
Ensemble Dynamics in Non-stationary Data
Stream Classification

Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Abstract Data stream classification is the process of learning supervised models
from continuous labelled examples in the form of an infinite stream that, in most
cases, can be read only once by the data mining algorithm. One of the most chal-
lenging problems in this process is how to learn such models in non-stationary en-
vironments, where the data/class distribution evolves over time. This phenomenon
is called concept drift. Ensemble learning techniques have been proven effective
adapting to concept drifts. Ensemble learning is the process of learning a number
of classifiers, and combining them to predict incoming data using a combination
rule. These techniques should incrementally process and learn from existing data
in a limited memory and time to predict incoming instances and also to cope with
different types of concept drifts including incremental, gradual, abrupt or recurring.
A sheer number of applications can benefit from data stream classification from
non-stationary data, including weather forecasting, stock market analysis, spam fil-
tering systems, credit card fraud detection, traffic monitoring, sensor data analysis
in Internet of Things (IoT) networks, to mention a few. Since each application has
its own characteristics and conditions, it is difficult to introduce a single approach
that would be suitable for all problem domains. This chapter studies ensembles’ dy-
namic behaviour of existing ensemble methods (e.g. addition, removal and update of
classifiers) in non-stationary data stream classification. It proposes a new, compact,
yet informative formalisation of state-of-the-art methods. The chapter also presents
results of our experiments comparing a diverse selection of best performing algo-

Hossein Ghomeshi
School of Computing and Digital Technology, Birmingham City University e-mail: Hos-
sein.Ghomeshi@mail.bcu.ac.uk

Mohamed Medhat Gaber
School of Computing and Digital Technology, Birmingham City University e-mail: Mo-
hamed.Gaber@bcu.ac.uk

Yevgeniya Kovalchuk
School of Computing and Digital Technology, Birmingham City University e-mail: Yev-
geniya.Kovalchuk@bcu.ac.uk

1



2 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

rithms when applied to several benchmark data sets with different types of concept
drifts from different problem domains.

1 Introduction

Over the past few years, data stream classification has been playing an important role
in the area of knowledge discovery and big data analytics. The goal of classification,
in the context of data streams, is to predict the class label of incoming instances from
continuous data records that, generally, can be read only once in a limited time and
memory. This is done by extracting useful knowledge from the past data inside the
stream by using machine learning techniques.

As our digital world is growing rapidly, there are more data available in the
form of data streams (e.g. World Wide Web, Internet of Things, etc.). That fact
justifies the importance of paying attention to the mentioned domain of research
since knowledge discovery is more complex in data streams. Suppose a sensor net-
work that produces data related to credit card transactions of a bank from different
types of devices (ATM, POS, online shopping, etc.) in the form of a data stream.
A credit card fraud detection system can detect the fraudulent transactions using
a data stream classification technique. The same task usually takes a long time or
a high cost of resources (manual works) in traditional systems. Other applications
of data stream classification include stock market analysis and prediction, weather
forecasting, spam detection and filtering, traffic and forest monitoring, electricity
management systems, web search pattern detection, sensor data analysis in an Inter-
net of Things (IoT) network, among many other applications.

In such tasks, the characteristics of different types of data streams should be taken
into careful consideration in order to have a successful data stream classification.
General characteristics of data streams as seen by [Babcock et al., 2002] includes
the unlimited size of data streams, on-line arrival of data elements, order of data
elements that is not governable, and finally, the restrictions about processing the
elements only one time (it is possible to process an element more than once, but
with a high cost of storing elements).

From the data distribution point of view, there are two types of data streams:
stationary (stable) data streams, where the probability distribution of instances is
fixed, and non-stationary (evolving) data streams, where the probability distribu-
tion of incoming data evolves or target concepts (labelling mechanism) change over
time. This later phenomena is called concept drift. Existence of concept drifts in
data streams makes classification tasks more complex and difficult to handle. This
chapter is focused on non-stationary data stream classification.

As stated by [Gama et al., 2014], concept drifts may manifest in different forms
over time. These forms can be divided into four general types: abrupt (sudden),
gradual, incremental, and recurrent (recurring). Different types of concepts are de-
picted in Figure 1. In abrupt or sudden concept drifts, the data distribution at time t
is replaced suddenly with a new distribution at time t+1. Incremental concept drifts



Ensemble Dynamics in Non-stationary Data Stream Classification 3

occur when the data distribution changes and stays in a new distribution after going
through some new, unstable, median data distributions. In gradual concept drifts, the
amount of new probability distribution of incoming data increases, while the amount
of data that belong to the former probability distribution decreases over time. Recur-
ring concepts happen when the same old probability distribution of data reappears
after some time of a different distribution.

Fig. 1 Different types of concept drifts. Adapted from [Gama et al., 2014].

In order to cope with the concept drift problem in a data stream, it is important
to build a classification system that adapts to different concept drifts as quickly as
possible. Ensemble learning techniques are among the most effective approaches
to do data stream classification [Gomes et al., 2017], especially when dealing with
non-stationary environments and concept drifts [Krawczyk et al., 2017].

Ensemble learning is a machine learning approach in which multiple classifiers
are created and combined with each other using a voting mechanism. In other words,
as can be seen in Figure 2, a voting mechanism is used to combine different classi-
fiers’ outputs in order to establish a single class label as the output of the ensemble.
This is done in order to cover different types of features in a data stream. The com-
bination is usually done by majority voting or weighted majority voting.

Adaptation to concept drifts can be achieved via different methods, with the most
common ways being adding new classifiers into the ensemble, removing old classi-
fiers from it, updating the weights of classifiers (assigning higher weights for more
accurate classifiers at each iteration) and resetting the ensemble to an initial state.
All of these methods are related to the dynamic behaviour of the ensemble.

This chapter aims to study ensembles’ dynamic behaviour of existing ensem-
ble methods in non-stationary data stream classification. In the authors’ point of
view, the key to building a successful ensemble is to understand different ensem-
bles’ dynamic behaviour and their reaction towards different concept drifts and en-
vironments. Furthermore, this chapter presents a new, compact, yet informative for-



4 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 2 An ensemble learning system, adapted from [Krawczyk et al., 2017].

malisation of the state-of-the-art methods. The authors argue that understanding the
dynamic behaviour of different ensembles, along with the introduced formalisation,
can facilitate the development of new as well as the current ensembles.

The rest of this chapter is organized as follows. In Section 2, the current ensem-
ble approaches for non-stationary environments are introduced and their dynamic
behaviour is discussed. A novel taxonomy for classification in such environments
based on dynamic behaviour is proposed in Section 2. A formalisation, along with
some of the current ensemble techniques (based on their dynamism diversity) using
the proposed formalisation, are included in Section 3. In Section 4, the experimen-
tal results of several ensemble techniques are presented and analysed using different
data sets. In Section 5, the observed behaviour of different mechanisms is discussed
and several suggestions are proposed with respect to various characteristics. Finally,
a summary of the experiments, along with some recommendations regarding the
application of each ensemble approach, are provided in Section 6.

2 Ensemble Dynamics

In non-stationary environments, where different types of concept drifts may hap-
pen, it is expected that an ensemble adapts to a new concept drift swiftly. Since
the adaptation in such environments is being done by adding a new classifier to the
ensemble, removing old classifiers and changing the weights of current classifiers,
understanding the dynamic behaviour of an ensemble toward different types of con-
cept drifts can help us to choose the best approach for a specific application domain
and develop new ensemble learning techniques for the required purpose.

This section discusses the aspects of an ensemble technique that form the ensem-
ble dynamics of an approach. These aspects are addition, removal and updating of
classifiers in an ensemble. The following subsections describe each of these aspects
in detail, along with comparing different algorithms based on the dynamism related
criteria. Over 20 different ensemble methods for non-stationary environments are



Ensemble Dynamics in Non-stationary Data Stream Classification 5

studied and compared for this purpose. It has been tried to include the most recent
and diverse ensemble techniques in this study.

2.1 Addition

Adding new classifiers that have been trained with recent instances in a stream is
one of the most important actions that needs to be applied to the ensemble when
data is evolving. The aim of this operation is adapting to drifting data, as well as
improving classification accuracy of the ensemble based on the fact that, in most
cases, incoming data is more likely to be similar to upcoming instances. The lack
of this action might result in severe decrease in accuracy of the ensemble especially
when concept drift is happening. One decision that needs to be taken when making
a strategy for the ensemble is to decide when to add new classifiers to the ensemble,
or in other words, what time frame needs to be taken for the addition operation.
Some algorithms use a fixed time, while others use a dynamic time for it.

2.1.1 Fixed time of addition

Algorithms that use a fixed time to train and add new classifiers usually use a similar
strategy; they do the addition operation after receiving a new block of data or after
receiving a predefined p instances. A considerate number of existing algorithms are
using this strategy to add new classifiers. The main challenge to build or use such
algorithms is to pick a decent size of blocks or p in order to have the best possible
output. Picking a large size might decelerate the adaptation while using a small size
might make the ensemble sensitive to noise.

2.1.2 Dynamic time of addition

The algorithms that use dynamic time of training and adding are more diverse than
the ones that use fixed time. Some of them use a method based on concept drift de-
tection to determine when to train and add new classifiers. These types of algorithms
start to train a new classifier when the concept drift detector signals and identifies
a concept drift. Such mechanism is called detection based dynamic approach for
addition operation. Some algorithms start to build a new classifier once the ensem-
ble misclassifies an example. This strategy is called misclassified based dynamic in
this chapter. Other mechanisms include adding a new classifier based on an accep-
tance factor [Ramamurthy & Bhatnagar, 2007]. This approach adds a new classifier
when the threshold of the acceptance factor has been passed and a new classifier is
needed. Another approach trains and adds a new classifier once an old classifier has
been removed and a free space is available [Stanley, 2003].



6 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

All of the studied algorithms and their addition mechanisms are shown in Table
1.

2.2 Removal

Removing classifiers is a strategy to forget previously gained knowledge from a data
stream that is unhelpful in the current situation, in order to adjust the ensemble to
an updated state. In the majority of cases, removing classifiers from an ensemble
happens when a predefined ensemble size is reached. However, in some algorithms,
classifiers are being removed when their accuracy drops below a predefined thresh-
old. In yet other algorithms, the size of ensemble is set unlimited, hence no classifier
will be eliminated from the ensemble unless a pruning method is utilised. In this
chapter, the removing strategy of algorithms is categorised into the following four
types as can be seen in Table 1:

• Full: is performed when the set ensemble size is reached, and there is a new
classifier that needs to be added to the ensemble. Such algorithms eliminate clas-
sifiers based of the classifiers’ age in the ensemble or their performance on the
recent data. All of the algorithms that use this mechanism for removing classifiers
are the ones that use ‘fixed’ strategy for adding new classifiers.

• Performance based: is performed when the performance of a classifier in the
last predefined k example drops below a specified threshold in the stream. In
this mechanism, when a classifier becomes ‘unhelpful’ in a new concept, it is
considered as an obsolete classifier and is removed from the ensemble.

• Drift detection based: when a concept drift detection method identifies a ‘concept
drift’, a classifier is chosen to be eliminated. According to this approach, when
the ensemble is full, for every new concept drift that would be detected by a drift
detection method, only one classifier will be eliminated based on its accuracy
over the recent instances. This happens in order to make room for a new classifier
that needs to be added to the ensemble. All of such algorithms use a detection
dynamic mechanism for adding new classifiers.

• No removal: a considerable amount of algorithms do not remove any old classi-
fiers from the ensemble, and only the weights of classifiers are changed in order
to avoid ‘unhelpful’ classifiers. The main reason behind this strategy is that when
a classifier becomes weak in an environment, it can again be a useful classifier
once a drift has happened, especially when that drift is a recurring concept drift.
The algorithms that use such mechanisms need to have a pruning method in
place, in order to avoid memory overload (since no classifier is being removed
from the ensemble).



Ensemble Dynamics in Non-stationary Data Stream Classification 7

2.3 Update

Updating an ensemble can be referred to two main operations: the first one is updat-
ing the weight or ranking each classifier in the ensemble, and the second is whether
or not to train old classifiers with incoming data. Most of the current algorithms
use the ‘updating weight’ mechanisms in order to improve accuracy, however, only
a few algorithms use the ‘training old classifiers’ mechanism, as a high load of
memory is needed to train all of the classifiers with incoming data. The existing
algorithms and their updating strategies are depicted in Table 1.

Updating the power of each classifier is an efficient way of improving the accu-
racy of an ensemble, especially when a concept drift happens and there are diverse
classifiers in the ensemble. This is usually done by evaluating the positive effective-
ness of each classifier in an environment and changing the weight, or the rank, of the
classifier, so that the classifier with a higher accuracy towards the current condition
has a bigger impact to the ensembles output than a weaker classifier. Note that the
algorithms that use a simple majority voting method for selecting the output of the
ensemble are unable to employ this procedure, as there is no weight or rank set for
each classifier. Similar to the addition stage, the mechanisms for updating weights
of classifiers are categorised to fixed times and dynamic times. The methods that use
dynamic times for updating classifiers are usually used when a drift is detected, ex-
cept for AddExp algorithm [Kolter & Maloof, 2005], where updating is done when
a classifier misclassified an example.

2.4 Ensemble Dynamics Taxonomy

To summarise the above operations, we propose a taxonomy for defining ensemble’s
dynamics in non-stationary data stream classification (Figure 3). According to the
proposed taxonomy, the dynamic behaviour of ensemble techniques is categorised
into three main sections of addition, removal and update as mentioned in Section
2. The addition mechanisms are partitioned into fixed and dynamic methods and
dynamic ones are then divided into detection based, performance based and others
(such as using acceptance factor, etc.). The removal techniques are partitioned into
full (which remove a classifier whenever the ensemble is full), performance based,
detection based and no removal (methods that do not remove classifiers). Finally, the
update section is divided into two subsections of updating the classifiers’ weights
(or ranks) and training old classifiers. The first updating subsection is partitioned
into fixed times, dynamic times and no update, while the second one (training) is
simply divided into the algorithms that do train the old classifiers (yes) and the ones
that do not do so (no).

In order to compare and analyse the existing algorithms with regards to their
dynamic behaviour (as presented in this chapter), six representative algorithms are
selected based on their diversity across the elements of the proposed taxonomy.
The selected algorithms are: Adaptive Boosting (Aboost) [Chu & Zaniolo, 2004]



8 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

, Dynamic Weighted Majority (DWM) [Kolter & Maloof, 2007], Track Recurring
Ensemble (TRE) [Ramamurthy & Bhatnagar, 2007], Adwin Bagging (AdwinBag)
[Bifet et al., 2009], Recurring Concept Drift (RCD) [Gonçalves Jr & De Barros,
2013] and Online Accuracy Update Ensemble (OAUE) [Brzezinski & Stefanowski,
2014a]. These algorithms and their dynamic characteristics are shown in Figure 4.
As can be observed from Figure 4, none of the chosen algorithms follow the same
path across all four phases of addition, removal, updating and training. Furthermore,
there are no two algorithms with more than two common dynamic characteristics in
this selection.

Fig. 3 The proposed taxonomy for ensemble’s dynamics in non-stationary data stream classifica-
tion.



Ensemble Dynamics in Non-stationary Data Stream Classification 9

Table 1 Overview of dynamic behaviour of studied algorithms

Algorithm Addition Removal Update Train Reference

SEA Fixed Full No update No [Street & Kim, 2001]
AWE Fixed Performance Fixed No [Wang et al., 2003]
CDC Other Performance Fixed No [Stanley, 2003]
Aboost Fixed Full Dynamic No [Chu & Zaniolo, 2004]
CBEA Fixed Full No update No [Rushing et al., 2004]
AddExp Misclassify No removal Dynamic No [Kolter & Maloof, 2005]
ACE Detection No removal Dynamic No [Nishida & Yamauchi, 2007]
DWM Misclassify Performance Fixed Yes [Kolter & Maloof, 2007]
TRE Other No removal Fixed No [Ramamurthy & Bhatnagar,

2007]
Adwin Bag Detection Detection No update No [Bifet et al., 2009]
BWE Detection Detection Fixed No [Deckert, 2011]
Learn++ Fixed No removal Fixed No [Elwell & Polikar, 2011]
Heft-Stream Fixed Full Fixed No [Nguyen et al., 2012]
WAE Fixed Full Fixed No [Woźniak, 2013]
RCD Detection No removal Dynamic No [Gonçalves Jr & De Barros,

2013]
DACC Fixed Full Fixed Yes [Jaber, 2013]
ADACC Fixed Full Fixed Yes [Jaber, 2013]
AUE Fixed Full Fixed Yes [Brzezinski & Stefanowski,

2014b]
OAUE Fixed Full Fixed Yes [Brzezinski & Stefanowski,

2014a]
Fast-AE Fixed Full Fixed No [Ortı́z Dı́az et al., 2015]

Legends. Fixed: Fixed time of adding/updating the classifiers, Detection: Detection based
(dynamic) times, Misclassify: Misclassified based (dynamic) times of adding classifiers, Full:
Removing old classifier when the ensemble size is full, Performance: removing when the
performance of a classifier drops from the predefined threshold.

3 Formalisation

Formalising algorithms is a suitable way to comprehend and modulate the existing
approaches in order to develop novel methods. In this chapter, a formalised version
of the selected algorithms (as specified in Section 2) is presented with the intention
to simplify the process of examining and building new approaches.

The following functions are used in the presented algorithms. Note that the se-
quence of the functions is the matter of importance in this formalisation, and the
specific implementation of each function might be different for every algorithm.

• Classify(): The ensemble classifies data according to its combinational rule (e.g.,
weighted majority vote or majority vote).

• Eval(): Evaluating the whole ensemble or classifiers using an evaluation method.
• Update(): Updating the weights (or ranks) of all or one classifier with regards to

its own evaluation and updating mechanism.
• Build(): Building a new classifier using the recently received data.



10 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 4 Selected algorithms diversity in addition, removal and updating phases.

• Add(): Adding the newly built classifier to the ensemble.
• Remove(): Removing one or some classifiers based on the ensemble’s specific

removal mechanism.
• Train(): Training all or some old classifiers using the new data or data block.
• DriftDetection(): Detecting drifts using a concept drift detection method.

Adaptive boosting (Aboost) algorithm [Chu & Zaniolo, 2004] presented in Algo-
rithm 1 takes blocks of data, classifies the instances and then evaluates the ensem-
ble’s performance. If a concept drift is detected, it updates all the classifiers and
assigns the default weight of ‘one’ to them. Otherwise, it assigns a weight to each
instance in the block according to whether or not that instance has been classified
correctly (lines 8-9). If an instance is misclassified, a higher weight would be as-
signed. If the instance is classified correctly, the default weight of ‘one’ would be
assigned. Finally, the oldest classifier in the ensemble will be removed and a new
classifier will be built and added to the ensemble (based on the weighted instances
in the block).

In Dynamic Weighted Majority (DWM) algorithm [Kolter & Maloof, 2007]
shown in Algorithm 2, the data comes in an online form and after a predefined
period p, if a classifier misclassifies an instance, the weight of that classifier will be
reduced by a constant value regardless of the ensemble’s output (lines 8-9). After



Ensemble Dynamics in Non-stationary Data Stream Classification 11

Algorithm 1: ABOOST Adaptive Boosting Algorithm
Input: Continuous data blocks, DB ={db1,db2,..,dbn}
Output: C: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(Ensemble)
5 if DriftDetection()=1 (drift is detected) then
6 Update(c)

7 else
8 Eval(dbi)
9 Update(dbi)

10 Build(ci+1)
11 Add(ci+1)
12 Remove() //remove oldest classifier
13 i = i+1

this period, all the weights will be normalised and the classifiers with lower weights
than a threshold (θ ) will be removed from the ensemble. Finally, when the ensemble
misclassifies an instance, a new classifier will be built and added to the ensemble.
Note that all classifiers are trained incrementally with incoming samples.

In Tracking Recurrent Ensemble algorithm (TRE) [Ramamurthy & Bhatnagar,
2007], a new classifier will be added only when the ensemble error reaches a pre-
defined permitted error (τ). Each classifier’s weight would be updated once its per-
formance drops below an acceptance factor (θ ). This approach does not remove old
classifiers unless a pruning method is used. The formalised version of this algorithm
is depicted in Algorithm 3

Adwin Bagging (AdwinBag) [Bifet et al., 2009] is an approach that uses a con-
cept drift detection method to specify when a new classifier is needed. When the new
classifier is built and there is no more room in the ensemble, the worst performing
classifier will be removed in order to make room for the new one. The formalised
version of this algorithm is shown in Algorithm 4.

The Recurring Concept Drift framework (RCD) [Gonçalves Jr & De Barros,
2013] presented in Algorithm 5 uses a buffer to store the context related to each
data distribution in the stream. When the concept drift detector signals a warning,
a new classifier is created and trained alongside with a new buffer. If the concept
drift detector signals a drift, which means the concept drift is certain, the framework
checks whether or not the new concept drift is similar to previous concepts in the
buffer (in case it is a recurring concept drift). If the new concept is similar to an
old concept based on a statistical test, the framework uses the classifier created with
that concept to classify incoming data and starts to train that classifier. If data distri-
bution (concept) is new to the framework, it stores the new buffer and classifier in
the system and uses the new classifier to classify incoming data. Otherwise, if the
signal was a false alarm, the system ignores the stored data and continue to classify



12 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Algorithm 2: DWM Dynamic Weighted Majority algorithm
Input: A Data Stream, DS ={d1,d2,..,dn}
li: Real label of the ith example

1 Θ : Threshold for removing classifiers
2 p: specified period for addition, removal and update of classifiers.

Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights
w ={w1,w2,..,wm}

3

4 i := 1
5 while data stream is not empty do
6 for j = 1 to j = m do
7 Classify(di)
8 if Output(b j) 6= li and i mod p = 0 then
9 Update()

10 if i mod p = 0 then
11 while w j < θ do
12 Remove(c j)

13 Train(c j)

14 if Classify(di) 6= li then
15 Build()
16 Add()

17 i := i+1

Algorithm 3: TRE Tracking Recurrent Ensemble
Input: Continuous data blocks, DB ={db1,db2,..,dbn}
τ: Permitted error θ : Acceptance factor
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 for j = 1 to j = m do
5 Eval(c j)
6 if Eval(c j) < θ then
7 Update(c j)

8 Eval(Ensemble)
9 if Ensemble error > τ then

10 Build()
11 Add()

12 i := i+1



Ensemble Dynamics in Non-stationary Data Stream Classification 13

Algorithm 4: ADWINBAG Adwin Bagging algorithm
Input: A Data Stream, DS ={d1,d2,..,dn}
M: Ensemble size
Output: A set of classifiers c ={c1,c2,..,cm}

1 i := 1
2 while data stream is not empty do
3 Classify(di)
4 if DriftDetection()=1 then
5 Build()
6 Add()

7 for j = 1 to j = m do
8 Eval(c j)

9 if Ensemble size = M then
10 Remove() //remove worst performing classifier

11 i := i+1

using the last classifier. In this approach, only one classifier is active at a time and
does the classification task.

Algorithm 5: RCD Recurring Concept Drift framework
Input: A Data Stream, DS ={d1,d2,..,dn}
Output: A set of classifiers c ={c1,c2,..,cm}, Buffer list b ={b1,b2,..,bm}

1 ca= Active classifier, ba= Active buffer
2 cn= New classifier, bn= New buffer
3 i := 1
4 while data stream is not empty do
5 Classify(di)
6 DriftDetection()
7 switch Drift Detection do
8 case DriftDetection()= Warning and cn=null do
9 Build(cn)

10 Build(bn)

11 case DriftDetection()= Warning and cn 6=null do
12 Train(cn)

13 case DriftDetection()= Drift do
14 ca← cn
15 ba← bn

16 otherwise do
17 cn = bn = null

18 i := i+1

Online Accuracy Update Ensemble (OAUE) Algorithm [Brzezinski & Stefanowski,
2014a] is designed to incrementally train all of the old classifiers and weight them



14 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

based on their error in constant time and memory. Since this approach needs a high
load of memory due to training all classifiers with incoming data, a threshold for
memory is assigned – so that, whenever the threshold is met, a pruning method is
used to decrease the size of classifiers. The formalised version of this approach is
depicted in Algorithm 6.

Algorithm 6: OAUE Online Accuracy Updated Ensemble algorithm
Input: A continuous blocks of data, DB ={db1,db2,..,dbn}
M: Ensemble size, θ : Memory threshold
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(c)
5 Build(ci)
6 if i < M then
7 Add(ci)

8 else
9 Remove() //remove least accurate classifier

10 Add(ci)

11 for j = 1 to j = m do
12 Update(c j)
13 Train(c j)

14 if Memory usage > θ then
15 Prune(c) //decrease size of classifiers

16 i := i+1

4 Experimental Study

To evaluate and analyse the selected algorithms (as specified in Section 2), and
to observe the behaviour of different mechanisms with respect to various concept
drifts, a set of experiments are conducted using several data sets. For this purpose,
two artificial and two real world data streams are employed and the algorithms are
compared using different criteria including classification accuracy, training time,
memory usage, average adaptation time to concept drifts and average accuracy drop
upon concept drifts. Each evaluation run in these experiments involves passing one
of the chosen data sets described below through a specific algorithm in a form of
data stream with a specified number of instances per interval.

All of the experiments are implemented by Massive Online Analysis (MOA)
framework [Bifet et al., 2010]. MOA is an open source framework for data stream
mining in evolving environments implemented at the University of Waikato. Aboost,



Ensemble Dynamics in Non-stationary Data Stream Classification 15

DWM, OAUE and AdwinBag algorithms are already included in MOA framework
and TRE and RCD algorithms are added using classifiers and drift detection meth-
ods extension 1. The experiments were performed on a machine equipped with an
Intel Core i7-4702MQ CPU @ 2.20GHz and 8.00 GB of Installed memory (RAM).

4.1 Data Sets

Hyperplane Generator

Hyperplane generator is a synthetic data stream with drifting concepts based on
a rotating hyperplane. A hyperplane in d-dimensional space is the set of points

that satisfy
d

∑
i=1

wixi = w0 where xi is the ith coordinator of point x. Instances with

d

∑
i=1

wixi ≥ w0 are labelled as positive and
d

∑
i=1

wixi < w0 are labelled as negative. Ro-

tating Hyperplane Generator was introduced by [Hulten et al., 2001] and is a good
way to simulate concept drift by changing the location of the hyperplane and addi-
tionally to change the smoothness of drifting data by specifying the magnitude of
the changes.

For this experiment, the number of classes and attributes are set to four and four-
teen respectively, and the magnitude of change is set to 0.01.

SEA Data Stream Generator

SEA generator is a data set inspired by four SEA concepts as described in [Street
& Kim, 2001]. The data set is a set of random points in a three-dimensional feature
space. All three features have the value between 0 to 10, but only the first two are
relevant to classification. These points are then divided into four blocks with differ-
ent concepts. This is done to specify different concept drifts by assigning different
conditions and goals for each class.

For this experiment along with the normal concept drifts that are being generated
in the data stream, three abrupt concept drifts are added manually in three predefined
times in order to be able to analyse the behaviour of different algorithms in the exact
same situation specifically towards abrupt concept drifts.

1 http://sites.google.com/site/moaextensions



16 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Forest Cover-type Data Set

Forest Cover-type data set [Blackard & Dean, 1999] from the UCI Machine Learn-
ing Repository 2 contains the forest cover type of 30× 30 meter cells obtained from
the US Forest Service (USFS) Region 2 Resource Information System (RIS) data. It
contains 581,012 instances and 54 attributes. The goal with this data set is to predict
the forest cover type from cartographic variables.

Electricity Data Set

Electricity is a widely used data set by [Harries & Wales, 1999] collected from the
Australian New South Wales Electricity Market. In this market, prices are not fixed
and are affected by demand and supply. The Electricity data set contains 45,312 in-
stances. Each instance contains 8 attributes and the target class specifies the change
of the price (whether going up or down) according to a moving average of the last
24 hours.

4.2 Results and Analysis

To evaluate performance of the selected algorithms, three generic criteria are used,
including ‘Accuracy’, ‘Execution time’ and ‘Memory usage’. Accuracy is the per-
centage of correctly classified instances in the given interval. Execution time and
memory usage represent how much time and memory overall it takes for an al-
gorithm to complete an evaluation run. For the second experiment with SEA data
stream, two more criteria are utilised in order to study algorithms’ behaviour in the
presence of abrupt concept drift. These criteria are accuracy drop upon a concept
drift and recovery time from a concept drift (adaptation time). Accuracy drop is
calculated as a ratio (in %) between the last interval’s accuracy rate before the new
drift is introduced and the next interval’s accuracy rate. Recovery time is the aver-
age number of instances it takes for each algorithm to achieve its average accuracy
again (after an abrupt concept drift).

Figure 5 shows the percentage of classification accuracy of the selected algo-
rithms over Hyperplane data set. Algorithms’ behaviour in identical scenarios are
demonstrated in Figure 6. The elapsed time and memory usage are shown in Fig-
ures 7 and 8.

Accuracy rates of the selected algorithms over SEA generator data stream are
shown in Figure 9. In order to create abrupt concept drifts at specified times, one
million instances are generated from SEA data generator [Street & Kim, 2001] with

2 http://archive.ics.uci.edu/ml



Ensemble Dynamics in Non-stationary Data Stream Classification 17

Fig. 5 Classification accuracy of different algorithms for Hyperplane data stream generator (1
million instances). X-axis: Instance number; Y-axis: Accuracy in %(calculated every 5000 in-
stances). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c): Dynamic
Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking Recurrent
Ensemble, (f): Adwin Bagging algorithm.

three different parameters that happen every 250 thousand instances. Figure 10 com-
pares algorithms’ accuracy rates in one chart.

Figure 11 demonstrates behaviour of the tested algorithms towards one of the
added abrupt concept drifts. In Figure 12, the selected algorithms are compared ac-
cording to their accuracy drop, recovery time, average accuracy, average memory
usage and the overall time of an experiment.

The average accuracy of the selected algorithms over Forest Cover-type data set
is depicted in Figure 13. Comparison of the algorithms over this data set is demon-
strated in Figure 14 and the memory usage and execution time of the algorithms is



18 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 6 Comparison of algorithms’ accuracy rates over Hyperplane generator.

Fig. 7 Overall execution time of the selected algorithms over Hyperplane data generator (in sec-
onds).

shown in Figures 15 and 16 respectively. Average accuracy, performance compari-
son, memory usage and overall execution time of all algorithms over Electricity data
set is demonstrated in Figures 17, 18, 19 and 20 respectively.

Finally, the overall results of the above mentioned experiments are summarised
in Table 2 according to the three main criteria: classification accuracy, execution
time, and memory usage.



Ensemble Dynamics in Non-stationary Data Stream Classification 19

Fig. 8 Memory usage of the selected algorithms (calculated every 5000 instances). X-axis: In-
stance number; Y-axis: Memory in bytes.

As it can be observed from Table 2 along with the above mentioned figures, the
RCD algorithm [Gonçalves Jr & De Barros, 2013] has the lowest memory usage and
execution time in all experiments, but it has the poorest classification accuracy for
the majority of the data sets (Hyperplane, SEA and Forest-cover type). This algo-
rithm has a long recovery time from concept drifts (average of 25900 instances), and
its accuracy drops drastically upon abrupt concept drifts (average drop of 7.2% (Fig-
ure 12). The OAUE algorithm [Brzezinski & Stefanowski, 2014a] has the best clas-
sification accuracy for the majority of the data sets (Hyperplane, SEA and Forest-
cover type) with an average execution time, but a relatively high memory usage,
especially for Electricity data set (Figure 19) . Furthermore, it has the lowest recov-
ery time from concept drifts (average of 4940 instances) and a medium performance
drop upon abrupt concept drifts (average drop of 5.2%). Aboost algorithm [Chu &
Zaniolo, 2004] has a high classification performance (with the best observed accu-
racy over Electricity data set), along with an average execution time. However, it
has the highest level of memory load for Hyperplane, SEA and Forest Cover-Type
data sets. This algorithm has an average time of recovery from concept drifts (av-
erage of 23800 instances) and the poorest classification performance upon abrupt
concept drifts (7.9% drop). In DWM algorithm [Kolter & Maloof, 2007], memory
usage and execution time are average and classification performance is acceptable
in the majority of the cases (except for Electricity data set, where the average accu-
racy is 70.7%). The accuracy decreases slightly in the presence of abrupt concept
drifts (average drop of 2.1%), and the average time of adaptation is mediocre (av-
erage of 20900 instances). TRE algorithm [Ramamurthy & Bhatnagar, 2007] has
the longest execution time for all data sets, however, the accuracy and memory us-



20 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 9 Classification accuracy of the algorithms over SEA data stream generator (1 million in-
stances). X-axis: Instance number; Y-axis: Accuracy rate (calculated every 5000 instances in
%). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c): Dynamic
Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking Recurrent
Ensemble, (f): Adwin Bagging algorithm.

age are medium in most cases (except for accuracy in Electricity data set, which is
71.7%). This algorithm has an average adaptation time (average of 16000 instances)
and the lowest accuracy drop upon abrupt concept drifts among the other selected
algorithms (1.1%). Finally, in Adwin Bagging algorithm [Bifet et al., 2009], the
classification accuracy is high in all cases and memory usage and execution time
are relatively low for the majority of the data sets. However, it has the highest value
of adaptation time in concept drifts (average of 34100 instances), and the accuracy
drops drastically once an abrupt concept drift happens (5.9%).



Ensemble Dynamics in Non-stationary Data Stream Classification 21

Fig. 10 Comparison of algorithms’ accuracy rates over SEA generator.

Fig. 11 A closer look at one of the added abrupt concept drifts and the behaviour of different algo-
rithms towards this drift. X-axis: Instance number; Y-axis: Classification accuracy rate (calculated
every 5000 instances in %).

5 Discussion

It is observed from the first experiment (over the Hyperplane Generator data set)
that in RCD and Aboost algorithms, where the update phase happens in dynamic
times (upon drift detection), the fluctuation of accuracy is relatively high (Figure
5). This might be due to the fact that such algorithms are sensitive to concept drifts



22 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 12 Comparison of the algorithms in SEA generator data stream in the presence of different
concept drifts in 1 million instances. (a): Average accuracy in %, (b): Average drop of accuracy
upon concept drifts, (c): Average time of recovery (adaptation) from concept drift (number of
instances to pass in order to achieve the average performance again), (d): Overall time, (e): Average
memory usage.

and also prone to false alarms, where noise can be detected as a concept drift. As
can be seen from Figure 6 for example, accuracy rates of both RCD and Aboost
algorithms during the instance numbers 215000 to 250000 drop drastically, while



Ensemble Dynamics in Non-stationary Data Stream Classification 23

Fig. 13 Classification accuracy of the tested algorithms over the Forest Cover-type data set
(581,012 instances). X-axis: Instance number, Y-axis: Accuracy rate (calculated every 2000 in-
stances in %). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c):
Dynamic Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking
Recurrent Ensemble, (f): Adwin Bagging algorithm.

for other algorithms, accuracy remains the same or increases. This can be explained
by inability of the algorithms to distinguish between the true signal and noise. In
the instance number 775000, the accuracy of all algorithms drop smoothly, while in
Aboost and especially RCD this drop is more severe. Furthermore, in Figure 5, it is
clear that accuracies of OAUE and DWM algorithms (b,c) have the lowest rate of
fluctuation among the others. This is possibly the result of training old classifiers as
new examples are passing through the ensemble.

As can be noticed from the second experiment (over SEA generator), where three
abrupt concept drifts are added in the points 250000, 500000 and 750000 in Figures
9, 10, 11 and 12, the accuracy of TRE algorithm is the most consistent when the



24 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 14 Comparison of algorithms’ accuracy rates over the Forest Cover-type data set.

Fig. 15 Memory usage of the selected algorithms over Forest Cover-type data set (calculated every
2000 instances). X-axis: Instance number, Y-axis: memory used (in bytes).

concept drifts happen. The reason for such behaviour might be due to the fact that in
TRE no classifier is removed from the ensemble and the algorithm regularly checks
to see if a new concept drift is similar to an old one. Note that while RCD algo-
rithm has the same mechanism as TRE for recurring concept drifts, a drift detection
method is used in RCD, which makes it sensitive to concept drifts. In addition, only
one classifier at a time is active in RCD algorithm. According to Figure 10, accura-
cies of OAUE and DWM algorithms drop upon concept drifts, however, they recover
from (adapt to) those concepts swiftly (Figure 12). This is due to training old clas-



Ensemble Dynamics in Non-stationary Data Stream Classification 25

Fig. 16 Overall execution time of the selected algorithms over Forest Cover-type data set (in sec-
onds).

Table 2 Overview of all experiments with respect to accuracy, execution time and memory usage.

— Average Accuracy (%) Execution Time (second) Memory Usage (KB)
Algorithm Plane SEA Forest Elec Plane SEA Forest Elec Plane SEA Forest Elec
Aboost 87.56 87.91 75.48 89.77 188 46 184 4 14807 3515 5631 550
OAUE 90.69 89.42 90.11 87.5 128 49 164 3.98 2888 2754 1947 844
DWM 89.66 87.87 80.26 70.73 247 58 317 5.48 609 249 932 330
RCD 84.7 86.2 62.66 73.45 34 5 62 1.98 4.4 1.1 24.7 2.6
TRE 88.33 88.05 77.3 71.68 1378 260 1509 8.77 1924 694 3423 666
AdwinBag 90.06 88.17 84.81 84.34 86 46 124 2.97 2059 2612 428 238

sifiers with incoming data in these algorithms. Similar to the previous experiment
(Hyperplane data set), the algorithms that use concept drift detection methods (Ad-
winBag, RCD and Aboost) adapt to concept drifts slowly and their accuracy drops
drastically upon concept drifts (Figure 12).

In Figure 11, which shows the first added concept drift more closely, it is inter-
esting to see that four algorithms with different mechanisms (Aboost, OAUE, RCD
and AdwinBag) have exactly the same reaction to the concept drift in the first 5000
instances after the concept drift happened (time 250000 to 255000). However after
this time, each algorithm has its own reaction to the concept drift. This shows that
these algorithms either do not have an immediate reaction to concept drifts or they
detect and approve concept drifts with a delay. The consistency of TRE and DWM
algorithms in Figure 11 is significant as their accuracy rates do not drop from 86%,
which shows a promising reaction to such drifts. This is due to the fact that in these
algorithms more new classifiers will be built and added to the ensemble when data
is evolving. DWM adds a new classifier when an example is misclassified and TRE
does the same when the threshold of an acceptance factor is passed. Upon concept



26 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 17 Classification accuracy of different algorithms over Electricity data set (45,312 instances).
X-axis: Instance number; Y-axis: Accuracy rate (calculated every 500 instances in %). (a): Adap-
tive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c): Dynamic Weighted Ma-
jority algorithm, (d): Recurring Concept Drift framework, (e): Tracking Recurrent Ensemble, (f):
Adwin Bagging algorithm.

drifts, both conditions happen often, which leads to adding new classifiers more
frequently.

The accuracy of all algorithms over Forest Cover-type data set fluctuates a lot ac-
cording to Figures 13 and 14 (when compared with other experiments). This shows
that Forest Cover-type data set has more severe drifting data than the other data sets.
However, the mentioned behaviour toward concept drifts remains the same and only
the drop of accuracy is more drastic than in previous experiments (Figure 13), par-
ticularly at points 164000, 218000 and 326000. The initial accuracy of algorithms
DWM, TRE and especially Aboost that have the average accuracy rates of about
50%, 49% and 18% in the first 18000 instances, shows that these algorithms need



Ensemble Dynamics in Non-stationary Data Stream Classification 27

Fig. 18 Comparison of algorithms’ accuracy rates over Electricity data set.

Fig. 19 Memory usage of the selected algorithms over Electricity data set (calculated every 500
instances). X-axis: Instance number; Y-axis: Memory in bytes.

some time in order to achieve an initial consistency. Furthermore, it can be noticed
from Figure 14 that RCD and Aboost algorithms have inconsistent performance in
highly evolving data sets.

In the last experiment done over Electricity data set, the fluctuation of accuracy as
depicted in Figure 17 is less than in previous experiments, which proves the fact that
the number of concept drifts in this data set is less or concept drifts are more smooth
(gradual) in this data set. This result is more prominent in Aboost algorithm which
has consistent accuracy over Electricity data set, unlike for the rest of the algorithms
(Figure 18). Accuracy rates of the algorithms that use fixed times of addition (OAUE



28 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

Fig. 20 Overall execution time of the selected algorithms over Electricity data set (in seconds).

and Aboost) are higher and have more stability than the other algorithms. Further-
more, in DWM algorithm with average accuracy of 70.7% the performance is not
satisfactory. This is possibly due to the addition operation in DWM algorithm hap-
pening when an instance is misclassified by the whole ensemble and the removal
operation is based on the performance of each classifier at specific times.

As can be seen from Figures 7, 12(c),16 and 20, TRE algorithm has the longest
execution time by far. This is due to the fact that in TRE algorithms there is no mech-
anism for removing old classifiers and new incoming instances are being compared
with previous ones in order to find recurring concept drifts. Furthermore, DWM and
OAUE algorithms mostly have the longest time of execution after TRE, since in
these algorithms all the classifiers are trained using new data. As opposed to TRE,
RCD algorithm has the shortest execution time because in this algorithm, only one
classifier is active at a time and a new classifier is being built at the same time.
Finally, AdwinBag algorithm has relatively low execution times in all experiments
(Table 2), as this approach does not update the weight or rank classifiers.

Memory usage of different experiments are shown in Figures 8, 12, 15 and 19.
It is clear that RCD algorithm is the least memory greedy method, with an average
memory usage of around one kilobyte for each classification task. This is obviously
due to its addition mechanism and output determination. A new classifier in RCD is
built only upon new concept drifts, and for each example, only one classifier spec-
ifies the output. AdwinBag algorithm is the most efficient algorithm after RCD in
terms of memory usage. This is because a limited amount of classifiers is involved
in each iteration and in addition, previously built classifiers are not being trained or
updated in the procedure. Aboost algorithm has a low memory usage at the begin-
ning of the process, but as new instances come, it grows incrementally. This feature
of Aboost algorithm makes it heavy for long lasting tasks and light for short time
classification tasks. TRE and OAUE algorithms use a high value of memory. This is
because in TRE algorithm, no classifier is being removed, and in OAUE algorithm,



Ensemble Dynamics in Non-stationary Data Stream Classification 29

all classifiers are incrementally trained. This leads to both algorithms needing a
pruning method to shrink the number of classifiers in TRE, and to shrink the size of
each classifier in OAUE.

Overall, for applications where the overall accuracy is an important factor and
classification time is not restricted, OAUE and Aboost algorithms demonstrate bet-
ter results. For applications where memory and time are limited, AdwinBag and
RCD algorithms are recommended. In applications where consistency of accuracy
is important, algorithms such as TRE, DWM and OAUE should be used. Finally,
for applications where good performance upon concept drift is required, TRE and
DWM algorithms are recommended as they demonstrate the most consistent results.

6 Summary

In this chapter, dynamic changes of different ensemble-based approaches for data
stream classification in non-stationary environments have been studied. A novel tax-
onomy has been proposed based on dynamic behaviour of these approaches, in or-
der to establish different types of reactions to concept drifts. To simplify the process
of understanding the current approaches’ dynamics and to encourage the develop-
ment of novel algorithms, a formalisation method for classification algorithms in
streaming analytics has been presented and characteristics of some of the current
algorithms have been represented using this method. Finally, six algorithms out of
the studied twenty algorithms are selected based on their diverse dynamic behaviour
and four experiments have been designed for the purpose of this chapter. These ex-
periments have been conducted to analyse the consequences of employing different
types of dynamic behaviour towards different applications and concept drifts.

Based on the experimental results, the most significant observations are as fol-
lows:

• For the tasks where accuracy is the most important factor and the target data
stream is being evolved frequently and severely, it is suggested to use algorithms
with frequent updating and training phases, such as Aboost, OAUE and DWM.

• For applications where only a small amount of memory is available (such as IoT
and sensor networks) or the time of output needs to be short, it is suggested to
use RCD, Adwin Bagging and other algorithms with less updating or adding
procedures.

• For the applications where frequent recurring concept drifts happen and memory
usage is not crucial, algorithms such as TRE algorithm, where no classifier is
deleted, are recommended to use.

• For the tasks where the memory capacity is limited and the job needs to be done
in a short time with a satisfactory level of accuracy, AdwinBag and DWM algo-
rithms are suggested.

• For least evolving data streams, algorithms such as Aboost and OAUE demon-
strate the best performance, especially in terms of accuracy.



30 Hossein Ghomeshi, Mohamed Medhat Gaber and Yevgeniya Kovalchuk

• For applications where recovery time (time of adaptation) is a critical factor,
OAUE and DWM algorithms that train all classifiers incrementally seem to be
the best option.

• For applications where consistency of accuracy rate is important, algorithms such
as DWM, TRE and OAUE that update their classifiers frequently are the best
choices.

• For applications where the accuracy over concept drifts is the most important
factor, algorithms that add more classifiers or have more ‘adding’ procedures in
evolving environments (e.g., misclassified-based and performance-based mecha-
nisms of adding), such as TRE and DWM are proved to be the best options.

References

[Babcock et al., 2002] Babcock, Brian, Shivnath Babu, Mayur Datar, Rajeev Motwani, & Jennifer
Widom 2002. Models and issues in data stream systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 1–16. ACM.

[Bifet et al., 2010] Bifet, Albert, Geoff Holmes, Richard Kirkby, & Bernhard Pfahringer 2010.
Moa: Massive online analysis. Journal of Machine Learning Research, 11(May):1601–1604.

[Bifet et al., 2009] Bifet, Albert, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, & Ricard
Gavaldà 2009. New ensemble methods for evolving data streams. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 139–
148. ACM.

[Blackard & Dean, 1999] Blackard, Jock A, & Denis J Dean 1999. Comparative accuracies of
artificial neural networks and discriminant analysis in predicting forest cover types from carto-
graphic variables. Computers and electronics in agriculture, 24(3):131–151.

[Brzezinski & Stefanowski, 2014a] Brzezinski, Dariusz, & Jerzy Stefanowski 2014a. Combin-
ing block-based and online methods in learning ensembles from concept drifting data streams.
Information Sciences, 265:50–67.

[Brzezinski & Stefanowski, 2014b] Brzezinski, Dariusz, & Jerzy Stefanowski 2014b. Reacting to
different types of concept drift: The accuracy updated ensemble algorithm. IEEE Transactions
on Neural Networks and Learning Systems, 25(1):81–94.

[Chu & Zaniolo, 2004] Chu, Fang, & Carlo Zaniolo 2004. Fast and light boosting for adaptive
mining of data streams. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 282–292. Springer.

[Deckert, 2011] Deckert, Magdalena 2011. Batch weighted ensemble for mining data streams
with concept drift. In International Symposium on Methodologies for Intelligent Systems, pages
290–299. Springer.

[Elwell & Polikar, 2011] Elwell, Ryan, & Robi Polikar 2011. Incremental learning of concept
drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10):1517–1531.

[Gama et al., 2014] Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, & Abdel-
hamid Bouchachia 2014. A survey on concept drift adaptation. ACM Computing Surveys
(CSUR), 46(4):44.

[Gomes et al., 2017] Gomes, Heitor Murilo, Jean Paul Barddal, Fabrı́cio Enembreck, & Albert
Bifet 2017. A Survey on Ensemble Learning for Data Stream Classification. ACM Computing
Surveys (CSUR), 50(2):23.

[Gonçalves Jr & De Barros, 2013] Gonçalves Jr, Paulo Mauricio, & Roberto Souto Maior De Bar-
ros 2013. RCD: A recurring concept drift framework. Pattern Recognition Letters, 34(9):1018–
1025.

[Harries & Wales, 1999] Harries, Michael, & New South Wales 1999. Splice-2 comparative eval-
uation: Electricity pricing.



Ensemble Dynamics in Non-stationary Data Stream Classification 31

[Hulten et al., 2001] Hulten, Geoff, Laurie Spencer, & Pedro Domingos 2001. Mining time-
changing data streams. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 97–106. ACM.

[Jaber, 2013] Jaber, Ghazal 2013. An approach for online learning in the presence of concept
change. PhD thesis, Citeseer.

[Kolter & Maloof, 2005] Kolter, Jeremy Z, & Marcus A Maloof 2005. Using additive expert
ensembles to cope with concept drift. In Proceedings of the 22nd international conference on
Machine learning, pages 449–456. ACM.

[Kolter & Maloof, 2007] Kolter, J Zico, & Marcus A Maloof 2007. Dynamic weighted ma-
jority: An ensemble method for drifting concepts. Journal of Machine Learning Research,
8(Dec):2755–2790.

[Krawczyk et al., 2017] Krawczyk, Bartosz, Leandro L Minku, João Gama, Jerzy Stefanowski,
& Michał Woźniak 2017. Ensemble learning for data stream analysis: a survey. Information
Fusion, 37:132–156.

[Nguyen et al., 2012] Nguyen, Hai-Long, Yew-Kwong Woon, Wee-Keong Ng, & Li Wan 2012.
Heterogeneous ensemble for feature drifts in data streams. Advances in Knowledge Discovery
and Data Mining, pages 1–12.

[Nishida & Yamauchi, 2007] Nishida, KYOSUKE, & Koichiro Yamauchi 2007. Adaptive
classifiers-ensemble system for tracking concept drift. In Machine Learning and Cybernetics,
2007 International Conference on, volume 6, pages 3607–3612. IEEE.

[Ortı́z Dı́az et al., 2015] Ortı́z Dı́az, Agustı́n, José del Campo-Ávila, Gonzalo Ramos-Jiménez,
Isvani Frı́as Blanco, Yailé Caballero Mota, Antonio Mustelier Hechavarrı́a, & Rafael Morales-
Bueno 2015. Fast adapting ensemble: A new algorithm for mining data streams with concept
drift. The Scientific World Journal, 2015.

[Ramamurthy & Bhatnagar, 2007] Ramamurthy, Sasthakumar, & Raj Bhatnagar 2007. Tracking
recurrent concept drift in streaming data using ensemble classifiers. In Machine Learning and
Applications, 2007. ICMLA 2007. Sixth International Conference on, pages 404–409. IEEE.

[Rushing et al., 2004] Rushing, John, Sara Graves, Evans Criswell, & Amy Lin 2004. A coverage
based ensemble algorithm (CBEA) for streaming data. In Tools with Artificial Intelligence,
2004. ICTAI 2004. 16th IEEE International Conference on, pages 106–112. IEEE.

[Stanley, 2003] Stanley, Kenneth O 2003. Learning concept drift with a committee of decision
trees. Informe técnico: UT-AI-TR-03-302, Department of Computer Sciences, University of
Texas at Austin, USA.

[Street & Kim, 2001] Street, W Nick, & YongSeog Kim 2001. A streaming ensemble algorithm
(SEA) for large-scale classification. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 377–382. ACM.

[Wang et al., 2003] Wang, Haixun, Wei Fan, Philip S Yu, & Jiawei Han 2003. Mining concept-
drifting data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 226–235. AcM.

[Woźniak, 2013] Woźniak, Michał 2013. Application of combined classifiers to data stream clas-
sification. In Computer Information Systems and Industrial Management, pages 13–23. Springer.


