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Introduction 

Attention is a very important cognitive process that is employed for many actions in our everyday life 

(e.g. watching television, reading a paper, washing our face, eating and so on). It is therefore essential 

to investigate further the underlying mechanisms in neuro-degenerative conditions, like Alzheimer’s 

disease, in which our attentional abilities are reduced (Festa, Heindel, & Ott, 2010; Foster, Behrmann, 

& Stuss, 1999; Hao et al., 2005; Porter, Tales, et al., 2010; Redel et al., 2012; A. Tales et al., 2002a; 

Vallejo et al., 2016). Alzheimer’s disease is a condition that can take several years if not decades from 

the time it starts to the time the full symptoms are shown (Tijms & Visser, 2018). In those years of 

disease progression, there are a number of pathological processes that are taking place, however one 

of the starting point of the pathology is believed to be the aggregation of β amyloids into plaques 

(Gordon et al., 2018; Tijms & Visser, 2018). Irrespective of the amount of research that has taken 

place, many questions remain on how the disease unfolds and how to identify individual’s position in 

the disease’s trajectory (Gordon et al., 2018; Ryman et al., 2014). 

It is therefore essential to fully understanding the underlying processing and progression mechanisms 

of the pathology. Understanding the progression of the pathology will allow for early diagnosis, and 

improve medications and managements providing better and longer life for patients. In fact to achieve 

this, it has been argued that cognitive tasks related to cognitive impairments are reliable measures to 

predict progression of the disease (Belleville, Fouquet, Hudon, Zomahoun, & Croteau, 2017). As 

previously discussed, one of the cognitive functions that is affected in Alzheimer’s disease is attention 

(Festa et al., 2010; Foster et al., 1999; Hao et al., 2005; Porter, Tales, et al., 2010; Redel et al., 2012; A. 

Tales et al., 2002a; Vallejo et al., 2016). Patients with Alzheimer’s disease have been shown to have 

reduced visual processing and attentional orienting (Li et al., 2015) that affect their attentional 

processing and visual search (Corbetta, Patel, & Shulman, 2008; Li et al., 2015). 

To investigate further attentional processing, researchers have been using the single feature and 

conjunction search tasks (Moran et al., 2016; Redel et al., 2012; Watson & Humphreys, 1997; Wolfe, 

2002). In both experiments, subjects are asked to identify a target amongst distractors. In single 

feature search, the target shares one common feature with distractors, for example a target blue H 

amongst blue A distractors. In the conjunction task, the target shares two different features with the 

distractors, for example a target blue H amongst distractors that are blue As and green Hs (Watson & 

Humphreys, 1997; Wolfe, 2002). Patients with Alzheimer’s disease show reduced activation in  visual, 

dorsal attention and ventral attention networks (Li et al., 2015) leading to expected deficits in 

attentional processes (Festa et al., 2010; Foster et al., 1999; Hao et al., 2005; Porter, Tales, et al., 2010; 

Redel et al., 2012; A. Tales et al., 2002a; Vallejo et al., 2016). Interestingly,  the patients show a 

significant decrease in performance in the difficult conjunction task but no significant changes in the 

easy single feature search (Cormack, Gray, Ballard, & Tovée, 2004; Foster et al., 1999; Hao et al., 2005; 

Porter, Leonards, et al., 2010; A. Tales et al., 2002b; Andrea Tales & Porter, 2008). Researchers suggest 



that this might be due to an impairment in the binding and grouping processes (Hao et al., 2005), 

problems with inhibitory processes (Levinoff, Li, Murtha, & Chertkow, 2004; Parasuraman, 

Greenwood, & Alexander, 2000) or due to acetylcholine changes that are linked to Alzheimer’s disease 

(Bertrand & Jr, 2018; Daiello et al., 2010; Levy, Parasuraman, Greenwood, Dukoff, & Sunderland, 2000; 

Mesulam, 2004; Sultzer et al., 2017; Whitehouse et al., 1986).Acetylcholine is directly linked to 

attentional processes (Gustavo Deco & Thiele, 2009; Hedrick & Waters, 2018; Levy et al., 2000; Sparks, 

Proulx, Lambe, Barrett, & Chattarji, 2018), through its cholinergic projections from the basal forebrain 

(Hedrick & Waters, 2018). Pyramidal neurons modulated by Acetylcholine express nicotinic and 

muscarinic receptors (Hedrick & Waters, 2018). Acetylcholine modulation from the nucleus basalis 

magnocellularis is linked to changes in binding in visual search tasks (Botly & De Rosa, 2012) and 

changes in feature binding affect the difficult rather than easy visual search (Treisman & Gelade, 

1980). Furthermore, acetylcholine modulation affects attentional processes through gamma 

synchrony (Gustavo Deco & Thiele, 2009), which is linked with changes observed in oscillatory activity 

in Alzheimer’s disease. In fact, Deco and Thiele (2009) identified that there is an optimum ratio 

between NMDA and AMPA conductance that is linked to acetylcholine, gamma oscillations and 

optimum attention. 

All cognitive processes rely on rapidly occurring coordinated action among distributed neural 

assemblies. Thus, one approach to understand and identify when and how these processes go wrong 

is to measure coordinated neural activity in brain networks. Neural oscillations, as observed with EEG 

or MEG (M/EEG), are such a measure. Brain oscillations represent regular fluctuations in electrical 

potentials/magnetic fields and are generated by tens of thousands of neurons. Oscillations occur at 

different frequencies, ranging from very slow (0.2 Hz) to very fast (300 Hz), where the frequency of an 

oscillation is thought to inversely reflect the size of the network generating the oscillation. Brain 

oscillations thus capture the fundamental characteristics of the structural wiring of the brain, and 

allow neural communication during different cognitive states (rest, perception, memory, etc.) to be 

explored at the temporal resolution at which neurons operate. For this reason, brain oscillations are 

a promising candidate for charting neurological and psychiatric disorders (Colom, García-Hernández, 

Castañeda, Perez-Cordova, & Garrido-Sanabria, 2006; Gallego-Jutglà, Solé-Casals, Vialatte, Dauwels, 

& Cichocki, 2014; Güntekin, 2008; Reiterer, Pereda, & Bhattacharya, 2011; Zamrini et al., 2011). 

There is an expanding literature on MEG/EEG (M/EEG) correlates of a range of disorders, such as, 

epilepsy, memory impairments, OCD and ADHD (Güntekin, 2008). Of particular relevance, there are 

now a number of findings on oscillatory correlates of Mild Cognitive Impairment (MCI), e.g. (Gomez, 

Stam, Hornero, Fernandez, & Maestu, 2009); Alzheimer’s, e.g. (Stam, Jones, Nolte, Breakspear, & 

Scheltens, 2006) and other dementias, e.g. (Hughes & Rowe, 2013); including in large multi-site studies 

(Maestú et al., 2015). 

Additionally, in the resting state brain (in which stationarity of oscillatory features can be assumed), a 

number of interesting findings have been reported. For example, one hallmark of dementia, 

particularly Alzheimer’s, is a general slowing of the resting state frequency spectrum (Montez, Poil, …, 

& 2009, n.d.). Additionally, Poil et al.  (2013) found a wide spectrum of EEG resting state measures 

that predicted progression to Alzheimer’s, with a broader beta power peak most predictive (Poil et al., 

2013).  

The oscillatory correlates of MCI are perhaps particularly important for attention as well, since it is 

frequently a precursor diagnosis to Alzheimer’s. As a result, its detection is a target for work on 

biomarkers of the very early stages of Alzheimer’s. With this goal in mind, an oscillatory EEG pattern 

that distinguishes Mild Cognitive Impairment (MCI) patients who either progress within 3 years 

(convertors) or do not (stable) to Alzheimer’s Disease (AD) has been identified (Mazaheri et al., 2018). 



Figure 1 shows time-frequency spectra for brain activity arising from lexical processing. Importantly, 

healthy controls (panel [1]) and non-progressors (i.e. MCI-stable, panel [2]) show a clear increase in 

theta power 0 to 0.5s after word onset (warm colours), while MCI-convertors (panel [3]) show a 

reduced increase (convertors<stable: p<0.046; convertors<control: p<0.004). Such an oscillatory 

change for lexical processing is consistent with language deficits in AD (Ferris & Farlow, 2013) . 

 

 

Figure 1: An attenuation of theta activity associated with lexical processing in a group of MCI patients who would go on to 
convert to Alzheimer's disease (Mazaheri et al., 2018). The time-frequency spectra are locked to word onset at the midline-
parieta 

 

A key question that follows is the effect of neuromodulators on these EEG patterns. As previously 

discussed, there is considerable evidence that there are a range of changes to neuromodulators 

associated with the development of dementias. In this respect, changes in Acetylcholine are of 

particular interest. There are, though, few studies that explicitly consider differences in human EEG 

features between groups with and without Alzheimer’s when Acetylcholine is manipulated.  

One of the few studies that explicitly targeted this question is by Yener and collaborators (Yener, 

Güntekin, Öniz, & Başar, 2007). They compared Healthy Controls with Alzheimer’s patients on and off 

AchEI, a compound that increases the level and duration of action of Acetylcholine. The authors found 

a reduction in phase-locking (to stimulus presentation) of theta oscillations at a frontal electrode for 

the Alzheimer’s group that were not on AchEl, i.e. who, it is assumed, had depleted Acetylcholine. It 

is notable that theta was the relevant oscillation both in the Yener et al. (2007) and the Mazaheri et 

al. (2018) studies. This said, the former focussed on phase coherence across replications, while the 

latter focussed on power changes, and electrode sites were different. Nonetheless, the link between 

depleted Acetylcholine in Alzheimer’s and a noisier stimulus locked theta oscillation is definitely worth 

further exploration. 

An attractive way to proceed in this line of research is computational modelling, which allows data 

collected from all different methodologies to be combined, to test outcomes and to provide 

predictions for further testing (Alexiou, Mantzavinos, & Greig, 2017; Gustavo Deco & Thiele, 2009; Li 

et al., 2015; Eirini Mavritsaki, Heinke, Allen, Deco, & Humphreys, 2011; Eirini Mavritsaki & Humphreys, 

2016). It is very important therefore to use computational modelling to help us interpret the findings 

so far and to progress further. Moreover, developed computational models could then be used to 

predict the progression of the disease on an individual basis, and predict the efficacy of different drug 



targets in Alzheimer’s disease if the model captures the mechanism of these drug compounds in the 

patients. If the model parameters can be determined at individual rather than group level, such model 

paves the way for personalized treatments. 

Accordingly, researchers have started modelling Alzheimer’s disease (Alexiou et al., 2017;  Yu & Dayan, 

2002; Adeli, Ghosh-Dastidar, & Dadmehr, 2005), but they have focused on low level properties of the 

system, rather than linking neurophysiological damage with behaviour. In contrast, in the work 

presented here, we use a computational model that can allow these two levels to be linked and allow 

us not only to understand Alzheimer’s at the neuronal level but also how changes observed in 

Alzheimer’s disease are linked with behavioural changes. The selected behavioural study is visual 

search, this is because, as previously discussed, there is a good deal of work in the area that identifies 

depletion in attentional processes in Alzheimer’s disease and links it to acetylcholine function, and 

attention deficit underlies many cognitive dysfunctions in Alzheimer’s disease (Gustavo Deco & Thiele, 

2009; Festa et al., 2010; Foster et al., 1999; Hao et al., 2005; Porter, Tales, et al., 2010; Redel et al., 

2012; A. Tales et al., 2002a; Vallejo et al., 2016). Furthermore, this work is based on the binding spiking 

Search over Time and Space (bsSoTS) (Eirini Mavritsaki & Humphreys, 2016) that has been extensively 

used to simulate  visual attention processes in healthy adults (E. Mavritsaki, Heinke, Humphreys, & 

Deco, 2006; Eirini Mavritsaki, Allen, & Humphreys, 2010a; Eirini Mavritsaki et al., 2011) and to 

investigate further the attentional processes in conditions where such processes are depleted (Eirini 

Mavritsaki, Allen, & Humphreys, 2010b; Eirini Mavritsaki et al., 2011; Eirini Mavritsaki & Humphreys, 

2016). The bsSoTS is also the appropriate model to use because the parameters of the model have 

been set to generate neural activity resembling that of the human brain in the content of realistic 

noise component. To simulate the acetylcholine depletion the work of Deco and Thiele (2009) is 

followed where the attentional behaviour changes are investigated by changes in acetylcholine levels 

through the AMPA and NMDA currents. 

 

Methods 

The methodology presented in this work is based on the bsSoTS model that uses integrate-and-fire 

neurons to simulate the traditionally used visual search experiment (Eirini Mavritsaki et al., 2011; Eirini 

Mavritsaki & Humphreys, 2016). Neuronal properties are described in Mavritsaki et al. (2016) based 

on the integrate-and-fire neurons of Brunel and Wang (2001).  Input to the cell is based on a fast 

excitatory AMPA current, a slow excitatory NMDA current, a inhibitory GABA current and frequency 

adaptation based on the calcium sensitive potassium current IAHP.  The model is ideal for this level of 

simulations as it has successfully simulated the easy and difficult visual search experiment and 

incorporates top-down and bottom-up processes (Eirini Mavritsaki et al., 2011; Eirini Mavritsaki & 

Humphreys, 2016), as well as allowing us to investigate neuronal changes dependent  on the AMPA, 

GABA and NMDA currents (Eirini Mavritsaki & Humphreys, 2013). The organisation of the model is 

based on previous work by Deco and Zihl (2001) and follows Feature Integration theory (Treisman & 

Gelade, 1980). The model simulates visual search experiments as described above. The general 

organisation of the model and the spiking and mean-field neuronal level is presented in Figure 2; to 

model the simulated experiment the model is divided into three layers: two feature layers whose 

activation is bound into the Location Map/Saliency Map (Eirini Mavritsaki et al., 2010a). Each Feature 

dimension layer is separated into two feature maps: the shape feature layer is separated into H  and 

A  and the colour feature layer is separated into colour blue and colour green, as in previous work (E. 

Mavritsaki, Heinke, Allen, Deco, & Humphreys, 2011; Eirini Mavritsaki & Humphreys, 2016, 2013). 



Following the work by Deco and Thiele on the effects of acetylcholine on attention (Gustavo Deco & 

Thiele, 2009), we investigated the effects of changes in gNMDA and gAMPA on attentional processes in an 

effort to simulate the changes in visual search, assuming only changes in Acetylcholine.  We changed 

the AMPA and NMDA conductance from performance observed in Alzheimer’s -16% to 16%. Figure 3 

(gAMPA/gNMDA graph) presents the effect of the changed values to the ratio of the  NMDA/AMPA 

conductance (Gustavo Deco & Thiele, 2009). Within this range of parameters, we identified the 

parameters that allow for a different decline in visual search performance to be observed for 

simulated Alzheimer’s disease between difficult and easy conditions. From the range of parameters 

investigated, the parameter settings that allowed for a greater decline in performance for the difficult 

relative to single feature search task, was selected. The single feature and conjunction visual search 

experiments were simulated for this selected set of parameters.  

 

Figure 2: bsSoTS organisation for a range of feature maps. For the results presented in this work, we are using two feature 
maps for shape and colour. The model is overall separated into three layers, two layers for encoding the feature characteristics 
(the two feature maps) and a third layer in which all information is combined, the Location Map (Eirini Mavritsaki et al., 
2010a). To constrain the model, we move through two different levels, level one is the Mean Field, where a group of neurons 
is simulated using a transfer function as shown in the Figure 2 and the spiking level, where each neuron is simulated using 
the equations shown on the top left corner of the figure. For more details on the model please see Mavritsaki and colleagues 
work (Eirini Mavritsaki et al., 2011; Eirini Mavritsaki, Heinke, Humphreys, & Deco, 2006; Eirini Mavritsaki & Humphreys, 2016). 

The Poisson noise presented to the model allows us to simulate human performance by running the 

model for 300 trials for each display size (four and six) in single feature and conjunction conditions. 

This analysis follows the same analysis that was previously performed (Eirini Mavritsaki et al., 2011; 

Eirini Mavritsaki & Humphreys, 2016, 2013). The reaction times (RTs) and success rates obtained were 

then analysed using a mixed ANOVA design.  



Results 

The RTs and success rates for all the gNMDA and gAMPA parameter changes presented in Figure 3 are 

calculated for each parameter set and presented in Figures 3 and 4. The changes for RTs and success 

rates for single feature were smaller than the changes for conjunction. The circled parameter set 

identified in Figures 3 and 4 is the one selected to simulate the Alzheimer’s condition. Figure 5 

illustrates the average RTs and Figure 6 illustrates the average success rates. 

 

 

Figure 3: On the left we show the success rate differences from Baseline success rate for the single feature 4 (SF4) items, 

single feature  6 (SF6) items, conjunction 4 (CJ4) items and conjunction 6 (CJ6) items. The baseline values that are used for 

the calculations are 95% for SF4 items, 96% for SF6 items, 81% for CJ4 items and 80% for CJ6 items. The circle parameter 

group is the parameter group that was identified as optimum to simulate Alzheimer’s visual search behaviour. On the left 

we show AMPA/NMDA conductance ratio changes for the parameter space used. The circle marks the set of parameters 

that was identified as the optimal to simulate Alzheimer’s visual search behaviour. 

Simulated participants’ RTs and success rates across all conditions were entered into a 2 x 2 x 2 mixed-

design ANOVA with the within-participants factor of condition (Single Feature/Conjunction search) 

and Display Size (4/6 items) and the between-participants factor of group (simulated 

control/simulated AD groups). This gave us the main effects and interactions presented in Table 1. A 

significant interaction of condition x Display Size x Group was observed for percentage success rate, 

but not for reaction times. For reaction time, we observed significant main effects of Display size, 

F(1,28) =181, p<.001, ηp
2=.866, condition, F(1,28)=243.4, p<.001, ηp

2=.897, group F(1,28)=276.1, 

p<.001, ηp
2=.908 and an interaction of condition with display size, F(1,28) = 13.9, p=.001, ηp

2=.332. We 

did not observed significant interactions between display size and group, F(1,28)=1.7, p=.191, ηp
2=.06  

or condition and group, F(1,28)=1.4, p=.236, ηp
2=.05. For success rate, we observed significant main 

effects of Display size, F(1,28)=67.2, p<.001, ηp
2=.706, condition, F(1,28)=222.2, p<.001, ηp

2=.888, and 

group, F(1,28)=34.2, p<.001, ηp
2=.551. We also observed significant interactions between condition 

and display size, F(1,28)=59.2, p<.001, ηp
2=.682, condition and group, F(1,28)=26.4, p<.001, ηp

2=.486 

and display size and group, F(1,28)=65, p<.001, ηp
2=.699 

 



 

 

Figure 4: On the left we show reaction time difference from Baseline reaction time for the single feature 4 (SF4) items, single 
feature  6 (SF6) items, conjunction 4 (CJ4) items and conjunctions 6 (CJ6) items. The baseline values that are used for the 
calculations are 254.5 ms for SF4 items, 299.9 ms for SF6 items, 337.2 ms for CJ4 items and 432.9 ms for CJ6 items. The 
circle marks the parameter group that was identified as optimum to simulate Alzheimer’s visual search behaviour. On the 
left we show again the AMPA/NMDA conductance ratio changes for the parameter space used. 

 

 

 

Figure 5: Bar plots for reaction rimes for simulated Alzheimer’s and Baseline (simulated controls). SF4 C shows the reaction 
time for single feature 4 items for controls (healthy participants), SF4 AD shows the reaction time for single feature 6 items 
for simulated Alzheimer’s patients. SF6 C shows the reaction time for single feature 6 items for controls, SF6 AD shows the 
reaction time for single feature 6 items for simulated Alzheimer’s patients. The same applies for conjunction, where CJ4 is 
conjunction for 4 items and CJ6 is conjunction for 6 items. 

 

 



 

Figure 6: Bar plots for success rate for simulated Alzheimer’s and Baseline (simulated controls). SF4 C shows the success rate 
for single feature 4 items for controls (healthy participants), SF4 AD shows the success rate for single feature 6 items for 
simulated Alzheimer’s patients. SF6 C shows the success rate for single feature 6 items for controls, SF6 AD shows the 
success rate for single feature 6 items for simulated Alzheimer’s patients. The same applies for conjunction where, CJ4 is 
conjunction for 4 items and CJ6 is conjunction for 6 items. 

Table 1 
ANOVAs of Percentage Success and Reaction Times, Reporting the Main Effects of, and Interactions 
Between, Condition (Single Feature/Conjunction Search), Display Size (4/6 Items), and Group 
(Baseline/AD Group) 

Measure ANOVA term F (df) p ηp
2 

Reaction Time  Display Size  181 (1,28) <.001 .866 
 Condition 243.4 (1,28) <.001 .897 
 Group 276.1 (1,28) <.001 .908 
 Condition x Display Size 13.9 (1,28) .001 .332 
 Condition x Group 1.4 (1,28) .236 .05 
 Display Size x Group 1.7 (1,28) .191 .06 
 Condition x Display Size x 

Group 
.8 (1,28) .36 .03 

     
% Success Display Size 67.2 <.001 .706 
 Condition 222.2 <.001 .888 
 Group 34.2 <.001 .551 
 Condition x Display Size 59.9 <.001 .682 
 Condition x Group 26.4 <.001 .486 
 Display Size x Group 65 <.001 .699 
 Condition x Display Size x 

Group 
53.6 <.001 .657 

 

Discussion 

This study fits broadly into the category of Computational Psychiatry (Montague, Dolan, Friston, & 

Dayan, 2012; Yu & Dayan, 2002). Although majority of Computational Psychiatry approaches aim to 

decompose behavioural into its constituents before explaining it neural underpinnings, such as 

mapping decision-making into values and prediction errors, our approach aimed at providing an 

architectural framework under which neurobiological dysfunctions can directly explain symptomology 



in Alzheimer’s. The results from this work clearly demonstrate that computational modelling that 

bridges low level characteristics with whole system behaviour can be used to simulate attentional 

processes, as has also been previously shown (Eirini Mavritsaki et al., 2011; Riddoch et al., 2010), and 

to make that bridge in simulating Alzheimer’s disease changes in attentional processing. There were 

significant changes observed between simulated controls and simulated Alzheimer’s disease patients 

for success rates and reaction times, as has been previously shown (Cormack et al., 2004; Foster et al., 

1999; Hao et al., 2005; Porter, Leonards, et al., 2010; A. Tales et al., 2002b; Andrea Tales & Porter, 

2008) and significant interactions for condition, display size and group. This clearly demonstrates that 

the model was able to capture some of the changes in Alzheimer’s disease attentional processing by 

changing the gNMDA and gAMPA parameters, simulating reduction in acetylcholine observed in 

Alzheimer’s disease.  

 

Although the results showed significant overall interactions for success rates, the overall interaction 

for reaction time was not significant. This can be attributed to the fact that the healthy simulated 

behaviour is at ceiling level therefore any changes due to the acetylcholine reduction might not be 

easily detected. Another reason might be that although acetylcholine reduction is important in 

Alzheimer’s disease that other processes are also taking place, like changes in binding, grouping or 

inhibitory processes (Hao et al., 2005; Levinoff et al., 2004; Parasuraman et al., 2000). Changes in these 

processes are not taken into consideration in the present work, as this work aimed simply to 

investigate if acetylcholine changes could be simulated using the chosen approach. Although these 

processes were not investigated in the current work, the model incorporates all the above processes 

(Eirini Mavritsaki et al., 2011; Eirini Mavritsaki & Humphreys, 2016) and therefore can allow us to 

further investigate them in the following steps of our work. Furthermore, additional work is required 

to investigate where acetylcholine changes can be related to the oscillatory behaviour in Alzheimer’s 

disease demonstrated by Mazaheri et al. (2018) thereby helping to shed light on further understanding 

of disease progression.  The presented work therefore demonstrated that the proposed and similar 

modelling approaches can be used to simulate Alzheimer’s disease. The following steps are to use the 

model to combine the changes in attentional processes which are found in Alzheimer’s disease in one 

model and use the model to shed light on this condition. Furthermore, if this is combined with 

oscillatory behaviour study (Mazaheri et al., 2018) by using previously develop approaches for 

extracting MEG activity from similar models (Barbieri, Mazzoni, Logothetis, Panzeri, & Brunel, 2014), 

it may be able to provide the first step for delivering personalized treatment in Alzheimer’s disease. 
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