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Detection of coherent structures is of crucial importance for understanding the
dynamics of a fluid flow. In this regard, the recently introduced Dynamic Mode
Decomposition (DMD) has raised an increasing interest in the community. It allows
to efficiently determine the dominant spatial modes, and their associated growth rate
and frequency in time, responsible for describing the time-evolution of an observation
of the physical system at hand. However, the underlying algorithm requires uniformly
sampled and time-resolved data, which may limit its usability in practical situations.
Further, the computational cost associated with the DMD analysis of a large dataset
is high, both in terms of central processing unit and memory. In this contribution,
we present an alternative algorithm to achieve this decomposition, overcoming
the above-mentioned limitations. A synthetic case, a two-dimensional restriction
of an experimental flow over an open cavity, and a large-scale three-dimensional
simulation, provide examples to illustrate the method. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4908073]

I. INTRODUCTION

Identification of coherent structures is nowadays a pivotal instrument for understanding the
phenomenology and dynamics of a fluid flow. A powerful analysis tool, the dynamic mode decom-
position (DMD), has recently been introduced.19,20 Dynamic modes reveal spatial coherent struc-
tures associated with temporal spectral components, including temporal growth rates. It has been
shown in Ref. 3 that Dynamic Mode Decomposition is connected to discrete Fourier transform,
while14 discussed the connection between DMD and Koopman analysis, inherited from the dynam-
ical system theory. Dynamic modes are therefore informative of the dynamical skeleton of a flow.
DMD has been successfully applied to a wide range of systems, in particular, fluid flows such as
cavity flows,9,20,22 or jet flows,21,23 among others. Some recent developments include error analysis
of the identified growth rates,7 and improvements on the approximation method.3,11

Dynamic Mode Decomposition requires time-resolved data, uniformly sampled in time. The
time interval must be chosen small enough so as to resolve all time-scales of interest of the under-
lying dynamics. This sampling strategy brings severe constraints on the measurement workflow.
As an example, consider the typical situation where the observable (sample) is a two-dimensional
(2-D), two-component (2-C), velocity field acquired with a Particle Imagery Velocimetry (PIV)
technique. Standard in PIV are fields of 1000 × 1000 pixels. Suppose the highest frequency of
interest in the flow field is 200 Hz, a mild assumption, the Shannon-Nyquist criterion imposes a
sampling frequency above 400 Hz to resolve the fast time scales of the flow. With 12-bit images, the
resulting data rate is then already above 1 GB/s. Further, if the Fourier spectrum is wide-banded, the
timespan of the acquisition procedure has to be large to capture the low frequency components. The
combination of a high sampling frequency and a long acquisition sequence then quickly results in
intractable constraints, both on the measurement chain hardware and the computational resources.
This, of course, also applies when considering time-resolved datasets from numerical computations.
Another limitation is that observation data could be corrupted from external or intrinsic sources,
say from the experimental setup. As a typical example, one can think of acquisition failure or
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corrupted images in PIV. Physically irrelevant information is then introduced when correcting such
perturbations and adversely affects the standard DMD accuracy.

In this paper, we address these above-mentioned limitations. The method we present can essen-
tially rely on a subset of the observation data, both in the spatial and time domains, hence naturally
handling corrupted or missing data and arbitrary sampling. The resulting small and scattered dataset
is suitably handled by techniques focusing the scarce available information on the dominant approx-
imation modes by exploiting the compressibility of the decomposition in the retained format. The
selection of the subset could rely on Fourier spectra estimated with a compressed sensing technique,
see Ref. 5, among many others for an introduction to the theory. To avoid the computational cost
associated with the compressed sensing problem, a suboptimal criterion based on statistics of the
time-series is employed. Thanks to working on a subset of the original data, the computational
burden is, sometimes drastically, alleviated compared to the standard DMD method, consequently
allowing very large flow fields, and/or systems with a wide spectrum, to be analyzed. The key of
the proposed method is to decouple the identification of the dominant temporal scales from their
associated spatial modes.

Preliminary results of the present contribution were introduced in Ref. 10. A recent effort,11

discusses the use of compressed sensing to select dominant DMD modes. Our method is different
in the sense that it is not an a posteriori approach relying on a standard DMD, and hence subjected
to its limitations, but instead directly determines the dominant dynamic modes from an (almost)
arbitrary dataset.

After the standard DMD algorithm is briefly recalled in Sec. II, the different aspects of the
proposed method are introduced in Sec. III. They are illustrated and compared with a standard
DMD analysis on a synthetic 2-D dataset and a 2-D space- and time-resolved experimental dataset
from the flow over an open cavity in Sec. IV. A three-dimensional numerical simulation, involving
more than 2 × 106 spatial degrees-of-freedom, is also considered to illustrate the applicability of the
present approach to large-scale situations. Closing remarks conclude the paper in Sec. V.

II. DYNAMICAL MODE DECOMPOSITION

In this section, we briefly recall the dynamic mode decomposition algorithm. More details can
be found in Refs. 19 and 20.

We are interested in characterizing the linear, time-invariant, operator A mapping a real-valued
observation vector un ∈ Rnp of the physical system at hand at time tn to the observation un+1 when
a time ∆t has elapsed, tn+1 = tn + ∆t. Rearranging a sequence K B (u1 . . . uN) ∈ Rnp×N of N snap-
shots in matrices K1 B (u1 . . . uN−1) and K2 B (u2 . . . uN) ∈ Rnp×(N−1) results in characterizing the
properties of A such that

AK1 = K2. (1)

Introducing the economy-size singular value decomposition (SVD) of K1 ≡ UΣW ∗, with W ∗ the
Hermitian transpose of W , Eq. (1) leads to

AU B UU∗AU = U U∗K2WΣ−1              
CS

. (2)

The matrix S B U∗K2WΣ−1 is similar to A, the approximation of A in the column space of K1, so
that its eigenvalues {λk}k are eigenvalues of A, and eigenvectors {ϕk}k of S are related to eigen-
vectors {φk}k (i.e., dynamic modes) of A via φk ≡ Uϕk, ∀k. Since λs are complex, they express
as

λk = ρk exp
(√
−1ωk ∆t

)
, ∀k . (3)

Any eigenvalue is hence related to a frequency fk = ωk/2π and each spatial mode φk is, there-
fore, oscillating in time at a single frequency. Equation (3) also implies that transient states can
be captured by the DMD decomposition: when an eigenvalue has a modulus ρ larger than unity,
the associated mode amplitude grows over time. Conversely, a modulus less than unity denotes a
decaying behavior in time.
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III. IDENTIFICATION OF DYNAMIC MODES FROM ARBITRARY DATA

A. Efficient use of the available data

As discussed in the Introduction, the standard dynamic mode decomposition approach pre-
sented above is restricted to data available in a strict format since the sampling must be uniform
in time (so that the snapshots matrix K can be associated with a Krylov matrix) and the entire
spatial field is considered. In many situations, the resulting decomposition exhibits some dynamic
modes which are dominant with respect to some others and one is typically interested in char-
acterizing these dominant modes only—in a nutshell, the real part ℜ [φk] of a spatial mode φk

considered as dominant lies in a cone of small mean angle ∠k B N−1N
n ∠k,n from the snapshots,

with ∠k,n ∈ [−π,π], cos (∠k,n) = ℜ[φk]∗ un ∥un∥−1
2 ∥ℜ [φk]∥−1

2 . When the spectrum of the decom-
position is sparse, in the sense that only a limited number of modes is responsible for describing
most of the dynamics, the number of dominant modes is small and they hence require only a small
amount of information to be determined. It results that the standard Krylov matrix K contains
significantly more information than actually needed for this objective. This also suggests a route for
a tractable DMD when the dataset is very large and cannot be processed by a standard DMD.

The key of the method we now expose is to extract information relevant for the dominant
modes from scarce data (small dataset). To this end, the determination of the spectral features of the
dominant modes is decoupled from the approximation of their spatial description, in contrast with
the standard DMD where the two aspects are intricately coupled in the eigenproblem issued from
Eq. (2).

To proceed, we rely on an alternative description of the dataset in a similar spirit as in Ref. 3.
The DMD analysis leads to a decomposition of the observable on a spatial basis with complex
temporal coefficients,

u (tn) C un ≈
Nmd
k=1

ρnk e
√
−1 ωk n∆t φk ≡

Nmd
k=1

λ
n
k φk, (4)

with Nmd is the number of modes retained for the approximation and tn given as tn = n∆t,n ∈ N.
The dataset K can then be approximated in terms of spatial modes {φk}Nmd

k=1 ∈ C
np and temporal

coefficients {λk}Nmd
k=1 ∈ C. From Eq. (4), the set of snapshots K may be expressed as

K = M Λ + Res, (5)

where Res ∈ Cnp×N is a residual, M ∈ Cnp×Nmd contains the Nmd dominant spatial modes,

M B
�
φ1 . . . φNmd

�
, (6)

and Λ ∈ CNmd×N is a pseudo-Vandermonde matrix containing the associated Nmd temporal coeffi-
cients,

Λ B

*.......
,

λ
1
1 λ

2
1 · · · λ

N
1

λ
1
2 λ

2
2 · · · λ

N
2

...
...

. . .
...

λ
1
Nmd

λ
2
Nmd

· · · λNNmd

+///////
-

. (7)

B. Non-uniform sampling

One can relax the constraint on the uniform sampling in time and account for snapshots
sampled at arbitrary times. When dealing with a non-uniform sampling, the standard DMD algo-
rithm fails since Eq. (1) does then not hold. However, for an arbitrary time tn ∈ R, the approxima-
tion (4) writes

utn ≈ λ
tn
1 φ1 + λ

tn
2 φ2 + . . . + λ

tn
Nmd

φNmd, ∀tn ∈ R, (8)
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and the, now alternant, matrix Λ now reads

Λ =

*.......
,

λ
t1
1 λ

t2
1 · · · λ

tN
1

λ
t1
2 λ

t2
2 · · · λ

tN
2

...
...

. . .
...

λ
t1
Nmd

λ
t2
Nmd

· · · λtNNmd

+///////
-

, (9)

where {t1, t2, . . . , tN} ∈ RN is arbitrary. Without loss of generality, we set the time reference to t1 so
that tref ← t1, tn ← tn − tref, 1 ≤ n ≤ N .

The approximation of the dynamics of the system can then be derived from matrices Λ and M .
Provided the norm, in the Frobenius sense, of the residual Res is small, M can be well approximated
from Eq. (5) by

M ≈ K Λ+. (10)

Substituting M from (10) in (5) leads to K ≈ K Λ+Λ + Res, with Λ+ the Moore-Penrose
pseudo-inverse of Λ. Λ is then determined by minimizing the Frobenius norm of the residual Res,

Res ≈ K
�
IN − Λ+Λ

�
, (11)

and spatial modes {φk}Nmd
k=1 ∈ C

np follow immediately from Eq. (10).
The temporal information of the Nmd dominant modes is entirely given by λ B

�
λ1 . . . λNmd

�
∈

CNmd and then requires no more than 2 Nmd pieces of information to be estimated. A very low
number N of snapshots is then sufficient in principle.

Since a low number of modes is supposed dominant, the temporal spectrum of the system
at hand is sparse in a Fourier basis (few dominant frequencies) and can then be well approxi-
mated from a limited number of snapshots via a residual norm minimization under a cardinality
constraint as justified by the compressed sensing theory for the linear situation.1,2,5 In particular,
the Shannon-Nyquist sampling limitations do not apply in this context and an observable with
a wide-banded, but sparse or even just compressible, spectrum can be effectively retrieved via
this technique as the provided examples will demonstrate in Sec. IV. Instead of a penalty on the
effective cardinality of the set of dominant DMD modes, we here directly choose the number of
approximation modes Nmd. It results in an optimization problem such as

λ ∈ arg min
λ∈CNmd





K
(
IN − Λ

(λ)+Λ (λ))



F, (12)

with entries of Λ computed from λ, cf. Eq. (9). The modes are then given by M = K Λ+. Notice that,
since Λ ∈ CNmd×N , the matrix Λ+Λ is a square, rank-Nmd, matrix of size N × N . Since Nmd ≪ N ,
Λ+Λ is highly rank-deficient and cannot get close to IN in the sense of ∥·∥F for any λ. Upon

evaluation of the economy-size QR decomposition of the snapshot matrix, Q R
QR
= K , Q ∈ Rnp×N

and R ∈ RN×N , and since left-multiplication of a matrix by a unit-normed column matrix does not
change its Frobenius norm, the optimization problem (12) finally reduces to

λ ∈ arg min
λ∈CNmd





R
(
IN − Λ

(λ)+Λ (λ))



F, (13)

which only involves matrices of the size of the number of snapshots N , rather than the size np of the
snapshots themselves.

This approach allows to rely on scarce data, requiring only a low number of snapshots N and
hence resulting in tractable matrices R, IN , and Λ. Since Nmd is low, the optimization problem is
low-dimensional and can be efficiently solved, either in R2 Nmd with algorithms possibly as simple
as the derivative-free Nelder-Mead method,12 used in the present work or directly in CNmd, see
Ref. 25. The approach described in this section is hereafter referred to as the Non-Uniform DMD
(NU-DMD) algorithm.
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C. Large dataset

1. General comments

Similarly to datasets with a large number of snapshots, performing a standard DMD analysis
on a dataset with large snapshot vectors such as those from, say, 3-D flow fields, is computation-
ally challenging. In the typical case where np ≫ N , the overall computational cost of the SVD,
as required by the standard DMD algorithm, is O

�
npN2�

, which may be prohibitive in case of
3-D space and time-resolved datasets from direct numerical simulations. Similarly, the amount of
memory needed for the SVD may limit the use of standard DMD.

Further, while the QR decomposition of the Krylov matrix K makes optimization problem
(13) independent of the size of the snapshots, and hence potentially suitable for large fields, an
np × N-matrix still needs be stored in memory to achieve the QR decomposition, even using
incremental algorithms.

The Takens’ theorem28 suggests that the time series of a well observable quantity may contain
the full dynamics of the underlying dynamical system. Since the spatial support associated with a
given time evolution pattern is often large, as shown by Robinson,17 a space-decimated observable
vector may then be a relevant approximation to capture the temporal features of the flow. As already
discussed in Secs. III A and III B, the dominant features of the flow are often described by a
few degrees of freedom and scarce data may suffice to accurately approximate them. This idea is
further supported by the fact that the Koopman operator—which has been shown to be related to
the DMD in the sense that the DMD algorithm results in the estimation of the eigenvalues of the
Koopman operator associated with the dynamics14,19—is defined only by the dynamical flow and
should therefore be independent from the choice of the observable. Changing the observable does
then not change the eigenvalues of the evolution operator A.

We now further improve upon the NU-DMD algorithm introduced in Sec. III B. Our strat-
egy is to decimate the original dataset K by selecting a low number np of components, np < np.
Consequently, space-decimated observables un ∈ Rnp are constructed, and a new, smaller, dataset
Knp ∈ Rnp×N follows. A DMD, or NU-DMD, analysis is then carried-out on the resulting small
dataset. The NU-DMD optimization problem (Eq. (13)) now formulates as 31

λ ∈ arg min
λ∈CNmd




 Knp

�
IN − Λ+Λ

�


F, (14)

M = K Λ+. (15)

Since the optimization problem (14) involves small matrices (both N and np are small), this
algorithm allows the computation of a few dominant modes with low computational requirements.

2. Subset selection

The selection of the spatial components of K retained in the space-decimated Knp must be
such that their cardinality np is low, allowing for a computationally efficient optimization problem
(14), while retaining relevant temporal information so that the frequency and growth rates of the
dominant modes can be accurately estimated. The subset selection problem can then formulate as
finding the set of indices J =


j1, j2, . . . , jnp


, 1 ≤ ji ∈ N ≤ np, so that λ derived from Knp via (14)

is a good approximation of λ derived from K via (12). The idea is to cluster spatial components
whose dynamics are similar. One must then determine the dominant Fourier spectrum of the discrete
time series of components of the observable,

u(i)(t) = (u(i)(t1) u(i)(t2) . . . u(i)(tN)
)T
∈ RN , (16)

with 1 ≤ i ≤ np. In case the sampling is non-uniform in time, as considered in Sec. III B, a
discrete Fourier transform cannot be applied. One then resorts to a minimization problem to
determine the Nf dominant Fourier modes that best approximate the time-series in the form
u(i)(t) ≈ Na

k
a(i)
k

exp
(√
−1ωk t

)
, ∀1 ≤ i ≤ np,
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a(i) ∈ arg min
a (i)∈CNa




u(i)(t) −ℜ 
Ψa (i)


2

,

s.t. card
(
a (i))

= Nf ,

(17)

with Nf < min {Na,N} typically chosen as Nf = Nmd, Na the cardinality of the retained Fourier ba-

sis, a(i) B
(
a(i)

1 . . . a(i)
Na

)T
, Ψ ∈ CN×Na, and Ψn,k B exp

(√
−1ωk tn

)
the sensing matrix. This opti-

mization problem may be solved with an orthogonal matching pursuit algorithm, see for instance,29

or its more sophisticated variants. Once the np dominant spectra
�
a( ji)	np

i=1 are estimated (possibly
in parallel since the np problems (17) are non-coupled), a clustering algorithm can be employed
to classify and cluster the collection

�
a(1),a(2), . . . ,a(np)	 in


a( j1),a( j2), . . . ,a( jnp)


. The retained

components are hence given by the coefficient vectors closest to their cluster centroid. In this work,
the standard K-means algorithm is used to this aim.8

3. A suboptimal relaxation

The above approach allows to rigorously select a subset of spatial components of the snap-
shots such that the dominant temporal dynamics of the original dataset K is best preserved. It
handles situations where the sampling is arbitrary in time and where a discrete Fourier transform
can then not be applied. However, while the resulting compressed-sensing-based problems (17) are
non-coupled, such an approach may be computationally intensive in cases the time series are long
(large N). A fast, while still accurate, alternative is hence proposed.

Frequencies denote the typical number of oscillating events that statistically occur during a
given time. The identification of frequencies of interest from complex (e.g., noisy) time series, by
mean of statistical techniques, has been intensely discussed in the signal processing literature.15,26,30

We propose to cluster spatial components with similar statistical features in time. The time series
of a given spatial component is treated as realizations of a random variable and its dynamics
are characterized by the corresponding probability density function (pdf).6,24 By clustering spatial
components with similar pdfs, components with similar dynamics, in a statistical sense, are iden-
tified. This idea is further supported by the fact that the DMD is linked to the Koopman operator,
originally introduced to quantify statistical properties of dynamical systems.4,13

A large amount of realizations (i.e., snapshots) is needed to estimate the pdf while computing
the first Nm central moments, Nm ≪ N , only requires limited information and can be estimated
with embarrassingly parallelizable computations. The strategy we then adopt is to cluster spatial
components with respect to their estimated statistical moments. Two criteria assess the relevance
of the identification. For Nm large enough, there is a unique pdf associated with the moments of
the time series if Krein’s condition holds.27 Alternatively, one can estimate Pisarenko’s dominant
frequencies,15 and compare with the clustering resulting from the classification step.

This clustering scheme allows to seamlessly handle the case of non-uniform sampling in time.
Note that it is suboptimal in the sense that two time-series exhibiting the same Fourier spectrum
may have different first statistical moments, potentially preventing them to be assigned to the same
cluster. However, the above criteria bring some guarantees that two series of different dynamics will
not be assigned to the same cluster.

IV. RESULTS

We now illustrate the above methods with two situations. In Sec. IV A, the NU-DMD algorithm
is applied to a synthetic velocity field used in Ref. 7, representing a 1-D, linear instability. This field
allows a precise control on frequencies and growth rates and is hence suitable for a detailed assess-
ment of our method. In Sec. IV B, the NU-DMD algorithm is applied to experimental and numerical
cases. In Sec. IV B 1 (respectively IV B 2), the NU-DMD algorithm is tested on two-dimensional,
experimental (respectively three-dimensional, numerical) velocity fields of an open cavity flow. To
allow comparison with a standard DMD, snapshots are sampled uniformly in time but are randomly
reordered to mimic a non-uniform sampling for NU-DMD.
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FIG. 1. Spatial-temporal diagram of the synthetic velocity field. Colors indicate the value of the velocity.

A. Synthetic system

A synthetic field is used as a benchmark for assessing the performance of the NU-DMD algo-
rithm. The chosen synthetic field, introduced in Duke et al.,7 is a model for a 1-D, linear instability
and allows full control on the frequency f ≡ ω/2π and on the spatial γ and temporal σ growth rates
of the resulting dynamics,

u (x, t) = u0 (1 + ξ) sin (2πκx − ωt) exp (σt + γx) . (18)

The observable u is made of np points uniformly sampled in space in [0,2], with a step δx. The
dataset consists of N realizations of the observable, sampled every δt = 1/ (N − 1) within [0,1], i.e.,
tn B (n − 1) δt. The (x, t) domain is discretized on a np × N grid. The pulsation ω is 20, i.e., the
frequency f = ω/2π ≃ 3.18. The wavenumber κ, the initial amplitude u0, and spatial growth rate γ
are all unitary. The temporal growth rate is set to σ = 0.75. The white, uniformly distributed, multi-
plicative noise ξ ∼ U ([−1,1]) is introduced to mimic an actual observable from an experiment. The
number of components of the velocity field is fixed to np = 2001, and the number of snapshots is
N = 2000. The synthetic flow is represented in Fig. 1 in a (x, t)-diagram.

We set the Noise to Signal Ratio (NSR = max |ξ |) to 5% and randomly select Nr (ranging from
10 to N) snapshots from the original dataset (with no specific order). The subset selection step is
then applied to this dataset, in order to keep np (ranging from 10 to np) spatial points. We compare
the results of our NU-DMD algorithm with a standard DMD applied to the Nr first snapshots of
the original dataset, and to the same nDMD

p = np spatial points as taken for the NU-DMD algo-
rithm. As can be appreciated from Figs. 2 and 3, the frequency fNU−DMD and the temporal growth
σNU−DMD identified by the NU-DMD are usually significantly more accurate. For small datasets�
np/np ≪ 1 and/or Nr/N ≪ 1

�
, the relative error in the identified f and σ by NU-DMD may be

several orders of magnitude lower than that computed with the standard DMD algorithm. For some
degenerated cases, i.e., when np < Nr or when Nr is too small, the DMD algorithm fails to identify

FIG. 2. Relative error ϵ f =
��� f − f ���/ f on the identification of the frequency f , in a log10 scale, of the dominant mode with

DMD (left) and NU-DMD (right), both relying on a np×Nr dataset.
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FIG. 3. Relative error ϵσ = |σ−σ |/σ on the identification of the growth rate σ, in a log10 scale, of the dominant mode with
DMD (left) and NU-DMD (right), both relying on a np×Nr dataset.

frequencies and growth rates while the NU-DMD captures the right frequency and growth rate with
as low as Nr = 10 snapshots and relying on np = 10 spatial points only.

Once the dominant frequency is identified, the corresponding spatial mode is reconstructed
via Eq. (10). The mode associated with the main frequency is recovered with a good accuracy
even when relying on a drastically reduced subset, see Fig. 4 where it is plotted as estimated from
datasets of different sizes.

The stability of both the DMD and the NU-DMD algorithm under noise corrupting the data is
also investigated. The accuracy of the identified dominant frequency when the noise to signal ratio
varies is given in Table I. The NU-DMD appears to be very robust with respect to noise and more
accurate than DMD in the estimation of the main frequency.

B. Application to a cavity flow

The flow over an open cavity exhibits dynamical features of interest for illustrating our method.
The most energetic phenomenon is due to self-sustained oscillations of the impinging mixing
layer.18 Such oscillations result from the feedback loop formed, on one hand, by the Kelvin-
Helmholtz vortices convected downstream to the cavity trailing corner, and, on the other hand, by
the instantaneous feedback from the pressure field, from trailing to leading edge, induced by the
impingement of vortices. As a result, power spectra are organized around a few narrow peaks (most
often a single peak at frequency f ), with Strouhal numbers f L/U∞ close to multiples of 1/2, where
L is the cavity length and U∞ is the incoming velocity.

1. Two-dimensional experimental flow

We first consider an experimental incompressible open cavity flow with aspect ratio L/H = 1.5
(depth H = 50 mm), Reynolds number Re = UL/ν ≃ 8800, and span-wise aspect ratio of 6. A
typical power spectrum, in the configuration of the flow, is shown in Fig. 5(b). PIV measurements

FIG. 4. In black, real part of the dominant spatial mode identified by (a) a standard DMD of the whole dataset. (b) NU-
DMD algorithm, with Nr/N = 5.0×10−2 and np/np = 5.0×10−2. (c) NU-DMD, Nr/N = 5.0×10−4, np/np = 5.0×10−4.
Spatial modes are in phase with the velocity field at t = 0, in red for comparison.
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TABLE I. Error ϵ f =
��� f − f ���/ f on the identification of the frequency with a standard DMD applied to the Nr first snapshots

of the original dataset, and with a NU-DMD applied to Nr randomly selected snapshots, with respect to the noise to signal
ratio.

NSR 5.0×10−3 5.0×10−2 5.0×10−1

DMD NU-DMD DMD NU-DMD DMD NU-DMD

Nr/N = 0.01 5.2×10−4 5.9×10−5 1.3×10−2 7.3×10−4 2.7×10−1 4.7×10−3

Nr/N = 0.1 3.6×10−4 2.3×10−5 2.1×10−3 8.8×10−5 3.8×10−1 2.7×10−3

Nr/N = 1.0 5.8×10−5 3.1×10−6 9.1×10−4 7.7×10−5 4.1×10−2 5.8×10−4

in a vertical (x, y)-plane provide time-resolved 2-D, 2-C velocity fields (see Fig. 5(a) for a visuali-
zation of the flow in the observation plane). The dataset is formed of N = 5000 fields with a spatial
grid of np = 7018 points.

To illustrate the NU-DMD algorithm, Nr snapshots taken at random from the full PIV dataset,
hence at random times, are considered. The algorithm is applied to the fluctuating part (zero
time-averaged) of this Nr-snapshot dataset. The influence of the number of spatial components
np used in the NU-DMD algorithm is also investigated. The spatial mode associated with the fre-
quency of the shear layer from both a standard DMD (N samples uniform in time) and NU-DMD
(with varying number of snapshots and retained spatial components) is shown in Fig. 6. When
the snapshots are not sampled uniformly in time, the DMD method cannot be applied while the
NU-DMD still correctly identifies the flow field dominant modes. Further, very few snapshots are
necessary for the dominant features to be accurately identified with this technique since retain-
ing only one snapshot among 500 (Nr/N = 2.0 × 10−3 with Nr = 10) and one spatial point over
700 (np/np = 1.4 × 10−3 with np = 10) still results in a decent approximation of the dominant
shear-layer mode, see Fig. 6(e). In order to quantify the discrepancy, the absolute value of the
relative difference between the amplitude of the NU-DMD and DMD modes is plotted Fig. 7 for the
dominant mode. The modes have been set in phase and the error ϵmode has been normalized by the
norm of the corresponding component of the DMD mode. The error for the ith component is hence
defined, in the general case, as

ϵmodei (x, y, z) B
�
φi,NU-DMD (x, y, z) − φi,DMD (x, y, z)�

�
φi,DMD

�
2

, i ∈ {x, y, z} . (19)

The NU-DMD spatial modes are given by the pseudo-inverse solution Eq. (14) and spatial fields in
the null-space of Λ can then not be resolved. Further, a small frequency difference δ f between, say,
the exact dominant frequency and that estimated via NU-DMD will affect the spatial modes M by
a contribution associated with that low frequency δ f via Eq. (14). It results that the discrepancy is
most visible where the energy of the flow at these low frequencies is large. However, it is seen that it
remains below a few percents throughout the spatial domain.

FIG. 5. (a) Snapshot of the flow in the observation plane (vorticity field). (b) Power spectral density of the cavity flow
produced by averaging the individual spectra at each spatial points of the velocity field.
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FIG. 6. Dominant mode identified by (a) standard DMD (N snapshots of np components). (b) NU-DMD algorithm,
with Nr/N = 1.0×10−1 and np/np = 1.4×10−1. (c) NU-DMD, Nr/N = 1.0×10−1, np/np = 1.4×10−3. (d) NU-DMD,
Nr/N = 2.0×10−3, np/np = 1.4×10−1. (e) NU-DMD, Nr/N = 2.0×10−3, np/np = 1.4×10−3. Colors indicate the value
of the vorticity.

The retained spatial points, with their associated cluster supports, are plotted in Fig. 8 for
np = 10, and in Fig. 9 for np = 20. As expected, physically relevant areas are discriminated, i.e., the
shear-layer, the incoming flow, the flow along the downstream wall, and the inner-flow recircula-
tion. Fourier spectra associated with centroids are, by construction, different, see Fig. 10 where they
are plotted for some clusters. The supports of the identified clusters correspond to regions of space
where the relative influence of the shear layer (high frequency) and the inner-flow (low frequencies)
varies.

The clustering step is robust in the sense that the supports of the identified clusters for np = 10,
Fig. 8, foliate into smaller and nested supports when np = 20, Fig. 9. In particular, the topology
of the clusters is comparable and no significant new region arises in the clusters support when
classifying with a finer description.

For validation purpose, the supports of clustered points identified using spectra directly esti-
mated from a Fourier analysis of snapshots sampled uniformly in time, hence serving as the refer-
ence, are plotted in Fig. 11. They are seen to be rather similar to the clusters found using the
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FIG. 7. Relative difference ϵmode, see Eq. (19), between the dominant mode identified by a standard DMD and the NU-DMD
algorithm. (a) NU-DMD algorithm, with Nr/N = 1.0×10−1 and np/np = 1.4×10−1. (b) NU-DMD, Nr/N = 1.0×10−1,
np/np = 1.4×10−3. (c) NU-DMD, Nr/N = 2.0×10−3, np/np = 1.4×10−1. (d) NU-DMD, Nr/N = 2.0×10−3, np/np =

1.4×10−3.

suboptimal method presented in Sec. III C 3, see Fig. 8, hence justifying the proposed suboptimal
clustering step scheme as a suitable and relevant proxy for an accurate clustering, robust with
respect to the sampling. Our suboptimal method took about 60 s of central processing unit (CPU)
time to classify the whole flow field while the minimization of the np cost functions in Eq. (17) of a
compressed sensing approach would require a very significant computational effort.

The accuracy of the estimation of the dominant frequency f by the NU-DMD algorithm
when varying the amount of available information is given in Table II in terms of relative error
ϵ f = | fNU−DMD − fDMD| / fDMD. The quality of the identification of spatial modes φ can be estimated
from the quantification of their main feature, i.e., the amplified travelling waves in the shear layer.

FIG. 8. Illustration of the clustering step proposed in Sec. III C 3. np = 10. Black dots indicate spatial components associated
to centroids selected during the clustering process. Colors indicate the different clusters. (a) x-velocity component. (b)
y-velocity component.
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FIG. 9. Illustration of the clustering step proposed in Sec. III C 3. np = 20. Black dots indicate spatial components associated
to centroids selected during the clustering process. Colors indicate the different clusters. (a) x-velocity component. (b)
y-velocity component.

FIG. 10. x-velocity component power spectral densities associated with the cluster centroids. np = 10.

FIG. 11. Fourier-based subset selection. Illustration of the clustering step. np = 10. Black dots indicate spatial components
associated to centroids selected during the clustering process. Colors indicate the different clusters. (a) x-velocity component.
(b) y-velocity component.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.186.2.247 On: Thu, 19 Feb 2015 15:27:28



025113-13 Guéniat, Mathelin, and Pastur Phys. Fluids 27, 025113 (2015)

TABLE II. Accuracy of the dominant frequency and the wavenumber identification of the shear layer mode by the NU-DMD
algorithm. ϵ f B | fNU−DMD− fDMD|/ fDMD, ϵκB

�
κ−1

NU−DMD−κ
−1
DMD

�
/κ−1

DMD. The DMD is here computed with the maximum
information (N snapshots of np components) and hence serves as reference.

np/np = 0.14 np/np = 0.0014

ϵ f ϵκ ϵ f ϵκ

Nr/N = 0.1 8.0×10−4 8.0×10−3 3.2×10−3 4.0×10−2

Nr/N = 0.002 6.9×10−4 4.0×10−2 6.9×10−4 4.1×10−2

The main characteristic of these impacting vortices is their wavenumber κ, which can be determined
by fitting the velocity profile u(x, y), at some given y = y0, with the theoretical profile of a spatially
developing instability,

uth (x, y0) = v0 + v1 exp (σx) cos (κx + ϕ) , (20)

where σ is the spatial growth, ϕ is a reference phase, and {v0,v1} are normalization factors.
It results in identification of the wavenumber by the NU-DMD algorithm with an error ϵκ =�
κ−1

NU−DMD − κ−1
DMD

�
/κ−1

DMD of about 4%, see Table II.

2. Three-dimensional numerical simulation

We now consider the numerical simulation of a three-dimensional incompressible open cavity
flow with aspect ratio L/H = 2 (depth H = 50 mm), Reynolds number Re = UL/ν ≃ 4000 and
span-wise aspect ratio of 2, with periodic spanwise boundary conditions. The numerical simulation
provides time-resolved three-dimensional (3-D) three-component (3-C) velocity fields (see Fig. 12
for a snapshot of the flow in the symmetry (x, y) observation plane. For the sake of readability,
colors have been saturated). The dataset is formed of N = 500 snapshots of the velocity field, with
a spatial grid of np = 2 033 130 points. Details about the numerical simulation can be found in
Ref. 16.

The spatially averaged velocity field power spectrum is shown in Fig. 13. It exhibits a series
of dominant features around a reduced frequency of about 1. In order to assess the applicability
and accuracy of the NU-DMD algorithm, Nr = 50 (Nr/N = 0.1) snapshots of the velocity field are
taken at random from the full DNS dataset, hence at random times. The algorithm is applied to the
fluctuating part (zero time-averaged) of this Nr-snapshot dataset. The number of spatial points kept
for the clustering step is np = 100 (np/np = 4.9 × 10−5).

The main computational bottleneck of the NU-DMD is the identification of the clusters since
the classification step in the K-means algorithm (see Sec. III C 2) takes approximately 40 000 s
of total CPU time on a desktop computer, and about 4 GB of memory. While the minimization of
the np cost functions in Eq. (17) in a compressed sensing approach would constitute an intractable
computational effort, the evaluation of the central moments in the suboptimal approach proposed in

FIG. 12. Snapshot of the flow in the symmetry plane. Colors encode the velocity field magnitude. (a) x-velocity component.
(b) y-velocity component. (c) z-velocity component. Colors have been saturated in figure (a) in order to make the cavity
internal flow more visible.
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FIG. 13. Spatially averaged power spectrum density of the velocity field, from the DNS of the 3-D cavity flow.

Sec. III C 3 only requires a few seconds. For illustration and comparison purpose, a DMD using the
standard method19,20 is also computed. Its evaluation requires over 40 GB of memory and more than
320 000 s of total CPU time. It is hence out-of-reach for a desktop computer and had to be computed
on an HPC machine.

The supports of the clusters are plotted in Fig. 14 in the (x, y) symmetry plane of the cav-
ity. Clusters of the x- and y-components of the velocity field are reminiscent of those of the
two-dimensional case discussed in Sec. IV B 1 (compare with Fig. 8). Both the shear layer and the
incoming flow are dynamically well separated (cluster-wise) from the rest of the flow.

Similarly to the two-dimensional case, Sec. IV B 1, dominant DMD modes are associated to
oscillations of the shear-layer. The dominant mode, as derived both from the standard DMD algo-
rithm and the present NU-DMD approach, is plotted in Fig. 15 for illustration in terms of isosur-
faces of the Q-criterion for Q/(U/L)2 ∈ {1,2} (left) and Q/(U/L)2 ∈ {−1,−2} (right). A very good
agreement between the reference, computationally very intensive, DMD method and the NU-DMD
approach is observed. A few snapshots, as well as a dramatically reduced number of points in space,
are hence sufficient to compute a decent approximation of the dominant DMD mode. The mode
associated with the dynamics of the shear layer is plotted in Fig. 16 in a 2-D plane both from the
NU-DMD and the DMD approach. The relative error ϵ f B | fNU−DMD − fDMD| / fDMD in the identifi-
cation of the frequency is less than 1.9 × 10−2 while the relative error ϵκ =

�
κ−1

DMD − κ−1
NU−DMD

�
/κ−1

DMD
in the wavenumber of the shear-layer, evaluated via Eq. (20) as in Sec. IV B 1, is less than
4.4 × 10−3, again illustrating the accuracy of the present method.

In order to quantify the discrepancies between DMD and NU-DMD, the absolute value of the
difference between the amplitude of the dominant DMD and NU-DMD mode as defined in Eq. (19)
is plotted Fig. 17. The modes have been set in phase and the error has been normalized by the norm
of the corresponding component of the DMD mode. Differences remain inferior to a few percents
and are mainly observed within the cavity for the z-component. As in the 2-D case, patterns typical
of inner-flow structures at low frequency are discernible within the cavity on the spatial mode, as

FIG. 14. Illustration of the clustering step introduced in Sec. III C 3. np = 100. Colors indicate the different clusters. (a)
x-velocity component. (b) y-velocity component. (c) z-velocity component.
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FIG. 15. Isosurfaces of positive (left column) and negative (right column) Q criterion. Top row (respectively, bottom row)
corresponds to the DMD (respectively, NU-DMD) dominant shear-layer mode.

FIG. 16. Slice of the dominant mode, identified by a standard DMD (top line, real part of the mode, N snapshots of np

components) and the NU-DMD algorithm (bottom line, real part of the mode, with Nr/N = 0.1 and np/np = 4.9×10−5).
First, second and last column correspond to x-, y- and z-velocity components respectively. Colors encode the magnitude of
the velocity field.
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FIG. 17. Slice of relative difference ϵmode, see Eq. (19), between the dominant mode identified by a standard DMD and the
NU-DMD algorithm. Left, middle and right plots correspond to the x-, y-, and z-velocity component respectively.

discussed in Sec. IV B 1. Further, since the z-component of the velocity fields stored in K is small
and carries little energy, the affected part of the mode has a larger relative impact compared to that
of the x- and y-component. While not done here, a suitable relative normalization of the different
components of the snapshots would balance their contribution to the Frobenius norm in Eq. (12) and
result in a better relative accuracy of the z-component.

V. CONCLUSION

We have presented a method for efficiently computing dynamic modes in case of datasets of
very large size, where direct computations on the resulting Krylov matrix are out-of-reach, and/or
from a system arbitrarily sampled in time, where a standard DMD analysis does not apply. The
method essentially formulates the problem in an optimization setting and decouples the estimation
of the temporal description from the spatial description. This allows to handle very general datasets,
with essentially no restriction on the sampling strategy or the size of the snapshots. With an appro-
priate sampling strategy, both very low and very high frequency contents can be retrieved without
the need of a large number of snapshots. Further, spatial correlations in space of the observable are
exploited to estimate frequencies and growth rates of the dynamic modes from a smaller dataset
obtained via a clustering algorithm based on the estimated Fourier spectrum of each component of
the spatial field. While the estimation of the dominant Fourier spectra, expected to be compressible,
naturally lends itself to a compressed sensing framework, a more computationally friendly imple-
mentation relying on statistics of the time series is here used. The effective dataset is small and the
resulting NU-DMD method is computationally efficient.

The method has been illustrated on a synthetic flow, exhibiting a 1-D linear instability, and
on the experimental dataset of 2-D PIV fields of a 3-D open cavity flow. A large-scale three-
dimensional configuration, involving more than 2 × 106 degrees-of-freedom for each snapshot, was
also considered. In all of these cases, spatial modes, frequencies, and growth rates were accurately
recovered, even when relying on as low as about 0.1% of the original spatial field and 0.2% of the
original snapshots as needed by the standard DMD.

The present NU-DMD method hence constitutes a valuable and widely applicable tool for
analyzing physical systems from a dataset of observables with very mild constraints (sampling
strategy, missing snapshots, small dataset, etc.).
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