experiments

Finally, it is noteworthy that base iForest flagged a lower
number of false alarms and reported a higher F1 measure
compared to base ocsvm. Moreover, the best performing
iForest based experiments over each community achieved
the minimal FP compared to ocsvm based experiments. For
instance, E-iForest attains the minimum FP=50; .45, 20, while
ocsvm-U attains FP=76;L, 40, compared to FP=106 in base
ocsvm over com-P. Over com-S, E-iForest-U reaches the
minimum FP=49; .45, 20, while E-ocsvm-U and E-ocsvm-OU
attain FP=89;P, 60 and FP=90 respectively. And lastly, E-
iForest-U achieves the minimum FP=43; .45, 20, compared to
FP=52;P, 20 in E-ocsvm-U over com-I. It is apparent that
ocsvm works better for kernel={L,P}, and iForest shows its
best performance for τ=.45. Moreover, the less the capacity
(size) c of FP chunk, the better the performance of the
progressive update method. This emphasises the effectiveness
of updating the model with early-acquired-early-updated FPs
in minimising the number of FPs.

On a side note, the ensemble-ocsvm approach proposed by
Parveen et al. [5] reports a percentage of FP rate (%FP=30%).
However, our framework reports approximately the half, where
%FP varies between (14%-18%) over all the utilised commu-
nities.

D. Influence of Proposed Components on the Framework

Based on the above extensive experiments carried out to
evaluate the influence of the different components on the
proposed framework, we sum up what follows. ocsvm-U, E-
ocsvm-U, and E-ocsvm-OU outperform other ocsvm based ex-
periments in terms of F1 measure, FP, and TPT ∀ communities.
On the other hand, E-iForest-U and E-iForest-OU outperform
iForest based experiments ∀ communities.



(a) com-P.

(b) com-S.

(c) com-I.

Fig. 4: The variation of F1 measure as a function of FP chunk capacity c for ocsvm and iForest based experiments over communities.

TABLE III: Minimum FP over Communities.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 106 L 97 L 76 L,40 88 L,20 83 L,60 95 L,80
com-S 120 R 90 P 99 L,20 89 P,60 109 P,20 90 P,20
com-I 149 R 100,{L, P} 146 R,{20, 40} 52 P,20 132 P,20 97 P,20

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 88 .45 66 .45 85 .45,∀c \ 100 50 .45,20 84 .45,40 57 .45,20
com-S 85 .45 73 .45 82 .45,{20, 100} 49 .45,20 78 .45,100 70 .45,20
com-I 80 .45 69 .45 68 .45,60 43 .45,20 72 .45,60 53 .45,20

TABLE IV: Maximum TPT of Detected Insider Threats over Communities.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 17 P 16 R 17 P,∀c 16 R,∀c \ 20 17 P,∀c 16 R,∀c
com-S 22 P 21 R 22 P,∀c 22 P,{20− 40} 22 L,{20, 60} P, 80 21 R, ∀
com-I 12 ∀kernel 12 R 12 ∀kernel,∀c 12 R,∀c 12 ∀kernel,∀c 12 P, 20 R,∀c

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 16 .35 16 .35 16 .35,∀c 16 .35,∀c 17 .35,{20− 60} 17 .35,20
com-S 21 .35 21 .35 21 .35,∀c 21 .35,∀c 22 .35,∀c \ 60 22 .35,∀
com-I 12 ∀τ 12 ∀τ 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c

The importance of the clustering component and the pro-
gressive update component as a whole is quite evident, where
the number of FPs reached its minimal in experiments which
utilised the ensemble method and the progressive update
method with FP chunks (e.g., E-ocsvm-U, E-ocsvm-OU, E-
iForest-U, E-iForest-OU). We deduce that the effectiveness of
the proposed framework relies on the joint collaboration of
both components. The use of the clustering component solely,
in E-ocsvm and E-iForest, did not improve the performance
significantly in terms of the evaluated measures. The Wilcoxon
test supported this as revealed in Table II. However, the
joint use of progressive update method with ensemble method
showed outstanding performance in terms of minimising the

number of FPs significantly and achieving higher F1 measure.
Furthermore, we can infer, from Table IV, the support of

the oversampling method in detecting all the malicious insider
threats over all communities without missing any threat. It is
quite remarkable that E-ocsvm-OU and E-iForest-OU show
competitive performance to E-ocsvm-U and E-iForest over
com-S and com-P respectively. This reveals the potential of
the oversampling component.

E. Time Efficiency of Progressive Update Component

Regarding the time complexity, the merit of the proposed
progressive update method is its time efficiency. Let tas
represent the time to accumulate an FPchunks. We hypoth-
esise that the time to update the ensemble models with the



current FPchunks is much less than the time to accumulate
FPchunks+1 (tas+1). This ensures that the progressive update
of the models is synchronised with the accumulation of
sequentially acquired FP chunks.

Recall that, an instance Xt from the acquired test instances
is accumulated in the FP chunk, if Xt is declared FP. The
FP chunk is progressively accumulated until the capacity
c is reached. Hence, the time to accumulate an FP chunk
FPchunks+1 actually depends on, (1) n: number of acquired
test instances after FPchunks until capacity c of FPchunks+1

is reached, and (2) slot: period of a session slot for a test
instance. Analytically, tas+1=n× slot.

Consider c=20 and slot=4 hours. If n=20, this means
that c=20 FPs are accumulated in FPchunks+1 after 20 test
instances are acquired. Thus, ALL the n acquired test instances
are actually FPs. In this case, tas+1=20×4=80 hours (approx-
imately 3 days). This case represents the worst case scenario,
where the next FPchunks+1 is accumulated while 80 hours
(3 days) are available to update the models with the current
FPchunks. 80 hours is more than enough to update the models
using any state-of-the-art cloud facility. Nevertheless, it would
require much less than 80 hours. Hence, the hypothesis is
verified.

In the aforementioned worst case scenario, the progressive
update is required to run after 80 hours. However, in a typical
scenario where an FP chunk is accumulated after n > c
number of test instances is acquired, the progressive update
will run much less frequently.

VI. CONCLUSION

The malicious insider threats are getting increased concern
by organisations, due to the continuously growing number
of insider incidents. A common shortcoming in the proposed
detection approaches is the high number of FPs. In this paper,
we address this shortcoming based on the availability of only
data for normal behaviour, with no previously logged insider
incidents.

We propose an adaptive one-class ensemble-based anomaly
detection framework with a progressive artificial oversampling
method of FPs in class decomposed data. First, a class
decomposition method clusters the normal class data, so that
an ensemble of k base algorithms (ocsvm or iForest) is trained
over the clusters. This allows to detect anomalous trapper
instances. Second, a progressive update method updates the
pre-generated models with progressively acquired FP chunks.
This allows the models to benefit from already declared FPs, in
order to reduce FPs in upcoming data. Third, an oversampling
method is integrated to progressively enrich the models with
artificial samples of FPs.

We evaluate the proposed framework in a variety of ex-
periments (with and without: class decomposition/progressive
update/oversampling) using ocsvm and iForest. The results
show the influence of each method on the performance in
terms of higher F1 measure, lower FP, and detecting all
malicious insider threats. Moreover, iForest based experiments
report a better F1 and a lower FP compared to that of ocsvm.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] X. Zhu, “Semi-supervised learning,” in Encyclopedia of machine learn-
ing. Springer, 2011, pp. 892–897.

[3] J. R. Nurse, P. A. Legg, O. Buckley, I. Agrafiotis, G. Wright, M. Whitty,
D. Upton, M. Goldsmith, and S. Creese, “A critical reflection on
the threat from human insiders–its nature, industry perceptions, and
detection approaches,” in International Conference on Human Aspects of
Information Security, Privacy, and Trust. Springer, 2014, pp. 270–281.

[4] B. Böse, B. Avasarala, S. Tirthapura, Y.-Y. Chung, and D. Steiner,
“Detecting insider threats using radish: A system for real-time anomaly
detection in heterogeneous data streams,” IEEE Systems Journal, 2017.

[5] P. Parveen, Z. R. Weger, B. Thuraisingham, K. Hamlen, and L. Khan,
“Supervised learning for insider threat detection using stream mining,”
in 2011 IEEE 23rd International Conference on Tools with Artificial
Intelligence. IEEE, 2011, pp. 1032–1039.

[6] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach
to generating insider threat data,” in Security and Privacy Workshops
(SPW), 2013 IEEE. IEEE, 2013, pp. 98–104.

[7] A. Zargar, A. Nowroozi, and R. Jalili, “Xaba: A zero-knowledge
anomaly-based behavioral analysis method to detect insider threats,” in
Information Security and Cryptology (ISCISC), 2016 13th International
Iranian Society of Cryptology Conference on. IEEE, 2016, pp. 26–31.

[8] C. Gates, N. Li, Z. Xu, S. N. Chari, I. Molloy, and Y. Park, “Detecting
insider information theft using features from file access logs,” in
European Symposium on Research in Computer Security. Springer,
2014, pp. 383–400.

[9] P. Parveen, N. Mcdaniel, Z. Weger, J. Evans, B. Thuraisingham,
K. Hamlen, and L. Khan, “Evolving insider threat detection stream
mining perspective,” International Journal on Artificial Intelligence
Tools, vol. 22, no. 05, p. 1360013, 2013.

[10] A. Gamachchi, L. Sun, and S. Boztas, “Graph based framework for
malicious insider threat detection,” pp. 2638,2647, 2017.

[11] H. Goldberg, W. Young, M. Reardon, B. Phillips et al., “Insider threat
detection in prodigal,” in Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[12] E. Ted, H. G. Goldberg, A. Memory, W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, E. Chow et al., “Detecting insider
threats in a real corporate database of computer usage activity,” in
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1393–1401.

[13] W. T. Young, H. G. Goldberg, A. Memory, J. F. Sartain, and T. E.
Senator, “Use of domain knowledge to detect insider threats in computer
activities,” in Security and Privacy Workshops (SPW), 2013 IEEE.
IEEE, 2013, pp. 60–67.

[14] W. T. Young, A. Memory, H. G. Goldberg, and T. E. Senator, “Detecting
unknown insider threat scenarios,” in Security and Privacy Workshops
(SPW), 2014 IEEE. IEEE, 2014, pp. 277–288.

[15] P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Automated
insider threat detection system using user and role-based profile assess-
ment,” IEEE Systems Journal, 2015.

[16] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” 2017.

[17] R. Vilalta, M.-K. Achari, and C. F. Eick, “Class decomposition via
clustering: a new framework for low-variance classifiers,” in Data
Mining, 2003. ICDM 2003. Third IEEE International Conference on.
IEEE, 2003, pp. 673–676.

[18] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM sigmod record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[19] C. M. U. CERT Team, “Cmu cert synthetic insider threat data sets,”
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099,
[Online; accessed 04-April-2018].

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 2008,
pp. 413–422.


