

Abstract—Establishing a root-of-trust is a key early step in

establishing trust throughout the lifecycle of a device, notably by

attesting the running software. A key technique is to use

hardware security in the form of specialised modules or

hardware functions such as TPMs. However, even if a device

supports such features, other steps exist that can compromise the

overall trust model between devices being manufactured until

decommissioning. In this paper, we discuss how blockchains, and

smart contracts in particular, can be used to harden the overall

security management both in the case of existing hardware-

enhanced security or when only software attestation is possible.

I. INTRODUCTION

NY aspect in security will in some way and at some point

be tied to a chain of trust whereby the trust of the overall

process or system is as secure as its weakest link. For

example, in any key management scheme, key storage and

distribution is typically the most complex step and requires a

number of assumptions. Smart devices and the Internet-of-

Things (IoT) add the new challenge of location considering

that many use-cases include a device on untrusted premises

and physically accessible. A smart thermostat at home is a

straightforward example: one can only trust the hardware and

the software it runs as long there are guarantees nobody had

physical access to it in the past and there are no software

vulnerabilities that can be remotely exploited. This brings us

to hardware-enhanced software security. The only way,

arguably, of verifying (or attesting) the current software image

it is using is by means of special hardware functions such as

processors using Trusted Execution Environments or a

dedicated cryptographic module, e.g., Trusted Platform

Module (TPM) from TGC [1].

A typical TPM offers a number of basic cryptographic

services directly embedded in electronics. For example, it can

hold in isolation, directly in the hardware microelectronics, a

set of keys and is able to perform de/encryption of messages

without the keys ever being exposed. Another service is a

persistent memory that can hold, for example, signatures of

the software that is used to boot the device while disabling key

parts of the hardware until the verification is complete.

Combining such features, a strong root-of-trust is established

in the sense that, if one is able to securely associate such

isolated keys to a physical device throughout its lifecycle, one

can be sufficiently sure any underlying security process or

protocol has not been compromised.

There is however two aspects that weaken this chain of

trust. On one hand, devices almost never work in isolation

and, in a typical IoT use-case, there will be some gateway

nearby the device and further services provided by a Cloud,

generally speaking. Further, not all devices will have an on-

board TPM or similar hardware-based functions. This could

be, for example, due to cost, complexity or constraints on

resources. The second fact that weakens the chain of trust is

the handling of the device from factory until activation.

Commissioning a remote device needs a trusted process in

itself which, again, is based on more or less weak

assumptions. For example, the device needs to arrive in a

trusted state (trusting the supply chain), then provisioned

(typically involving creating keys) and finally be attested at

least once immediately before being activated for production.

On the other hand, the device also needs to trust what it is

receiving from the Cloud counterpart. Striking examples is

receiving firmware updates or the device being an actuator and

receiving commands. This is a simpler problem as, typically,

there is no limitation of resources and hardware security is

available. Furthermore, and central to this paper, whereas

devices need to be assumed to operate from an untrusted

location, one can expect the cloud infrastructure to be

physically secure and subject to structured security workflows.

This paper discusses such chains of trust for

smart/embedded devices and discusses the use of blockchain

technologies, and Smart Contracts, to mitigate such

weaknesses. Our strategy is to use Blockchains’ immutability

and auditing properties and use them in secure attestation,

verification and overall management. Specifically, we propose

a scheme that offers two features. First, we use smart contracts

to provide an emulation of hardware cryptographic services

similar to a remote and virtual TPM. In an extreme case, one

can verify the device has not been tampered with but at the

cost of making the device unusable until manual and

comprehensive verification or re-provisioning. The second

feature of our scheme is that we use the underlying blockchain

to provide a secure message bus over which devices and cloud

can communicate sensitive information such as public keys.

In Section II we review key concepts of hardware and

firmware security and the concept of Smart Contracts over

Blockchains. In Section III we lay out our Device and Threat

models and we align with the common lifecycle of a device. In

Section IV we discuss our approach to the problem that we

evaluate in Section V. Section VI concludes our paper and

discusses future work.

II. BACKGROUND AND RELATED WORK

In this section we review related work on Trusted Software

Blockchain-enhanced Roots-of-Trust

Vitor Jesus

School of Computing and Digital Technology

Birmingham City University

Birmingham, United Kingdom

A

and Smart Contracts in the context of Internet-of-Things.

A. Trusted Software

Hardware-enhanced trusted software execution has seen

different proposals [2] that range in complexity, typically

categorized by the ability of only performing attestation

functions or the ability to run complex software in an isolated

environment. TPMs is one of such and are a technology

standardized by the Trusted Computing Group [1]. It has been

used in many areas but with mixed adoption since whereas

virtually all cloud servers, many laptops and mobile phones

have one, embedded devices such as those used in Wireless

Sensor Networks (WSN) or IoT do not, for cost or

implementation complexity reasons. TPMs can be used in any

task that relies on handling secret material, such as

authentication [3][4]. Whenever there is no TPM available, a

root-of-trust needs to be established in other ways [5] even if

the trust level may be reduced [6]. Alternatives include

software-based attestations such as the one proposed by

Seshadri et al [7] that relies on loading trusted software in

memory and sending a signed footprint to an external verifier.

Software attestation is however challenging to implement in

practice and often depends on the specific architecture of the

device to be feasible [8].

Note, however, that, when looking at the workflow and the

device lifecycle, secure management of keys still shows gaps

even with hardware security. A good example is that a manual

enrolment phase (such as simply connecting a cable) is

typically required where keys and secure boot measurements

(cryptographic hashes) are attested and recorded to build a

baseline and used in later comparison. This verified binding

between cryptographic material, identity and function of the

device is part of the problem we address in our paper using

Smart Contracts.

B. Blockchains and Smart Contracts in IoT

Blockchains are a recent technology that cleverly enables

trustless, distributed and open verification applications by,

normally, heavily using computing power. In its original form

(seen in Bitcoin), data is stored in blocks, which are linked

together using strong cryptography as they are created, thus

forming a chain of records whose immutability increases as

new blocks are added. Every new set of records, or a block, is

verified by many nodes (the consensus layer) and subject to a

resource-intensive cryptographic process (mining) that is

similar to brute-forcing a hash thus providing strong

assurances that, after enough time elapsed (several blocks of

data and concatenated hashes), the data cannot be changed.

Smart Contracts take this concept further by allowing not only

records but also code to be executed. In its original form, data

and code is publicly auditable. Since the information is open

and tamper-resistant, the system is trustless since any

unauthorized or unexpected modifications, at the time of

submission, are visible to every participant. Applications to

IoT and trusted execution are thus immediate [8] and they

include enhanced security, privacy and identity [10],

verification of the supply chain [8], distribution of firmware

updates (taking advantage of both assurances of integrity and

distributed topology of nodes) [11][12] or enhancing trust in

Industrial IoT [12] or coordinating business workflows as in

electricity co-generation [14].

To the best of our knowledge, this is the first work

exploring the use of Smart Contracts in designing generic

hardware-emulated, security services, joining trusted and

untrusted software, and using Blockchains as a trusted

communication channel. In other words, we aim at using

Smart Contracts to either enhance or create Roots-of-Trust.

Boudguiga et al [12] and Novo [15] propose architectures to

perform a specific task such as verification of IoT updates or

performing access control, typically by designing a blockchain

architecture with which nodes will fully integrate instead of

using it as service. Further, they do not use smart contracts and

use the blockchain as immutable and verifiable storage in a

custom blockchain architecture. A similar proposal is the case

of Machado and Frohlich [17], but using smart contracts and

different consensus algorithms, who propose an integrity

verification architecture based on blockchains and fit for IoT,

constrained devices and real-time applications. Wu et al [16]

discuss a related problem of using a blockchain as an out-of-

band communication channel, a concept we also use, but for

authentication.

III. THREAT MODEL

For end-to-end and continuous trust, the device must be

secured across all stages in its lifecycle. We start by

introducing a generic threat model that is aligned with a

general lifecycle. We then discuss the requirements our

approach expects to meet along with identifying limitations

and in the next section we elaborate on our proposals.

A. Device Lifecycle

We start by considering a generic lifecycle of devices. This

allows to extract a threat model and design our architecture

and smart contracts. We assume a device goes through the

following stages, from manufacturing to disposal:

1. Factory – the device is manufactured and an early

firmware (or bootloader) is installed. This first layer of

firmware which, beyond accessory functions (such as

power-on tests), is the software component that will

load further components up to an Operating Systems

and user applications. Being the first software layer, it

must support and undergo full verification as all further

verifications will depend on it.

2. Supply Chain Handling – The device is then physically

distributed and may be handled by several parties until

it arrives to the last owner (e.g., end user or service

manager). There may be the case where other parties

install a new firmware that needs to be also verified by

the end user.

3. Commissioning – The device may be now configured,

physically installed, provisioned and integrated with

the cloud at its final location. All these steps may be

remote or by an end-user. Physical attacks are possible.

The device is further registered and integrated with a

Cloud service. This requires, at least, verification of

firmware, generation of root keys and (possibly) a

unique identifier for the device. Note that, for the

verification part, it is desirable to commission a device

remotely with little or no local effort and allowing for

device/user unlinkability, similar to Intel’s SDO

approach [18] that uses group keys instead of per

device.

4. In-Service – The device is now ready to send and

receive data or commands. At this point, both hardware

and software needs to be verified and protocols used

should be secure.

5. Maintenance – The device undergoes maintenance

stages such as software updates and reconfigurations.

Note this stage repeats in time and interleaves the In-

Service stage.

6. Decommissioning – the device is removed from service

and is disposed, reinstalled or repurposed.

Considering these stages, a hardware-based attestation, such

as a TPM, is invaluable to effectively create a state of trust

over which trust in all other dependencies can be built on.

There are however aspects that a TPM cannot address.

Furthermore, as discussed, it is not possible to have a TPM on

every device so other scenarios and solutions need to be

considered, up to accepting service from untrusted hardware.

The next subsection presents a list of threats per stage in the

lifecycle of the device.

B. Threat Model

The key threats are the following:

1. The device was compromised during manufacturing,

which includes hardware trojans or modified firmware.

2. Taking advantage of physical access to the device, it is

modified during handling across the supply chain or in

later phases which includes the end-user.

3. A different device altogether was delivered.

4. During commissioning or maintenance, the device is

installed using compromised software.

5. Illegitimate modification of the software by a

legitimate user because of physical access after being

installed.

6. Insecure management of secret material during

Commissioning phase such as keys and identity of the

device were correctly generated by a legitimate party

but storage and/or transmission was insecure.

7. Data received may not be from the device or may have

been intercepted or modified in-flight.

8. Device receives data from malicious parties that are

able to spoof the cloud services which includes

compromised firmware and configurations.

Other threats may be considered (e.g., privacy, access

control or availability) but the problem we tackle is, simply

speaking, about authenticity and integrity. Furthermore, note

we’re considering the two directions: both device and cloud

exchange data that needs to be trusted data.

IV. SCENARIOS

In this section we describe our approach to use smart

contracts to establish roots-of-trust. We start by considering

three types of devices: (i) with a TPM, (ii) without a TPM but

supporting tamper-detection and (iii) software-based

attestation. We then elaborate on how smart contracts can

enhance trust using three representative scenarios in the

lifecycle of a device: (i) bootstrapping a newly manufactured

device, (ii) software-attesting a device with no TPM but

supporting tamper-detection after installation at an untrusted

location and (iii) a smart meter reading. We then discuss our

assumptions and the effectiveness of the approach.

In the diagrams, we use the following notation:

• a dashed line means detection of new state, after the

blockchain consensus layer converged

• Solid lines require interaction with the blockchain, thus

changing the state of the contract

• Changing the state of contract needs a public and

private key pair (where the public key is often the

address and identity of the device interfacing the

contract) and an address of the contract itself. These are

configurations that need to be present at the device

from the beginning

• We denote encryption of data with key key by

key[data].

A. Bootstrapping a device

We start by looking at a device that has just been

manufactured, in terms of hardware, and is ready to be

packaged and sent to either the final customer or to another

party that will further configure or install software. We

assume the device has, at this early stage, a firmware able to

participate in attestation and tracking actions. We further

assume the device has been configured with means to interact

with a smart contract such as keys, an address, a whitelist of

blockchain nodes and perhaps a token or cryptocurrency.

See Figure 1. At this stage, the device actions two different

contracts. The first contract supply_chain, which must be

pre-existing and mutually managed between the manufacturer

and any owners of the device, will track its journey and

modifications until arriving the final location. The second

contract, device, is created on-the-fly by the device and will

track its authenticity and integrity. Note that, depending on the

attestation method, it may not matter whether the device has

the right firmware or configuration. If the device fails any

verification, it is not accepted into its final use. The two

contracts are expected to be linked but only at the beginning

so the address of device can be found.

The device checks-in for the first time with a factory

identifier that we are calling here sn (thinking of a serial

number). The Cloud counterpart, here representing any server

infrastructure on the side of the (future) owner of the device,

will detect a new device (denoted by a dashed line) once their

blockchain nodes synchronise. Note this is not a directed

message. The device will also register a public key (or a full

certificate, simply represented by pubD) for future private

communications as will show and unique ID, guid. All these

elements are generated locally by the device, either using a

TPM or running normal software and the public elements are

then published by executing a method in the smart contract

running in the blockchain.

The device is now ready to be verified and steps that require

traceability are communicated using the blockchain. The

Cloud also publishes its certificate (cert). At this stage, both

device and Cloud have each other’s identity. The Cloud

requires now an attestation to which the device confirms by

sending a message directly. The firmware location (fwLoc) is

sent, possibly encrypted with fwKey (which is sent encrypted

with the Device’s public key), along with any other

parameters (params) the device requires to run the attestation.

If a software attestation is done, these parameters may include

a checksum function and a prover binary, among others. The

device fetches the firmware directly from a cloud server,

installs and an attestation process is executed. Both parties

record results on the blockchain. The results should be later

checked for consistency. Finally, as the device changes hands,

similar actions may take place thus recording any

modifications using smart contracts.

B. Device with tamper-detection

This scenario has relevance in case of a device that has no

means to verify the integrity of its hardware or software but

has means to detect tampering to some satisfactory degree of

trust. A simple solution is at the cost of physically destroying

some functionality of the device. This scenario is challenging

if only because once physical access has been breached, and in

the absence of a trusted attestation process, it is virtually

impossible to fully prevent modification by physical

reprogramming.

We nevertheless assume there was at some point a

verification that could be, for example, a manual inspection.

Further, we assume there is a trusted physical mechanism

(such as switch) that, upon activation, will put the device in a

lockdown mode disabling all external interfaces, not accepting

any new software and only running a specific application that

will interface the smart contract methods (Figure 2). As soon

as the device detects physical violation, it will update the

contract with a report and not allow any further action. This

report needs to be acknowledged by the Cloud at which point

the device could allow reduced operation depending on the

policy object (policy) coming from the Cloud. The

lockdown will be removed once a confirmation is read in the

blockchain coming from the Cloud.

Figure 1. Bootstrapping a device.

Figure 2. Tamper detection.

Figure 3. Smart Reader scenario.

C. Smart Meter reading

Figure 3 shows a scenario where a device is using a secure

protocol to update a value. Given this potentially involves

private personal information (e.g., electricity readings), we

need to support confidentiality and forward secrecy. The

device starts by creating a temporary key: pubD’ is the public

part that is stored in the contract and privD’ which is kept

local to the device. For forward privacy, these keys are only

used for this reading, and a random number to prevent replay

attacks and confirm the specific reading order. The key is

ephemeral and is used to protect the reading until confirmed

storage when it is discarded. Note, however, that depending on

the blockchain type information cannot be discarded as such

but only revoked.

D. Discussion

A key feature these three use-cases highlight that can only

be achieved with blockchains is that of a secure medium over

which messages are passed and, to any arbitrary level,

broadcasted to any number of nodes and as many as possible

to improve both security and resilience. All three mechanisms

can be done in a centralised fashion using pairs of nodes; for

example, the location of the firmware can be negotiated over

TLS. The problem with peer-to-peer protocols is that it

typically needs a previous step to bootstrap trust, such as a list

of certification authorities that must be known by both parties

engaging in the protocol. A blockchain-enhanced architecture

does significantly remove that need and essentially provide

(pseudo-) centralised means to store unmodifiable information

while being distributed in nature and thus resilient to any

arbitrary level. A further advantage is that, for data that needs

to be trusted, recorded and auditable at any point in the future,

and by parties that do not trust each other, such as a smart-

meter reading that may be disputed at some point.

It also provides verifiable means to handle functions that a

typical TPM provides such as generation of keys, storage of

state (such as hashes of firmware) or generation of random

number. Naturally, private keys cannot be stored in the clear

so they either need a public key counterpart or, if symmetric,

need to be protected by a secret that needs to be stored locally

thus vulnerable in the absence of a TPM. In any case, note that

updating the smart contract needs a transaction (often paying

with a cryptocurrency) which requires a secret key.

A further advantage of using smart contracts is that even

with TPMs some previous provisioning information needs to

be securely shared prior to the device being provisioned and

installed. When attesting a device, the measurements of the

device need to be compared to a trusted template that is

typically unique to the device when considering local

configuration when devices are installed for a particular use or

user. A blockchain elegantly solves the problem from an

architectural perspective even if storage of secret material

such as keys needs hardware unless software-attestation is

acceptable. A combination of both, however, TPM and

blockchains, is able to create perfect security from an

architectural perspective (i.e., excluding implementation

vulnerabilities).

A key challenge is, however, how devices will participate in

the blockchain. There are two basic scenarios: passively

reading updates to the blockchain (such as when the cloud

publishes information) and actively executing or writing state

in the blockchain.

Regarding reading information, the ideal scenario is for the

device itself to be a full node in the blockchain thus receiving

and validating (but not mining) every new block. The

contracts can therefore be inspected and executed locally as a

copy exists. first is the device receiving full updates to

changes in contracts, and all contracts active in the blockchain,

thus being able to verify by itself state and consistency. This

may depend on the chosen blockchain implementation, e.g., a

public one such as Ethereum or a private and permissioned

one with, in principle, weaker security since the security of a

blockchain depends on its scale. In both cases, and depending

on how constrained the device is, storing the full blockchain,

or even just the current state and an integrity metric (similar to

a hash of all transactions and block headers), requires vast

amounts of storage that is blatantly incompatible to the typical

IoT device. In other words, currently, one needs to rely on a

trusted gateway which, despite typically existing in a IoT

architecture, introduces a vulnerable point. Note however that

the device may have a list of different nodes on the wider

Internet (so outside the local network) that can be used to as

uncorrelated sources (trusting the network links) to verify the

state of a contract. Multiple nodes can be configured, along

with public keys and well-known identities, and they either

agree on the state of the contracts, after mined, or some may

have been compromised and the perceived state, from the

device’s perspective, cannot be trusted. In other words, and

this is a strength of blockchains, in order to compromise the

interface of the device with the blockchain, either the link is

compromised (such as the gateway spoofing network

responses) or most nodes in the list of the device need to be

compromised. The overall problem is left for future work but

current solutions point to an significant increase in the

architectural complexity [12][15].

Writing, executing or updating a contracts seems simpler

and is more of a problem of managing keys – which can be

managed in similar ways as presented before. In the

impossibility of a device being a full node, this needs the

cooperation of a trusted set of nodes. The transactions that

underpin the execution of a method in the smart contract

require very little space (say, ~1 kByte). They are signed and

authenticated in-band (or otherwise the transaction does not

validate) and are sent to any node participating in the

blockchain. In the worst case, the transaction needs to be

repeated and any pending protocol is stalled. This may not be

a critical problem since.

V. IMPLEMENTATION

In this section we discuss simplified code samples of smart

contracts. We use Ethereum and the Solidity language. For

simplicity of presentation and lack of space, we will omit

unnecessary details in the code and Solidity syntax.

 The first smart contract is shown in Figure 4 and

implements part of the bootstrapping functionality of Device.

Contracts in Ethereum pay for both storage (roughly the

objects at the top and the constructor) and execution cycles

(roughly the functions). Information that needs to be stored for

the lifetime of the Device is, among other, its public key, a

factory identification (such as a serial number) and the

addresses of the parties that can interact the contract (the

device and a counterpart server in the Cloud).

The device first needs to generate a unique identifier

(guid), e.g., from its serial number. It also needs to generate

locally at least one public and private key pair (ideally a

certificate) Keys should be generated from the TPM if

existing. When first deploying the contract, the constructor

will populate these objects.

contract Device {

//...

Key publicKey;

 string serialnumber, guid;

 Address ownerDevice, ownerCloud;

 AttestationResult attResDevice, attResCloud;

 constructor() public {

 ownerDevice = DEVICE_ADDRESS;

 ownerCloud == CLOUD_SERVER_ADDRESS;

 serialnumber = SERIAL_NUMBER;

 publicKey[0] = PUBLIC_KEY_DEVICE;

guid = GUID;

 }

 function decommission() public {

 if (msg.sender == ownerDevice

|| msg.sender == ownerCloud)

selfdestruct(cloudAddress);

 }

 function managePublicKey(party);

 function reqAttestat(Key pubC, Attestation att);

 function attest(Key fwKey, Url fw_url);

 function attestRes (AttestResult r) {

 if (msg.sender == ownerDevice)

attResDevice == r;

 if (msg.sender == ownerCloud))

attResCloud == r;

 }

}

Figure 4. Bootstrapping pseudocode for contract Device.

 The other methods are aligned with the signalling diagrams

described before. The bootstrapping contract also implements

access control in the form of allowed addresses. For example,

when reporting the attestation result, only a (signed)

transaction coming from the device’s address (ownerDevice)

or a trusted server (ownerCloud) can update that information.

 Figure 5 shows a simplified contract to report tampering

detection. As explained, as soon as the device detects an

incident, we assume it activates a lockdown mode, record its

state in the blockchain and will wait for a policy from the

cloud server. The device will not change its state until the

cloud counterpart sends a message, in the blockchain, to

release the hardware.

contract Device {

 Key publicKey;

 TamperReport tr;

 Address ownerDevice, ownerCloud;

 bool devLocked;

 constructor() public {

 ownerDevice = DEVICE_ADDRESS;

 ownerCloud == CLOUD_SERVER_ADDRESS;

 publicKey = PUBLIC_KEY_DEVICE;

 tr.detected = devLocked = false;

 }

 function tamperReport() public {

 if (msg.sender == ownerDevice) {

 devLocked = tr.detected = true;

 tr.nounce = random();

 tr.signed = sign(PUBLIC_KEY_DEVICE, tr);

 //other tr attributes

 }

 }

 function setTamperPolicy(TamperPolicy policy);

 function ackTamperPolicy() {

 if (msg.sender == ownerDevice)

 tr.ackDevice = true;

 };

 function tamperRelease(bool status) {

 if (msg.sender == ownerCloud) devLocked = 0;

 }

}

Figure 5. Tamper-detection smart contract.

 As expected, running these contracts is rather slow when

compared with point-to-point protocols. We deployed and ran

the contracts in a local Ethereum test network where no other

contracts were being executed. This assured that every block

was predictable given the low load in mining and

confirmations occurred after about 15 seconds. Running a

simple tamper-detection protocol took several minutes just for

exchanging messages and updating the protocol state.

Also, the full contracts themselves, both Device (more

complex) and SupplyChain, were on the order of 1 kB and,

hence, manageable. The transactions themselves, that devices

can hold templates locally, would range between 150 bytes

when recording just a flag (e.g., tamperRelease()) and a

few kB for the case of recording a certificate.

VI. CONCLUSIONS AND OUTLOOK

This paper offered an approach to use blockchains and

smart contracts to enhance current methods of establishing a

root-of-trust. We describe our approach and discuss its

theoretical and practical feasibility. We also present a brief

implementation for the Ethereum blockchain. Our approach

raises further questions that our future work will address,

which include implementing our proposal in an actual testbed

with heterogeneous devices. A key open direction is how to

integrate devices, which are likely to be constrained in some

aspect, in a large blockchain such as Ethereum. This may have

two approaches: designing a private blockchain architecture

and, complementary, to combine the security of a distributed

blockchain with conventional point-to-point techniques. This

means putting a component of trust in external nodes which, in

a IoT system likely involves a gateway.

REFERENCES

[1] Trusted Computing Group: http://www.trustedcomputinggroup.org/.

Accessed 3-Aug-2018

[2] Shepherd et al, Secure and Trusted Execution: Past, Present, and Future

- A Critical Review in the Context of the Internet of Things and Cyber-

Physical Systems, 2016 IEEE Trustcom, Tianjin, China

[3] W. Hu, H. Tan, P. Corke, W. Chan Shih, S. Jha, Toward Trusted

Wireless Sensor Networks, ACM Transactions on Sensor Networks,

Vol. 7, No. 1, Article 5, August 2010

[4] RV Steiner, E Lupu, Attestation in Wireless Sensor Networks: a Survey,

ACM Journal Computing Surveys, Vol 49, Issue 3, No 51, Dec 2016

[5] SJ Johnston, M Scott, SJ Cox, Recommendations for securing Internet of

Things devices using commodity hardware, IEEE 3rd World Forum on

Internet of Things (WF-IoT), Reston, VA, USA, 2016

[6] Hailun Tan, Gene Tsudik, Sanjay Jha, MTRA: Multiple-Tier Remote

Attestation in IoT Networks, 2017 IEEE Conf on Communications and

Network Security (CNS),

[7] Seshadri et al, SWATT: SoftWare-based ATTestation for Embedded

Devices, Proc IEEE Symposium on Security and Privacy (ISCC), 2004

[8] Y. Li, Y. Cheng, V. Gligor, A. Perrig, Establishing software-only root of

trust on embedded systems: Facts and fiction, Security Protocols XXIII,

Springer, 2015, pp. 50–68.

[9] K Christidis, M Devetsikiotis, Blockchains and Smart Contracts for the

Internet of Things, IEEE Access, V. 4, 2016

[10] Kouzinopoulos C.S. et al., Using Blockchains to Strengthen the Security

of Internet of Things. Security in Computer and Information Sciences.

Euro-CYBERSEC 2018, vol 821. Springer, 2018

[11] Boohyung Lee, Jong-Hyouk Lee, Blockchain-based secure firmware

update for embedded devices in an Internet of Things environment, The

Journal of Supercomputing, Volume 73, Issue 3, March 2017

[12] Boudguiga et al, Towards Better Availability and Accountability for IoT

Updates by means of a Blockchain, 2017 IEEE European Symposium on

Security and Privacy Workshops (EuroS&PW), Paris, France

[13] Bahga, A., Madisetti, V.K., Blockchain platform for industrial Internet

of Things, J. Softw. Eng. Appl. 9(10), 533 (2016)

[14] Zhang, Y., Wen, J.: The IoT electric business model: using blockchain

technology for the Internet of Things, Peer-to-Peer Netw. Appl. Vol 10,

issue 4, 2017

[15] Oscar Novo, Blockchain Meets IoT: An Architecture for Scalable Access

Management in IoT, IEEE Internet Of Things Journal, v5, n2, Apr 2018

[16] Wu et al, An Out-of-band Authentication Scheme for Internet of Things

Using Blockchain Technology, 2018 Intl Conf on Computing,

Networking and Communications (ICNC), Maui, Hawai

[17] C Machado, AA Frohlich, IoT Data Integrity Verification for Cyber-

Physical Systems using Blockchain, IEEE 21st International Symposium

on Real-Time Distributed Computing, 2018

[18] Intel, Intel Secure Device Onboard (SDO): https://www.intel.com/

content/www/us/en/internet-of-things/secure-device-onboard.html,

accessed 08-August-2018.

