
 

Abstract—Establishing a root-of-trust is a key early step in 

establishing trust throughout the lifecycle of a device, notably by 

attesting the running software. A key technique is to use 

hardware security in the form of specialised modules or 

hardware functions such as TPMs. However, even if a device 

supports such features, other steps exist that can compromise the 

overall trust model between devices being manufactured until 

decommissioning. In this paper, we discuss how blockchains, and 

smart contracts in particular, can be used to harden the overall 

security management both in the case of existing hardware-

enhanced security or when only software attestation is possible. 

I. INTRODUCTION 

NY aspect in security will in some way and at some point 

be tied to a chain of trust whereby the trust of the overall 

process or system is as secure as its weakest link. For 

example, in any key management scheme, key storage and 

distribution is typically the most complex step and requires a 

number of assumptions. Smart devices and the Internet-of-

Things (IoT) add the new challenge of location considering 

that many use-cases include a device on untrusted premises 

and physically accessible. A smart thermostat at home is a 

straightforward example: one can only trust the hardware and 

the software it runs as long there are guarantees nobody had 

physical access to it in the past and there are no software 

vulnerabilities that can be remotely exploited. This brings us 

to hardware-enhanced software security. The only way, 

arguably, of verifying (or attesting) the current software image 

it is using is by means of special hardware functions such as 

processors using Trusted Execution Environments or a 

dedicated cryptographic module, e.g., Trusted Platform 

Module (TPM) from TGC [1].  

A typical TPM offers a number of basic cryptographic 

services directly embedded in electronics. For example, it can 

hold in isolation, directly in the hardware microelectronics, a 

set of keys and is able to perform de/encryption of messages 

without the keys ever being exposed. Another service is a 

persistent memory that can hold, for example, signatures of 

the software that is used to boot the device while disabling key 

parts of the hardware until the verification is complete. 

Combining such features, a strong root-of-trust is established 

in the sense that, if one is able to securely associate such 

isolated keys to a physical device throughout its lifecycle, one 

can be sufficiently sure any underlying security process or 

protocol has not been compromised. 

There is however two aspects that weaken this chain of 

trust. On one hand, devices almost never work in isolation 

and, in a typical IoT use-case, there will be some gateway 

nearby the device and further services provided by a Cloud, 

generally speaking. Further, not all devices will have an on-

board TPM or similar hardware-based functions. This could 

be, for example, due to cost, complexity or constraints on 

resources. The second fact that weakens the chain of trust is 

the handling of the device from factory until activation. 

Commissioning a remote device needs a trusted process in 

itself which, again, is based on more or less weak 

assumptions. For example, the device needs to arrive in a 

trusted state (trusting the supply chain), then provisioned 

(typically involving creating keys) and finally be attested at 

least once immediately before being activated for production. 

On the other hand, the device also needs to trust what it is 

receiving from the Cloud counterpart. Striking examples is 

receiving firmware updates or the device being an actuator and 

receiving commands. This is a simpler problem as, typically, 

there is no limitation of resources and hardware security is 

available. Furthermore, and central to this paper, whereas 

devices need to be assumed to operate from an untrusted 

location, one can expect the cloud infrastructure to be 

physically secure and subject to structured security workflows. 

This paper discusses such chains of trust for 

smart/embedded devices and discusses the use of blockchain 

technologies, and Smart Contracts, to mitigate such 

weaknesses. Our strategy is to use Blockchains’ immutability 

and auditing properties and use them in secure attestation, 

verification and overall management. Specifically, we propose 

a scheme that offers two features. First, we use smart contracts 

to provide an emulation of hardware cryptographic services 

similar to a remote and virtual TPM. In an extreme case, one 

can verify the device has not been tampered with but at the 

cost of making the device unusable until manual and 

comprehensive verification or re-provisioning. The second 

feature of our scheme is that we use the underlying blockchain 

to provide a secure message bus over which devices and cloud 

can communicate sensitive information such as public keys. 

In Section II we review key concepts of hardware and 

firmware security and the concept of Smart Contracts over 

Blockchains. In Section III we lay out our Device and Threat 

models and we align with the common lifecycle of a device. In 

Section IV we discuss our approach to the problem that we 

evaluate in Section V. Section VI concludes our paper and 

discusses future work. 

II. BACKGROUND AND RELATED WORK 

In this section we review related work on Trusted Software 
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and Smart Contracts in the context of Internet-of-Things. 

A. Trusted Software 

Hardware-enhanced trusted software execution has seen 

different proposals [2] that range in complexity, typically 

categorized by the ability of only performing attestation 

functions or the ability to run complex software in an isolated 

environment. TPMs is one of such and are a technology 

standardized by the Trusted Computing Group [1]. It has been 

used in many areas but with mixed adoption since whereas 

virtually all cloud servers, many laptops and mobile phones 

have one, embedded devices such as those used in Wireless 

Sensor Networks (WSN) or IoT do not, for cost or 

implementation complexity reasons. TPMs can be used in any 

task that relies on handling secret material, such as 

authentication [3][4]. Whenever there is no TPM available, a 

root-of-trust needs to be established in other ways [5] even if 

the trust level may be reduced [6]. Alternatives include 

software-based attestations such as the one proposed by 

Seshadri et al [7] that relies on loading trusted software in 

memory and sending a signed footprint to an external verifier. 

Software attestation is however challenging to implement in 

practice and often depends on the specific architecture of the 

device to be feasible [8]. 

Note, however, that, when looking at the workflow and the 

device lifecycle, secure management of keys still shows gaps 

even with hardware security. A good example is that a manual 

enrolment phase (such as simply connecting a cable) is 

typically required where keys and secure boot measurements 

(cryptographic hashes) are attested and recorded to build a 

baseline and used in later comparison. This verified binding 

between cryptographic material, identity and function of the 

device is part of the problem we address in our paper using 

Smart Contracts. 

B. Blockchains and Smart Contracts in IoT 

Blockchains are a recent technology that cleverly enables 

trustless, distributed and open verification applications by, 

normally, heavily using computing power. In its original form 

(seen in Bitcoin), data is stored in blocks, which are linked 

together using strong cryptography as they are created, thus 

forming a chain of records whose immutability increases as 

new blocks are added. Every new set of records, or a block, is 

verified by many nodes (the consensus layer) and subject to a 

resource-intensive cryptographic process (mining) that is 

similar to brute-forcing a hash thus providing strong 

assurances that, after enough time elapsed (several blocks of 

data and concatenated hashes), the data cannot be changed. 

Smart Contracts take this concept further by allowing not only 

records but also code to be executed. In its original form, data 

and code is publicly auditable. Since the information is open 

and tamper-resistant, the system is trustless since any 

unauthorized or unexpected modifications, at the time of 

submission, are visible to every participant. Applications to 

IoT and trusted execution are thus immediate [8] and they 

include enhanced security, privacy and identity [10], 

verification of the supply chain [8], distribution of firmware 

updates (taking advantage of both assurances of integrity and 

distributed topology of nodes) [11][12] or enhancing trust in 

Industrial IoT [12] or coordinating business workflows as in 

electricity co-generation [14].  

To the best of our knowledge, this is the first work 

exploring the use of Smart Contracts in designing generic 

hardware-emulated, security services, joining trusted and 

untrusted software, and using Blockchains as a trusted 

communication channel. In other words, we aim at using 

Smart Contracts to either enhance or create Roots-of-Trust. 

Boudguiga et al [12] and Novo [15] propose architectures to 

perform a specific task such as verification of IoT updates or 

performing access control, typically by designing a blockchain 

architecture with which nodes will fully integrate instead of 

using it as service. Further, they do not use smart contracts and 

use the blockchain as immutable and verifiable storage in a 

custom blockchain architecture. A similar proposal is the case 

of Machado and Frohlich [17], but using smart contracts and 

different consensus algorithms, who propose an integrity 

verification architecture based on blockchains and fit for IoT, 

constrained devices and real-time applications. Wu et al [16] 

discuss a related problem of using a blockchain as an out-of-

band communication channel, a concept we also use, but for 

authentication. 

III. THREAT MODEL 

For end-to-end and continuous trust, the device must be 

secured across all stages in its lifecycle. We start by 

introducing a generic threat model that is aligned with a 

general lifecycle. We then discuss the requirements our 

approach expects to meet along with identifying limitations 

and in the next section we elaborate on our proposals. 

A. Device Lifecycle 

We start by considering a generic lifecycle of devices. This 

allows to extract a threat model and design our architecture 

and smart contracts. We assume a device goes through the 

following stages, from manufacturing to disposal: 

1. Factory – the device is manufactured and an early 

firmware (or bootloader) is installed. This first layer of 

firmware which, beyond accessory functions (such as 

power-on tests), is the software component that will 

load further components up to an Operating Systems 

and user applications. Being the first software layer, it 

must support and undergo full verification as all further 

verifications will depend on it. 

2. Supply Chain Handling – The device is then physically 

distributed and may be handled by several parties until 

it arrives to the last owner (e.g., end user or service 

manager). There may be the case where other parties 

install a new firmware that needs to be also verified by 

the end user. 

3. Commissioning – The device may be now configured, 

physically installed, provisioned and integrated with 

the cloud at its final location. All these steps may be 

remote or by an end-user. Physical attacks are possible.  

The device is further registered and integrated with a 



 

Cloud service. This requires, at least, verification of 

firmware, generation of root keys and (possibly) a 

unique identifier for the device. Note that, for the 

verification part, it is desirable to commission a device 

remotely with little or no local effort and allowing for 

device/user unlinkability, similar to Intel’s SDO 

approach [18] that uses group keys instead of per 

device. 

4. In-Service – The device is now ready to send and 

receive data or commands. At this point, both hardware 

and software needs to be verified and protocols used 

should be secure. 

5. Maintenance – The device undergoes maintenance 

stages such as software updates and reconfigurations. 

Note this stage repeats in time and interleaves the In-

Service stage. 

6. Decommissioning – the device is removed from service 

and is disposed, reinstalled or repurposed. 

 

Considering these stages, a hardware-based attestation, such 

as a TPM, is invaluable to effectively create a state of trust 

over which trust in all other dependencies can be built on. 

There are however aspects that a TPM cannot address. 

Furthermore, as discussed, it is not possible to have a TPM on 

every device so other scenarios and solutions need to be 

considered, up to accepting service from untrusted hardware. 

The next subsection presents a list of threats per stage in the 

lifecycle of the device. 

B. Threat Model 

The key threats are the following: 

1. The device was compromised during manufacturing, 

which includes hardware trojans or modified firmware. 

2. Taking advantage of physical access to the device, it is 

modified during handling across the supply chain or in 

later phases which includes the end-user.  

3. A different device altogether was delivered. 

4. During commissioning or maintenance, the device is 

installed using compromised software.  

5. Illegitimate modification of the software by a 

legitimate user because of physical access after being 

installed. 

6. Insecure management of secret material during 

Commissioning phase such as keys and identity of the 

device were correctly generated by a legitimate party 

but storage and/or transmission was insecure. 

7. Data received may not be from the device or may have 

been intercepted or modified in-flight. 

8. Device receives data from malicious parties that are 

able to spoof the cloud services which includes 

compromised firmware and configurations. 

 

Other threats may be considered (e.g., privacy, access 

control or availability) but the problem we tackle is, simply 

speaking, about authenticity and integrity. Furthermore, note 

we’re considering the two directions: both device and cloud 

exchange data that needs to be trusted data. 

IV. SCENARIOS 

In this section we describe our approach to use smart 

contracts to establish roots-of-trust. We start by considering 

three types of devices: (i) with a TPM, (ii) without a TPM but 

supporting tamper-detection and (iii) software-based 

attestation. We then elaborate on how smart contracts can 

enhance trust using three representative scenarios in the 

lifecycle of a device: (i) bootstrapping a newly manufactured 

device, (ii) software-attesting a device with no TPM but 

supporting tamper-detection after installation at an untrusted 

location and (iii) a smart meter reading. We then discuss our 

assumptions and the effectiveness of the approach. 

In the diagrams, we use the following notation: 

• a dashed line means detection of new state, after the 

blockchain consensus layer converged 

• Solid lines require interaction with the blockchain, thus 

changing the state of the contract 

• Changing the state of contract needs a public and 

private key pair (where the public key is often the 

address and identity of the device interfacing the 

contract) and an address of the contract itself. These are 

configurations that need to be present at the device 

from the beginning 

• We denote encryption of data with key key by 

key[data]. 

 

A. Bootstrapping a device 

We start by looking at a device that has just been 

manufactured, in terms of hardware, and is ready to be 

packaged and sent to either the final customer or to another 

party that will further configure or install software. We 

assume the device has, at this early stage, a firmware able to 

participate in attestation and tracking actions. We further 

assume the device has been configured with means to interact 

with a smart contract such as keys, an address, a whitelist of 

blockchain nodes and perhaps a token or cryptocurrency. 

See Figure 1. At this stage, the device actions two different 

contracts. The first contract supply_chain, which must be 

pre-existing and mutually managed between the manufacturer 

and any owners of the device, will track its journey and 

modifications until arriving the final location. The second 

contract, device, is created on-the-fly by the device and will 

track its authenticity and integrity. Note that, depending on the 

attestation method, it may not matter whether the device has 

the right firmware or configuration. If the device fails any 

verification, it is not accepted into its final use. The two 

contracts are expected to be linked but only at the beginning 

so the address of device can be found. 

The device checks-in for the first time with a factory 

identifier that we are calling here sn (thinking of a serial 

number). The Cloud counterpart, here representing any server 

infrastructure on the side of the (future) owner of the device, 

will detect a new device (denoted by a dashed line) once their 

blockchain nodes synchronise. Note this is not a directed 

message. The device will also register a public key (or a full 



 

certificate, simply represented by pubD) for future private 

communications as will show and unique ID, guid. All these 

elements are generated locally by the device, either using a 

TPM or running normal software and the public elements are 

then published by executing a method in the smart contract 

running in the blockchain. 

The device is now ready to be verified and steps that require 

traceability are communicated using the blockchain. The 

Cloud also publishes its certificate (cert). At this stage, both 

device and Cloud have each other’s identity. The Cloud 

requires now an attestation to which the device confirms by 

sending a message directly. The firmware location (fwLoc) is 

sent, possibly encrypted with fwKey (which is sent encrypted 

with the Device’s public key), along with any other 

parameters (params) the device requires to run the attestation. 

If a software attestation is done, these parameters may include 

a checksum function and a prover binary, among others. The 

device fetches the firmware directly from a cloud server, 

installs and an attestation process is executed. Both parties 

record results on the blockchain. The results should be later 

checked for consistency. Finally, as the device changes hands, 

similar actions may take place thus recording any 

modifications using smart contracts. 

 

B. Device with tamper-detection 

This scenario has relevance in case of a device that has no 

means to verify the integrity of its hardware or software but 

has means to detect tampering to some satisfactory degree of 

trust. A simple solution is at the cost of physically destroying 

some functionality of the device. This scenario is challenging 

if only because once physical access has been breached, and in 

the absence of a trusted attestation process, it is virtually 

impossible to fully prevent modification by physical 

reprogramming.  

We nevertheless assume there was at some point a 

verification that could be, for example, a manual inspection. 

Further, we assume there is a trusted physical mechanism  

(such as switch) that, upon activation, will put the device in a 

lockdown mode disabling all external interfaces, not accepting 

any new software and only running a specific application that 

will interface the smart contract methods (Figure 2). As soon 

as the device detects physical violation, it will update the 

contract with a report and not allow any further action. This 

report needs to be acknowledged by the Cloud at which point 

the device could allow reduced operation depending on the 

policy object (policy) coming from the Cloud. The 

lockdown will be removed once a confirmation is read in the 

blockchain coming from the Cloud.  

 

 

 
Figure 1. Bootstrapping a device. 

 

 



 

 
Figure 2. Tamper detection. 

 

 
Figure 3. Smart Reader scenario. 

 

 

C. Smart Meter reading 

Figure 3 shows a scenario where a device is using a secure 

protocol to update a value. Given this potentially involves 

private personal information (e.g., electricity readings), we 

need to support confidentiality and forward secrecy. The 

device starts by creating a temporary key: pubD’ is the public 

part that is stored in the contract and privD’ which is kept 

local to the device. For forward privacy, these keys are only 

used for this reading, and a random number to prevent replay 

attacks and confirm the specific reading order. The key is 

ephemeral and is used to protect the reading until confirmed 

storage when it is discarded. Note, however, that depending on 

the blockchain type information cannot be discarded as such 

but only revoked. 

D. Discussion 

A key feature these three use-cases highlight that can only 

be achieved with blockchains is that of a secure medium over 

which messages are passed and, to any arbitrary level, 

broadcasted to any number of nodes and as many as possible 

to improve both security and resilience. All three mechanisms 

can be done in a centralised fashion using pairs of nodes; for 

example, the location of the firmware can be negotiated over 

TLS. The problem with peer-to-peer protocols is that it 

typically needs a previous step to bootstrap trust, such as a list 

of certification authorities that must be known by both parties 

engaging in the protocol. A blockchain-enhanced architecture 

does significantly remove that need and essentially provide 

(pseudo-) centralised means to store unmodifiable information 

while being distributed in nature and thus resilient to any 

arbitrary level. A further advantage is that, for data that needs 

to be trusted, recorded and auditable at any point in the future, 

and by parties that do not trust each other, such as a smart-

meter reading that may be disputed at some point. 

It also provides verifiable means to handle functions that a 

typical TPM provides such as generation of keys, storage of 

state (such as hashes of firmware) or generation of random 

number. Naturally, private keys cannot be stored in the clear 

so they either need a public key counterpart or, if symmetric, 

need to be protected by a secret that needs to be stored locally 

thus vulnerable in the absence of a TPM. In any case, note that 

updating the smart contract needs a transaction (often paying 

with a cryptocurrency) which requires a secret key. 

A further advantage of using smart contracts is that even 

with TPMs some previous provisioning information needs to 

be securely shared prior to the device being provisioned and 

installed. When attesting a device, the measurements of the 

device need to be compared to a trusted template that is 

typically unique to the device when considering local 

configuration when devices are installed for a particular use or 



 

user. A blockchain elegantly solves the problem from an 

architectural perspective even if storage of secret material 

such as keys needs hardware unless software-attestation is 

acceptable. A combination of both, however, TPM and 

blockchains, is able to create perfect security from an 

architectural perspective (i.e., excluding implementation 

vulnerabilities). 

A key challenge is, however, how devices will participate in 

the blockchain. There are two basic scenarios: passively 

reading updates to the blockchain (such as when the cloud 

publishes information) and actively executing or writing state 

in the blockchain.  

Regarding reading information, the ideal scenario is for the 

device itself to be a full node in the blockchain thus receiving 

and validating (but not mining) every new block. The 

contracts can therefore be inspected and executed locally as a 

copy exists. first is the device receiving full updates to 

changes in contracts, and all contracts active in the blockchain, 

thus being able to verify by itself state and consistency. This 

may depend on the chosen blockchain implementation, e.g., a 

public one such as Ethereum or a private and permissioned 

one with, in principle, weaker security since the security of a 

blockchain depends on its scale. In both cases, and depending 

on how constrained the device is, storing the full blockchain, 

or even just the current state and an integrity metric (similar to 

a hash of all transactions and block headers), requires vast 

amounts of storage that is blatantly incompatible to the typical 

IoT device. In other words, currently, one needs to rely on a 

trusted gateway which, despite typically existing in a IoT 

architecture, introduces a vulnerable point. Note however that 

the device may have a list of different nodes on the wider 

Internet (so outside the local network) that can be used to as 

uncorrelated sources (trusting the network links) to verify the 

state of a contract. Multiple nodes can be configured, along 

with public keys and well-known identities, and they either 

agree on the state of the contracts, after mined, or some may 

have been compromised and the perceived state, from the 

device’s perspective, cannot be trusted. In other words, and 

this is a strength of blockchains, in order to compromise the 

interface of the device with the blockchain, either the link is 

compromised (such as the gateway spoofing network 

responses) or most nodes in the list of the device need to be 

compromised. The overall problem is left for future work but 

current solutions point to an significant increase in the 

architectural complexity [12][15]. 

Writing, executing or updating a contracts seems simpler 

and is more of a problem of managing keys – which can be 

managed in similar ways as presented before. In the 

impossibility of a device being a full node, this needs the 

cooperation of a trusted set of nodes. The transactions that 

underpin the execution of a method in the smart contract 

require very little space (say, ~1 kByte). They are signed and 

authenticated in-band (or otherwise the transaction does not 

validate) and are sent to any node participating in the 

blockchain. In the worst case, the transaction needs to be 

repeated and any pending protocol is stalled. This may not be 

a critical problem since. 

V. IMPLEMENTATION 

In this section we discuss simplified code samples of smart 

contracts. We use Ethereum and the Solidity language. For 

simplicity of presentation and lack of space, we will omit 

unnecessary details in the code and Solidity syntax. 

 The first smart contract is shown in Figure 4 and 

implements part of the bootstrapping functionality of Device.  

Contracts in Ethereum pay for both storage (roughly the 

objects at the top and the constructor) and execution cycles 

(roughly the functions). Information that needs to be stored for 

the lifetime of the Device is, among other, its public key, a 

factory identification (such as a serial number) and the 

addresses of the parties that can interact the contract (the 

device and a counterpart server in the Cloud). 

The device first needs to generate a unique identifier 

(guid), e.g., from its serial number. It also needs to generate 

locally at least one public and private key pair (ideally a 

certificate) Keys should be generated from the TPM if 

existing. When first deploying the contract, the constructor 

will populate these objects. 

 
contract Device { 

//... 

Key publicKey; 

  string serialnumber, guid; 

  Address ownerDevice, ownerCloud; 

  AttestationResult attResDevice, attResCloud; 

 

  constructor() public { 

    ownerDevice = DEVICE_ADDRESS; 

    ownerCloud == CLOUD_SERVER_ADDRESS; 

    serialnumber = SERIAL_NUMBER; 

    publicKey[0] = PUBLIC_KEY_DEVICE; 

guid = GUID; 

  } 

 

  function decommission() public { 

    if (msg.sender == ownerDevice  

|| msg.sender == ownerCloud) 

selfdestruct( cloudAddress ); 

  } 

     

  function managePublicKey( party ); 

  function reqAttestat( Key pubC, Attestation att ); 

  function attest( Key fwKey, Url fw_url ); 

    

  function attestRes ( AttestResult r) { 

    if (msg.sender == ownerDevice) 

attResDevice == r; 

    if (msg.sender == ownerCloud)) 

attResCloud == r; 

  } 

} 

Figure 4. Bootstrapping pseudocode for contract Device. 

 The other methods are aligned with the signalling diagrams 

described before. The bootstrapping contract also implements 

access control in the form of allowed addresses. For example, 

when reporting the attestation result, only a (signed) 

transaction coming from the device’s address (ownerDevice) 

or a trusted server (ownerCloud) can update that information. 

 Figure 5 shows a simplified contract to report tampering 

detection. As explained, as soon as the device detects an 



 

incident, we assume it activates a lockdown mode, record its 

state in the blockchain and will wait for a policy from the 

cloud server. The device will not change its state until the 

cloud counterpart sends a message, in the blockchain, to 

release the hardware. 

 
contract Device { 

  Key publicKey; 

  TamperReport tr; 

  Address ownerDevice, ownerCloud; 

  bool devLocked; 

 

  constructor() public { 

    ownerDevice = DEVICE_ADDRESS; 

    ownerCloud == CLOUD_SERVER_ADDRESS; 

    publicKey = PUBLIC_KEY_DEVICE; 

    tr.detected = devLocked = false; 

  } 

 

  function tamperReport() public { 

    if (msg.sender == ownerDevice) { 

      devLocked = tr.detected = true; 

      tr.nounce = random(); 

      tr.signed = sign(PUBLIC_KEY_DEVICE, tr); 

      //other tr attributes 

    } 

  } 

     

  function setTamperPolicy( TamperPolicy policy ); 

 

  function ackTamperPolicy() { 

    if ( msg.sender == ownerDevice )  

    tr.ackDevice = true; 

  }; 

 

  function tamperRelease( bool status ) { 

    if ( msg.sender == ownerCloud ) devLocked = 0; 

  } 

} 

Figure 5. Tamper-detection smart contract. 

 As expected, running these contracts is rather slow when 

compared with point-to-point protocols. We deployed and ran 

the contracts in a local Ethereum test network where no other 

contracts were being executed. This assured that every block 

was predictable given the low load in mining and 

confirmations occurred after about 15 seconds. Running a 

simple tamper-detection protocol took several minutes just for 

exchanging messages and updating the protocol state. 

Also, the full contracts themselves, both Device (more 

complex) and SupplyChain, were on the order of 1 kB and, 

hence, manageable. The transactions themselves, that devices 

can hold templates locally, would range between 150 bytes 

when recording just a flag (e.g., tamperRelease()) and a 

few kB for the case of recording a certificate. 

VI. CONCLUSIONS AND OUTLOOK 

This paper offered an approach to use blockchains and 

smart contracts to enhance current methods of establishing a 

root-of-trust. We describe our approach and discuss its 

theoretical and practical feasibility. We also present a brief 

implementation for the Ethereum blockchain. Our approach 

raises further questions that our future work will address, 

which include implementing our proposal in an actual testbed 

with heterogeneous devices. A key open direction is how to 

integrate devices, which are likely to be constrained in some 

aspect, in a large blockchain such as Ethereum. This may have 

two approaches: designing a private blockchain architecture 

and, complementary, to combine the security of a distributed 

blockchain with conventional point-to-point techniques. This 

means putting a component of trust in external nodes which, in 

a IoT system likely involves a gateway. 
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