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Abstract

Mobile and interconnected devices both have witnessed rapid advancements in comput-

ing and networking capabilities due to the emergence of Internet-of-Things, Connected

Societies, Smart Cities and other similar paradigms. Compared to traditional personal

computers, these devices represent moving gateways that offer possibilities to influence

new businesses and, at the same time, have the potential to exchange users’ sensitive

data. As a result, this raises substantial threats to the security and privacy of users that

must be considered. With the focus on location data, this thesis proposes an efficient

and socially-acceptable solution to preserve users’ location privacy, maintaining the

quality of service, and respecting the usability by not relying on changes to the mobile

app ecosystem.

This thesis first analyses the current mobile app ecosystem as to apply a privacy-by-

design approach to location privacy from the data computation to its visualisation. From

our analysis, a 3-Layer Classification model is proposed that depicts the state-of-

the-art in three layers providing a new perspective towards privacy-preserving location-

based applications. Secondly, we propose a theoretically sound privacy-enhancing

model, called LP-Cache, that forces the mobile app ecosystem to make location data

usage patterns explicit and maintains the balance between location privacy and service

utility. LP-Cache defines two location privacy preserving algorithms: on-device location

calculation and personalised permissions. The former incorporates caching technique

to determine the location of client devices by means of wireless access points and



x

achieve data minimisation in the current process. With the later, users can manage

each app and private place distinctly to mitigate fundamental location privacy threats,

such as tracking, profiling, and identification. Finally, PL-Protector, implements

LP-Cache as a middleware on Android platform. We evaluate PL-Protector in terms

of performance, privacy, and security. Experimental results demonstrate acceptable

delay and storage overheads, which are within practical limits. Hence, we claim that

our approach is a practical, secure and efficient solution to preserve location privacy in

the current mobile app ecosystem.
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Chapter 1

Introduction

1.1 Introduction

It is anticipated that the number of mobile devices can exceed the world’s population

by 2020 (Ericsson, 2017). The growth of the smartphone market is mainly driven by

an increasing range of applications (also known as ‘apps’1) and business models. The

convenience of getting everything in one device and getting to enjoy wireless services

on mobile devices2 everywhere – like in home, hotels, shops, at work and universities –

have led smartphone users to mobile phone addiction (Lee et al., 2014; Rozgonjuk and

Elhai, 2018). These devices have become necessities in everyone’s lives – such as to

socialise with friends, to read news, to check weather updates, to find nearby point of

interests (PoIs), to shop and for entertainment. In addition to this, governments’ recent

development strategies such as Digital Single Market/Gigabit Society (EU) (European

Commission, 2017) and UK Digital Strategy (Gov. UK, 2017) will continue to raise

this mobile trend into new forms of computing paradigm – such as Internet of Things

(IoT), Connected Societies, Smart Cities or Smart Homes.
1Throughout this thesis, we use the terms LBS ‘apps’ and ‘applications’ interchangeably
2Throughout this thesis, we use the terms ‘smartphones’ and ‘mobile devices’ interchangeably
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Recent forecasts on IoT devices suggest that the use of connected “things” (i.e.,

devices, sensors, and actuators) will rise to over 20-50 billion by 2020 (Ericsson (2017),

Gartner (2017a), etc.). This means door locks, health and fitness devices, home

appliances and cars are going to be connected to smartphones and each other in the

near future. Such explosive growth of "connected things" and "smart devices and

appliances" have created a demand for purpose-built mobile application development

frameworks, e.g., Samsung Smartthings (2017) and Google Weave (2017)/ Android

Things (2017). Moreover, the advancement in wireless and positioning technologies has

leveraged context-aware mobile apps bringing tremendous opportunities for a whole

new class of Location-based Services (LBS). For instance geo-marketing and geo-social

networking, location-based games, and assisted eHealth represent a small subset of

these opportunities (Pontes et al., 2012). This has enabled third-party developers to

build apps that can constantly compute users’ sensitive data and pose serious threats

to users’ privacy (Shklovski et al., 2014; Van Kleek et al., 2017). As a result, along with

its obvious benefits, the smartphone has other effects that are not all that eminent and

come at a considerable privacy cost. It is apparent that constant disclosure of the user’s

exact locations, mobility and behaviour patterns could create severe threats in the long

run such as damaging social status, theft and robbery, blackmailing, victims of frauds

or physical violence. In this case, location privacy becomes a critical issue; certainly, a

natural conflict arises when attempting to protect user privacy while building a system

that allows flexible use of location information (Andrienko et al., 2013; Pennekamp

et al., 2017).

1.2 Location-based Mobile Environments

In this section, we describe location-based mobile environments that can collect and

potentially leak user’s sensitive data within the mobile app ecosystem, including user’s
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(a) Mobile apps (b) Indoor localisation and
businesses

(c) IoT devices connected to mo-
bile apps

Figure 1.1 Location-based mobile environments

mobility patterns, personal habits, behaviour and private locations. The advancements

in mobile sensing technology and the use of smartphones can compromise the user’s

location privacy in three major scenarios: a) mobile apps, b) indoor sensing (i.e., indoor

localising and businesses), and c) IoT apps (i.e., apps connected to IoT devices). We

have given detailed descriptions of these three scenarios that can compromise the user’s

location privacy in the below sections.

1.2.1 Mobile Apps

The first scenario consists of a user’s location data collected via mobile apps, which can

be either system apps or third-party apps, running on the mobile device. Mobile OS

(Operating Systems)3 – such as iOS and Android– equipped with advanced positioning

technology continuously collect users’ location information and make that information

easily accessible to third-party apps, which provide users with LBS. This attracts

attention from adversaries that can range from the typical attacker on the network to

app developers, malicious or not, and third-party library developers; hence, smartphone

apps have become a serious threat to user’s privacy (Shklovski et al., 2014; Van Kleek
3Throughout this thesis, we use the terms ‘OS’ and ‘mobile platform’ interchangeably
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et al., 2017). The traditional approach to guarantee users’ privacy has been based on

the End User License Agreement (EULA) and other regulations or privacy policies,

which do more to protect company’s interests than to safeguard users’ rights (Ozer

et al., 2010). As a result, users aware of the privacy implications are reluctant to use

apps and LBSs on their mobile devices (Ketelaar and van Balen, 2018; Muslukhov

et al., 2012).

For example consider Foursquare, one of the most popular apps, which is completely

location-based. To use the service, the user must turn on the location sharing settings

on his/her device, and provide personal details for registration. At this stage, the user

agrees to the terms and conditions via EULA stating “By submitting any personal

information, I consent to have my personal information transferred to and processed in

the US, which I understand may have different data protection rules than my country".

This is also followed by another two EULAs: (i) giving consent of access to the

user’s contacts, and (ii) to push notifications. Some studies have already proven that

users’ sensitive information collected by Foursquare’s third-party location servers

is shared with other services causing severe privacy leakage (Pontes et al., 2012).

However, benefits of such apps for society are reasonably apparent, especially when

they are associated with assistive healthcare systems and emergent IoT wearable

technologies. Hence, privacy enforcement on smartphone apps still remains as an open

issue (Pennekamp et al., 2017).

1.2.2 Indoor Sensing Environments: Localisation and Busi-

nesses

The second scenario that risks location and WiFi data collection via users’ mobile

devices consists of indoor positioning/localising environments (e.g., shopping malls,

retailer shops, etc.). Traditional positioning systems (e.g., the Global Positioning
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System (GPS) and cell-tower based positioning) have been inefficient when it comes to

indoor positioning due to lack of signals and poor coverage. Compared to these, WiFi

Positioning Systems (WPS) are nowadays considered as a very accurate method (up to

10m accuracy) for geolocation calculation (Skyhook, 2016). Location providers – e.g.,

Google Location Service (2016), Skyhook (2016), and Navizon (2016)– use enhanced

WPS rather than GPS, primarily due to current smart mobile devices benefit from

built-in WiFi clients that perform faster than most expensive traditional positioning

technologies (e.g., GPS receivers). Therefore, advanced localising technologies – such as

WiFi, Bluetooth, accelerometer or RFID sensors– are utilised to locate users accurately

in indoor environments. Businesses based on such indoor sensing environments (e.g.,

free hotspots) can pose severe privacy threats, such as unauthorised tracking, profiling,

and monitoring of users behaviours and movements.

1. Indoor localising services - Retailers and other businesses that require indoor

localising services in their business operations liaise with the location provider

to track consumers’ movements in the indoor environments (e.g., stores, malls,

airports, etc.). Indoor businesses models require dynamic and accurate device

positions. Therefore, indoor WPS infrastructure is deployed to estimate users’

real-time positions by means of the received signal strength (RSS) and known

signatures of fixed WiFi Access Points (APs) – via Triangulation, Trilateration,

Centroid Localization and Proximity Estimation positioning techniques (Kae-

marungsi and Krishnamurthy, 2004; Pu et al., 2011). The location calculation

is done outside of the user’s device with the assistance of the data link layer

identifiers4 that are detected via beacons probes.

2. Geo-locating services - For indoor localising services, the fixed WiFi infrastructure

may not be geotagged since it relies on received signals and on pre-defined network
4e.g., Media Access Control addresses (MAC addresses)
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signatures of the indoor environment, i.e., the building’s floor plan, levels in a shop

or a mall. However, any location-based service request from a mobile app requires

the user’s geo-coordinates (i.e., latitude and longitude). Geo-coordinates can be

generated within the mobile device using GPS receivers; however, GPS technology

does not work well indoors and it is very slow at starting point calculation. To

overcome these disadvantages, GPS technology is often combined with mapped

WiFi APs and base station data to provide geolocation services (Jan et al., 2000).

Therefore, the existing geolocation computation architecture to use location-based

apps on smartphones comprises four main entities: smartphones with installed

apps, app Provider, network infrastructure, and location Provider. The location

provider maintains a database of surrounding network infrastructure (of a street,

city or town), including WiFi APs, base stations, and IP addresses, which must

be mapped to their exact geographical coordinates, also known as geo-coordinates.

Every mobile device is deployed with an active probing process and WiFi APs

continuously announce their existence in the way of network frames/beacons

and transmit their Service Set Identifier (SSID) and Basic Service Set Identifier

(BSSID)/MAC addresses. Location providers use these WiFi APs’ identifiers

to create network signatures and map them with geo-coordinates, also called

geolocation. These geolocations are then used and shared by the smartphone

apps via the standard application programming interface/API (Android, 2016)

provided by the underlying mobile platform.

1.2.3 IoT Apps: Smartphone Apps Connected to IoT devices

The third scenario consists of smartphone apps that are connected to IoT devices. IoT

frameworks for mobile platforms, e.g., Android Things (2017), leverage third-party

developers to build smartphone apps that can easily integrate IoT devices such as body
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or health sensors, fitness trackers, home appliances, etc. IoT devices are lightweight

low power devices; however, when connected to smartphones via specially crafted IoT

apps, adversaries can easily get access to user’s location data and mobility patterns

that can leak users’ sensitive information. According to Fernandes et al. (2016b), there

are two categories of IoT software/app architecture: (1) Hub, and (2) Cloud. In both

architectures, IoT apps running on the user’s device are exposed to a slew of sensitive

data from sensors and devices connected to the hub, as well as to the other remote

cloud-based services. The adversary can easily program such apps and attempt to

get access or leak sensitive data; hence, this demands mobile platforms to enforce

privacy-preservation mechanism in the design of IoT app development frameworks

(Fernandes et al., 2016a, 2017).

1.3 Research Challenges

This section highlights research challenges to preserve location privacy of mobile users.

Location privacy “Location privacy is the right of individuals to decide how, when,

and for which purposes their location information can be released to other parties”

(Duckham and Kulik, 2006). It is a particular type of information privacy that

requires prevention of unauthorized parties from learning one’s current or past location.

Currently, approaches to privacy settings of user location on smartphones are based

on a binary process5. Users are forced to rely on third-party service providers that in

many cases continuously collect, use and share their location data, and in some cases

even prompt the user to give away their position on page load (Almuhimedi et al., 2015;
5Data protection directives and acts (European Commission, 2016; IETF, 2017) across the globe

state that personal data should not be disclosed or shared with third parties without consent from
subject(s). Such a consent is typically obtained by mandatory acceptance of the conditions mentioned
in the End User License Agreement (EULA), or through opt-out possibilities and other regulations
(Michael and Clarke, 2013; Microsoft Phone, 2017a).



8 Introduction

Muslukhov et al., 2012; Pennekamp et al., 2017; Shklovski et al., 2014). This attracts

attention from adversaries that can range from the typical attacker on the network to

app developers, malicious or not, and in-app (advertising) ad library developers. Such

adversaries can either unnecessarily collect intrusive user information or allow third-

party code of unknown source to execute within the installed app. In the past, several

privacy threats have been identified due to smartphones’ vulnerabilities, but most of the

app developers and widely-deployed ad libraries do not adhere to these threats warnings

and develop secure apps (Bettini et al., 2005; Liu et al., 2017). Moreover, it is unknown

how the identified vulnerabilities change as apps get updated over a period of time.

Since permission-based access controls cannot distinguish between actions performed

by an ad library and those performed by its installed app, mobile platforms’ security

models provide little indication of the existence of privacy threats within any given app.

As a result, users aware of the privacy implications are reluctant to use location-based

apps or services on their mobile devices and are demanding effective privacy-preserving

solutions (Ketelaar and van Balen, 2018; Muslukhov et al., 2012). Thus, both academia

and industry agree on the urgent need of adopting a Privacy-by-Design (PbD) approach

for the development of user-friendly and socially-accepted solutions to location privacy

(ICO, 2018). Moreover, to avoid major privacy implications well-known companies (i.e.,

Google and Microsoft) have adopted a PbD approach that considers privacy as an

integral part of the design process of their mobile products and services (Cranor and

Sadeh, 2013; Gürses and del Alamo, 2016). As a result, PbD approach is applied at

every stage of our research. This is to identify whether privacy can be an integral part

of the design of mobile platforms, location-based apps or mobile environments that fall

under the mobile app ecosystem.

Limitations of current proposals Several proposals have incorporate PETs (Pri-

vacy Enhancing Techniques) and other cryptographic schemes in the form of a middle-
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ware to address location privacy challenges (Gupta and Rao, 2017; Niu et al., 2015;

Patel and Palomar, 2014; Wernke et al., 2014; Zhu et al., 2013). These proposals either

claim to preserve location privacy during the LBS query formation or while sharing

these queries with the service provider in different architectures and settings. Most

of these techniques, however, rely on a series of theoretical assumptions such as the

existence of a trusted infrastructure providing privacy protection, a group of similar

app users being at the same time and same place, or data collection servers complying

with location privacy regulations. These unrealistic assumptions and requirements

result in critical limitations when applied to real scenarios. As a result, the lack of

usability and deployment feasibility make these location privacy-preserving solutions

impractical, hence, considered unsuitable for the existing mobile app ecosystem. An

efficient and socially-acceptable solution requires to be practical that maintains the

balance between the location privacy and Quality-of-Service (QoS).

Motivation To analyse users’ location privacy preferences, we conducted a field

study that will be followed by an in-depth secondary research of subsequent and recent

literature (Almuhimedi et al., 2015; Liu et al., 2016; Shih et al., 2015; Wijesekera et al.,

2017). For this, we designed a survey questionnaire (see Appendix A) and distributed

it within the University and on social media platforms. In total, we surveyed 190

smartphone users. The survey result represents, 89.19% of the respondents expressed

that they are concerned about their location privacy and care about who has access to

their location information. Moreover, 91.89% users think granting permissions to apps

on their device to access continuous and precise location can result in the violation of

their privacy. Furthermore, 77.03% care about their privacy when using their mobile

phones in indoor environments; whereas, 10.81% were unaware of such indoor busi-

nesses and sensing practices. 89.10% of the respondents are more concerned about their

privacy while sharing their private locations – such as home and work– as compared
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to public locations. 82.18 % of the respondents rely on location result accuracy and

location-based app functionality when they are anywhere outside or unknown places.

Further, 78.92% users agreed that there is a need to for better privacy controls on

their devices and are willing to install a location privacy enhancing tool on their devices.

1.4 Research Scope

Our research focuses on two major entities: smartphone apps and LBS providers, who

are capable of causing location privacy threats. We are concerned that apps deliberately

collect users’ personal data, including location and other sensitive information as part

of their operations. Furthermore, the current direct link of smartphones to the

location provider and the continuous flow of LBS queries that include the device’s

exact geo-coordinates over the network create a serious risk to the protection of users’

sensitive information. This is even more challenging, in the presence of a malicious

location provider and via advanced network sniffing practices. The collected location

information will enable curious and malicious adversaries to pose the following three

types of fundamental location privacy threats (Fawaz and Shin, 2014; Wernke et al.,

2014):

Tracking Threat can be caused if an adversary receives continuous location updates,

which enables location and tracking the user in real-time. An adversary might

also be able to track consistent mobility patterns or identify frequently traveled

routes that can be used to accurately predict future locations or behaviour of

the user.

Identification Threat can be caused even if an adversary sporadically access the

user’s locations and still be able to identify the user’s frequently visited locations,
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such as home and work. An adversary can use these places as quasi-identities to

detect the user’s identity from anonymous location traces.

Profiling Threat can be caused even if the mobility traces might not include private

places to detect the user’s identity, but it can include places that an adversary can

use to create the user’s profile, for example specific health-care centers, religious

places, or communal places and so on.

Hence, this thesis focuses on identifying an effective solution to mitigate these funda-

mental location privacy threats and improve security in the mobile app ecosystem.

Research Hypothesis

Our research hypothesis that will be tested states we can bring practical, secure and

efficient location privacy preserving solution for mobile users and environments.

Aim and Objectives

This research aims to develop a location privacy-preserving model for mobile platforms

that benefits both end users and service providers.

The objectives of this research are:

O1 To investigate and analyse state-of-the-art communication protocols, mechanisms,

methods, and techniques used to provide location privacy in mobile platforms.

O2 To model, design and develop a PbD location privacy-preserving model for mobile

platforms.

O3 To evaluate the proposed model to be deployed in the existing mobile app ecosys-

tem.
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1.5 Research Design/Methodology

To follow a sequence of activities, scope, objectives, and timescale, our research design

consists of three main stages:

Stage 1 was established to accomplish the objective O1. The dominating methodology

used in this package to define and monitor our research context is the literature

review. We also conducted a field study using survey method to analyse mobile

users’ perspectives on the defined research problem. The final outcome of Stage 1

is used to define our research hypothesis, to establish research challenges, to focus

area for investigation, to identify possibilities of improvements and enhancements,

and to compare the proposed model with the existing ones. Constant literature

review and additional analysis was carried out to define and redefine (if required)

the research context and the proposed model .

Stage 2 was determined to accomplish objective O2. Stage 2 is the model devel-

opment phase, which is divided into three sub-phases: theoretical modeling,

design and requirements analysis, and prototype implementation. For model-

ing, both the theoretical methods and PbD principles were used to understand

the complexity of privacy and security challenges into existing systems and the

model development. To validate the developed theoretical model, we used rapid

prototyping methodology (Jones and Richey, 2000) in the design, development,

and implementation of the prototype system, which aims to be a practical proof-

of-concept of the theoretical model. The exhaustive modeling and design phases

within the development process helped us achieve a high-quality system at a

relatively low cost of resources. Based on our study (in Stage 1 and Stage 2 ),

we also defined a privacy metric that will be used as the prototype evaluation

criteria.
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Table 1.1 Contributions of the thesis

Research
Outcome

Target Type Privacy Protec-
tion

Data
Minimi-
sation

3-Layer Clas-
sification

LBSs in Mobile Envi-
ronments (Smartphone
Apps, Indoor Localisa-
tion and IoT apps)

State-of-the-Art
Classification
Model

Privacy Properties
Metric

-

LP-Cache Smartphone Apps, In-
door Environments and
IoT Devices

Theoretical
Model

Threat Mitigation-
Tracking, Profiling
and Identification

X

PL-
Protector

Smartphone Apps, In-
door Environments and
IoT Devices

Middleware in a
System

Threat Mitigation-
Tracking, Profiling
and Identification

X

Stage 3 is assigned to accomplishing objective O3. The evaluation phase largely used

the experimental method to identify the concepts that will facilitate in testing

our research hypothesis. The empirical validation of the developed prototype

was essential for testing whether the proposed model is feasible and can be

deployed in the existing mobile app ecosystem. For data collection and analysis,

we ran a series of tests using the prototype system to evaluate its functionality,

performance, efficiency. We followed the privacy metrics (pre-defined in Stage 2 )

to assess the model’s security and privacy features.

1.6 Contributions of the Thesis

A number of location privacy-preserving mechanisms (LPPMs) (Khoshgozaran et al.,

2011; Patel and Palomar, 2014; Wernke et al., 2014) have been proposed to minimise the

risk of major location privacy threats; however, they either lack deployment feasibility,

usability, or require numerous changes to the existing mobile app ecosystem. This

indicates that the state-of-the-art on LPPMs fails to bring a practical, secure and

efficient solution to location privacy in the mobile app ecosystem. In order to effectively
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mitigate the location privacy threats, we need LPPMs, which provide theoretically and

practically sound privacy enhancing systems and tools that are acceptable to end users

and service providers. This thesis presents 3-Layer Classification, LP-Cache and

PL-Protector that contribute to a practical, theoretically sound, and usable location

privacy solution. The main contributions of this thesis are summarised in Table 1.1.

1.6.1 3-Layer Classification

To guide researchers working towards location privacy, we present a new perspective

of the state-of-the-art on LPPMs and literature findings in the form of the 3-Layer

Classification. This classification provides a brief description of all the protocols,

mechanisms and interfaces covering from the application layer to the network layer.

Also, we provide a comprehensive privacy analysis of all the classified LPPMs with

respect to four privacy properties(Pfitzmann and Hansen, 2008): 1. Unlinkability, 2.

Unobservability, 3. Anonymity and 4. Controlled information disclosure.

1. Unlinkability is defined as unlinkability of an PoI and the user.

2. Unobservability is defined as the state that whether specific PoI exist or not is

indistinguishable.

3. Anonymity is defined as the state of being anonymous within a set of subjects.

4. Controlled information disclosure is providing users with controls to determine

for themselves when, how, and to what extent information about them is com-

municated to others.

Along with this, our classification model embraces a holistic picture of research gaps,

methods and implications to satisfy privacy properties and achieve privacy-preserving

mobile LBSs.
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1.6.2 LP-Cache

We provide detailed analysis of the current location computation process deployed

in smartphones for running location-based apps, which can either be system apps

or third-party apps. For this, we conduct a study of three major mobile platforms

that span the domains of smartphones in order to analyse location privacy threats

and security design issues, and to inform system’s functionality goals to protect users

from location-demanding apps. However, the outcome of this study indicates that the

security models and the traditional approach to guarantee users’ privacy on smartphones

have already proved to be inadequate. Hence, in Chapter 3, we introduce a novel

privacy-preserving model called Location Privacy Cache (LP-Cache) for mobile apps

to overcome the shortcomings related to users’ privacy during the location calculation

process in mobile platforms. By making the user’s device play a bigger role in the

process, LP-Cache prevents users from relying on service providers’ trustworthiness.

The model applies a cache-based technique to determine the position of client devices

by means of wireless APs and achieve data minimisation in the current ecosystem.

The model also establishes enhanced location permission settings for the users while

sharing their location information. Since LP-Cache is a theoretical model, we outline its

possible implementation on different mobile platforms (e.g., Android and iOS), analyse

the wireless data feasibility and usability and estimate cache storage requirements.

The overall results demonstrate LP-Cache’s deployment viability in the mobile app

ecosystem. To sum up, the main contributions of LP-Cache are as follows:

• A detailed evaluation of the current location computation process deployed in

smartphones.

• A comprehensive definition of our model and its main components implementation

requirements that are platform independent.
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• The main benefits of LP-Cache are twofold:

1. Provides personalised location privacy settings that control every installed

app and private place distinctly and protects sharing of user’s private

location with third-party app providers.

2. Minimises the amount of wireless access point data being shared within

the current architecture for computing device’s location by means of the

minimum on-device caching mechanism.

• The feasibility and usability analysis demonstrate LP-Cache’s deployment viability

in the mobile app ecosystem.

1.6.3 PL-Protector

Common approaches to privacy of user location on smartphones are based on two

methods namely i) permission controls as a binary process6 and ii) privacy policies7.

In the former method, mobile operating systems implement permission-based access

control for data sources (OS) and sinks (third-party apps and libraries); however, they

do not control flows between the authorised sources and sinks. In the latter method,

privacy policies are encoded in natural language and are directly enforced on users.

Hence, users are forced to rely on third-party service providers that in many cases

continuously collect, use and share their location data and, in some other cases, prompt

the user to give away geolocation upon page loading (Almuhimedi et al., 2015; Felt

et al., 2012; Muslukhov et al., 2012; Shklovski et al., 2014).
6Data protection directives and acts European Commission (2016); IETF (2017) across the globe

state that personal data should not be disclosed or shared with third parties without consent from
the subject(s). Such a consent is typically obtained by mandatory acceptance of the conditions
mentioned in the End User License Agreement (EULA), or through opt-out possibilities and other
regulationsMichael and Clarke (2013).

7A privacy policy specifies the privacy practices of an organisation, basically what kind of personal
information is collected, the purpose and how the information will be used/shared.



1.6 Contributions of the Thesis 17

To address this challenge, our PbD approach incorporates a new design principle

and privacy policy recommendation that forces the mobile app ecosystem to make

location data use patterns explicit while preventing all other sensitive data flows. We

present the design and deployment of a middleware called Private Location Protector

(PL-Protector), which implements our theoretical model (LP-Cache). PL-Protector

implements LP-Cache’s two algorithms as LPPMs: LPPM-1) On-device Location

Computation Mechanism, and LPPM-2) Personalised Location Permissions Mechanism

on Android platform. Thus, PL-Protector’s LLPM-1 incorporates caching technique

to determine users’ geographical location in a privacy-preserving manner by means of

wireless access points, and with minimum cache storage requirements. And LPPM-2

envisions beyond the simple grant/deny access method and provides the user with

advanced mechanisms to decide the extent of disclosing location data with service

providers. We implement our middleware on Android 68, and present its comprehensive

evaluation in terms of performance, security and privacy analysis. Using PL-Protector,

we conducted series of experiments with real apps from five popular and widely

used categories of location-based services, e.g., instant messaging and navigation.

Experiments demonstrate acceptable computational and development effort, memory

consumption (up to 21.3 MB of RAM usage), delay overheads within practical limits

(below 22 milliseconds), limited storage overhead (136 KB on-device storage for a period

of 3 months). To assess privacy/data leakage within the collected datasets, we conduct

security and privacy analysis. The test result confirms that PL-Protector’s LPPMs

(1 & 2) significantly mitigated potential threats to the user’s location data in the data

link layer and the OS’s middleware layer. The main contributions of PL-Protector

are as follows:
8Please note: Android 6 (or API level 23) was the latest version of the OS during the implemen-

tation phase of this research; however, to the extent of our knowledge, our middleware can similarly
be implemented on later OS versions (i.e., API level > 23).
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• Based on the analysis of existing mobile platforms and users’ perspectives, we

present enhanced design and implementation of our location privacy-enhancing

middleware, which is a prototype developed to validate the theoretical model,

LP-Cache. We have successfully implemented our middleware on Android plat-

form to enforce the privacy rules over both the information and control flow

occurring between the source (OS) and sink (apps).

• Through the implementation of our middleware, we demonstrate the deployment

feasibility of a new series of privacy controls on a mobile platform to prevent

private location disclosure during the formation of LBS queries. It only requires

process isolation and IPC services from the underlying OS; thus, minimizing the

requirements placed on the hardware/OS.

• The performance, security and privacy analysis evidences that our middleware

mitigates critical location privacy threats at a tolerable loss of QoS and location-

based apps functionality and at acceptable overheads on the underlying OS.

Hence, we claim that our proposal is a practical, privacy-enhanced, secure, and

privacy efficient solution to location privacy in the mobile app ecosystem.

1.7 Organisation of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 outlines the 3-Layer Classification for privacy preservation in mobile

LBS applications and reviews the state-of-the-art. It fully elaborates on each of

the 3 layers: mobile platform (OS and Apps), query formation (LBS queries), and

network communication (Privacy-preserving communication over the Internet).

It critically reviews techniques, protocols, and mechanisms, and it then discusses
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identified research gaps in the field. Later, it provides privacy analysis of LPPMs

in terms of satisfaction of the privacy properties. Followed by a review of related

work on the proposed solution.

Chapter 3 describes and evaluates the current location computation process deployed

in mobile app ecosystem. It presents the design and architecture of LP-Cache and

fully elaborates on design decisions and attainable implementation. At the end,

it presents the feasibility and usability analysis and deployment requirements.

Chapter 4 presents and describes a middleware, PL-Protector, which is an imple-

mentation of the proposed theoretical model. It describes the system model

that includes PL-Protector, and it fully elaborates on its the design decisions,

architecture, and implementation. Later, it overviews the system model such as

system roles, threat, mobility, app usage and privacy model.

Chapter 5 describes the evaluation methods and goals. It presents validation and

performance analysis of PL-Protector’s LPPMs in terms of cache storage estima-

tion, communication, and computation overheads. It elaborates on the security

and privacy analysis and that is followed by a comparative evaluation of our

proposal with other related work. It concludes by highlighting users’ perspective

via the field study results.

Chapter 6 concludes the thesis, summarises the research contributions and suggests

future work and research plans.





Chapter 2

State-of-the-Art and Related Work

Research findings from this chapter have been published in a conference paper a

aPatel, A., & Palomar, E. “Privacy Preservation in Location-Based Mobile Applications:
Research Directions". In: 9th International Conference on Availability, Reliability, and Security
(ARES), pp. 227-233, IEEE 2014.

2.1 Introduction

Mobile devices equipped with improved positioning technology (e.g., GPS, WiFi

triangulation, IP address approximation, base station identification, other user provided

geotagged information) have drastically increased the use of LBS apps. In addition,

cheap data storage allows information collectors to constantly record daily activities

of mobile device users (Roman et al., 2013). Nowadays, LBS applications are being

leveraged by many companies because of the business growing around them, e.g.

location-based games, geo-marketing, and social networking, to name a few. However,

such applications can also be a serious threat to users’ privacy (Liu et al., 2017;

Shklovski et al., 2014). Certainly, a natural conflict arises when attempting to protect

user privacy while building a system that allows for flexible use of location information

(Andrienko et al., 2013; Wijesekera et al., 2017). Approaches to this challenge have

applied cryptography and PETs (Gupta and Rao, 2017; Khoshgozaran et al., 2011;
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Niu et al., 2015) as LPPMs to be part of infrastructures, systems or tools; however,

they are still far from being deployable and socially-accepted.

Thus, we present a brief description of all the protocols, mechanisms and interfaces

ranging from the application layer to the network layer in this chapter. To guide future

research, a new perspective of the literature findings is proposed that highlights research

gaps, methods, implications and satisfaction of the privacy properties. Our 3-Layer

Classification embraces a holistic approach towards privacy-preserving mobile LBS

apps. This new perspective allows us to characterise and classify the protocols, to

analyse the tradeoffs produced by different design decisions for location-based apps,

and to link the various aspects and data flows at every stage of the service ranging from

the users using the mobile device to the transmission of the user sensitive information

within the query over the network.

The rest of the chapter is organised as follows. Section 2.2 outlines our classification

model for privacy preservation of mobile LBS applications that consists of three

layers. We fully elaborate on each layer: mobile platform, query Privacy and network

communication in Sections 2.3, 2.4, and 2.5, respectively. In these sections, we highlight

techniques, protocols, mechanisms, related challenges and provide privacy analysis of

LPPMs in terms of satisfaction of the privacy properties. In Section 2.6, we present a

summary of research gaps identified at each Layer. We then review related work for

the proposed model in Section 2.7. Finally, Section 2.8 summaries the entire chapter.

2.2 Overview of 3-Layer Classification

According to Suikkola (2010), the success of any LPPM for LBS applications depends

on critical factors such as the need for standardised interfaces, society-acceptance, to

be practical, secure, and efficient. Therefore, to identify an effective solution, we must

know who can officially collect such information? and how this information can violate
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users privacy? The architecture for using LBS on any mobile platform consists of four

main entities: mobile device, app provider, 3. network infrastructure, and location

provider. Based on this architecture, there are three main types of service providers:

1.) Mobile Network Operator (MNO), 2.) Mobile Platform Providers (MPP), and 3.)

Mobile Application Providers (MAP).

For example, consider a mobile device with LBS app installed, the MNO collects

the location information for providing signals; the MPP provides services to develop

mobile apps and distribute on their official repositories; the MAP has to register with

the MPP (e.g., Android or iOS) in order to publish their app on the official repositories.

Alternatively, mobile apps can also be distributed via third-party app repositories (e.g.

Cydia and Amazon).

Therefore, MNO/MPP/MAP are the main service providers, who can collect users

location data and, in some cases, share for third-party use. But, studies presented so far

on privacy preservation in mobile LBS (Mokbel, 2007; Shin et al., 2012; Wernke et al.,

2014) have predominantly considered application-specific solutions and challenges –

e.g., applying PETs or other cryptographic primitives to the LBS query formation or

the LBS user identity – and they have not considered communication/network layer

solutions. Network layer solutions depend on anonymous network communication

techniques for location privacy; however, even if the data packet is encrypted, both the

source and destination ip addresses located in the packet’s IP header are still visible to

an eavesdropper. Along with network layer privacy, the data link layer identifiers (e.g.,

MAC addresses found in beacons) can also affect application-specific location privacy

solutions. In our classification, we examine the roles of these service providers based on

the LBS application architecture to identify the most potential and promising directions

to achieve location privacy for mobile users. Figure 2.1 depicts our classification model
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Figure 2.1 Overview of the 3 Layer Classification

consisting of three layers1: Layer 1. Mobile Platform- to provide privacy-preserving

OS and apps, Layer 2. Query Formation - to provide privacy-preserving LBS query

formation, and Layer 3.) Network Communication - to provide privacy-preserving

network communication. To quantify the effectiveness of all classified LPPMs, we assess

which and up to what extent they satisfy the four privacy properties (Pfitzmann and

Hansen, 2008): unlinkability, unobservability, anonymity, and controlled information

disclosure.

2.3 Layer 1: Mobile Platform

In Layer 1, we analyse privacy and security mechanisms integrated as LPPMs in mobile

platforms by different MPPs. We highlight their location privacy risks, threats and

then identify the research gaps. The two indicators to analyse location privacy risks in
1Please note: 3 Layers in our classification model are different from the standard OSI (Open

Systems Interconnection) layers, which are part of the OSI reference model.
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a mobile OS protection mechanism are: i) the number of identified vulnerabilities, and

ii) the number of reported malware. The former indicates the number of weaknesses

discovered in a platform that could potentially be used to compromise users’ privacy.

This case needs preventive systems to be implemented. The latter indicates the

number of actual threats discovered using different types of detection systems and

monitoring measures. Thus, LPPMs at this level are divided into two sub-domains: a)

Mobile OS, and b) Mobile Apps and Repositories. MPPs use preventive mechanisms

such as code-signing, encryption, and sandboxing to secure the platform; whereas,

detection/monitoring mechanisms for securing regulating apps and repositories. We

have given detailed descriptions of these security mechanisms in the sections below.

2.3.1 Mobile OS

According to Gartner (2017b), the worldwide sales of Android, iOS and other OSs

hold 84.1%, 14.8 % and 1.1 % of smartphone OS market share, respectively. Existing

literature confirms that attackers target users of popular MPPs to get the maximum

amount of sensitive information. Clearly, the popularity battle is now between two

MPPs: Android and iOS; however, we have given detailed descriptions of these two

MPPs and Windows Phone below.

Android mobile OS is a modified version of the Linux kernel. Since it has an open

source architecture, developers can use self-created certificates to self-sign their

app code and publish their apps to the Android’s repository (i.e., it does not

require any trusted certifying authority). Once the app is self-signed by the

developer, Android security model then maps the signature of the developer

with a unique ID of the app package and enforces signature level permission

authorisation (Android, 2017). This openness of Android has attracted a large

community of developers to work on its security challenges and extend the
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functionality of the OS. Therefore, Android’s dominance has continued to grow

and it has the biggest user base. However, since there is no support for root

certification authorities in Android, it preserves the anonymity of a potential

attacker and makes it difficult to scrutinise/block apps with poor source origin,

malicious code and code integrity protection. Thus, there is a high possibility

that Android device users will easily be tricked by unsafe apps, or they will avoid

the warning messages during installation or at runtime.

iOS mobile OS was developed based on OS X/Unix to support Apple’s mobile devices,

such as iPhone and iPad. Apple iOS uses app-code singing, hashing, encryption

and app-execution sandboxing to secure the platform. App-code signing process

ensures execution of only allowed apps that are reviewed and distributed by

Apple on users’ devices. Encryption and hashing ensure the app code cannot

be reverse engineered, and that only the authorised user can run the app in

order to protect the financial gains and profits of app developers. Sandboxing

ensures that an app does have unauthorised access other apps’ data or stored

file system. To prevent or detect malicious apps, Apple follows a vetting process

that ensures all apps that are submitted for publication / distribution on their

official repositories conform to Apple’s regulatory rules. However, Apple has kept

this vetting/reviewing process and applied criteria unknown (Apple, 2016; Egele

et al., 2011). The closed and proprietary nature of iOS do not take responsibility

of any private data leakage, if the user breaks the security model (i.e., jailbreak)

and installs the app from a third-party repository (e.g., Cydia). In spite of this,

there have been cases where malicious apps have to be removed from the App

Store after users’ complaints. Since this vetting process is not well documented,

it prevents the developers from understanding the flaws in the iOS security model

(Wang et al., 2013). Whereas, the growing acceptance of open source platforms
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makes it apparent that smartphone users no longer assume the restricted and

pre-defined terms and conditions are built to safeguard their privacy and security.

Windows Phone mobile OS is developed by Microsoft for smartphones, previously

known as Windows Mobile. Similar to desktop versions of Windows, Windows

Mobile was designed based upon the Windows CE kernel and is now superseded

by Windows Phone. Third-party software development uses the Microsoft .NET

Framework (e.g., C#) and developed Apps are packaged into XAP files, which is

the Silverlight application package and users can purchase apps via the Windows

Marketplace. Beginning 2015, Windows Mobile/Phone was in top 3 mobile OSs

Gartner (2015); however, after 2015 it has been removed from the worldwide

smartphone OS sales list due to the drastic decrease in its sales and end users.

Therefore, to cope up with the competitive mobile OS market, Microsoft is

constantly experimenting/changing the Windows Mobile/Phone’s security and

business model. Starting Windows 10, Microsoft introduced the Universal

Windows Platform (UWP, 2017), which aims to allow developers to create a

single app package that can be installed on a wide range of devices. This opens

new privacy and security challenge due to interoperability requirement.

Preventive mechanisms These mechanisms depend on cryptographic algorithms,

digital signatures, and hash functions to assure fundamental security properties, i.e.,

confidentiality, authenticity or integrity. Both the closed and open source mobile

platforms –i.e., Android, iOS, and Windows Phone– have similar security practice for

approving any third-party apps to be distributed over their official repositories, however,

the difference remains in their platform security policies. The common OS security

model consists of three main techniques:
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• Sandboxes: Sandbox approach (i.e. creating an environment in which the actions

of a process are restricted according to a security policy) isolates one app from

another for dynamic monitoring of third-party apps, so they are restricted from

accessing files stored by other apps, cannot make changes to the device and have

limited access to the OS (Android, 2017; Microsoft Phone, 2017b; Symantec,

2017). This is also a standard practice to prevent a malicious app from affecting

another app running on the device.

• Digital Signature or Code Signing: Developer must digitally sign the app’s

installation package with a digital certificate issued by the MPP, and the identity

of the developer is embedded into the app. The security model then maps the

signature of the developer with a unique ID of the application package and

enforces signature level permission authorization (Jain and Shanbhag, 2012). The

digital signature process aims to guarantee that both the identity of the app and

its developer are not modified or tampered with.

• Permission-based access control: In any permission-based mobile OS, apps can

only access sensitive resources through the official APIs once the corresponding

permissions declared in the system level configuration files (e.g. Android’s

manifest file and Windows Phone’s manifest editor) are granted and authorised

by the user (Mylonas et al., 2011; Pennekamp et al., 2017). Mobile users can have

two ways to grant permissions to apps: run-time (i.e., while the app is running),

or one-time (i.e., once when they install/update the app). Once permissions are

granted during installation, the one-time permission model does not allow the

user to revoke/change resource access granted to the app at any point in time.

Therefore, all the three popular mobile platforms have recently started adapting

run-time permissions in their security models since it is more flexible (Android,

2017; Microsoft Phone, 2017b).
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However, both the open and closed security models for mobile OSs are not effective

in protecting the user’s data privacy as well as security from installed apps. For instance,

hackers or adversaries can use stolen identities to register with Apple (or Android) to

post harmful apps (Symantec, 2017; Wang et al., 2013). Once the app is installed on

the device, the user neither controls nor is prompted about any sporadic or continuous

access to the OS resources or sensitive data leakage. This can result in serious location

privacy threats that apps pose to mobile users. Mylonas et al. (2013) have tested

location privacy attacks on mobile platforms – including Android, BlackBerry, iOS,

Windows Mobile, and Symbian– and results demonstrate that they are vulnerable and

require major fixes to mitigate location privacy threats. Similarly, PiOS (Egele et al.,

2011) demonstrated several privacy threats within the iOS platform. In essence, even

with the aforementioned security suite for mobile platforms, once the app is installed

and user grants access to their location data, both open and closed mobile OS security

models are vulnerable to privacy attacks. This is because OS security models focus

mainly on companies’ (or MAP) policies rather than securing their users’ privacy

rights. Consequently, malicious data sharing and location privacy attacks via apps are

becoming very common no matter whether such apps are registered with official app

repositories (e.g. Apple store or Google market) or third-party app repositories (e.g.

Cydia, Amazon AppStore) (Liu et al., 2017; Zhou et al., 2012a). Thus, smartphone

users and MPP are still vulnerable to such unauthorised data gathering and sharing,

and code manipulation to get access to sensitive OS resources and information by

malicious MAP.

2.3.2 Securing Mobile Apps and Repositories

With regards to location privacy of mobile users, mobile platforms are still vulnerable to

location tracking attack and malicious code attack. We now analyse the incorporation
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of security and LPPMs into LBS apps running on users mobile devices and app

repositories. To secure mobile apps and repositories, there are two main approaches:

policies and regulations; detection/monitoring mechanisms.

Policies and regulations Privacy policy is a preventive mechanism established

by regulatory bodies to monitor how an organisation handles any user information

gathered in its business operations. It is a legal requirement that service providers’

privacy policies must be defined in compliance with the latest privacy regulations. In

addition, standards for location-based products and services exist in both the 3GPP

(3GPP, 2017) and IETF (IETF, 2017) arenas. Although such privacy policies aim to

be flexible and support the personalisation of privacy preferences, they only provide

a deterrent against privacy violations. Therefore, if a third party decides to violate

these norms, in spite of the risk of penalties, the user’s privacy cannot be protected.

Studies (Bettini and Riboni, 2015; Mokbel, 2007) on LBS commercial products and

services state they do not comply with users’ privacy laws and could be major privacy

threats to their customers. Moreover, manual policy enforcement is expensive and

thus is often ignored by service providers, particularly when users are unaware of their

privacy rights and regulations. Hence, automating privacy policy enforcement has been

the main objective of researchers working on privacy protection. We describe different

LPPMs based on PETs and cryptography applied to automate privacy policies in Layer

2 and 3.

Detection/monitoring mechanisms If a malicious app developer evades preven-

tive mechanisms (mentioned above), then detection/monitoring mechanisms are incor-

porated as additional security and privacy measure (Enck, 2011). Detection systems,

e.g., malware detection and intrusion detection systems, can be deployed in two ways

as host-based or cloud-based. The former is implemented on the device to identify
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malicious activities by installed apps and alert users or the MPP via the OS controls in

real-time. The latter is used on remote apps distribution servers by MPP to monitor

their official repositories regularly, to detect or remove any malicious app that is already

published.

However, it has been repeatedly reported that many apps even on official repositories

prompt for location settings on the device to be switched ’ON’, although it is not needed

at all in their operations. As a result, to improve mobile OS security models, many

researchers (Burguera et al., 2011; Shabtai et al., 2012) are aiming to incorporate a

collection of additional security tools that includes signature-based anti-virus, firewalling

capabilities, harden access-control and sandboxing, and malware/intrusion detection

systems.

Given its open source architecture and user base, comparatively, Android encoun-

tered a higher number of security and privacy challenges, such as one-time permission

issue, easy user tracking, ease to reverse engineer and repackage apps. Hence, several

platform-level extensions have been proposed for Android – such as MockDroid (Beres-

ford et al., 2011), TISSA (Zhou et al., 2011), AppFence (Hornyack et al., 2011) and so

on – that helped it to improve with the release of every OS version. Few prominent

proposed app-specific and repository monitoring solutions for Android devices are as

follows:

Host-based Host-based detection, as well as prevention mechanisms, are mainly based

on Android’s permissions for addressing two main goals. The first goal focuses on

detecting and alerting when a leakage is recognised by applying a re-delegation

of permission mechanism (e.g., AndroidLeaks (Gibler et al., 2012), TaintDroid

(Enck et al., 2014), and Kirin (Enck et al., 2009). The second goal empowers

users with privacy controls that aim at enhancing permission settings of the OS
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App MAP
(i.e., LBS Provider)

Figure 2.2 High-level communication schematic between the app (on user’s device) and
MAP (LBS providers), where Uid is the app user’s identifier, Q is the LBS query sent
to LBS provider, Lat and Long are the geo-coordinates of the mobile device.

at run-time (e.g. TISSA Zhou et al. (2011), Locaccino (Toch et al., 2010) and

LP-Guardian (Fawaz and Shin, 2014)).

Cloud-based detection and prevention mechanisms that aim to improve app repos-

itory monitoring process have been proposed by researchers. For example,

DroidMOSS (Zhou et al., 2012a) uses fuzzy hashing technique to match digital

signatures and to detect repackaged Apps in third-party Android repositories.

Whereas, DroidRanger (Zhou et al., 2012b) uses permission-based behavioral

footprinting and heuristics-based filtering to detect repackaged apps in both, offi-

cial and third-party, Android repositories to identify users’ information leakage.

2.4 Layer 2: Query Privacy

Mobile apps share location information with MAPs in the form of LBS queries (see

Figure 2.2). The continuous transmission of such queries to remote servers can

allow attackers to gain access to the user’s sensitive locations and mobility traces.

Hence, in this layer, we analyse cryptographic and non-cryptographic techniques (e.g.,

PETs) applied as LPPMs into location-based system infrastructures, architectures, and

applications for privacy-preserving query formation and processing. Existing surveys

and taxonomies (Gupta and Rao, 2017; Khoshgozaran and Shahabi, 2010; Krumm,

2009; Wernke et al., 2014) on privacy preservation in LBS have only considered LPPMs

and challenges at this Layer (i.e., query formation and processing). Unlike 3-Layer
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Classification, these surveys and taxonomies fail to characterise and classify the

tradeoffs of LPPMs. Such tradeoffs are produced by different design decisions for

location-based systems and link the control aspects and data flow at every stage of the

service.

2.4.1 Non-cryptographic Techniques

For LBS query privacy, PETs that are non-cryptographic – such as k-anonymity,

dummy locations, region cloaking, location perturbation and obfuscation, and mix-zone

pseudonyms – have been established to be implemented in different location-based

systems as LPPMs (Gupta and Rao, 2017; Khoshgozaran et al., 2011; Patel and

Palomar, 2014; Wernke et al., 2014). These most commonly used non-cryptographic

privacy techniques for LBS query formation and processing are briefly described as

follows:

Dummy locations are generated and sent to LBS providers along with the actual

position to hide users’ location (Kido et al., 2005). This technique uses k-

anonymity metric to measure users’ location privacy. This approach can decrease

the usability of actual data over dummy data, but the functional advantage of

this approach is that the user is able to generate dummies without the need of

TTP (You et al., 2007).

Cloaked region is created using spatial and temporal cloaking in order to satisfy

incorporated privacy metric, i.e., k-anonymity, that maintains location privacy

preservation (Gruteser and Grunwald, 2003; Sweeney, 2002). This technique

can also be used with other PETs and privacy metrics such as l-diversity or

t-closeness (e.g., CliqueCloak (Lee et al., 2011)). It is more suitable for LBS

applications that require user’s location information at a specific time. But, with
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continuous querying, the cloaked region becomes extremely large; and therefore,

it fails to provide accuracy/usability (Pan et al., 2012).

Mix-zone technique refers to a service restricted area, where mobile users can change

their pseudonyms so that the mappings between their old pseudonyms (i.e.

entering the restricted area) and new pseudonyms (i.e. exiting the restricted

area) are not disclosed (Beresford and Stajano, 2004). This technique is suitable

for LBS applications that continuously track users’ movements. It depends on

geometric location transformation and uses privacy metrics to measure the level

of achieved location privacy.

Location Perturbation and Obfuscation Obfuscation-based techniques perturb

(i.e., alter or move from its original position) the actual location information

while maintaining a binding with the user’s identity. The idea of this approach

is to utilise a log of historical user locations rather than the real-time location

information to generate cloaked or obfuscated regions (Pingley et al., 2011;

Quercia et al., 2011). Again, it can use k-anonymity as a metric to measure users’

location privacy.

Query Privacy Metrics A number of metrics to measure query privacy in mobility

sets that have been defined by taking into account the functionality of the proposed

LPPM (Chen and Pang, 2012). However, amongst these, the largely adopted privacy

metrics are k-anonymity and location entropy. More recently, owing to its formal

privacy guarantees, the differential privacy (Andrés et al., 2013) notions have been

applied to location-based applications and data mining practices as privacy metrics

for handling and analysing private data. However, the differential privacy claims

effectiveness after the private data is already collected by service providers (e.g., before

releasing a dataset for public use); hence, it fails to guarantee privacy at runtime (i.e.,
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during any private data collection). Definitions of the three popular privacy metrics

are given below:

1. In k-anonymity, a number k is taken as the metric of users’ query privacy, which

is the size of the anonymity set of the issuer. This means, for a given query,

a total of k locations are sent to the service provider, which is then unable to

identify the user’s real location with a probability higher than 1
k
.

2. Location Entropy the concept entropy of a random variable X is defined as

H(X)= - ∑
x∈X p(x) · log p(x), where X is the domain (all possible values) of X.

3. Differential Privacy (Andrés et al., 2013) is a privacy notion that is not based

on a syntactic privacy notions (e.g., k-anonymity), but it relates uncertainty

at an individual level to the noise or randomisation used in LPPMs. Formally,

differential privacy is defined as follows:

A randomized function K gives ε-differential privacy if for all data sets D and

D′ differing on at most one row, and all S ⊆ Range(K),

i.e., Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D′) ∈ S].

Few authors have attempted to highlight various concepts of location privacy

including user identity, LBS query types, query processing, privacy attacks and so

on (Mokbel, 2007; Shin et al., 2012; Wernke et al., 2014). For example, for privacy

preservation, Mokbel (2007) categorised LBS queries into three types: private queries

over public data, public queries over private data, and private queries over private data.

Whereas, Shin et al. (2012) categorised LBS queries privacy into two types: query

privacy and location privacy. Wernke et al. (2014) states three different attributes

of the location query: identity, position, and time. Furthermore, Chow and Mokbel

(2009) described how these techniques can be used in different architectures including

client-server, trusted-third party (TTP), mobile peer-to-peer and fully distributed. We
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refer the reader to the cited bibliography for details. However, all of them emphasize

that the privacy of LBS query depends on two main factors: the protection of users’

sensitive data within the query, and the unlinkability between the user’s location and

the query. Despite all their efforts made to guide future research in privacy-preserving

LBS applications, the proposed LPPMs still lack standardisation, certainty, and are

heavily centralised (i.e., rely on trusted location-based server/anonymisers). This makes

privacy-preservation of LBS queries still an open issue that needs more attention.

2.4.2 Cryptographic Techniques

Cryptography-based LPPMs are predominantly used when location servers are not

trusted. Example of cryptographic techniques used in mobile applications for LBS

query privacy are given below:

PIR based techniques The Private Information Retrieval (PIR) protocol based

LPPM uses standard public key cryptography to provide location privacy without

the need for privacy metrics or TTP. The PIR protocol allows clients to retrieve the

information privately from the server, without the server learning what information

was requested by the client. This protocol provides maximum query privacy, but it

causes high computational and communication overhead on the server, which makes

it unfeasible to be practically implemented in LBS applications or systems (Ghinita,

2013; Papadopoulos et al., 2010).

Other encryption based techniques for query privacy Encryption based ap-

proach to query un-trusted servers are heavy-weight such as implementation of ho-

momorphic, symmetric and asymmetric encryption (Hu et al., 2011; Wong et al.,

2009). Compared to symmetric key encryption, asymmetric key encryption nodes are

relatively much more expensive if used for continuous location querying, e.g., LocX,



2.5 Layer 3: Network Communication 37

a location-based social application (Puttaswamy et al., 2012). Other cryptographic

primitives like group signature, blind signature, and ring signatures have been used for

anonymous user authentication or other access control operations to achieve privacy

preserving communication network (Ren and Wu, 2010). However, in LBS applications,

cryptographic primitives can add heavy computation and communication costs if used

in continuous or spatial-temporal tracking queries.

In short, a cryptographic approach in LBS query handling is more suited for privacy-

preserving, but involved cryptographic operations can incur high query processing,

computational and communication overheads on the servers. As a result, this opens

another research challenge to minimise cryptographic computation overheads on the

location servers.

In summary, the main issue with applying non-cryptographic and cryptographic

schemes for query formation and processing is that they rely entirely on the data

collection servers to comply with location privacy. Moreover, LPPMs based on the

above cryptographic schemes and PETs have been tested on service providers’ data

collection servers but neither are implemented on mobile platforms, nor on the actual

app operation. Hence, they rely on theoretical assumptions - like trusted infrastructure

to provide the privacy protection, requiring a group of similar app users to be at the

same time and same place. Thus, the lack of usability and deployment feasibility are

the two key constraints that hinder the adoption of any LPPM for query privacy in

the mobile app ecosystem.

2.5 Layer 3: Network Communication

In location-based systems, a wireless network is used for calculating the user’s device

location by having network nodes communicating with each other. Hence, in Layer
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3, we review LPPMs used to identify the possibility of improvements for mobile/LBS

users in: 1. wireless networks and 2. communication protocols – including mixed

networks, onion routing.

2.5.1 Wireless Networks

Wireless networks can leak a lot of sensitive user information, especially at the data

link layer. Every mobile device that has been deployed with the active probing

process, will transmit the identifiers of previously accessed wireless APs in plaintext,

including surrounding cell-tower identifiers and other radio signal emitting devices.

These identifiers and other unencrypted sensitive information can be easily intercepted

and disclosed by eavesdroppers, leading to serious privacy attacks – such as building

extensive user profiles. For this reason, it requires data link layer encryption algorithms

to be in place; hence, several studies are attempting to minimise the security and

privacy risks associated with active probing in wireless networks at the data link layer

(Greenstein et al., 2008; Kim et al., 2014; Vratonjic et al., 2013).

Advertising businesses Businesses operating on wireless networks represent severe

security and privacy risks, no matter whether it is indoor or online/global. Such

businesses collect user’s location and other sensitive information (i.e. personal habits,

movement patterns, etc.) and pose the major privacy risks (Jan et al., 2000). Further,

third-party ad-libraries used in mobile apps also collect private location information

(Grace et al., 2012). This emerged as a new research challenge towards development of

privacy-preserving advertising systems to avoid uncontrolled monitoring, e.g., MobiAd

(Haddadi et al., 2010) and Privad (Guha et al., 2011).

Crowdsourcing Crowdsourced WiFi hotspot allows constant monitoring of users’

accurate locations, their movements, and other personal data, in fact, the monitoring
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can be done secretively, without users necessarily being aware of it (Liu and Li, 2012).

Even data received from mobile devices around the user can be gathered and analysed.

Therefore, researchers and industrial groups are trying to balance the security, privacy

and utility aspects of crowdsourcing methods to be applied in advanced positioning

systems (Agarwal and Hall, 2013; Quercia et al., 2011). In particular, enhancing wireless

network security and user privacy is critically essential for successful deployment of

WiFi technology based positioning or user localising systems.

2.5.2 Network Communication

Existing network layer solutions mainly depend on anonymous network communication

techniques, in which even if the data packet is encrypted, both the source and desti-

nation addresses located in the packet’s internet protocol (IP) header are still visible

to an eavesdropper (Erdin et al., 2015). Therefore, academia and industrial research

communities are focused on designing and building privacy and security schemes as

an infrastructure that runs on the top of the private IPs allowing users to communi-

cate with each other without disclosing their network identifiers. These anonymous

communication protocols and anonymity metrics are discussed below.

Anonymous communication protocols

Communicating over an anonymous network can provide LBS users with strong

unlinkability, unobservability, and anonymity. Some of the successful anonymous

routing protocols are Anonymizer (2016) and TOR (2016). Both of these protocols

deal with anonymous service usage at the network layer while communicating over

the Internet (i.e., the server can see the location data without knowing the identity of

users). However, the TOR network creates a circuit with randomly selected TOR relays,

which encrypts the original data from source to destination including the destination

IP address. Another protocol called Crowds (Reiter and Rubin, 1998) is based on the
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idea of blending into a crowd (i.e., a user’s request can either be submitted to the

end location server or forward it to another randomly chosen router). As a result, no

third-party knows the origin of the requested query. Whereas, Hordes (Shields and

Levine, 2000), uses multicast routing to achieve anonymous communication over the

Internet. However, these protocols have to be prevented from several security attacks

such as the inference of the user location using the mobility trace without affecting

the performance of the LBS applications. Amongst all the above protocols, only a few

anonymising networks have been tested for the mobile Internet scenario.

Measuring Anonymity at Network Layer

Anonymity metrics, such as set size, k-anonymity, individual anonymity degree, and

entropy, are used to measure anonymity in an anonymous network (Kelly et al., 2012).

The literature suggets that both anonymous routing and anonymous communication

protocols require further research to complement/ improve privacy preserving at the

network layer; hence, they cannot work efficiently with LBS applications. Also, there

are other cryptographic primitives that provide a high degree of anonymity, but cannot

be applied to network communication due to high cost in terms of network traffic and

processing, e.g. the dining cryptographers Chaum (1988); Krasnova et al. (2016).
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2.6 Research Gaps

Standards for LBS applications exist in both the 3GPP (2017) and IETF (2017)

arenas. The need to securely gather and transfer location information for LBS, while

at the same time protecting the privacy of the users involved have been identified.

However, industry and academia are making joint efforts to identify the requirements

for LBSs in future large-scale community and better addressing end-user concerns.

Apparently, to come up with an efficient socially-acceptable solution, all the above

three levels must be considered. Current research demands LPPM that protects mobile

user’s privacy at every level and benefit both the end users and service providers.

However, achieving such a solution is currently still an open research question and

requires further investigation in this field. Table 2.1 illustrates critical comparison of

most common approaches at each layer, and the privacy analysis that determines to

what extent they satisfy the four privacy properties. We have analysed each layer’s

shortcomings but only Layer 2 approaches fully satisfy the privacy properties; however,

they lack in deployment feasibility and usability. Based on the outcome of the study

on state-of-the-art, we present a summary of research gaps identified at each layer.

• In Layer 1, there are two main research challenges for the location privacy issue:

first, to improve mobile OS security models against location privacy attack, and

second, to minimise/avoid unnecessary collection of users’ personal information

by service providers. Insights from mobile OS security models regarding location

privacy attacks attract the attention for a more rigorous vetting process for

regulation of third-party apps on MPPs’ repositories. Since the permission-

based OS controls are vulnerable to location privacy attacks, the mobile OS

security models require additional system and/or application level solution against

malicious code and location data leakage.
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• In Layer 2, LBS query privacy depends on two main factors: the protection of

users’ sensitive data within the query, and the unlinkability between the user’s

location and the query. We distinguish two research challenges in this regard.

First, to identify effective LPPMs to handle LBS query privacy before the private

data is already collected by the service providers (i.e., not just to rely on service

providers’ trustworthiness). One of the potential approach (PbD) is to apply

privacy techniques or metrics such as l-diversity, t-closeness and differential

privacy on user’s device in order to handle LBS query privacy at runtime;

this will also bring data minimisation in the current mobile app ecosystem.

Second, improving cryptographic approaches by reducing the computational and

communication overheads on the location servers’ side.

• In Layer 3, anonymous and unlinkable sharing of location information between the

LBS applications and location servers over the network can be further investigated

with the network layer’s viewpoint. To achieve privacy-preserving network

communication, privacy mechanisms should also be applied at data link layer

to stop passive or active eavesdropping and improve anonymous communication

protocols.

2.7 Related Work

Considering the above analysis on the state-of-the-art, we adopt the PbD approach

aiming to fill most, if not all, of the aforementioned research gaps. Our approach

aims to bring location privacy in mobile platforms that benefit both end users and

service providers. Our research provides a novel theoretical model, LP-Cache, and

its implementation, PL-Protector, on Android platform as a working system (i.e.,

a proof-of-concept / prototype). Our proposals incorporate a caching technique on
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the user’s device to determine their geographical location in a privacy-preserving

manner, and with minimum cache storage requirements. Hence, this section reviews

relevant related work with regards to our research proposals. Considering LP-Cache

and PL-Protector, we have divided the related work in two sections: cache-based

LPPMs and other LPPMs applied on mobile platforms for users’ location privacy

preservation.

1. Cache-based LPPMs - As mentioned earlier, PETs and other cryptographic

schemes have been proposed for the query privacy preservation between the app/LBS

providers in the different architectures and infrastructures. Along with PETs, few

authors have used caching technique to address location privacy challenges. For

instance, MobiCaché (Zhu et al., 2013) applies k-anonymity for caching location-based

queries. Similarly, Niu et al. (2015) attempts to improve k-anonymity based caching

by adding dummy locations. However, both proposals require a trusted infrastructure

to maintain location privacy. Similar to our approach, Caché (Amini et al., 2011)

maintains an on-device cache, but it stores entire location-based queries contents and

data-types to be re-used in future LBS queries that demands heavy cache storage

requirement. Besides this, Caché also requires the willingness of app developers to

modify the way their app access user’s location data. All these cache-based systems,

either intended to generalise or obfuscate the LBS query or minimise the number of

queries sent to the app providers, but they do not provide privacy from WiFi content

distributors. Moreover, their implementation either relies on theoretical assumptions or

lacks deployment feasibility; hence, they cannot be incorporated in mobile platforms or

in the ecosystem. Whereas, our proposals only cache private network fingerprints and

mapped geo-coordinates, which significantly reduces the cache storage and memory

requirement, and it considers installed apps as black boxes and does not require the

app developer to modify the app code.
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2. Other LPPMs for mobile platforms - A few studies have proposed static and

dynamic monitoring systems to detect location privacy leaks in mobile platforms. The

former method statistically analyses apps by creating permission mapping, generating

call graphs and data flow analysis to report privacy leaks for further auditing, e.g,

AndroidLeaks (Gibler et al., 2012) and PiOS (Egele et al., 2011) for Android and

Apple iOS, respectively. The application of dynamic methods involves modification of

the mobile platform. For example, TaintDroid (Enck et al., 2014) adds taint2 tracking

information to sensitive sources calls from apps, and it tracks location data flow as it

generated through applications during execution. MockDroid (Beresford et al., 2011)

relies on instrumenting Android’s manifest permission mechanism to mock sensitive

data from OS resource, including location data, which can affect apps’ usability and

functionality. Such dynamic monitoring methods can only be deployed on mobile

devices that are rooted or jailbroken. Hence, in our research, we aim at providing a

platform independent solution that is scalable and provides usable privacy. Our model

not only monitors the location sources but also modifies, if required, the generated

location based on pre-defined user permissions. Furthermore, the service called Koi

(Guha et al., 2012) is cloud-based and demands numerous changes in the smartphone

app ecosystem. The app developers are required to use a completely different location

API, which implements a location comparison mechanism and matching criteria, in

order to access the device location. Similar to our prototype implementation method,

Fawaz and Shin (2014) rely neither on the adaptation of the app code modification

nor on the existence of trusted infrastructure (e.g., TTP). However, it does not allow

the user to control wireless and location data that is shared with the location provider

and/or the app provider. This issue is mainly due to considering the location provider

as the only source of the user location when developing location-based apps. Moreover,
2taint is a label that is used to detect when the user’s sensitive data leaves the system via third-party

applications.
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Fawaz and Shin (2014) applies indistinguishability on the location data and PoIs that

increases the computational overhead and memory consumption over time.

Besides, mobile devices do not only send vast amounts of location data to app

providers but also to location providers creating different location privacy shortcomings

(Almuhimedi et al., 2015; Shklovski et al., 2014). In this regard, limited work has been

published on privacy preservation from the location provider’s perspective (Damiani,

2011; Doty and Wilde, 2010). Damiani (2011) proposes a theoretical approach for

privacy-aware geolocation-based web services to encourage further research to minimise

the amount of location data being shared with the location provider. This is mainly

due to the location provider being considered as the only source to get the user location

when developing any location-based app. Our model minimises the process of wireless

AP data collection by the WiFi content distributors or service providers, and we control

information disclosure within the generated LBS query (e.g.,PoIs) since it will be sent

to the third-party app provider. Moreover, we also implement a working system as

a proof-of-concept that demonstrates how our model provides practical and scalable

LPPMs, and it can automate recommended user policy to enforce location privacy in

mobile platforms.

2.8 Summary

Secure gathering and transfer of location data via smart mobile devices while at the

same time preserving users’ privacy are concerning needs. Research and industry

communities are making joint efforts to identify the requirements for LBS applications

in future large-scale scenarios and addressing end-user concerns. Studies based on

cryptographic schemes and PETs have been tested on service provider’s data collection

servers but neither are implemented on mobile platforms, nor via actual app operations.
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In addition, lack of usability is one of the factors that hinders the adoption of existing

privacy-preserving solutions. In this chapter, we have proposed a state-of-the-art

classification, which embraces a holistic picture towards approaching privacy-preserving

LBS for mobile users. We have identified three different layers: mobile Platform, query

privacy, and network communication. We have described all the protocols, techniques

and infrastructures ranging from the application layer to the network layer used for

location privacy, and assess them against the satisfaction of the privacy properties.

Hence, we claim our study provides a better-focused classification of the state-of-the-art

to guide researchers in the field. Considering the literature findings, we have identified

research gaps at each layer to come up with an efficient socially-acceptable solution.

We then present related work with regards to our proposals that aim to bring practical,

secure and efficient location privacy solution for mobile platforms in the smartphone

app ecosystem and beyond. We elaborate on our model and its implementation in next

chapters.





Chapter 3

LP-Cache: Location Privacy

Preserving Model for Mobile Apps

Research findings from this chapter have been published in conference papersab

aPatel, A., & Palomar, E. “Protecting Mobile Users’ Private Locations through Caching". In:
Lecture Notes in Communications in Computer and Info. Science (CCIS), Springer 2016.

bPatel, A., & Palomar, E. “LP-Cache: Privacy-aware Cache Model for Location-based Apps".
In: 13th Int. Conf. on Security and Cryptography (SECRYPT), pp. 183-194, Springer 2016.

3.1 Introduction

In this chapter, we present an analytical study that was conducted to understand how

the location calculation process works in smartphones and how apps access and collect

users’ location data. This study also analyses location privacy threats and challenges

within the smartphone app ecosystem. By critically investigating the study outcome,

we design, develop and propose a theoretically sound and platform independent model

called Location Privacy Cache (LP-Cache). To encounter identified location privacy

challenges and threats, LP-Cache makes the user device play a bigger role in the

location calculation process. It applies a cache-based technique to determine the

position of the client device by means of wireless access points and achieves data
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Figure 3.1 Current location computation architecture

minimisation in the process. It envisions beyond the simple grant/deny access method

and provides the user with advanced permissions to decide the extent of disclosing

location data with service providers. Several caching based solutions (Amini et al.,

2011; Niu et al., 2015; Zhu et al., 2013) have been proposed to minimise the risk

of the fundamental location privacy threats, but they lack deployment feasibility.

They rely on unrealistic assumptions such as vast cache data storage requirements,

or on the app developers modifying the code to incorporate their cached databases.

Whereas, LP-Cache incorporates the caching technique in a privacy-preserving manner

and, comparatively, with minimum cache storage estimation and is feasible without

modifying installed apps.

The rest of the chapter is organized as follows. Section 3.2 outlines the current

location computation process and its analytical evaluation. Section 3.3 presents the

architecture of LP-Cache, and Section 3.4 fully elaborates on the design decisions and
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its possible implementation. We evaluate the feasibility and usability requirements in

Section 3.5. Finally, Section 3.6 summarises this chapter.

3.2 Current Location Computation Process

In this section, we describe roles and processes involved in the current architecture for

computation of the user’s device location.

3.2.1 Current Architecture

The current location computation architecture (see Figure 3.1) to use location-based

apps on smartphones comprises of four main entities: 1. Smartphones with installed

apps, 2. App Provider, 3. Network Infrastructure, and 4. Location Provider. This

architecture mainly relies on third-party location providers, e.g., Google Location

Service (2016), Skyhook (2016), and Navizon (2016). The location provider represents

the central database, which maps the received signatures of nearby wireless access points

to their geo-coordinates and, hence, handles every geolocation request. Therefore, the

location provider has constant access to the user’s location as well as to the trajectory

and mobility data. To respond to any location request, the location provider maintains

a database of surrounding network infrastructure, including WiFi APs, cellular-towers,

and IP addresses, which must be mapped to their exact geographical coordinates (i.e.,

geo-coordinates). Compared to GPS and cell-tower based positioning, WiFi Positioning

Systems (WPS) are nowadays considered as a very accurate method for location

calculation (Skyhook, 2016). Location providers rather use enhanced WPS than GPS,

primarily due to the current smart-mobile devices benefiting from built-in WiFi clients

that perform faster than most expensive GPS receivers. As a result, beacons scanning

and crowdsourcing of WiFi APs (i.e., hotspots) are the two main positioning techniques
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used by location providers. This enables the service provider to get a user’s precise

locations at all times. Hence, effective privacy preservation measures are needed in

the current process to mitigate location privacy threats. We need to consider, how

WPS are deployed and used by location providers. WiFi APs continuously announce

their existence in the way of network frames/beacons and transmit their Service Set

Identifier (SSID) and Basic Service Set Identifier (BSSID)/MAC addresses. Location

providers use these WiFi APs identifiers to create network signatures and map them

with their respective geo-coordinates, also called geolocation. IEEE 802.11 states

two standardised ways to collect beacons from WiFi APs: 1. Active scanning, and

2. Passive scanning. Location providers are capable of deploying systems with either

active scanning, passive scanning, or both together. Location providers use three

different ways to collect geolocation of WiFi APs:

1. Statically - they collect WiFi beacons by the so-called the wardriving process

(Sapiezynski et al., 2015). Basically, they map the equipped vehicle’s exact

geo-coordinates along with the signal strength of the captured beacons from

surrounded WiFi APs.

2. Dynamically - they can collect data from WiFi APs automatically once the user

device uses location services, e.g. maps and navigation apps. The user device,

as configured to be geolocated, acquires unique identifiers from the surrounding

WiFi APs, even if the network is encrypted, and then sends it over to the location

provider in order to perform geolocation calculation. The collected information is

utilised to build and update the database autonomously, for example, by applying

crowdsourcing WiFi hotspots (Zhuang et al., 2015).
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3. User input - they encourage users to manually input the WiFi APs’ information,

i.e., BSSID and the geo-coordinates, into their databases, e.g., Skyhook1 to

register WiFi APs.

3.2.2 Evaluation of the Current Location Computation Pro-

cess

To analyse location privacy risks and vulnerabilities in the smartphone app ecosystem,

we evaluate the current location handling process.

Experimental setup In this evaluation, experiments were designed to understand

whether there are any differences in the location calculation process on each of the three

mobile operating systems/platforms. We first collected and investigated published

policies and procedures, legal regulations, guidelines related to location privacy of

mobile users. Along with the investigation of published resources, we conducted a series

of experiments on different mobile devices installed with Android, Windows Phone,

and iOS operating systems to categorise the data flow and control flow in the current

location computation process. With the assistance of sniffers, such as Wireshark (2016)

and tPacketcapture (2016), we captured and analysed sequence and location data

transmission when using location-based apps. We have collected a number of sessions

of location-based apps communicating different types of LBS query (e.g., Navigation

and Friend Finder) with the app provider. Figure 3.2 shows the screenshot of captured

packets: (a) app sent LBS query that includes device’s geolocation to the server, and

(b) after receiving a LBS query from the app, the server verifies the device’s current

location to send the appropriate response. We maintained 15 to 30 mins sessions

of packet capture, to identify the sequence of the communication process, data flow,
1Submit a Wi-Fi Access Point. See http://www.skyhookwireless.com/submit-access-point (last

access in March. 2016).
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control flow, type of data shared between the OS, apps, app providers and any other

third party involved in the entire process.

Listing 3.1 Structure of a WiFi AP object cell-tower object sent to the location provider
1 {" wifiAccessPoints ": [{
2 " macAddress /BSSID": "11:22:33:44:55:YZ",
3 " signalStrength ": 50,
4 "age": 0,
5 " signalToNoiseRatio ":-60,
6 " channel ": 8
7 {
8 " macAddress /BSSID": "11:22:33:44:55:YZ",
9 " signalStrength ": 50,

10 "age": 0,
11 }
12 }]}

Observation. Based on the results, it was observed that all of the three mobile

platforms display common patterns of location data retrieval. The user device collects

the unique identifiers from the surrounding network along with GPS data; and sends it

to the location provider to get the exact device location. Listing 3.1 and 3.2 show the

structure of the WiFi and Cell-tower objects sent to the location provider.

Listing 3.2 Structure of a cell-tower object sent to the location provider
1 " CellTowers ":[
2 {
3 "cellId": 01,
4 " locationAreaCode ": 415 ,
5 " mobileCountryCode ": 310,
6 " mobileNetworkCode ": 410’
7 "age": 0,
8 " signalStrength ": -60,
9 " timingAdvance ":15

10 }
11 ]
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Calculation2 of the user device’s actual position is then performed by the location

provider who sends back a location object (see Listing 3.3) containing exact geo-

coordinates.

Listing 3.3 Structure of the location object received from the location provider
1 {" location ": {
2 "lat": 54.0,
3 "lng": -0.012,
4 },
5 " accuracy ": 190.2,
6 }

In short, the app developer over any mobile platform can utilise this location object

to get the user’s geolocation with no need to focus on the details of the underlying

location technology. However, it is alarming that all the LBS queries sent by an app

to the remote servers of the app providers are unencrypted and the location data

can be easily intercepted or monitored by eavesdroppers; this poses high risks to user

identification, mobility tracking, and profiling threats. Figure 3.3 shows captured

packet that includes the structure and attributes of a LBS query sent to the app

provider’s server. A detailed description of the process sequence follows.

Process Sequence. Note that, on a smartphone, location sharing service settings

must be ‘ON’ while using any location-based app. Figure 3.4 shows location settings

on (a) iOS and (b) Android devices. These location settings highlight that both of

these mobile platforms heavily rely on WiFi data for position calculation, specifically

in indoor environments. Therefore, if the location sharing is ‘OFF’, then the device

prompts for changing the setting from ‘OFF’ to ‘ON’; otherwise, the user cannot use

location services on any apps. The user device collects the unique identifiers from

the surrounding wireless access points along with GPS data, and sends these over

to the location provider to get the exact device location. Listing 3.1 and Listing 3.2
2Location calculation is commonly based on positioning technologies such as WiFi Triangulation

and Cell-tower Triangulation, GPS Mapping, etc.
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show the structure of the WiFi and Cell-tower objects sent to the location provider,

respectively. Calculation3 of the user device’s actual position is then performed by the

location provider who sends back a location object (see Listing 3.3) containing exact

geo-coordinates. At the user device, this location object (see Listing 3.3) is shared

amongst installed apps as well as with the app provider who will transmit it as a LBS

query via the standard API (Android, 2016). Moreover, this location object is also used

to estimate PoIs of users’ daily lives. Simple eavesdropping on this location object is a

major threat to this architecture even if users put in place the corresponding location

sharing preferences4, which generally are highly context sensitive and use dependent

(Xie et al., 2014). Figure 3.5 illustrates the sequence of processes and messages involved

in the current location computation architecture:

1. The app generates the LBS query, e.g., PoIs or nearest neighbor search, and sends

it to the app provider. However, the app provider needs the client’s location to

tailor the service accordingly; and therefore, the LBS query must include the

client’s geo-cordinates.

2. To get the client’s geo-coordinates, the app sends a request to the mobile OS via

the standard location programming interface (i.e., location API).

3. The device then collects the surrounding network information via the built-in

wireless client, cell-tower receiver, and GPS receiver. It sends the collected

information to the location provider, which is considered as a trusted third-party.

To get an accurate location, the location provider primarily prefer WPS mainly

in dense urban areas and indoors, for they deploy many WiFi APs (Skyhook,

2016).

3using positioning technologies such as WiFi Triangulation and Cell-tower Triangulation, GPS
Mapping, etc.

4Types and levels of controls for user location privacy settings depend on the OS and apps. In
some cases, apps do not allow users to control others’ access to their location data.
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(a) App sent LBS query that includes device’s geolocation to the server

(b) After receiving a LBS query request from the app, the server is verifying device’s current
location to send appropriate response

Figure 3.2 Screenshots of captured packets using tPacketCapture tool

Figure 3.3 A screenshot showing attributes of a LBS query sent to the app provider.
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(a) iOS location settings and system services

(b) Android location settings, mode options and wireless scanning services

Figure 3.4 Screenshots of location settings and services on iOS and Android OSs
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4. The location provider receives the network information, computes the geographical

location and sends the geo-coordinates via location object (as shown in Listing

3.3).

5. Once the user device obtains the location object, it is sent to the app that includes

the geo-coordinates in the LBS query via the standard location API Android

(2016), and sends it to the app provider.

6. The app provider can then use the received location as part of their app’s

operations to send the corresponding reply to the LBS query.

3.2.3 Estimation of PoIs

A general LBS query consists of different attributes, e.g., LBS query {PoI, Latitude and

Longitude, User-Info}, where included geo-coordinates estimate the device’s geolocation

and then generate the user’s PoIs. Service providers use two categories of algorithms

to estimate the user’s PoI from collected smartphone data (Montoliu et al., 2013): 1.

Geometry-based, and 2. Fingerprint-based.

Geometry-based algorithms use LBS queries (i.e., location data) to trace geo-

coordinates, circles or polygons of regions to define the significant PoIs or private places

where the user goes in real life.

Fingerprint-based algorithms obtain a list of places where the user goes, but

provide no direct information about where the place is geographically located unless

the fingerprint (or signature) of the observed fixed network infrastructure is mapped to

the geo-coordinates. In general, PoI estimation techniques, which include fingerprinting-

based algorithms, detect fixed radio/wireless environments that indicate a stay or

frequent visits of the user’s device for PoI estimation. Whereas, WiFi-based finger-
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printing involves mapping of observed WiFi APs with signatures that are pre-stored

on remote location servers to generate the list of PoIs.

In our research, LP-Cache uses fingerprinting to create private location database

within the device instead of storing it on a remote location servers. This minimises

the process of wireless AP data collection by the WiFi content distributors or location

providers. In addition, LP-Cache controls information disclosure within the generated

LBS query (e.g., PoIs and nearest neighbor) since it will be sent to third-party app

providers.

3.3 LP-Cache Model

In this section, we describe fundamental elements of LP-Cache, including its threat

model, design goals, architecture and main processes’ sequence diagram. LP-Cache’s

three main design goals are:

1. Data minimisation: It will reduce the data shared, transmitted and stored, and

it also guarantees the minimum interaction with the location provider.

2. Practical and usable privacy: The user can set distinct privacy preferences for

different apps and private places; the model works independently without the

need for modifying the app’s code; it cn be deployed in the current ecosystem

without affecting LBS apps or OS functionality.

3. Efficiency: It will handle geographical location efficiently, i.e., computation

intensity should not affect the apps’ performance; the third-party app provider

will not be able to infer the device’s exact location without getting the user’s

consent; it will efficiently execute user’s distinct privacy preferences for different

apps and private places.
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3.3.1 Threat Model

Apps deliberately collect the user’s sensitive data, including location and other sensitive

information as part of their operations. User tracking, identification and profiling

(i.e. personal habits, movement patterns, etc.) are fundamental threats to location

privacy (Fawaz and Shin, 2014; Felt et al., 2012; Wernke et al., 2014). Furthermore,

the current direct link of smartphones to the location provider and the continuous

flow of LBS queries that include the device’s exact geo-coordinates over the network

create a serious risk to the protection of users’ sensitive information. This is even more

challenging, in the presence of a malicious location provider and via advanced network

sniffing practices.

LP-Cache computes the exact location within the user device, without service

provider’s involvement, and trusts the device on the storage of sensitive data. However,

the user has still the option of giving consent for app providers or location provider to

access their location. Mobile network providers might, however, collect users’ location

data via cellular clients. It is also excluded from our model the option of manually

inserting the location data (e.g. street name, zip code, postcode) within LBS query.

3.3.2 LP-Cache Control Flow Architecture

Figure 3.6 depicts the block diagram for LP-Cache’s architecture; its main components

are:

Permission Setter is the user interface (UI), which enables users to set and manage

their private places and apply the personalised permissions when running installed

location-based apps. Once received the user inputs, pre-set private locations are

sent to the Private Location Manager module, and permissions are sent to the

Rule Mapper Module.
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Figure 3.6 LP-Cache architecture.

Request Manager is responsible for intercepting the event of location access calls,

and then lead the app’s control flow to the Private Location Manager module.

Besides, it will also be in control of receiving the processed user location (i.e.,

could be either anonymised or altered) from Rule Mapper, and then delivering it

to the app in order to maintain every session’s control flow.

Private Location Manager module’s main task is to detect unique identifiers of

the surrounding WiFi APs and compare them with the stored network fingerprints

to determine whether the user is within the set of private places. User inputs

from the Permission Setter will create network fingerprints for known private

locations, which are then added or updated in the Cache database. Moreover,

it maintains a binary flag to detect private places. In the case of a hit, the



64 LP-Cache: Location Privacy Preserving Model for Mobile Apps

location data is sent to the Rule Mapper. Otherwise, the location is received by

the Location Receiver. Whenever the Private Location Manager receives a new

private place request, the received location is mapped to the detected network

fingerprint and stored in the Cache database.

Rule Mapper dynamically collects and checks set permissions from Permission Setter.

Once the representative location object is received from the Private Location

Manager, it applies the user permissions to the location coordinates, alters them

(if required), and outputs the processed location to the Request Manager module.

If the flag is negative, then it forwards the exact location.

Cache is the established on-device cached database, and it is routinely queried by the

Private Location Manager module, which can add, update and delete the cached

location data. The locations in Cache are those which are to be protected, and

they can also represent regions of space. Each entry is recorded along with a

network fingerprint and geolocation that is acquired from the location provider.

Location Receiver module receives a location object, which includes the user device’s

geo-coordinates (as in Listing 3.3), from location providers and sends it over to

the Private Location Manager for further processing.
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3.3.3 Process Sequence

LP-Cache modifies the current location resource handling process; however, the involved

entities (as in Section 3.2) remain the same. Figure 3.7 illustrates the sequence of

processes and messages involved in LP-Cache:

1. At the event of the app requesting the device location, our service will intercept

the request to get the location from the cache database instead of sending the

request to the location provider.

2. Upon receiving the location request, our service will scan the surrounding network

infrastructure.

3. Using observed network frames our service will execute as follows:

(a) Our service compares the collected beacons with the stored network finger-

prints to retrieve corresponding stored representative location coordinates.

(b) In the case of an unmatched entry on the database, LP-Cache prompts the

user two options either to input the location using UI, or to allow the query

to be sent to the location provider that will calculate and send the current

location coordinates. Note that this will only occur if the user has set the

current location as private but the geo-coordinates are not cached.

(c) The received location data for the encountered APs will be tracked within

the local cache database for future use.

4. User location coordinates can be altered based on the privacy settings. LP-Cache

provides three options for controlled information disclosure: (1) Adjust Location

Granularity, (2) Obfuscate Location, and (3) No Change. The computed location

is populated in the location object and sent to the app.
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5. Once the app obtains the location object, it is then used by the app provider to

send the corresponding reply to the LBS query via the standard programming

interface/API (Android, 2016).

3.3.4 Example Scenarios

We have identified two different scenarios for using LP-Cache on a user’s device as

follows:

1. Bootstrapping scenario- Bob activates LP-Cache service and sets current

location as home and apply permission setting. LP-Cache starts scanning the

surrounding APs and creates a network fingerprint for Bob’s home, a private

place that needs to be protected. Later, Bob decides to use Facebook app, which

requests his current location. LP-Cache detects a location update call from

Facebook app, only if per-app settings are not previously saved for Facebook, it

prompts him to select one out of the three options for permission setting. Unless

Bob changes the selected option via the user interface, the selected option will be

saved and applied for future location calls from Facebook at Bob’s home.

2. Regular usage scenario- Assuming the bootstrapping process has been suc-

cessful. When Bob uses any app at home, LP-Cache detects he is within a private

palace (i.e., home) via the saved network signatures, retrieves the home location

from the cached database, applies the privacy rule, and sends the processed

location to any location requesting app.

3.4 Implementation Requirement

LP-Cache determines new design principle and privacy policy recommendation that

forces the smartphone app ecosystem to make location data use patterns explicit, while
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preventing all other sensitive data flows. Further, one of the three design goals of

LP-Cache is to be practical and usable. Therefore, primarily, LP-Cache performance

evaluation focuses on two key aspects: 1). Implementation requirement analysis –

to identify whether LP-Cache’s theoretical model can be practically implemented

for performance evaluation and security analysis. and 2). Feasibility and usability

analysis – to identify if this new approach feasible to be deployed. We describe

LP-Cache’s implementation requirements in this section; whereas, its feasibility and

usability analysis in the next section. LP-Cache orchestrates a mobile platform based

location protection service to modify the location resource handling process. We give

implementation possibilities on both iOS and Android platforms; however, it can also

be implemented in similar ways on other permission-based mobile platforms. Compared

to other mobile platforms, for instrumenting the LP-Cache implementation, Android

is considered to be the best choice since it is open source and provides extra flexibility

for testing, and it has the highest user base.

3.4.1 Bootstrapping

LP-Cache aims to protect the user’s private places. Initially, LP-Cache does not have

enough information to function since it is missing the two main required pieces of

information, which are network fingerprints and geo-coordinates for the user’s private

places. LP-Cache cannot collect network fingerprints and geo-coordinates for private

places at runtime, as by the time it has this information, other installed apps will

also have access to it. Therefore, when LP-Cache first boots and before turning ‘ON’

location sharing settings, the user will have to do the initial setup, which includes

enabling WiFi AP scanning, inputing geo-coordinates and setting privacy choices (see

Section 3.4.4). In 2013, Google presented a new service API (also works on older

Android versions) for location-based apps that allows developers to use the new and
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advanced Location and Activity API, i.e., they changed Location Manager to Fused

Location Manager, hence combining sensors, GPS, Wi-Fi, and cellular data into a

single API for location-based applications (Hellman, 2013). As a result, separating data

from GPS_PROVIDER and NETWORK_PROVIDER is no longer straightforward. LP-Cache

addresses this issue by preventing the app’s location request to reach the Fused

Location Manager that collects and sends the network session data to the location

provider. Instead, the requested location is retrieved from the on-device cache, and then,

it is sent to the requesting app (with privacy rules applied). Besides, geographic tool5

can be incorporated in the LP-Cache’s UI to get the corresponding geo-coordinates.

This will allow LP-Cache to achieve effective privacy without affecting location accuracy,

at the same time, preventing the non-authorised sharing of device’s exact location and

network session data.

3.4.2 Mobile Platform

Considering existing mobile platforms, for performance evaluation, there are two

possible methods of implementing LP-Cache location protection service: 1. app code

modification and 2. platform modification. The first method requires modifying the

app’s location accessing interfaces and intercepting location updates before they reach

the app provider. Whereas, the second method requires modifying the platform and

changing the location data before reaching the app. Below we describe how both of

these methods support the implementation of LP-Cache on a mobile platform.

1. App Code Modification. This comprises unpacking the app, rewriting the

code to work according to the new rules, and then repackaging it again, e.g.,

Jeon et al. (2012). However, app repackaging changes the signature and stops

future updates, and therefore, affects its functionality. Another way to modify
5LatLong is a geographic tool. See http://www.latlong.net/ (last access in March. 2016)
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an app’s location accessing interfaces is through the creation of an Android

or iOS services and allowing apps to register with it. Both Android and iOS

provide various APIs to communicate with the OS and allow apps to register

a URL (Uniform Resource Locator) handler that allows them to communicate

with each other using parameters. Then, apps can use the location data provided

by this new service. This approach is easy to implement but relies heavily

on app developers to modify their app’s code, which is highly infeasible and

unrealistic to be deployed in real-world scenarios. Nonetheless, this approach

can be used as a simulated testing environment for any developed service of LP-

Cache. For the on-device location computation and privacy analysis of LP-Cache,

app code modification method will suffice. However, the developed service can

then be added as part of the platform’s system services. This requires system

level permissions that can only be gained via rooting processes in Android or

jail-breaking in iOS.

2. Platform Modification. This comprises customising the mobile platforms,

i.e., gaining system level access to add new system level services or applications.

LP-Cache requires the ability to intercept calls to official platform APIs that

apps use to access private information such as user location. For the sake

of experimentation, it is ideal to develop LP-Cache via platform modification

without affecting apps functionality. However, platform modification opens other

security and privacy challenges that are excluded from this research. Even after

gaining system level access, compared to iOS, Android platform gives flexibility

for inter-process communication and testing environments.

Here, we describe how LP-Cache can be deployed on both types of mobile platforms:

a. iOS - closed platform and b. Android - open platform.
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a. iOS - Closed Platform Focusing on iOS’s security model and privacy features.

iOS uses code-signing by trusted third party, encryption and sandboxing to secure

the platform. TTP based code-signing practice ensures only executables reviewed and

distributed by Apple are allowed to run; however, this makes iOS platform extremely

restrictive to implement LP-Cache without platform modification, i.e., jailbreaking.

However, iOS provides various APIs to communicate with the OS and allow apps

to register a URL handler that allows them to communicate with each other using

parameters. Apps can access shared resources that provide users’ private and sensitive

data such as location with the help of well-defined iOS APIs. We can use such shared

resources options to LP-Cache’s implementation on iOS.

b. Android - Open Platform One of the main tasks is to add a system service,

where the class belongs to the location APIs; thus, it is placed in the android.location

package, which detects private locations via wireless APs and can also be used by

other components when calling context. In Android, a context allows an app to

interact with the OS resources. Another task is to make LP-Cache communicate with

location requesting apps. On Android there are two methods to access a user’s location:

1) Location Manager Service (old), and 2) Fused Location Manager Service (new)

that is a part of Google Play Services. Both methods require the app to request a

callback function to get regular updates by registering a location listener. The app

receives a new location object when a new location is available, the callback function is

invoked. Modifying these two Google services is complicated, but there is a possibility

to intercept the location object before it reaches requesting apps. We add a static

context field to the location class, which is populated when the app is invoked; this

enables us to know which app is currently requesting the location object, and also

to communicate with the OS (Fawaz and Shin, 2014). The created location object
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Algorithm 1 On-device Location Calculation Algorithm
Input: nx: Network Frames
Output: lr: Representative Location

1: nx = 0
2: read nx

3: while nx ̸= null do
4: if nx = ni , ∀ i ∈ p then
5: (step 1) retrieve the corresponding lr
6: add flag f = (if private 1, else 0)
7: send lr
8: else
9: (step 2) request lr from user or location provider

10: set received lr to corresponding pi

11: update c
12: send lr
13: end if
14: end while

has reference to the requesting app’s context, and therefore, it can interact with our

external service.

3.4.3 On-device Cache Database Creation

LP-Cache requires fixed wireless APs data (i.e., 802.11) to create the cached database

of private locations - this process is called network fingerprinting. Initially, we decided

to focus on WPS since it infers accurate user location. However, we can later include

other fixed radio sources (e.g., cell-tower unique identifiers).

Network Fingerprinting. We can distinguish two main types of WPS techniques

to determine the position of client devices in respect to APs (Bell et al., 2010): 1)

Signal trilateration and 2) Fingerprinting. The former undertakes trilateration of

Received Signal Strength (RSS), Angle of Arrival (AoA), and Time of Flight (ToF)

from observed APs, and the later involves mapping observed APs signatures with

a stored database. LP-Cache uses fingerprinting to create cached location database;
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however, fingerprinting performance is highly related to the number of APs. Therefore,

in Section 3.5 we have evaluated WiFi AP availability and consistency. The detected

network management frames/beacons are mapped with the device’s representative

geolocation to create a network fingerprint, which is then stored in the local cached

database, an example private location fingerprint is shown in Equation 3.1. Moreover,

to reduce storage and computation overhead, our model only caches network fingerprints

of private places (e.g., home, work, frequently visited places or particular stores), and

it relies on user input for initial pre-setup. The user will have to select the option (via

LP-Cache UI) to set current location as private place pi, and then the fingerprint will

be recorded. Later, the private place will be detected automatically with respect to

observed beacons.

pi = [n1], [n2], ..., [nx] → [lr] (3.1)

where pi represents ith private place IDs, n1,2,...x are the scanned beacons, and lr is a

representative location for that private place. WiFi AP beacon frame n consists of four

attributes ⟨SSID, BSSID/MAC address, Signal-strength, and Timestamp⟩. The private

representative location lr consists of a tuple ⟨Lattitude, Longitude, and Accuracy⟩.

In LP-Cache, to set up network fingerprints at every private place, we measure the

response rate as the ratio of detection count and the total number of scans for each

beacon:

Rlc,x =
∑nlc

i=1 bx,i

nlc

, bx,i =


1 if beacon x found in ith scan

0 otherwise
(3.2)

Where Rlc,x is the response rate of beacon x at the current private location lc and,

nlc is the total scan count since the private place was entered. The detection count of

each beacon is maintained to identify the frequently occurring beacons; and therefore,

beacons with higher response rate are used to create the network fingerprint for the
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Algorithm 2 Enhanced Personalised Permissions Algorithm
Input: lr: Representative Location
Output: l′

r: Processed Location
1: up = User Input
2: read l, lg, f , up

3: if up = Adjust Granularity then
4: check granularity level gl

5: truncate(l, lg)
6: replace l to l′ and lg to l′

g

7: return l′
r

8: else if up = Obfuscate then
9: randomly generate angle θ

10: obfuscate(l, lg, θ)
11: replace l to l′ and lg to l′

g

12: return l′
r

13: else
14: unchanged
15: return l′

r

16: end if

current private place lc. Rlc,x will be maintained in the LP-Cache database to update

the response rate of every detected beacon during a specified time interval spent at

private place lc.z

On-device Cache-based Location Calculation Algorithm. The detailed steps

of the privacy-aware geolocation calculation process are summarised in Algorithm 1.

The surrounded beacons nx are scanned and compared to the list of private WiFi

fingerprints ni to detect private place p stored in cached database c. Further, the

representative lr is altered based on set permissions (see Section 3.4.4).

3.4.4 Personalised Permissions for Location Sharing

A general LBS query consists of different attributes, e.g., LBS query {PoI, Latitude and

Longitude, User-Info}, where included geo-coordinates estimate the device’s geolocation.

To satisfy one of the privacy properties called controlled information disclosure, we
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designed an enhanced permission mechanism to control these geo-coordinates before it

is sent to app providers. When using LP-Cache, for every installed app and set private

place, the UI provides three distinct privacy settings: (1) Adjust Location Granularity,

(2) Obfuscate Location and, (3) No Change. In the first option, the geo-coordinate

truncation method adjusts location precision level; in the second option, geo-coordinate

transformation obfuscate the user’s location; whereas, in the third option, the exact

unchanged geo-coordinates are sent to the requesting app.

Enhanced Permissions Algorithm. Once LP-Cache receives an invoked location

object lr, it alters the location data according to the enhanced permission settings and

returns processed location l′
r. The steps involved in enhanced permission mechanism

are summarised in Algorithm 2, where up is the set permission, gl is the adjusted

location precision level, l is the latitude, and lg is the longitude.

Geo-coordinates Truncation. The geographical coordinates are represented as

latitude - "52◦28’59.200" N and longitude - 1◦53’37.0001" W, where the last digits

specify more accurate geolocation. Geo-coordinate truncation method will enable us

to adjust the location precision level, i.e., by removing last digits and rounding the

location accuracy from street to city level or even more generalised. Generally, for any

third party reuse, service providers or data collectors assure via the EULA that this

method will be applied on the collected data since the truncated coordinates increase

the ambiguity level (Aad and Niemi, 2010). On contrary, LP-Cache applies this method

on the user device with the user’s permission in order to minimise the user’s sensitive

data collection and privacy concerns.

Geo-coordinates Transformation. For privacy preservation, position transforma-

tion functions such as scaling, rotation and translation have been used by location data



76 LP-Cache: Location Privacy Preserving Model for Mobile Apps

Table 3.1 WiFi measurement dataset comparative summary.

1 Month 2 Month Total
scans.

Total number of scans 25480 21140 46620
Distinct private locations selected 34 % Change
Total APs detected 486 497 2.26%
Average APs detected 396 393 - 0.76 %

distributors or anonymisers (Lin et al., 2008; Wernke et al., 2014). In LP-Cache, we use

geo-coordinate transformation on the device to obfuscate the user’s private locations.

Our service represents the geo-coordinate transformation using scaling and rotation,

and denotes its parameters as a tuple ⟨s, θ, (l, lg)⟩, where s is the scaling factor, θ is

the rotation angle, and (l, lg) are the original coordinates. The scaling factor range is

decided based on the identified geographic poles (i.e., North, South, East and West).

It applies Equation 3.3 to generate transformed or obfuscated geo-coordinates (l′, l′
g),

where angle θ is randomly generated.

l′ = θ(s.l)

l′
g = θ(s.lg)

(3.3)

3.5 Feasibility Analysis of LP-Cache

LP-Cache’s actual performance evaluation depends on the performance of locatxion-

based apps. However, in this section, we present feasibility study of LP-Cache to assess

the practicality of our theoretical proposal that depends on two main techniques: WiFi

fingerprinting and caching. Hence, in the sections below, we analyse the feasibility of

the WiFi fingerprinting method, estimation of cache storage requirements. And also

present estimation of cache hits and cache misses to analyse the feasibility of cache

update frequency and cache result accuracy.
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(a) Measured density of detected WiFi APs at private places for a period of 1 month
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(b) Measured density of detected WiFi APs at private places for 2 months duration.

Figure 3.8 The comparative difference 1 month vs 2 months of detected WiFi APs
density.

3.5.1 WiFi APs Availability and Consistency

Here, we present the WiFi AP data availability and consistency to measure the

feasibility of WiFi fingerprinting method to be included in LP-Cache’s implementation.

We considered the sample size of 2 months for the WiFi APs dataset. We conduct a
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comparative study of the observed results from both 1st and 2nd month datasets to

evaluate the scalability of the WiFi fingerprinting method. For the sake of comparision,

we have maintained unique ID and sequence for all the selected 34 private places.

Experimental set-up. The experimental set-up to measure WiFi AP data avail-

ability and consistency consists of three steps.

1. Data collection. We collected beacons from fixed WiFi APs using WiEye (2016)

and NetworkInfoIi (2016) apps on Android smartphones that have 802.11a/b/g/n

radio feature so they can operate in both 2.4GHz and 5GHz bands at 34 different

private places for a period of two months.

2. Location categorisation. App users are more concerned about sharing their private

locations (Almuhimedi et al., 2015); therefore, in our analysis, we selected three

distinct categories of private places: 1. Home (i.e., residential place), 2. Work

(i.e., commercial place), and 3. Arbitrary (i.e., any frequently visited place) to

determine the categorical distribution pattern of WiFi APs.

3. Data analysis. We collected and statistically analysed the scanned WiFi AP

data. Table 3.1 compiles the included sample size and the measured percentage

changes; whereas, Figure 3.8 shows the relative difference between WiFi APs

density, and Figure 3.9 depicts the relative average accuracy distribution pattern

of detected WiFi APs for each category over the 2 months period.
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(b) Average accuracy distribution pattern of detected WiFi APs at private places for 3
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Figure 3.9 The comparative 1 month vs 2 months average accuracy distribution patterns
of detected WiFi APs at private places.

Observation 1. For each category of private places, experiments revealed the fol-

lowing:

Home The results demonstrate that Wifi APs are fixed and frequent and the differ-

ence between the number of constant beacons and minimum number of similar
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beacons is comparatively less, and therefore, it achieved the highest accuracy rate.

Moreover, the ratio of SSID to BSSID is 1:1, i.e., one SSID (abc) has one BSSID

(a0:12:b3:c4:56:78), this makes fingerprints distinct so improving the location

detection performance.

Work This category has many fixed WiFi APs but with fluctuating signal strengths,

and therefore, the sequence of available APs changes. However, the observed ratio

of SSID to BSSID is many to one, i.e., one SSID has many BSSIDs; therefore, in

this case, SSIDs along with BSSIDs can be used as unique identifiers to create a

fingerprint to detect a private place dynamically.

Arbitrary In this category, the data collector could select any frequently visited

locations, e.g., gym, shop, or friend’s home. Figure 3.9 demonstrates that the

outcome of this category is related to the other two categories, it either shows

results similar to home or work.

The range of average accuracy for all the three categories of private places falls

between 75% to 97%. Hence, it can be seen that smartphones regularly detect similar

beacons at frequently visited places, for place detection at least one beacon should match

with the stored fingerprints. Thus, the results demonstrates that WiFi fingerprinting

can be effectively used as private place detection source in LP-Cache. Nonetheless,

to achieve efficient capability for place recognition via beacons a place discovering

algorithm like Kim et al. (2009) can be implemented (we suggest this as a future

extension of the model).

Observation 2. Table 3.1 shows comparative analysis of WiFi APs data that has

been scanned and collected during both 1st and 2nd month. Considering percentage

changes, the number of total detected APs have increased by 2.26% and the number of

frequently detected APs have remained almost similar, i.e, with a negligible difference
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of -0.76%. Equation 3.2 has been used statistically to identify frequently detected

beacons while at a particular private place. Pre-set unique IDs and a sequence for all

the selected 34 private places allowed us to measure the relative density and distribution

pattern of the WiFi APs during both 1st and 2nd month. Figure 3.8 shows the relative

difference between WiFi APs density, and Figure 3.9 depicts the relative average

accuracy distribution pattern of detected WiFi APs for each category over the period

of 2 months.

3.5.2 Estimated Storage Requirements

Location-based queries received from running applications or service providers includes

several attributes and their data types require huge amount of storage. The cache-based

systems (Amini et al., 2011; Zhu et al., 2013) apply caching techniques on location-based

queries that result in vast amount of storage requirement. Whereas, LP-Cache does not

store any location-based query attributes or contents received from running applications

or service providers, instead it stores WiFi APs data and geo-coordinates of users’

private locations. Moreover, the user’s pre-set privacy rules are applied to the mapped

geo-coordinates at runtime. As a result, comparatively, we claim LP-Cache’s on-device

cache database does not have massive storage estimated requirements. Considering the

802.1 standard and datatypes sizes, Table 3.2 presents the field storage requirements

in bytes and database components, where the network fingerprint table is a tuple of

⟨no.ofbeacons, beaconfield , counter⟩, and permission table is a tuple of ⟨location,

placeid, accuracy counter (a), no.ofprivateplaces⟩. Moreover, Table 3.3 presents the

measured changes in the 1st and the 2nd month of WiFi data collected at 34 distinct

private places. The results indicate that the average change has increased by 2.26%.

The cache storage of a total of 25.844 KB is needed that includes the sum of permissions

and network fingerprints for 34 distinct private places. Therefore, it is anticipated that
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Table 3.2 Estimated storage requirement

Field storage Size Database
Component

Size

Beacon
Field

BSSID/MAC 6 bytes Network
Fingerprint
Table

= (beaconfield +
SSID 32 bytes counter)×
Place ID 3 bytes no.ofbeacons
Timestamp/Age8 bytes

Location
Field

Geo-
coordinates

32 bytes Location
Permission
Rule Table

= (location+
placeid

Region 32 bytes +accu. counter)
× no.ofplaces

Table 3.3 Comparative difference of monthly storage

Storage 1 Month 2 Month % Change

Network Finger-
print

25272 bytes 25844 bytes 2.26% increase

Permissions 2380 bytes 2380 bytes No change
Total Storage 27652 bytes 28224 bytes 2.07% total increase

the current mobile device internal storage capacity is sufficient for the required storage

(Android, 2016).

3.5.3 Cache Hits and Cache Misses

For LP-Cache, accuracy and up-to-date database results are the main challenges, the

three possible outcomes are given below:

1. The location is cached and up-to-date case comes with the positive result, and

therefore, data can be used effectively.

2. The location is cached but is out-of-date case can occur if the network infras-

tructure changes, e.g., if a router is changed then the cache data needs to be

updated. The overall results of Section 3.5.1 and Section 3.5.2 suggest that this

case does not occur frequently. Nonetheless, for data accuracy a method that

uses Equation 3.2 will be incorporated to detect and measure the occurrence of
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such situations of cache misses at runtime. Moreover, the developed method can

likewise be deployed to maintain data freshness and data consistency.

3. The location is not cached case occurs when the observed WiFi AP is not cached

and/or mapped to the private locations, then our service will have to interact

with the user to update the location cache. Besides, the response rate Rlc,x can

be further extended to measure runtime occurrences of these outcomes.

3.5.4 Discussion

In this section, we discuss the potential benefits of LP-Cache and its implementation

challenges.

Benefits LP-Cache lets users preserve their location privacy while at the same time

using location-based apps effectively. It reduces the burden of location providers and

app providers as the user can be in control of location sharing at his private locations.

It, therefore, guarantees private location data minimisation in the ecosystem. Besides

privacy preservation, it will also benefit the user who receives incorrect LBS query

results because sometimes the location provider miscalculates the client’s geolocation.

Hence, we state LP-Cache when integrated in mobile platforms (i.e., Android, iOS or

others) will benefit both end users and service providers.

Implementation Challenges The presented outline of LP-Cache implementation

requires WiFi settings to be activated, but it does not mean that the user can only

access the internet using WiFi connection. LP-Cache involves WiFi APs to detect the

places, but the LBS query can be sent to the service provider by any means of communi-

cation. In the current proposal, an initial location request for a new private place is sent

to the location provider, this might create infrequent information leakage; therefore, to

overcome this challenge we are aiming to add a user-friendly option to enable users’

to provide their geo-coordinates to LP-Cache instead of sending the request to the
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location provider. This will completely remove involvement of the location provider

in our model, which aims at protecting private locations. Frequent WiFi scanning

might affect the device’s battery performance, but the continuous advancement in

smartphones’ hardware performance can prove LP-Cache to be more adaptable in the

near future. However, even location providers’ location services consume battery speed-

ily; comparatively, WiFi scanning service needs less battery consumption. LP-Cache

intercepts the app’s control flow that can increase the computational overhead and

cause a slight delay in getting the LBS query reply; however, our field study results

state that users are comfortable to accommodate reduced functionality of their apps at

private places, such as home and work.

3.6 Summary

In this chapter, we have presented a detailed analysis of the current location computa-

tion process and proposed a novel privacy-preserving model. Both the end users and

service providers benefit from LP-Cache since the on-device caching technique works on

the minimisation of the user’s private location collection process. With the personalised

permission mechanism, users can manage each app and private place distinctly and the

on-device location calculation will reduce interactions with involved service providers.

We have fully elaborated on LP-Cache’s design decisions and possible implementation.

We have also analysed the feasibility and usability of LP-Cache to benchmark the WiFi

APs availability and consistency. Following this, LP-Cache’s performance evaluation

will be extended to analyse how frequently the cache needs to be updated and what

the trade-offs are of the cache update frequency vs location privacy and accuracy

in order to benchmark computational and communication overheads. For this, in

the next chapter, we demonstrate the implementation of LP-Cache in the form of a
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middleware (PL-Protector) on Android platform. To measure the feasibility, usability

and efficiency of our approach while interacting with different location-based apps, we

plan to consider the fundamental caching based technical challenges – such as cache hits

and cache misses, data freshness, data consistency, and estimated memory requirements

– in the development and implementation of PL-Protector paying special attention to

storage-efficient caching.





Chapter 4

PL-Protector: Implementation of

LP-Cache as Middleware

Research findings from this chapter have been published in a conference paper a and

a journal article b

a Patel, A.,& Palomar, E., “A middleware enforcing location privacy in mobile platforms". In:
14th International Conference on Trust and Privacy in Digital Business (TrustBus), pp. 32–45,
Springer 2017.

bPatel, A., & Palomar, E. “A Practical Cache-based Location Privacy-enhanced Middleware
for Mobile Users", Submitted to the Journal of Network and Computer Applications, Elsevier, Sep.
2017 (Under review).

4.1 Introduction

So far, findings from Chapter 2 and Chapter 3 indicate that privacy controls provided

by both open and closed mobile OSs are inadequate. Instead, we need a solution that

forces apps to make their location data use patterns explicit and enforces the declared

privacy rules in the information flow, while preventing all other sensitive data flows

within the underlying mobile platform. Hence, in this thesis, we develop and promote

a new design principle and privacy policy recommendation that forces location privacy

in the existing mobile app ecosystem. This chapter presents a middleware called

Private Location Protector (PL-Protector), which implements the LP-Cache model
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introduced in Chapter 3, highlighting how we support our design goals mentioned in 3.3.

In short, we implemented PL-Protector as a practical and functional proof-of-concept

to test and validate our theoretical model. The design of PL-Protector implements the

two location privacy-preserving algorithms, which are defined in the LP-Cache model,

as LPPMs that includes: LPPM-1) On-device Location Computation Mechanism,

and LPPM-2) Personalised Location Permissions Mechanism. Both of these LPPMs

enable robust and efficient source (OS) to sink (3rd party app provider) flow control

while sharing the user’s sensitive locations. For instrumenting PL-Protector, we

selected Android platform since it is open source. Nonetheless, our results can be

extrapolated to other permission-based mobile platforms such as iOS. PL-Protector

uses fingerprinting to create a private location database within the device instead

of storing it on remote location servers. This minimises the process of wireless AP

data collection by the WiFi content distributors or location providers. In addition,

PL-Protector controls information disclosure within the generated LBS query (e.g.,

PoIs and nearest neighbour) since it will be sent to third-party app providers. We ran

PL-Protector on a Nexus 6P with Android 6.0 that acts as the platform’s location

privacy knob to minimise the risk of major location privacy threats. PL-Protector only

requires process isolation and IPC (Inter-Process Communication) services from the

underlying OS; thus, minimising the requirements placed on the hardware/OS.

The rest of the chapter is organized as follows. Section 4.2 overviews PL-Protector’s

system model that includes system roles, threat, mobility, app usage and privacy model.

Section 4.3 fully elaborates on the design decisions, architecture, and implementation

of the middleware. Finally, Section 4.4 summarises this chapter.
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Figure 4.1 System model representing involved entities and their roles

4.2 System Model

We characterize PL-Protector’s system model considering system roles, the threat

model and evaluation metrics for both app usage and privacy protection.

4.2.1 System Roles

PL-Protector modifies the current location resource handling process in mobile sys-

tems; however, the involved entities and their roles remain the same. PL-Protector

follows the sequence of processes and messages as described in Chapter 3.3. Here we

clarify the role of each entity by describing the overall communication procedure in

presence of PL-Protector as follows (Figure 4.1).
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1. Middleware determines two main components, namely, privacy settings and on-

device cache to overcome the shortcomings related to user privacy within the

existing mobile systems. It then functions according to the pre-set privacy rules

that secure the calculation and transmission of sensitive location data.

2. User needs to set privacy choices using settings (via a UI) by marking sensitive

locations as private, selecting the preferred level of privacy for every app and

location distinctly. The user also has an option to manually map the location

(i.e, geo-coordinate) with the observed network signature that will result in no

involvement of the location provider.

3. Service providers’ operations are unaffected, i.e., they can follow their standard

process. However, service providers benefit from secure gathering and transfer

of location data using mobile devices while at the same time preserving users’

privacy since the middleware minimises sensitive location data flows and privacy

concerns without affecting their app’s operations or Quality of Service (QoS).

4. Mobile platform’s location access controls respond inadequately to major privacy

threats (Almuhimedi et al., 2015; Fawaz et al., 2015); however, the middleware

complements existing controls by better regulating the way apps and ad libraries

access private location data at run-time.

5. Network infrastructure availability and consistency are extremely important to

the performance of the included fingerprinting method, which requires fixed

wireless APs1 data to create the on-device cache of private locations.

6. In the case of an unmatched entry on the cached locations, only if the user has

set the current location as private and do not want to input geo-coordinates
1Initially, we decided to focus on WiFi APs since they infer accurate user location. However, we

can later include other fixed radio sources (e.g., Cell tower unique identifiers).
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manually (via UI), the location provider is required to calculate and send the

exact geo-coordinates (via location object, see Listing 3.3) for the first time.

4.2.2 Threat Model

We consider two different attack scenarios to PL-Protector mainly caused by the level

of access to user location in and out of the device.

OS’s Middleware Layer Threats. A series of attacks that operate at Android’s

middleware layer (Bugiel et al., 2013). In Android, the location resource and

service availability can be abused or misused by both over-privileged and malicious

3rd party apps and libraries. The former can threaten user privacy by gaining

unauthorized access to location, and other user sensitive information, that is not

required for their operation. The underlying purpose lies in general in feeding

advertisement libraries and, ultimately, exploiting the permissions of the host app

(Backes et al., 2016). The later can leverage unauthorized location permissions

for financial gains and leak users’ mobility and behaviour information (e.g.,

unauthorized profiling). Moreover, the user’s sensitive data can also be leaked

due to inter-process unauthorised communication vulnerabilities that can be

exploited as private/security attacks on the mobile OS, e.g., Service or Activity

hijacking, Broadcast Intent theft on Android.

Privacy Threats. User tracking, identification and profiling (i.e. personal habits,

movement patterns, etc.) are fundamental threats to location privacy (Wernke

et al., 2014). Without PL-Protector, there is a continuous flow of LBS queries

between user devices and location providers that include device’s exact geo-

coordinates and other sensitive information. This can leverage malicious misuse
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of location data, especially in the presence of a malicious location provider and

via advanced network sniffing practices.

PL-Protector computes the exact location within the user device, without the service

provider’s involvement, whilst trusting the device on the storage of sensitive data.

However, the user has still the option of giving consent for app providers and/or

location providers to access location data. Mobile network providers might, however,

collect user location data via cellular clients. We also exclude from our work, the

option of manually inserting the location data (e.g., street name or postcode) within

the LBS query.

4.2.3 Location-based Application Categories

Here we elaborate on the functionality of different mobile applications that can commu-

nicate with PL-Protector once installed on a mobile device. There are three categories

of apps that can interact with PL-Protector to request user’s location, as follows:

Category 1: Social Networking App. We have noticed that location-based apps

from the social networking category have continuous access to user’s location data.

These apps continuously send location update requests to the OS. At any preset private

location, PL-Protector operates in between the requesting app and the OS. This will

require PL-Protector to able to reply to these location update requests in real-time

without disrupting the app’s operations. Listing 4.1 illustrates pseudo-code of an

example social networking app interacting with PL-Protector that ensures whenever

an app requests a location update at a private place, privacy policies are applied before

sending the LBS query to service providers.

Category 2: Weather/Utilities App. We have noticed another category of

location-based apps that sporadically send location update requests to the under-
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lying OS. These apps are lightweight and, comparatively, do not involve frequent

interactions (limited to once or twice a day) with PL-Protector. They follow the same

interaction process as mentioned in Listing 4.1.

Category 3: Over privileged App. Apps from the over privileged category can

continuously or sporadically send location update requests to the underlying OS. These

apps are not location-based apps but have requested compulsory location access per-

missions from their users. PL-Protector restricts such apps from accessing user’s

private location by applying privacy rules on the location data. However, even in this

case, the same standard interaction process (i.e., Listing 4.1) is followed by the app

and PL-Protector but with different privacy rules being applied.

1 application SocialApp

2 request {LBS_Query.NearestNeighbour -> loc}

3 return flag(PrivLoc_recog(appContext , nBeacons ));

4 if (flag = ON)

5 Location loc = extractCacheLoc(appContext , nBeacons );

6 void applyPolicy(loc);

7 Handle appSession = sessionHandler(appContext );

8 receive loc from \texttt{PL-Protector };

9 send request to service provider;

Listing 4.1 Pseudocode for a social networking app interacting with PL-Protector

- get location data and send LBS query response.

4.2.4 Preliminaries

We now model the user mobility and app usage (specifically at private places) as

a series of privacy evaluation metrics that will be used to validate PL-Protector’s

working assumptions.
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Mobility Model We formulate user’s PoIs (e.g., Home and Work) as private places

that the user frequently visit; hence, pi represent ith private place identification, which

is derived from a series of scanned beacons nx and the representative location lr for

that private place, as shown in Eq. 4.1).

pi = [n1], [n2], ..., [nx] → [lr] (4.1)

Pl = [pi], [pj], ..., [pn] (4.2)

At location pi, the user can then visit a subset of private places Upi
⊆ p1, p2, · · · , px

while running different LBS apps on the device. Hence, Pl is the total number of

user’s private locations (as given in Equation 4.2). PL-Protector relies on the user

input to define the set of private places that are distinct for every user mobility profile.

Moreover, to set up network fingerprints at pi, we measure the response rate as the

ratio of detection count and the total number of scans for each beacon as follows:

Rnc,x =
∑nc

i=1 bx,i

nc

, bx,i =


1 if beacon x found in ith scan

0 otherwise
(4.3)

where Rnc,x is the response rate of beacon x at pi and, nc is the total scan count

since the private place was entered. The detection count of each beacon is maintained

to identify the frequently occurring beacons. Beacons with higher response rates are

used to create the network fingerprint for that pi. Rnc,x will be maintained in the

database of PL-Protector to update the response rate of every detected beacon during

a specified time interval t spent at private place pi.

App-Usage Model. We will apply privacy rules to the app sessions taking place at

private places. We define “app session” as the duration of the app usage. In Android,
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Table 4.1 The evaluation metrics for location privacy.

Metric Description
Plguess Number of correctly guessed private locations
Pltotal Number of total collected private locations
Pls Unique value to identify applied privacy settings
Pld Distance between two points with longitude and latitude
Phigh Distance is > 111.32km
Pmedium Distance is > 11.132km
Plow Distance is > 1.1132km
LoPper Fraction of achieved privacy level on a per app basis
LoPtotal Fraction of overall achieved privacy level in total apps

according to the execution status, an app can run in three different states: foreground,

background and perceptible. In general, apps get access to the user’s location in the

foreground. When the user exits an app, this is cached and moved to background state

for faster execution. Persistent status is informed by notifications. Background state

allows prolonged location access; therefore, tracking threats are more harmful here. In

later Section 4.3 and Chapter 5, we specify how our proposal handles all these three

apps running state to mitigate viable location privacy threats.

Privacy Model. Most commonly used metrics to quantify location privacy and

evaluate the appropriateness of LPPMs are k-anonymity and entropy (Shokri et al.,

2011). These metrics functions based on pre-defined PoIs and will not be efficient

to measure the appropriateness of PL-Protector since we aim to achieve location

privacy and data minimisation before the private location data is collected by involved

service providers. Hence, we identified and applied another evaluation metric, based

on well-known Haversine formula (Robusto, 1957), to quantify the location privacy

and evaluate the appropriateness of PL-Protector’s LPPMs. Table 4.1 compiles the

metrics to be used for evaluating the location privacy threats. We define the value

of Pls as the identifier of applied privacy setting and measure the achieved privacy
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by analysing the collected dataset of the actual location traces at the user’s private

places. To evaluate location privacy, we use Haversine formula to quantify tracking

and profiling threats as the distance Pld between two positions with longitude and

latitude (φ, λ) and the radius r of the Earth:

Pld = 2r sin−1(
√

sin2(φ1 − φ2)
2 + cos(φ1) cos(φ2) sin2(λ2 − λ1

2 )) (4.4)

where the haversine function is given by Hsin(θ) = sin2( θ
2), φ1 & φ2 are the original

geo-coordinates, and λ1 & λ2 are the observed geo-coordinates. Secondly, the privacy

rules (see more details in Section 4.3) pre-set by the user will, later, be used to

measure achieved privacy using the distance scale ⟨Phigh, Pmedium, Plow⟩. Location

privacy threats can be quantified as the probability of occurrence of an event exploiting

the vulnerabilities. Therefore, we use the metric given by Freudiger et al. (2011) that

allows us to measure the ability of apps to find private locations from the collected

location traces and thus pose location privacy threats. Hence, LoPper and LoPtotal are

calculated as:

LoPper = Plguess

Pltotal

, and (4.5)

LoPtotal =
∑

LoPper (4.6)

4.3 PL-Protector on Android

In this section, we first justify our decision to implement PL-Protector as middleware

on Android platform, we then describe its functionality characteristics, architecture

and implementation in detail. Nonetheless, the middleware implementation and results

can be extrapolated to other permission-based mobile platforms (e.g., iOS).
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4.3.1 Architecture of PL-Protector

Based on our user preferences survey results and other existing studies (Almuhimedi

et al., 2015; Fawaz and Shin, 2014), it is clear that mobile users are more concerned

about sharing their private locations; hence, PL-Protector enforces privacy for such

user’s sensitive locations. PL-Protector’s three main design goals are: 1) the third-

party app provider will not be able to infer the device’s exact location without getting

the uses’s consent; 2) the user can set distinct privacy preferences for different apps

and private places; and 3) PL-Protector works independently without the need of

modifying the app’s code. Figure 4.2 depicts the block diagram for PL-Protector ar-

chitecture; its main components are: user input, app session handler, location manager,

place detector, policy controller, cache DB and location receiver.

User Input is the UI (User Interface), which enables users to set and manage their

private places and apply improved personalised permissions when running installed

location-based apps. Once the user inputs are received, the marked private locations

are sent to the Location Manager module and the pre-set permissions are sent to the
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Policy Controller module.

App Session Handler is responsible for intercepting the event of location access

calls and then lead the app’s control flow to our middleware. When the flag is positive

(i.e., user at private place), it monitors app launch and exit events that need to be

intercepted. It first pauses the requesting app’s execution, saves its state, and sends the

location intent to the Location Manager component for rule checking (step 1 in Figure

4.2). Once the privacy rules are applied, the App-Session Handler will receive the

anonymised/transformed location object from Policy Controller. It will then resume

the requesting app’s control flow to maintain every session (step 3 in Figure 4.2). In

Android, the middleware’s background service frequently checks (every 10 seconds) the

currently running foreground app using getRunningAppProcesses on older versions

and UsageStasManager on Android 6 (or later). To use the UsageStasManager API

the user of the device needs to grant permission through Android’s settings application.

When the app is no longer running in the foreground, it blocks app’s background access

to location updates that leaves an app limited to foreground sessions. In Android, for

maintaining a set of session operations, PL-Protector executes process isolation and

IPC services.

Location Manager and Place Detector are the central components that receive

both events (actions) and data from the different components as well as maintain-

ing the Cache DB database. The Location Manager component receives privacy

rules for specific private locations and network fingerprints via User Input. Whereas,

the Place Detector component detects unique identifiers of the surrounding wireless

APs and maintains a binary flag to detect private places. When the flag is ON, if

the Location Manager receives location updates (i.e., Intents) from the App Session
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Handler, the location data is retrieved from the Cache DB and sent to the Policy

Controller. In case of an unmatched query on the cache and the user does not want

to input geo-coordinates manually (via maps provided in UI), the location data is

received by location providers from the Location Receiver. Later, the Place Detector

monitors user’s mobility pattern and updates the mobility profile of the user (see

Mobility Model in 4.2.4). Moreover, if the location is one of the user’s frequently

visited places, thePlace Detector checks with the user before releasing the location to

apps. If the user is not willing to share or reveal, then the location is sent to the Policy

Controller to be obfuscated or generalised; otherwise, the location is sent to apps as it is.

Policy Controller gathers the location object from the Location Manager inorder to

apply the corresponding user permissions on the location coordinates, altering it if

needed, and transferring the processed location to the App Session Handler component.

The two privacy policies that the user can set per-app/place basis are the Standard

Policy and Per-location Policy (see Figure 4.5), as follows:

1. The Standard Policy consists of three location settings as follow:

(a) The Behaviour Protection setting implements the geo-coordinate obfus-

cation equation (defined in 3.4.4) to generate transformed/ obfuscated

geo-coordinates (l′, l′
g) for every app session. The behaviour protection level

is defined by a scale (Low, Medium, and High) that determines randomness

of the obfuscation equation’s parameters ⟨s, θ, (l, lg)⟩, where s is the scaling

factor, θ is the random rotation angle, and (l, lg) are the original coordinates.

(b) The Location Protection setting implements the geo-coordinate truncation

equation (defined in 3.4.4) and follows a location granularity scale like (Low,

Medium, and High) to adjust the location precision level for every app

session.
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(c) The Block/Fixed Location setting picks high behaviour and location pro-

tection level by default and determines a constant value of altered geo-

coordinates for every app session.

2. The per-location policy allows the User to apply standard policy settings for each

pre-marked private places that are displayed on the map.

Once processed geo-coordinates (l′ l′
g) that comply with the pre-set privacy rule are

generated, we measure the achieved level of a privacy LoPper and LoPtotal on per-

session basis using values of both Pld and Pls (as defined in Section 4.2.4). Listing 4.2

contains pseudocode for calculating Haversine distance (Pld) between two positions

with longitude and latitude (φ, λ) and the radius r of the Earth.

Listing 4.2 Pseudocode for calculating Haversine Distance (Pld) between two positions

with longitude and latitude (φ = original, λ = observed)

1 initialise static final int EARTH_RADIUS = 6371;

2 request double haversin(double val)

3 return Math.pow(Math.sin(val / 2), 2);

4 request HavDistance(double originalLat , double originalLong ,

5 double observedLat , double observedLong)

6 double dLat = Math.toRadians (( observedLat - originalLat ));

7 double dLong = Math.toRadians (( observedLong - originalLong ));

8 originalLat = Math.toRadians(originalLat );

9 observedLat = Math.toRadians(observedLat );

10 double a = haversin(dLat) + Math.cos(originalLat)

11 * Math.cos(observedLat) * haversin(dLong );

12 double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

13 return EARTH_RADIUS * c;

Cache DB and Location Receiver Cache DB is the established on-device cached

database, and it is routinely queried by the Location Manager module, which can add,

update and delete the cached location data. The locations in Cache DB are those
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Figure 4.3 Location computation mechanism (a) without and (b) with PL-Protector

which are to be protected, and they can also represent regions of space. We used

the SQLite (2017) database management system for Cache DB generation since it

supports embedded databases and Android platform. Cache DB stores the network

fingerprints in an SQLite table for each of the observed WiFi APs’ signatures that are

mapped to their representative geo-coordinates. Each SQLite table entry is recorded

along with a network fingerprint and geolocation that are acquired either from UI

and/or the Location Receiver. When the location update request is sent to the Location

Receiver component, it receives the location object, which includes the user device’s

geo-coordinates (as seen previous chapter in Listing 3.3), from location providers and

sends it over to the Location Manager for further processing.
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4.3.2 Middleware Implementation

PL-Protector orchestrates a mobile platform based privacy protection service on

Android to modify the location resource handling process. PL-Protector’s communi-

cation operations only requires process isolation and IPC services; hence, minimising

the requirements placed on hardware or OS modifications. As mentioned earlier in

Chapter 3, in Android, there are two methods to access the user’s location: Location

Manager service, and Fused Location Manager service that is part of Google Play

Services. Both methods require the app to request a callback function to get regular

updates by registering a location listener. The app receives a new location object when

a new location is available, the callback function is invoked (Figure 4.3 - a). Modifying

these two Google services is complicated, but we make PL-Protector communicate

with the location requesting apps by intercepting the location object before it reaches

requesting apps (Figure 4.3 - b). One of the main tasks is to add a system service,

where the class belongs to the location APIs; thus, the new service is placed in the

android.location package, which detects private locations via APs and can also

be used by other components when calling context. In Android, a context allows an

app to interact with the OS resources. Similar to Fawaz and Shin (2014) Android

platform modification method, we add a static context field to the location class,

which will be populated when the app is invoked; this enables PL-Protector to know

which app is currently requesting the location object, and also communicate with the

OS. Besides, Fused Location Manager combines sensors, GPS, WiFi, and cellular

data into a single API for location-based applications (Hellman, 2013), hence sepa-

rating data from GPS_PROVIDER and NETWORK_PROVIDER is no longer straightforward.

PL-Protector addresses this issue by preventing app’s location request to reach the

Fused Location Manager service that collects and sends the network session data to

the location provider. Instead, the requested location is retrieved from the on-device
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cache, and then, it is sent to the requesting app with privacy rules applied. The imple-

mentation is further detailed below into additional sub-tasks, which are established

to be used for the evaluation of our middleware system (this is given in the next chapter).

Bootstrapping When PL-Protector first boots and before turning ‘ON’ location

sharing settings, the user will have to perform the initial setup. This will include WiFi

APs scanning, input geo-coordinates and set privacy choices using the UI (Figure 4.4).

PL-Protector’s UI incorporates a map to get the corresponding geo-coordinates so

achieving an effective privacy without affecting the location accuracy. At the same time,

this prevents non-authorised sharing of device’s exact location and network session

data. The UI (Figure 4.5) enables users to set and manage their private locations and

apps distinctly.

Runtime awareness of privacy policies. For this, we maintained a user notifi-

cation service. Every time a new app requests the user’s location at run-time, the

service sends a notification to the user to select privacy preferences. Figure 4.6 shows a

screenshot of a notification dialogue sent to the user when a social networking app (i.e.,

Facebook) requests the user’s private location for the first time. The user can then

assign the required privacy preferences using these notification dialog boxes/windows.

Generating Network Fingerprint Over-time. The user’s private location profile

generation is given above in the bootstrapping process. However, to improve place

detection accuracy over time, we included a method using Equation 4.3 to update

beacons rate of frequency, and embedded these counts as a field in the network

fingerprinting SQLite table. Beacons with higher frequency rate were included to

generate signatures of the detected private places at run-time.
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Figure 4.4 User Interfaces to manage WiFi/location input settings

Modelling Users’ Privacy Preferences in the UI Complex policies, fine-grained

configurations and explicit technical details in the UI discourage users from fully

exploiting the provided functionalities. To this end, we designed PL-Protector’s UI

(see Figure 4.4) in an intuitive and straightforward manner that maintains the balance

between the usability and expressiveness of users privacy preferences. However, in

this research, ease of user access and UI design are excluded. We solely focus on the

usability of the two LPPMs.

Buit-In Datasets Collection Mechanism We added regular database collection

service running on the Android smartphone (Nexus 6P). In the initial testing period,

this service generated copies of the PL-Protector’s database daily and saved it in the

device’s internal storage; however, we then changed its frequency to weekly. With the
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Figure 4.5 User interface of PL-Protector to manage per-app/location privacy rule
settings

help of the DB Browser (2017) tool, we analysed these collected SQLite databases.

Furthermore, we added another service to run a script that uses the privacy evaluation

metrics (given in Section 4.2.4) to monitor achieved LoPper and LoPtotal in the collected

datasets using the values of both Pld and Pls. For this purpose, we maintained special

tags to record each location access session by every app that will later be used in data

analysis and evaluation stages. Additionally, we also used Logcat (2017) the command-

line tool provided by the IDE (Integrated Development Environment) of Android

(Android Studio, 2017) to monitor and record exchanged messages and location traces

between apps and PL-Protector.
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4.3.3 PL-Protector Use-cases

We use the scenario technique (Carroll, 2000) in order to communicate understanding

of the proposed system, its adequacy and appropriateness in real-time. We consider a

user named Bob, and we have identified three different user scenarios as follows:

Scenario 1: Bootstrapping At home, Bob installs PL-Protector on his smartphone

and activates the monitoring service for the first time. The service will prompt

him with initial setup instructions. Using the PL-Protector’s UI, he can then

mark the current place as private and save it. PL-Protector will mark the current

place as Home and, since this is a new request, PL-Protector starts scanning

the surrounding wireless APs to create a network fingerprint for Bob’s home.

Once the network fingerprint is created, PL-Protector displays a dialog box

to Bob that contains two options: 1. Cache location manually, and 2. Cache

location automatically (see the 1st screen of Figure 4.4). The former option

opens another screen containing a map (see the 2nd screen of Figure 4.4) that

will allow Bob to find his home address on the map. Once found, he will have to

long press at the geo-location point on the map; this will allow PL-Protector to

map and save it as his home’s geolocation. The latter, option sends the request

to the location provider via the underlying OS and receives the geolocation to

be mapped and saved on the device. Note that the request will only be sent

to the location provider for the first time. Bob can then use the settings UI to

apply preferred privacy rule for his home on per app or per location basis (see

Figure 4.5). PL-Protector now has both Bob’s private location and its privacy

rule to function properly. Unless Bob changes the privacy rule/geolocation via

the user interface, the selected options will be saved and applied for all future

location update calls from running apps. When Bob uses any location-based app

at home, PL-Protector detects that he is within a private place, retrieves his
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Figure 4.6 A notification sent to the user with location privacy rule settings

home location from the on-device cached database, applies the pre-set privacy

rule, and then sends the processed location to the requesting app.

Scenario 2: Regular Since Bob pre-set his preferred privacy rule for his home (lo-

cation), whenever Bob uses any app at home, PL-Protector follows the same

process (i.e., detect, retrieve, push rule and send) for every received location

update request. If Bob decides to grant location access to the Moovit app, he

can go to the settings and change the location privacy rule to that particular app

(see 1st screen of Figure 4.5). This will enable Moovit to access Bob’s location

while at the same time other apps will be blocked (or restricted) from accessing

his home location.

Scenario 3: Run-time notification While PL-Protector is running on Bob’s smart-

phone and if he installs the Facebook app. When Facebook sends a location
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update request to PL-Protector first time a notification (see Figure 4.6) will

be sent to him. The notification will prompt Bob to select one out of the three

permission options. Suppose he picks Allow Always option, so Facebook will

have full access to his home and other locations. If he selects Allow once so

PL-Protector will grant access for that session but block other sessions unless

the settings are changed via the UI. If he selects the Protect Me option (as seen

in Figure 4.6) then the standard settings UI will be displayed on the screen. Once

Bob selects preferred settings only then the location will be sent to Facebook.

4.4 Summary

To summarise, this chapter presented the design and implementation of PL-Protector,

a location privacy-enhancing middleware, which is a prototype system developed to

validate the theoretical model (LP-Cache). We mainly focused on supporting our design

goals, justifying the design decisions and elaborated on PL-Protector’s functionality.

We have successfully implemented PL-Protector on Android platform (version 6) to

enforce the privacy rules over both the information and control flows occurring between

sources and sinks. Through the implementation of the middleware, we proved the

deployment feasibility of a new series of privacy controls on a mobile platform to prevent

private location disclosure during the formation of LBS queries. This also minimises

the interaction and data collection from wireless access points, content distributors, and

location providers. Later, we assessed developer efforts and complexity of implementing

PL-Protector directly into Android platform core. In the next chapter, we describe the

evaluation methods applied to validate PL-Protector’s performance. Followed by the

presentation of results and finding in terms of usability and efficiency of PL-Protector

when interacting with real apps in real-time. We will also present security analysis
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based on the threat model (defined in Section 4.2.2) to test its compliance with the

three privacy settings and achieved privacy guarantees.





Chapter 5

Evaluation and Key Results

Research findings from this chapter have been published in a conference papera and

an article is developed to be published in a journalb

a Patel, A.,& Palomar, E., “A middleware enforcing location privacy in mobile platforms". In:
14th International Conference on Trust and Privacy in Digital Business (TrustBus), pp. 32–45,
Springer 2017.

bPatel, A., & Palomar, E. “A Practical Cache-based Location Privacy-enhanced Middleware
for Mobile Users".

5.1 Introduction

Following a systemic literature review presented in Chapter 2, we proposed a new

privacy-enhanced theoretical model (LP-Cache), and its prototype implementation

(PL-Protector). In this chapter, we evaluate PL-Protector in terms of performance,

security and privacy analysis, and present overall results and findings considering the

pre-defined threat model. For PL-Protector’s development and evaluation, we largely

adopt a comparative study approach since it gives us two main advantages. Firstly, it

allows us to compare PL-Protector’s functionality with the current process (described

in Section 3.2) throughout the development/testing phase. Secondly, this approach

makes it easier to evaluate trade-offs for implementing PL-Protector on the mobile
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platform. Furthermore, considering the users’ location privacy requirements that we

obtained from the field study results, we assess the user acceptance of PL-Protector.

The rest of the chapter is organized as follows. Section 5.1 describes the evaluation

methods and goals. Section 5.2 presents validation of our system’s functionality, and

its security and privacy features. Whereas, Section 5.3 presents PL-Protector’s perfor-

mance analysis in terms of cache storage estimation, communication, and computation

overheads. Section 5.4 presents the security and privacy analysis, and the field study

results. Section 5.5 provides the comparison of PL-Protector with related work.

Finally, Section 5.6 summarises this chapter.

5.1.1 Evaluation Methods

For our proposed model’s evaluation purpose, we have followed three different methods

as follows:

1. Prototype Testing. We used rapid prototyping method to develop PL-Protector,

which is utilised to demonstrate and validate the functionality, acceptance and

robustness of our proposed theoretical model. A prototyping method helped

us present high quality demonstration and validation of our proposal based on

the real-life scenarios. We run series of experiments with and without using

PL-Protector for data collection and evaluation purposes. We designed different

experimental setups to test PL-Protector’s functionality, usability and efficiency

in realtime.

2. Mobility Datasets Collection and Analysis. We used smartphones with Android

6.0 (API 23) that have 802.11a/b/g/n radio feature for mobility data collection

and analysis purposes. We conducted both static and dynamic analysis on the

collected mobility datasets. For data consistency, we maintained identities and

location categories of 34 different private places throughout the data collection
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process. We have collected empirical data from a number of sessions running at

different time intervals over a period from 3 to 6 months. We then created two

datasets: In a first dataset, we include the session data of ported apps that run over

the conventional Android environment without interacting with PL-Protector.

Henceforth, we call the conventional Android environment, Baseline. The second

dataset consists of the same apps but running in the presence of PL-Protector.

We validated the collected mobility datasets using evaluation metrics pre-defined

in Section 4.2.4 to conduct performance and security analysis.

3. Field Study. As mentioned in Chapter 1, we conducted a field study using

a survey method. However, the aim of the field study is twofold. First, to

determine smartphone user’s perception of location and mobile apps privacy

concerns. Second, to assess user acceptance of PL-Protector based on user’s

location privacy requirements.

5.1.2 Evaluation Goals

We specified in Chapter 4 that, for the purpose of evaluation, we deployed PL-Protector

as a middleware on a Nexus 6P with Android 6.0 (API 23) that have 802.11a/b/g/n

radio feature so it can operate in both 2.4 GHz and 5 GHz bands at 34 different

private places. By successfully designing and implementing PL-Protector on Android

platform, we demonstrate that our theoretical model is a practical solution. However,

we still need to evaluate how secure and efficient PL-Protector is. Moreover, it is

a crucial requirement to measure our middleware’s privacy vs usability trade-offs in

order to determine its deployment feasibility in the real-world scenarios. We present

the evaluation of PL-Protector in terms of performance and security by considering

three different evaluation criteria:
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Criteria 1. What is the performance overhead of PL-Protector while interacting

with real-world apps over time?

Criteria 2. How well PL-Protector’s LPPMs (i.e., the on-device location computa-

tion mechanism and the personalised location permissions mechanism) perform

in practice. Can the LPPMs find accurate location data corresponding to the

cached network fingerprints and apply permission rule in real-time?

Criteria 3. How well PL-Protector can perform with respect to user privacy/data

leakage using actual mobility traces collected from real-world apps?

5.2 System Validation: Test Cases in Birmingham

PL-Protector’s system model, explained in Section 4.2, includes five entities: 1.

Middleware, 2. User, 3. Service Providers, 4. Mobile Platform, and 5. Network

Infrastructure.

Hence, we validate our developed prototype system based on PL-Protector’s

interaction with involved entities using a real test case in Birmingham, UK. Once we

validate our system on Android platform, we can then evaluate its performance and

security. We installed PL-Protector on an Android device (OS Ver. 6) and used it in

Birmingham as the system validation test case.
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Entities involved in the system validation test case are:

1. Middleware → PL-Protector installed on an Android

2. User → Tester

3. Service provider → LBS App Provider

4. Mobile Platform → Android

5. Network Infrastructure → WiFi

We derived two dedicated test cases to validate: 1. system’s functionality, and 2.

system’s security and privacy features. The former case is predominantly dedicated

to identifying the developer/tester encountering a data input failure, control flow

breakdown and call execution failure. Whereas, the later validates system’s privacy and

security features in the presence of adversaries that have passive and active capabilities.

These adversarial capabilities can range from curious individual scanning network

packets or eavesdropping apps’ communication within the user’s device; to those

with common technical knowledge of sniffers; and to those who are experienced and

practicing adversaries regularly collecting and profiling the user’s mobility data.

5.2.1 System’s Functionality Validation Tests

In this test case, experiments were conducted to assess and validate our system’s

functionality, which includes implementation of the key methods that handle data

input and control flow at runtime. Table 5.1 describes our system methods and calls

that are implemented on Android platform.

Results for test case 1. Table 5.2 presents our system’s functionality validation

tests results. During the bootstrapping state, network fingerprints for all of the 34



116 Evaluation and Key Results

Table 5.1 Description of data and methods utilised in our system.

System Calls and Meth-
ods

Description

app ⇔ middleware Apps interacting with PL-Protector
middleware ⇔ OS PL-Protector interacting with the OS (Android)
createfprints() Create network fingerprints and geolocation for

marked private place
maprule() Permissions rule application on location object
interceptlocObj() Intercept location update requests
getwifiInfo() Insert, update and verify WiFi data at runtime
getmapsUI() Display maps UI

Table 5.2 System’s functionality validation tests results.

System
State

Events: Methods Execu-
tion

Expected Output Success?

bootstrap createfP rints() w.r.t pi ∈ Pl Save network fingerprints ∀
Pl in DB

Yes

app ⇔ mid interceptlocObj() → maprule()
→ sendlocObj

Apply rule on every loca-
tion access call requested
by apps when the private
location flag is ON

Yes

middleware ⇔
OS

getwifiInfo() → getmapsUI() Detect beacons and display
the map UI at runtime

Yes

marked private places were created, stored and detected at runtime. After this state,

our middleware successfully intercepted every event of location access call to apply

the location privacy rule. It then resumed the app’s control flow by releasing the

location object and maintained every session. Our middleware also communicated

with the OS regularly to detect the surrounding beacons and to display the map UI

to the user when needed. The attained results demonstrate that our system fits the

intended use and meets its functionality requirements successfully. Thus, we conclude

the implementation of the key system methods that handle data input and control flow

have been internally validated. The external validation takes place when it is performed

by asking the involved stakeholders (mobile platform providers, app providers, location

providers, users) to verify whether our system meets their needs. Due to the research
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scope we have excluded our system’s interaction with the stakeholders; and therefore,

conducted tests that only consider internal validations.

5.2.2 System’s Security and Privacy Features

Our system guarantees location and wireless network data privacy in location-based

mobile environments. Hence, we derived a dedicated test case to validate its security

and privacy features. We assume adversaries can have passive and active capabilities

to access user’s private location and WiFi data.

Location data

Our system protects the user’s private locations from privacy threats. Hence, to

validate this, we ran a series of tests with the assistance of sniffers such as Wireshark

(2016), tPacketcapture (2016) and Android’s code monitoring tags (see the built-in

datasets collection mechanism previously described in Section 4.3.2). This enabled us

to monitor data flow and maintain test records of the shared (and leaked) location data

from the user’s device. Moreover, based on the type of location access that adversaries

can obtain while the user is in private places, we categorised them as follows:

• Passive - we determine an adversary as passive if he has sporadic access to the

user’s location objects (i.e., he receives the location object once or twice a day);

or he can passively sniff shared location objects within the user’s device.

• Active - we determine an adversary as active if he has continuous access, which is

up to every 10 mins or less, to the user’s location objects; or he uses sophisticated

sniffing or malware injection tools.

WiFi data

The Article 5 of GDPR (General Data Protection Regulation)1 states that "data
1(Url: https://ico.org.uk/for-organisations/data-protection-reform/overview-of-the-

gdpr/principles/, accessed Oct. 2017
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Table 5.3 The location and WiFi data privacy offered by our system.

Adversary Profiling
Threat
Mitiga-
tion

Tracking
Threat
Mitiga-
tion

Data Min-
imisation

Access
Control

Location Passive Access X X X X
Active Access X X X X

WiFi Passive Sniffers X X X X
Active Sniffers - - X -

minimisation principle requires that the collected data should be adequate, relevant

and limited to what is necessary in relation to the purposes for which they are

processed". To support the user’s data and privacy, our system design implements

this principle by minimising the WiFi data sharing and gathering requirement in

the location computation process, which is deployed within the existing mobile app

ecosystem (defined in Section 3.2). Using aforementioned sniffers and monitoring tags

we ran series of tests to: monitor the WiFi data flow, assess our system’s capability to

mitigate the location privacy threats and quantify achieved data minimisation.

• Passive - we define as passive adversaries that have permission to access and

collect WiFi data via the user’s device; but, they share the collected data with

other service providers for commercial and financial gains causing severe privacy

leakage. Due the fact that they can passively leak the user’s data, we categorise

such adversaries as passive sniffers.

• Active - we define as active adversaries that do not have the permission, but they

can aggressively collect WiFi data with the assistance of sophisticated sniffers.

These adversaries can operate in two ways: within the user’s device in the form

of an application or third-party libraries, and with the wireless network around

the user’s device actively collecting radio signals.
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Results for test case 2. Tests results in Table 5.3 show efficiency of our system’s

security and privacy features in protecting the user’s location and WiFi data from

4 types of adversaries that are mentioned above. These results draw the following

conclusions that validate our system’s security and privacy features.

1. Profiling Threat - the information such as dwell time at a private place or repeated

visits in varying frequency and durations can cause profiling threat to the user’s

privacy. We observed when location privacy setting (i.e., Behaviour Protection)

was ’ON’, our system increased the ambiguity level in the collected mobility

data of the user. Geo-coordinates of the user’s home (i.e., private) location

(lat = 52.424861 , long = −1.844832) were obfuscated for all the location calls

sent to our middleware from the installed apps in the obfuscation range (i.e., lat

= ⟨52.98238466 to 52.5269165386⟩, and long = ⟨-3.00256334 to -2.9091795533⟩).

Hence, we claim that our system can mitigate profiling threat and prevent the

indiscriminate collection of the user’s location data.

2. Tracking Threat - the information that can cause a tracking threat is the typical

route/ circuit path taken by the user as he/she moves from one place to another

during a given time interval. We noticed that when the location privacy settings

(i.e., Behaviour Protection or Location Protection) were ‘ON’ and the tester

reached his private places, the requesting apps couldn’t record the information

needed to track the user at his private places. This was due to the taken routes

or circuit paths being broken since the time spent at private place could not be

recorded or movement patterns were dispersed. Hence, we claim that our system

mitigates tracking threats.

3. Data Minimisation - the on-device caching mechanism implemented as part of

our middleware minimises the interaction and data collection from wireless access

points, content distributors and location providers. We noticed the interaction
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with the location provider is reduced (i.e., 1 out of 15 location calls were sent to

the location provider) since the location computation is done within the user’s

device. As a result, the need to periodically send surrounding wireless data to

the location provider was significantly reduced by our system. Hence, we claim

our system offers data minimisation in the existing ecosystem.

4. Access Control - our system’s LPPMs provide additional access control to the

OS resources that prevent indiscriminate collection of: the user’s location data,

and the surrounding wireless data that are shared with service providers. We

have validated our system’s privacy controls in Table 5.3.

Using WiFi data, the tracking and profiling threats happen at the data link layer

due to the indiscriminate broadcast of unique device identifiers (i.e., MAC addresses),

whether the user’s device has made use of particular service or not. If an adversary

operates outside of the device – such as he actively scans beacons to get the user’s

link layer identifiers to create his profile or track him – then our system does not

provide any data or location privacy protection. However, our system applies LPPMs

within the user’s device before the data is sent outside in the form of packets. This

prevents an active adversary that aims to eavesdrop the data link layer or the network

layer communication by capturing these packets sent from the user’s device to service

providers. This way our system minimises sharing of the user’s sensitive location and

WiFi data before such data is sent outside of the device via the link or network layer.

Hence, we confirm that our system can mitigate such tracking and profiling location

privacy concerns.
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5.3 Performance Analysis

This section presents comprehensive elaboration on PL-Protector’s performance anal-

ysis, including experimental results and demonstration of substantial findings.

Experimental setup

LPPMs can incur performance degradation to the location-based apps, and this

may create a service obstacle. Considering this and for the purpose of PL-Protector’s

evaluation, we determined two different experimental settings:

1. Location-based apps performance. The first experimental setup studies the

efficiency of PL-Protector in terms of QoS and usability on operations relevant

to the location-based apps and privacy leakage tests. For this purpose, we ported

real apps of five different LBS queries categories: 1) Social Networking (e.g.,

Facebook), 2) Instant Messaging/Chatting (e.g., Whatsapp), 3) Tracking (e.g.,

Fitness), 4) Utilities (e.g., Weather, Alarm, etc.) and 5) Finder (PoI Finder/Geo-

search). Based on these apps’ operations, we assume that both 1st and 3rd app

categories require continuous access to location data; whereas, 2nd, 4th and 5th

app categories involve sporadic access. Henceforth, we set these apps as the

performance evaluation benchmarking apps.

2. WiFi fingerprinting and cache performance. The statistical analysis, in Section

3.5, on WiFi AP data availability and consistency demonstrates that smartphones

regularly detect similar beacons at the frequently visited place; and it confirms

that for the place detection at least one beacon should match with the stored

WiFi fingerprints. To strengthen this further by conducting dynamic analysis,

in the second experimental setup, we investigate the performance of the WiFi

fingerprinting method at runtime. This method is instrumented in our middleware

as the private place detection source. Using 2 or more different LBS apps at
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34 distinct private places, we sent a sequence of location update calls to our

middleware to measure the dynamic response rates and cache accuracy over time.

5.3.1 Results for Criteria 1: Privacy and Quality of Service

In this section, we assess and evaluate the system development effort and complexity

of implementing PL-Protector directly into Android platform core, highlighting its

efficiency and feasibility. Hence, in the below sections, we will discuss the runtime

overhead impact on the underlying OS and apps functionality.

Runtime overhead impact on the underlying OS

1. Computational effort and memory consumption

Android provides a flexible model of process isolation, ICC (Inter-component com-

munication) and IPC (Inter-process communication) services. Since Android devel-

opment architecture is comprised of multiple components (e.g., Activities, Services

and Broadcasts), PL-Protector used ICC calls known as Intents and IPC services

to communicate messages with the components of benchmarked apps. We assess

PL-Protector’s computational overhead posed on the base OS (i.e., Android) while

responding to the location calls invoked by apps. We used Android’s MemoryInfo API

and the Android Device Monitor tool to log observed computational and memory

overheads caused by the presence of PL-Protector. Equation 5.1 is used to calculate

the total memory consumption that is required for completing every computational

lifecycle of PL-Protector:

Ccomp =
ln∑

i=1
Ci + Mi (5.1)

where Ccomp represents the total memory consumption by the LPPMs, Ci is a location

computation operation, Mi is a rule mapping operation, and ln is the number of received
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Table 5.4 Observed difference in monthly dynamic DB storage

Storage Overhead 1 Month 3 Month Observed Change in DB
size

Network Fingerprint 54 KB 108 KB 44 KB Increase in size
Permissions 21 KB 28 KB 7 KB increase in size
Total DB Storage 75 KB 136 KB 51 KB Total increase in size

location update calls from apps. We sent 1 to 10 location calls to the middleware

using benchmarked apps and recorded memory consumptions for both total and per

call. Our results show that PL-Protector’s core functionality requires 7.3MB of the

device memory while its interactions with each app requires 2.8MB of memory on an

average. To justify these overhead values, we argue that Nexus 6P comes with built-in

3GB memory RAM (Random Access Memory) (< RAM size in later versions) and the

official Google Chrome browser app on page load with an empty page consumes around

97MB of the memory. Thus, we argue that PL-Protector’s consumption requirement

of 21.3MB of memory to communicate with 5 apps (at once) falls within the current

acceptable limits of the base OS (i.e., Android).

Further, to improve the response time, while the user is stationary the obtained

responses (i.e., location objects) are cached in the device memory and shared with

other apps that have similar permissions. PL-Protector requires 125bytes for caching

a single location object in the cache memory. The current built-in caching limit for

Android is 1MB (Android, 2016). Therefore, the maximum number of location query

results saved as cached messages must be < 8388, which is sufficient for PL-Protector’s

functionality since it only considers the user’s private locations.

2. Runtime storage overhead

We created PL-Protector’s embedded database structure using the table attributes

given in Table 3.2 of Chapter 3. Due to the research scope, we have used index search on

PL-Protector’s on-device database table entries. However, this can later be improved
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by including advanced database searching and sorting algorithms. Since PL-Protector

only stores wireless network fingerprints (i.e., beacons) and geo-coordinates of the user’s

private locations, we have found that the cache storage requirement is substantially

limited compared to other cache-based LPPMs (described in Section 2.7). While

PL-Protector is installed and running on the Nexus 6P, we dynamically collected

regular versions of its database for a period of 1 to 3 months using the built-in datasets

collection mechanism (see Section 4.3.2).
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Figure 5.1 PL-Protector’s overall computation latency caused at 34 distinct private
places.
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Figure 5.2 Communication overhead for apps running in both environments baseline
(without) vs PL-Protector.

Table 5.4 presents the observed monthly increase in the database size. These

results evidence that PL-Protector does not have a massive on-device cache storage
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requirements. PL-Protector’s database size of 136KB include dynamically collected

network fingerprints for 34 private places and privacy rules for 5 location-based apps;

and it also includes other table attributes needed by the operations of its LLPMs and

the mobility datasets collection purposes. The internal storage limit for Nexus 6P range

from 32GB, 64GB to 128GB (Nexus 6P, 2017). Hence, we argue that PL-Protector’s

database size of 136 KB for 3 months is within the acceptable internal storage limit;

and the current mobile device internal storage capacity is sufficient for its overall

functionality.

Runtime overhead impact on location-based apps functionality

Crucial for its functionality, we measure the delay latency as the time PL-Protector

takes to interact with the app and perform an entire computational cycle, i.e., to

compute the location on-device and to apply the privacy rules. To measure the overall

functionality overhead for each app, we varied the range of location calls – over 10

trials of 2 to 5 types of LBS queries – in collected databases for both baseline and

PL-Protector. For instance, PL-Protector took 187 milliseconds to successfully reply

to a LBS query requested by the app, compared to 179 milliseconds on the baseline, i.e., 8

milliseconds increase. Figure 5.1 indicates measured delay latencies for all the 34 private

places, on an average, PL-Protector presents a latency lower than 22 milliseconds to

handle all of the location-access calls at runtime. This includes runtime execution of

PL-Protector’s computational cycle and regulation of pre-set user’s privacy policy.

We found that the reason for increased latency is due to PL-Protector’s load time

and cross-process/IPC service transfers of location updates. However, this latency is

smaller than 100 milliseconds and, thus, small enough to not cause user-noticeable

delays while utilising apps on the device. Furthermore, Figure 5.2 (both 5.2a & 5.2b)

shows the communication overhead observed during different sessions, and the overall

app functionality overhead for the 5 app categories and compares both baseline and
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PL-Protector execution environments. In per-location access sessions, we found less

than 19 milliseconds and less than 8 milliseconds additional delays in apps that require

continuous and sporadic location updates, respectively (see Figure 5.2). Figure 5.3

indicates that PL-Protector’s additional communication overhead decreases after a

number of repeated sessions, and the observed delays remain well within the acceptable

bounds (i.e., less than 100 milliseconds) throughout all the recorded sessions. Thus, we

claim that PL-Protector’s runtime overhead is acceptable to run existing apps from

the aforementioned five LBS categories since their core functionality already accepts

delays in this range.

0 20 40 60 80 100

0
5

1
5

2
5

% sessions

d
e

la
y
  
(m

s
)

Baseline
PL−Protector

Figure 5.3 Total communication overhead in both environments.

5.3.2 Results for Criteria 2: Performance and Accuracy of

LPPMs

Here we evaluate our proposed LPPMs implemented in PL-Protector: 1. On-device

Cache Database Creation Mechanism, and 2. Personalised Permissions Mechanism.
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Figure 5.4 Achieved response rate by PL-Protector when interacting with apps

LPPM 1. On-device Cache-based Location Computation Mechanism

We focus first on the dynamic analysis of the implemented network fingerprinting

method since it is the primary mode of the on-device cache creation in PL-Protector’s

LPPM-1.

Dynamic analysis of network fingerprinting method - based on the statistical analysis

conducted on WiFi feasibility and usability in Section 3.5.1, it is confirmed that

smartphones regularly detect similar beacons at the frequently visited place, for place

detection at least one beacon should match with the stored fingerprints. However, to

analyse the place detection accuracy of the on-device cache method at runtime, we

examined occurrence of cache hits and misses that includes three possible outcomes

(see Section 3.5.3): (a) The location is cached and up-to-date, (b) The location is

cached but is out-of-date, and (c) The location is not cached. As Figure 5.4 shows,

the average dynamic response rates range between 70% to 90% of accuracy compared

to our statistical analysis results, where the response rates ranged between 75% to

97% of accuracy (see Section 3.5.1). Therefore, it is apparent from the result that the
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Figure 5.5 On-device cache accuracy of the inter-request interval over time (hr)

WiFi fingerprinting method is effective when used as private place detection source in

PL-Protector.

Cache accuracy - a further comprehensive description of timely performance of the

on-device cache mechanism, Figure 5.5 shows that initially, for up to 8 hrs duration, the

result range from 40% to 60% of cache accuracy. However, it gradually increases to 75%

to 92% of accuracy indicating that its performance improves over time. The obtained

results indicate the suitability of PL-Protector’s on-device location computation

mechanism to handle apps requiring both sporadic and continuous location-updates.

These results also demonstrate that the cache update frequency is within practical

limits and provides accurate location data at runtime to all the requesting apps. Due

to research scope, we have used index search on on-device cache database table entries;

nonetheless, to achieve efficient capability and better accuracy of place recognition via

beacons, a place discovering algorithm like Kim et al. (2009) or a machine-learning

technique like LearnLoc (Pasricha et al., 2015), as well as advanced database searching

and sorting algorithms can be implemented.
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Energy efficiency - currently, for location accuracy Android platform, as well as

iOS, follows fused location sensor practice, where precise location is calculated using all

the built-in sensors together to calculate the user’s location. This enables the location

provider to get user’s precise location at all times and, as a result, more effective privacy

preservation measures are needed to mitigate location privacy threats. Moreover, GPS

and cell-tower based localisation do not work accurately in indoor environment; hence,

there is a constant exchange of WiFi and other wireless sensor data with Android’s

location provider. Furthermore, according to Wang et al. (2016), amongst all the

localising clients on the user’s devices, GPS is energy-hungry and consumes up to 150

mW at 1 Hz. As a result, if a user constantly uses Android’s built-in location services

on their device the battery performance is significantly low. Whereas, in PL-Protector,

the WiFi client is the main power consumption component used in its privacy-enhanced

on-device cache-based location calculation mechanism, which improves the accuracy of

indoor localisation by creating a low-cost infrastructure-less indoor privacy-enhanced

localisation solution. This enables PL-Protector’s LPPMs to achieve better energy

performance and privacy preservation as compared to existing mechanisms deployed in

Android platform. Hence, we claim PL-Protector successfully overcomes these energy

efficient localisation and location privacy issues in the mobile app ecosystem.

LPPM 2. Personalised Location Permissions Mechanism

For this purpose, we used location-based app set-up (see Section 5.3) and selected 2

apps: App 1. with continuous access, App 2. with sporadic access to location data.

We examined these apps with following permissions that are required to gain access to

user’s location and are categorised as dangerous permissions since Android version 5.1

(API 22) and later versions:

• ACCESS_FINE_LOCATION
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• ACCESS_COARSE_LOCATION

In Android, getting a user’s location works by means of callback2. As aforemen-

tioned in Section 4.3.2, the app receives a new location object when a new location is

available, the callback function is invoked; PL-Protector intercepts these callbacks to

communicate with requesting apps. Using Android’s location API, the app indicates

to receive location updates from the LocationManager by calling methods:

• requestLocation();

• getLastKnownLocation();

• requestLocationUpdates().

We made the two selected location-based apps communicate with our PL-Protector

and instrumented different LBS queries at timed intervals using the three calling

methods mentioned above. The observed success rates of instrumented calls listed in

Table 5.5 validates the performance of PL-Protector’s permission mechanism. The

observed performance degrades or missed events during execution of PL-Protector’s

privacy controls was due to programming and code execution error; however, none of

the selected real-time apps crashed or disrupted during the entire testing and data

collection period. Misses were observed when PL-Protector took long time to detect

the stored beacon fingerprints, where it considered user is in a public place and sent the

request to the OS that may send user’s actual private location to the requesting app.

However, such occurrences were minimum as shown in Table 5.5 and can be avoided

by adding a waiting time rule in the network fingerprint detection method. This is a

suggestion as a future enhancement of the model.

Overall, we find our prototype implementation performs well enough even for real-time

location-based apps, and moves the performance bottleneck outside of PL-Protector
2For more information, please go to this link:

https://developer.android.com/guide/topics/location/strategies.html, accessed on Sep. 2017.
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Table 5.5 Location privacy permission controls evaluation results

Privacy controls App 1 App 2
No. of
Instru-
mented
Calls

Success
Rate

No. of
Instru-
mented
Calls

Success
Rate

Standard
Behaviour
Protection

50 96% (48) 15 100% (15)

Location
Protection

35 94.28% (33) 15 100% (15)

Block/
Fixed

15 100% (15) 10 100% (10)

Per-Location
Behaviour
Protection

50 94% (47) 15 93.33% (14)

Location
Protection

40 97% (39) 15 100% (15)

Block/
Fixed

21 100% 10 100% (10)

and into the programming and coding proficiency. By adding a low-cost infrastructure-

less indoor localisation, PL-Protector provides energy-efficient and privacy-enhanced

location calculation solution. The aforementioned results and empirical findings of

the performance analysis confirm that PL-Protector provides location privacy at the

acceptable overheads on the underlying OS and negligible loss in the functionality of

location-based apps.

5.4 Security and Privacy Analysis

In this section, we analyse user privacy/data leakage that is likely to affect PL-Protector

by an adversary’s access to user location in and out the device and can launch an

attack.
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5.4.1 Security Risks

We discuss data security risks that each of the five apps poses when running on mobile

platforms, and find that PL-Protector mitigates those risks successfully under privacy

leakage tests.

Continuous access Apps (e.g., Social Networking and Tracking) have higher po-

tential to leak location information to attackers, e.g., unauthorized 3rd party service

providers and content distributors, since users access such apps for longer duration and

in a frequent manner. The social networking app has constant Internet access for ads

and for troubleshooting/crash reporting. PL-Protector separates private locations

from public/less-sensitive locations and enforces privacy rules.

Sporadic access Apps (e.g., Instant Messaging, Utilities or Finder) can leak location

data along with other sensitive user information as we note that these apps require

Internet access for core functionality. Therefore, under current OS controls it is very

easy for this app to leak location data. PL-Protector isolates the private location flow

to be restricted within the device, eliminating any possibility of cross-flows between

apps and 3rd party service providers over the Internet.

Covert access A potential malicious apps leverages vulnerabilities in other already

installed benign apps to perform actions that are beyond its individual privileges

such as sending device location through text messages. The current mobile OS access

control model is per app and it cannot detect such location attacks as it cannot check

the security posture of the entire system. PL-Protector enforces location privacy

policies before releasing the data that mitigates most, if not all, of such covert access

vulnerabilities.
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Figure 5.6 LoPtotal achieved by PL-Protector to mitigate 3 privacy threats

5.4.2 Results for Criteria 3: Privacy/Data Leakage Test

Here we present a comprehensive security and privacy analyses of PL-Protector with

respect to satisfaction of the privacy-preserving properties.

Proving Privacy Properties Our model design aims to satisfy the privacy prop-

erties that benefit both the end users and service providers within the mobile app

ecosystem. Hence, PL-Protector’s privacy/data leakage analysis is based on the pri-

vacy properties: 1) Unlinkabiliy, 2) Unobservability, 3) Anonymity, and 4) Controlled

Information Disclosure (also used in Chapter 2). Pfitzmann and Köhntopp (2001)

considers that anonymity in a collected data set can be achieved using unlinkability,

unobservability and controlled information disclosure properties. In PL-Protector, we

aim to achieve location privacy by applying controlled information disclosure while

sharing the user’s private location that creates a generalised data set protecting the
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user’s sensitive places. In PL-Protector’s context, anonymity translates to unob-

servability and unlinkability of private locations to the user within collected datasets.

Here we recall PL-Protector’s privacy model (see Section 4.2.4), where the privacy

evaluation metrics LoPper and LoPtotal follow as – the "larger" the Haversine distance

Pld, the "better" the anonymity.

1. Privacy Threat Mitigation

Here we present an analysis concerning the correctness of our proposal in terms

of the three fundamental threats: identification, profiling, and tracking. We use

the aforementioned privacy metrics (Section 4.2.4) to evaluate achieved privacy. To

compute LoPper and (overall) LoPtotal, We identify applied privacy settings using

(labels) value of Pls in the collected location traces of apps’ sessions and compare them

with the privacy rule. We measured LoPtotal against the observed value of Pld for every

location-access session, higher the value of LoP more protected is the private location.

The following observations are made from the achieved mitigation results considering

the fundamental location privacy threats shown in Figure 5.6.

User Tracking Threat Mitigation. This requires protection of private location

anonymity and sensitive behaviour pattern from the adversary. We observed that the

continuous location updates can pose a high risk to locating the user in real time.

PL-Protector blocks the app’s background access to location updates that restricts

location tracking to foreground app sessions, which are considered rare or sporadic

(once/twice a day) and initiated from same the private place for about 96%. This

enabled PL-Protector to block or obfuscate the constant mobility patterns of the

user. Thus, by preventing the identification of sensitive behaviour pattern and location

prediction of the user, PL-Protector mitigated tracking threats in 40%, 40% and 50%

of released location-access sessions at Plow, Pmedium, and Phigh settings, respectively.
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Inference and Identification Threat Mitigation. Even sporadic location access

can allow an adversary to identify and infer the user’s private locations (home and

work). These places can then be used as quasi-identities, which can be used to detect

the user’s identity from anonymised mobility traces. We report that locations released

in the sessions at Pl (Equation 4.2) follow privacy rules and prevent location identify

in 60% (Plow), 50% (Pmedium) and 78% (Phigh) of released location traces.

Profiling Threat Mitigation. This requires protection of sensitive behaviour pro-

filing such as health clinics, religious places, shopping habits, etc. Compared to the

first dataset, instead of the user’s private places, places that the adversary could use to

create the user’s profile were observed in the mobility traces from the second dataset.

Figure 5.6 reports that in the released apps sessions profiling threat increases with

more relaxed privacy rule (Plow= 20%, Pmedium = 50% and Phigh = 90%) since this

discloses more information related to the user’s private locations ⊆ (Pl).

To summarise, it is suggested from the aforementioned results that PL-Protector

mitigates the fundamental location privacy threats without affecting the functionality

of location-based apps.

2. OS’s Middleware Layer Threats

Android’s security model considers all apps as potentially malicious and, therefore,

runs each app in its own process, known as process isolation, and accesses its own

files by default. This security practice protects apps with sensitive information from

malware and potential attacks to system resources. Despite this process isolation

mechanism, apps can optionally communicate via inter-message passing, or inter-

process communication, which can become an attack vector for location privacy

violation. Further, location data can be stolen by eavesdroppers and permissions can
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Table 5.6 The OS’s middleware layer threats and mitigation

Potential
Threats

Attack Vulnerability
Type

Potential Mitigation by PL-
Protector

Over-
privileged
app

An app forces user to grant
a number of permissions, in-
cluding location access, at
runtime to provide its ser-
vices, which does not require
the user’s location informa-
tion.

PL-Protector provides truncated
or obfuscated locations to such
over-privileged apps.

Malicious app A malicious app could send a
malicious Service that inter-
cepts a location call (an In-
tent) meant for a legitimate
Service.

PL-Protector blocks continuous
background location monitoring
of private places; hence, restrict-
ing all the installed apps to fore-
ground location access. This miti-
gates unauthorised access and ex-
posure of user’s sensitive locations
to such malicious apps.

Eavesdropping
attack

An eavesdropper can silently
read the contents of a loca-
tion call (a Broadcast Intent)
without interrupting it.

Since PL-Protector restricts
apps to foreground location
access, passive eavesdropping
attacks are unsuccessful while the
user is at private places.

be accidentally transferred between apps or third-party services. If a developer sends

location data to the unauthorised recipient (intentionally or unintentionally), this can

result in sensitive mobility data leakage and scale the location privacy threats mentioned

above. However, PL-Protector’s LPPMs when implemented as a middleware on

Android platform can prevent such unintentional exposure to the user’s mobility

and private locations. Through PL-Protector’s privacy preserving on-device location

calculation mechanism, we isolate the user’s private and public locations and implement

enhanced permission controls; to enable robust and efficient source (OS) to sink (apps)

flow control; and to protect the user’s sensitive mobility data before it is sent to
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Figure 5.7 Survey results: users’ preferred accuracy level to share their private locations
with 5 different categories of location-based apps.

app providers. Table 5.6 presents OS’s middleware layer potential threats and their

mitigation, where it does contain location data and thus be vulnerable to data or

privacy leakage. We address different attack vulnerabilities associated with Android

platform; however, this can also be applied to other permission-based mobile platforms.

To sum up, PL-Protector’s LPPMs can mitigate such inter-process communication-

based attacks on user’s private locations from both over-privileged and malicious apps

or libraries.

5.4.3 Results of the Field Study: Users’ Perspectives

We show the effectiveness and usability of PL-Protector through a field study. In total,

we surveyed 190 smartphone users within the University and via social media platforms.
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Users’ perspectives on location privacy 89.19% of the respondents expressed

that they are concerned about their location privacy, and want to know who can collect

or has access to their locations. When using your mobile devices in indoor environments

(e.g, shopping malls, retailer shops, etc.), 77.03% of smartphone users think businesses

and apps based on indoor-sensing environment (e.g., free hotspots) can pose severe

privacy threats, such as unauthorised user tracking, profiling and monitoring of user’s

movements; whereas, 10.81% were not sure about the potential privacy implications.

However, 91.89% of users believe granting permissions to apps on their device to access

continuous and precise location can result in a violation of their privacy. And 89.10%

(31.08% chose option private and 58.11% chose option both private & public locations)

of the respondents are more concerned about their privacy while sharing their private

locations such as home and work.

Users’ location sharing preferences Furthermore, we asked users to chose

their preferred accuracy level while sharing their private locations with 5 different

categories of location-based apps: 1. Social networking (e.g., Facebook), 2. Instant

messaging (e.g., Whatsapp), 3. Sports/Fitness Tracking (e.g., Fitness/Workout), 4.

Utilities (e.g., Weather, Alarm) and 5. Finder (e.g., PoI-search, Geo-search). Figure

5.7 indicates that, according to smartphone users, not all apps need continuous access

to their locations. Out of the 5 given location-based app categories, users where more

relaxed to share their private location with (3) Sports and (5) Finder. However, (1)

Social, (2) Messaging and (4) Utilities app categories scored the lowest scale that

indicate s users are more reluctant to share their private locations with these app

categories. 71.62% has already taken actions in the past to protect their location

privacy, while 5.41% of users where unaware of any privacy steps or privacy-enhancing

tool. Hence, 78.92% of users agreed that there is need to for better privacy controls
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on their devices and are willing to install a location privacy enhancing tool on their

devices. However, when given an option, only 68.92% of users were willing to install a

privacy-enhancing tool on their devices.

Users’ choices over apps usability vs location privacy Results indicate

that 82.18% of the respondents rely on location result accuracy and location-based app

functionality when they are anywhere outside or in unknown places. Yet, only 58.11%

of the respondents do not mind if the privacy enhancing tool supplies imprecise/fake

locations to installed apps. This indicates that users are more likely to select the location

generalisation (i.e., truncation) option over location obfuscation (i.e., transformation

or fake locations) option while using PL-Protector’s enhanced privacy controls.

To summarise, these results suggest that smartphone users are aware of location

privacy issues, and they agree with the need for a privacy-enhancing solution in the

mobile app ecosystem. This also demonstrates the potential and positive effectiveness

and usability of PL-Protector amongst smartphone users. However, since smartphone

users have not used PL-Protector as a privacy enhancing tool on their devices, the

precise user study on PL-Protector’s usefulness, acceptance and benefits is still an

open question. However, our research focuses on identifying location privacy-enhanced

mechanisms as a potential solution, which is practical, secure and deployable in the

mobile app ecosystem; hence, we do not focus on the individual user stance towards

usability of PL-Protector. But, this can be done as part of a future-large scale user

study by making PL-Protector freely available to be used on smartphones. The

main challenge to achieving this is that PL-Protector has to be fully functional and

compatible with all the available smartphones in the market; and this will require

further enhancement in the implementation and extra investment of time and money.
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5.5 Comparison with Related Work

In this section, we compare PL-Protector and its LPPMs with related work. The

comparison with related work is summarised in Table 5.7.

Amini et al. (2011) proposed Caché, an Android-based service, that stores location-

based data types, such as location contents, maps, geographical regions, LBS queries

and the user’s PoIs, on the user’s device. This approach requires app developers to

register with the service to access the user’s location in their apps’ operations; hence, it

relies on app code modification. Additionally, before using such service-enabled apps,

the user has to pre-fetch the location-content for a geographical area that he/she is

interested in (via an internet connection and good bandwidth) from the same service.

However, this approach can only work if the pre-fetched location-content is useful and

correct for the current PoIs/ geographical region of the user in advance; and it can

fail if such content needs to changed or updated on a regular basis. Hence, compared

to ours, this caching-based LPPM comes with high communication and computation

costs: it requires high on-device storage capacity; it can have an adverse effect if the

pre-fetched location content changes frequently; it requires high bandwidth to download

different location-based data types at runtime; it relies on app developers’ willingness

to modify their apps’ code. Moreover, the feasibility analysis of this cache-based system

indicates that the estimated on-device storage can scale up to 65 MB and more; this

increase in storage estimation depends on the increase in the number of requesting

apps and generated location content over time. On the contrary, PL-Protector’s

on-device cache storage required only 136 KB of device’s internal storage to run 5

different location-based apps and protect the user’s 34 private places for a period of 3

months. Moreover, PL-Protector’s monthly estimated storage increase is significantly
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less; and it considers installed apps as black boxes, i.e., it is feasible without modifying

installed apps.

Niu et al. (2015) in MobiCaché applies k-anonymity as LPPM for caching location

based queries; and Zhu et al. (2013) attempts to improve MobiCach’e by adding

dummy locations along with k-anonymity- based LPPM. Both proposals rely on an

unrealistic assumptions that are based on the existence of a trusted infrastructure,

i.e., TTP (Trusted Thirst Party), providing privacy preservation and handling every

LBS query. Both of these cache-based proposals have been tested on simulated LBS

data collection servers but neither are implemented on a mobile platform, nor on the

actual app operation. Hence, this lack of deployment feasibility and usability impede

the adoption of these proposals. In contrast, the results and findings from this and

previous Chapters 3 and 4 signify that our approach is practical, secure and efficient

for handling location-demanding apps and can be easily deployed in the current mobile

app ecosystem.

Guha et al. (2012) proposed the Koi platform, which includes a cloud-based service

and a device-based agent, demands numerous changes in the existing smartphone

ecosystem. The author proposes location matching triggers as an alternative to the

existing location API, i.e., latitude-longitude information lookups. It requires developers

to use a different API to access device’s location, and it implements a new comparison

mechanism and a location proximity matching criteria. In short, this platform works

at a high level of abstraction that aims to replace most commonly used location API

to a new location matching-based API. Adoption of this approach results in developing

the current location-based apps in a new way; hence, severely affecting existing mobile

platforms functionality, compatibility and interoperability.

Fawaz and Shin (2014) proposed a location-privacy framework, as an Android-based

service, that neither relies on the adaptation of the app code modification nor on
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the existence of theoretically trusted infrastructure. It applies indistinguishability

(i.e., adding noise to user’s PoIs, locations and movement patterns) that corresponds

to a generalised version of the well-known privacy notion called differential privacy,

which is mainly deployed and tested as a privacy-preserving data mining technique

on the data collection servers since it places heavy computation complexity. However,

this framework does not control or minimise the wireless and location data that is

shared with the location providers or any third-party. The author has implemented the

indistinguishability- based LPPM and incorporated the mock location API provided by

Android platform to generate dummy locations and obfuscate the user’s PoIs.
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Table 5.7 Comparison with related work

Related
work

Proposal
Type

Privacy Tech-
niques

Limitations

Amini et al.
(2011)

On-device
Service

Caching Since it relies on pre-fetched location
contents from a remote server at run-
time, its QoS and usability both are
lost or severely degraded with con-
stant mobility and no internet con-
nection.

Niu et al.
(2015) &
Zhu et al.
(2013)

Trusted
Infrastruc-
ture

TTP-based
Caching

It lacks deployment feasibility since
it relies on TTP remote servers to
handle every LBS query for privacy
preservation.

Guha et al.
(2012)

Cloud-
based
Location
API

Cryptographic
Protocol-based
location triggers.

It suffers from high level of abstrac-
tions and demands extreme changes
in current mobile app ecosystem.
Hence, it lacks user acceptability and
deployment feasibility.

Fawaz
and Shin
(2014)

On-device
Service

Indistinguishability
& Dummy Loca-
tions

It relies on heavy PETs, i.e., indistin-
guishability & dummy locations, to
generate PoIs and maintain mobility
histograms that follow the multino-
mial distribution for location privacy
preservation. This increases compu-
tation complexity and performance
overheads over time and with con-
stant mobility of the user.

PL-
Protector

On-device
Service

Caching, Obfusca-
tion (Truncation
and Transforma-
tion)

Relies on surrounding network infras-
tructure availability for on-device lo-
cation calculation.

Hence, when installed, the user will have to keep the mock location settings enabled

in order to use this service on the device. Additionally, this indistinguishability-
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based LPPM maintains the probability distribution of continuously changing PoI

histograms that follow multinomial distribution for privacy preservation. And that

can drastically increase the computation complexity on the device hardware/OS,

reduce location-based apps functionality and overall QoS over time. Moreover, to

generate the user’s PoIs as well dummy locations to add noise, this framework relies

on Android’s built-in locationManager class; hence, the user must keep the location

services ‘ON’ to communicate with the location provider. It is a known fact that

continuous communication and running of location services in the background can drain

the device’s battery quickly; whereas, WiFi-based localisation promises better usability

and battery life (Wang et al., 2016). In contrast, PL-Protector can compute the user’s

location within the device using beacons in a privacy-preserving manner; hence, it

minimises interactions via location APIs with the location provider and potentially

improves the user’s device battery performance.

5.6 Summary

To summarise, in Chapter 4, through the implementation of our middleware, PL-Protector,

we proved the deployment feasibility of a new series of privacy controls on a mobile

platform to prevent private location disclosure during the formation of LBS queries. To

strengthen this further, in this chapter, we comprehensively present and describe our

evaluation methods, experiments and results in terms of PL-Protector’s performance,

privacy and security analysis. We presented the inclusive results and finding in terms of

usability and efficiency of PL-Protector while interacting with real apps in real-time.

We also present security analysis based on the threat model to test its compliance

with the three privacy settings and achieved privacy guarantees. We assessed the

potential effectiveness, acceptability and usability of PL-Protector through a field
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study on smartphone users’ perspectives. Finally, we presented a comparison between

PL-Protector and related work.



Chapter 6

Conclusions and Future Work

In this thesis, we study the fundamental risks and threats, which are expected to rise

with the emergence of the IoT, smart cities or other similar paradigms, concerning both

the security and privacy of mobile users. With the focus on users’ location data, we

analysed the risks and studied threats to users’ location privacy in the existing mobile

app ecosystem. We considered two main entities: smartphone apps and LBS providers,

who have capability of posing location privacy threats. We aimed to determine an

effective approach/mechanism to make privacy an integral part of the design of location-

based mobile applications and environments. To test our research hypothesis statement,

we adopted PbD approach throughout every stage of this research from the systemic

literature review to the model development and its evaluation. We also highlighted a

number of shortcomings in the state-of-the-art in order to overcome the fundamental

location privacy threats such as tracking, identification/inference and profiling. We

then proposed a new design principle and privacy policy recommendation in the form

of a privacy-preserving model for location-based mobile apps and environments. Our

proposed solution includes a platform-independent theoretical model, LP-Cache, and

its prototype implementation on Android platform, PL-Protector (i.e., a proof-of-

concept) that benefit both end users and service providers.
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6.1 Thesis Contributions

In conclusion, this thesis presented three proposals, the 3-Layer Classification,

LP-Cache, and PL-Protector, that contribute to a practical, theoretically sound, and

usable location privacy-preserving solution. Our 3-Layer Classification intended

to guide researchers working towards achieving privacy-enhanced location-based ap-

plications: by providing a systemic analysis of the state-of-the-art; by presenting

a holistic picture of research gaps, methods, implications; and by assessing them

against the satisfaction of the privacy properties. Furthermore, through both proposals

LP-Cache and PL-Protector, we deliver a new privacy-enhancing solution that forces

the mobile app ecosystem to make location data usage patterns explicit and maintains

the balance between the location privacy and service utility. To our knowledge, our

research provided a first working prototype that perused new design principles and

policy recommendations to secure the computation and transmission of users’ location

data within the mobile app ecosystem (Patel and Palomar, 2016a,b, 2017).The main

research achievements result in the minimisation of wireless AP data collection and

prevention of the user information disclosure via generated LBS queries (e.g., PoIs

and nearest neighbors). PL-Protector’s implementation and evaluation in terms of

performance and security evidence the significance of LP-Cache’s three main design

goals: 1. Data Minimisation, 2. Practical and Usable Privacy, and 3. Efficiency.

Data Minimisation

Our proposed LPPM-1, On-device Cache-based Location Calculation, minimises the

interaction and location data collection from wireless access points, content distributors,

and location providers by calculating the user’s sensitive locations within the device.

Whereas, the implementation of LLPM-2, Personalised Location Permissions, proved

the effectiveness of the new series of privacy controls on Android platform. Based

on the pre-defined user preferences, PL-Protector’s LLPM-2 applied privacy rules
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on his/her private locations before releasing it to the service providers. Hence, the

provision of these settings prevented private location disclosure during the formation of

LBS queries and allowed the user to manage each app and private place distinctly. This

also mitigated severe location privacy threats and limits the user’s sensitive information,

which could be leaked in case of a security breach or the service provider’s servers

being compromised. Thus, this proved that our model successfully limits the collection

and usage of both WiFi and location data in the mobile app ecosystem.

Practical and Usable Privacy

PL-Protector’s successful implementation as a middleware on the Android-based sys-

tem delivered practical privacy properties guaranteed to mitigate fundamental location

privacy threats: user tracking, inference or identification, and profiling. PL-Protector

ensured that adversaries cannot infer or identify the user’s private locations at any

given time or session, eliminating the tracking and identification threat. Whereas,

PL-Protector made the user’s mobility or movement pattern dispersed in a given

set of location/mobility traces, thus, mitigating profiling threat. Along with this,

PL-Protector’s LPPMs (1 & 2) also significantly mitigated potential threats to the

user’s location data in the data link layer and the OS’s middleware layer. Moreover, the

performance results confirmed that PL-Protector does not affect app usability or QoS

since it only required modification of Android platform, which can be done by rooting

the device without any app code modification. The inclusive evaluation results con-

firmed that the instrumentation of PL-Protector enabled robust and efficient source

(OS) to sink (3rd party app provider) data and flow control on Android platform.

Since our middleware (PL-Protector) is fully compatible with all the involved entities,

if the stakeholder, Android platform provider (or other mobile platform providers),

agrees to willingly include it in the OS, then the rooting is no longer needed and it can
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become a standard process.

In addition, findings from the field study, which was conducted to analyse users’ perspec-

tives towards location privacy, demonstrated the potential and positive acceptability

and usability of PL-Protector amongst mobile users. The outcome of this study

indicated that smartphone users are aware of location privacy issues; they agree with

the need for a privacy-enhancing solution in the system; and they are willing to use

a location privacy-enhancing tool on their devices. This study further supported the

practical, usable, and effective aspects of PL-Protector’s acceptability as a location

privacy-enhancing tool amongst end-users.

Efficiency

By adding a low-cost infrastructure-less indoor localisation, PL-Protector provided

energy-efficient and privacy-enhanced LPPMs as compared to the existing mechanisms

deployed in mobile platforms. The outcome of the performance and security analysis

signified that PL-Protector handled every location call and the cached database

efficiently. This confirmed that PL-Protector enabled the user to set distinct privacy

preferences for every app and private place. These results also made it apparent

that the computation intensity and overhead does not affect location-based apps’

performance or the underlying OS. Moreover, the outcome of the privacy and data

leakage test indicated that service providers are unable to infer the device’s exact

location without getting prior user’s consent. Further, PL-Protector’s LPPMs also

mitigated unauthorised access to private locations and inter-process communication-

based attacks on private locations from both over-privileged and malicious apps or

in-app libraries. Hence, these results have further strengthened our confidence in the

efficiency of PL-Protector; and that our solution provided users with location privacy

at acceptable overheads.
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To sum up, by following PbD approach, we proposed a model, which can evidently

be incorporated into existing mobile platforms without needing any changes in the

ecosystem, to preserve users’ location privacy. This model determined a client-side

service (i.e., on-device middleware), which neither relies on the theoretical assump-

tions (e.g., third-party infrastructure) nor on the trustworthiness of service providers.

The proposed model scaled better than other cache-based or mobile platform-based

approaches and is resistant to service providers’ distrust and curious behaviors. By

achieving data minimisation in the current location calculation process and reducing

LBS related information exchanged and stored, our model protected both the end-user

privacy and service providers’ liability in case of a security breach or their servers being

compromised.

6.2 Future Research Directions

There are a few related open research questions that deserve exploration to enhance the

development, deployment, and evaluation of our proposals, the model (LP-Cache) and

prototype (PL-Protector). In this section, we present two of the research questions

that have not been addressed: 1) scalability and 2) user perceived QoS.

Scalability

Our proposed model relies on the availability of the surrounding network infras-

tructure for the on-device location calculation mechanism. The achieved performance

results are determined with regards to the availability of network infrastructure within

the selected geographical region, i.e., Birmingham, UK. The study on WiFi availability

and feasibility was conducted in 34 selected places within the city; but obtained results

can be assumed for other similar places (i.e., cities and countries). We argue that the
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privacy issues will be high in the regions that have high internet connectivity (wireless

networks), hence, our proposal’s performance will be better in such regions. However,

further investigation and experimentation are needed to account for verifying this

argument. Since our results can be extrapolated, PL-Protector’s implementation and

evaluation decision are limited to Android platform and WiFi data. But, the model,

LP-Cache, was developed as platform independent and can be similarly tested on other

permission-based mobile platforms. To verify this, our prototype could be extended

to other mobile platforms (e.g., iOS) and wireless data (e.g., cellular network) can

be incorporated. We have included five categories of location-based apps; however, it

would be interesting to assess the effects of our model when these apps communicate

with IoT devices or sensors and other connected appliances at the user’s private places.

User Perceived Quality of Service

The term “user-perceived" QoS involve system attributes such as ease of use, quan-

tifying rate and tolerance of user errors, minimising events of user errors, and so on

(Dzida et al., 1978). Our evaluation methodology suffers an inherent limitation, we

made an intentional decision to exclude the requirement of user feedback regarding

PL-Protector’s usability performance. Our research attempts to improve privacy

mechanism objectively to guaranty location privacy for mobile users. It does not

focus on individual user stance towards usability of PL-Protector. Moreover, user

satisfaction survey would require additional research work on other usability fixes in

the developed proof-of-concept. This would also need additional funding to compensate

the involved participants. However, to achieve a practical user experience, we have

considered existing surveys that studies individuals’ privacy preferences and behaviour.

In the future, we intend to conduct a thorough user study to determine comfortability

of the users to accommodate PL-Protector in their devices. To achieve user-perceived
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QoS, we will examine the user feedback to improve the privacy model, system usability,

and user satisfaction. PL-Protector is designed in a way to minimise the frequency

of notifying the user for privacy related decisions and inputs. However, this will need

a well-defined user requirement criteria to assess up to what extent PL-Protector’s

notifications and prompts will become obtrusive to users.

Summary of publications

The findings of this thesis have resulted in 5 publications, we present a summary of

each them below:

Patel and Palomar (2014) This paper presented our classification model that con-

sists of three layers to classify all the protocols, mechanisms and interfaces

covering from the application layer to the network layer. It provided a compara-

tive analysis of the state-of-the-art approaching privacy-preserving mobile LBS

applications;

Patel and Palomar (2016a) This paper introduced our platform-independent theo-

retical model, LP-Cache, for mobile apps that overcomes the shortcomings related

to user privacy in the current mobile app ecosystem;

Patel and Palomar (2016b) This paper is an updated and extended version of Patel

and Palomar (2016a) that includes additional results and model improvements;

Patel and Palomar (2017) This paper presented the design, deployment and evalu-

ation of the middleware, PL-Protector, which implements the LP-Cache model.

It demonstrated the implementation of PL-Protector on Android ver. 6, con-

ducted experiments and the performance evaluation to assess delay overheads;
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Patel and Palomar [2018 ]1 This developed manuscript presents an inclusive con-

tribution to design, deployment and evaluation of a fully-practical middle-

ware(PL-Protector), including the following: comprehensive demonstration

of experiments, mitigation of location privacy threats, and results related to the

performance, security and privacy achievements.

1Patel, A., & Palomar, E. “A Practical Cache-based Location Privacy-enhanced Middleware for
Mobile Users" is developed for publication.
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Appendix A

User Survey

Research Survey: Privacy-preservation in Location-

based Mobile Applications

I am a final year PhD student at Birmingham City University.

This study aims to investigate and contribute to enhancing loca-

tion privacy preservation in the current mobile app ecosystem.

Any smartphone user who downloads and use apps from app

repositories (e.g., App store or Google Play) can participate in

this online survey to help us understand and gather required

information. There are only 10 multiple choice questions. Please

spare 5 to 10 minutes to complete this survey.

Your participation is voluntary, and it is your right to uncon-

ditionally withdraw at any time and for any reason. There are

no particular risks associated with your participation, and no

personally identifiable information will be collected. In case of

questions/comments/suggestions about the survey, please contact

asma.patel@bcu.ac.uk If you agree to the above, please proceed

with the survey.
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1. Do you care about potential privacy threats that your mobile
device can pose?
� Yes
� No

2. Do you care about who access your location information?
� Yes
� No

3. Are you concerned about your privacy when granting location
permission to apps that can continuously access your precise
location, even while it is running in the background? Do you
think such continuous access to your precise locations can allow
apps to violate your privacy?
� Yes
� No

4. Do you care about your privacy when using your mobile devices
in indoor environments (e.g, shopping malls, retailer shops, etc.)?
Do you think businesses based on indoor sensing environment
(e.g., free hotspots) can pose severe privacy threats, such as
unauthorised user tracking, profiling and monitoring of your
movements?
� Yes
� No
� I don’t know

5. Have you taken any step to protect your location privacy?
� Regularly change location sharing settings to OFF/ON on your
devices based on the usage, e.g., ON when using a location-based
app and then turn it OFF when not in use.
� Never changed location settings on your device.
� I don’t know

6. Would you install an app or a tool that manages all the installed
apps on your mobile device and protects your location privacy?
� Yes
� No

7. Would you mind if such location privacy enhancing tool supplies
imprecise locations to installed apps?
� Yes
� No



171

8. When are you more concerned about your privacy? while sharing
your
� Private locations (e.g., home, work or any other frequently
visited private place)
� Public locations (e.g., malls, shop, or any rarely visited places)
� Both
� None

9. You rely more on location based app functionality and result
accuracy, when you are
� At home or work
� Anywhere outside

10. Do you think all apps need continuous access to your precise
location? (If your answer to first question is yes, please select
4th Scale (Exact Location) for all the following 5 app categories)
If given an option to choose, what will be your preferred location
accuracy level when sharing private locations (e.g., home, work
or any other private location) with the following app categories?

App Category Random/Fake City Level Street level Exact Location
(upto 10 meters
accuracy)

Social Networking
(e.g., Facebook)

⃝ ⃝ ⃝ ⃝

Instant Messag-
ing/Chatting
(e.g., Whatsapp)

⃝ ⃝ ⃝ ⃝

Sports/Fitness
tracking (e.g.,
Fitness)

⃝ ⃝ ⃝ ⃝

Utilities (e.g.,
Weather, Alarm,
etc.)

⃝ ⃝ ⃝ ⃝

Finder (PoI
Finder/Geo-
search)

⃝ ⃝ ⃝ ⃝
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A sample of the paper survey response

(Collected 45 responses in total)
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A sample of the paper survey response

(Collected 45 responses in total)
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A sample of the paper survey response

(Collected 45 responses in total)



Appendix C

The Middleware Implementation

Source Code

Listing C.1 contains block of code to monitor running app on Android 6.0 device.

The middleware’s background service frequently checks the running foreground app

using getRunningAppProcesses on older versions and UsageStasManager on Android

6 (or later). However,to use the UsageStasManager API the user of the device needs

to grant permission through Android’s settings application.

Listing C.1 Block of code to monitor running app on Android 6.0 device

1 protected Void doInBackground(Void ... arg0) {

2 String appNew = "NULL";

3 String appNew = am.getRunningTasks (1). get (0). topActivity.

4 getPackageName ();

5 if(Build.VERSION.SDK_INT > 20){

6 if(android.os.Build.VERSION.SDK_INT > =

7 android.os.Build.VERSION_CODES.LOLLIPOP) {

8 UsageStatsManager usm =

9 (UsageStatsManager)context.getSystemService("usagestats");
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10 long time = System.currentTimeMillis ();

11 List <UsageStats > appList = usm.queryUsageStats

12 (UsageStatsManager.INTERVAL_DAILY , time - 1000*1000 , time);

13 if (appList != null && appList.size() > 0) {

14 SortedMap <Long , UsageStats > mySortedMap =

15 new TreeMap <Long , UsageStats >();

16 for (UsageStats usageStats : appList) {

17 mySortedMap.put(usageStats.getLastTimeUsed (), usageStats );

18 }

19 if (mySortedMap != null && !mySortedMap.isEmpty ()) {

20 appNew = mySortedMap.get(mySortedMap.lastKey ()). getPackageName ();

21 }

22 }

23 }

24 else {

25 ActivityManager am =

26 (ActivityManager)context.getSystemService(Activity.ACTIVITY_SERVICE );

27 List <ActivityManager.RunningAppProcessInfo > tasks =

28 am.getRunningAppProcesses ();

29 appNew = tasks.get (0). processName;

30 }

31 Log.e("adapter", "Current_App_in_foreground_is:" + appNew );

32 String appNew = am.getRunningAppProcesses ().get (0). processName;

33 boolean lockedNew = isDeviceLocked(context );

34 appSessionRecord retVal = isNewRecord(appOld ,

35 lockedOld , appNew , lockedNew );

36 if (retVal != null) {

37 handleAppChange(appOld , appNew , retVal.end - retVal.start ,

38 retVal.placeStart , retVal.placeEnd );

39 }

40 appOld = appNew;

41 lockedOld = lockedNew;
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42 return null;

43 }

44 }

Listing C.2 contains Java/Android code to generate copies of the dataset in the

Android device’s internal storage. This dataset was then opened in the DB Browser

tool (see Figure D.1) to maintain logs for the development and testing of the middleware.

Listing C.2 Block of code to to generate copies of the dataset in the Android device’s

internal storage

1 public void exportDatabse(String databaseName) {

2 File sd = Environment.getExternalStorageDirectory ();

3 File data = Environment.getDataDirectory ();

4 if (sd.canWrite ()) {

5 String currentDBPath =

6 "//data//"+getPackageName ()+ "// databases //"+databaseName+"";

7 String backupDBPath = "backupname.db";

8 File currentDB = new File(data , currentDBPath );

9 File backupDB = new File(sd , backupDBPath );

10 if (currentDB.exists ()) {

11 FileChannel src = new FileInputStream(currentDB ). getChannel ();

12 FileChannel dst = new FileOutputStream(backupDB ). getChannel ();

13 dst.transferFrom(src , 0, src.size ());

14 src.close ();

15 dst.close ();

16 }

17 }

18 }
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Listing C.3 contains Java/Android code to add session and location access tags to

every app’s location access requests. These tags were used to maintain control flow of

every intercepted app and monitoring privacy rules.

Listing C.3 Block of code that adds session and location access tags to every app’s

location access requests

1 public static void addAppSession

2 (Context context , String app , boolean isLocationAccessed)

3 {

4 SharedPreferences sharedPref = context.getSharedPreferences

5 (PREF_FILE , Context.MODE_PRIVATE );

6 SharedPreferences.Editor editor = sharedPref.edit ();

7 String keySessionTotal = app + SESSION_TAG;

8 String keySessionLocationAccess = app + LOCATION_TAG;

9 int sessionTotal = getSessionTotal(context , app);

10 int sessionsWithLocationAccess =

11 getSessionsWithLocationAccess(context , app);

12 editor.putInt(keySessionTotal , sessionTotal + 1);

13 if (isLocationAccessed) {

14 editor.putInt(keySessionLocationAccess ,

15 sessionsWithLocationAccess +1);

16 }

17 editor.commit ();

18 }

Listing C.4 contains block of sqlite database script to fetch applied privacy rule for

every app’s location access requests in the database to calculate LoP . This was used

to calculate achieved privacy.
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Listing C.4 Block of code to fetch applied privacy rule for every app’s location access

requests in SQLite database to calculate LoP

1 public LOPRule fetchUpToDateRule(String app , int place) {

2 RuleData appRule = new RuleData(app);

3 String strWhereFirstClause = "(" +

4 RuleEntry.COLUMN_NAME_PLACE_ID + "=" + place + "OR" +

5 RuleEntry.COLUMN_NAME_PLACE_ID + "=-1" + "OR" +

6 RuleEntry.COLUMN_NAME_PLACE_ID + "=" + RuleInterface.PLACE_FLAG +

7 ")";

8 String strWhereSecondClause =

9 "(" + RuleEntry.COLUMN_NAME_PACKNAME + "=’"

10 + app + "’OR" + RuleEntry.COLUMN_NAME_PACKNAME +

11 "=’" + RuleInterface.APP_FLAG + " ’)";

12 String strWhere =

13 strWhereFirstClause + "AND" + strWhereSecondClause;

14 Util.Log(Util.DB_TAG , strWhere );

15 SQLiteDatabase db = App.getReadableDB ();

16 String [] projection = {

17 RuleEntry.COLUMN_NAME_PLACE_ID ,

18 RuleEntry.COLUMN_NAME_FORERULE ,

19 RuleEntry.COLUMN_NAME_BACKRULE ,

20 RuleEntry.COLUMN_NAME_PRULE ,

21 RuleEntry.COLUMN_NAME_LOC_PRIVACY_LEVEL ,

22 RuleEntry.COLUMN_NAME_LEVEL_OF_PRIVACY ,

23 RuleEntry.COLUMN_NAME_LAT ,

24 RuleEntry.COLUMN_NAME_LON

25 };

26 String sortOrder = RuleEntry.COLUMN_NAME_PLACE_ID + "DESC ," +

27 RuleEntry.COLUMN_NAME_PACKNAME + "DESC";

28 String limit = "1";

29 Cursor c = db.query(
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30 RuleEntry.TABLE_NAME , // The table to query

31 projection ,

32 strWhere ,

33 null ,

34 null ,

35 null ,

36 sortOrder ,

37 limit

38 );

39 c.moveToFirst ();

40 // no matching record

41 if (c.getCount () == 0) {

42 return null;

43 }

44 return appRule.fetchSubRule(c);

45 }

Listing C.4 contains the code used for monitoring locations calls received from run-

ning apps. In this code, the requested private location is checked and annonymised/al-

tered as per the privacy rules pre-set by the user, and then it is released to the

requesting app.

Listing C.5 Block of code to anonymise locations requested by running apps

1 public void anonymiseLocation(String app , String result ,

2 String source , int reportedPlaceID , int privacyLevel) {

3 currentAnonymisationLevel = privacyLevel;// routinely updated

4 // anonymise location by applying privacy rules to the location

5 // check if there is a cached location for place and app to use

6 //if not , create a new one and use. Access the current place

7 LatLng alteredLocation =
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8 getAlteredLocationForCurrentPlace(app , privacyLevel );

9 mainService.startLocationAnon(alteredLocation );

10 // behavior varies for runtime notification or app launch event

11 if (! source.equals(Util.FAKE_INTENT_SOURCE )) {

12 finishDecisionMaking(app , result , source , reportedPlaceID );

13 }

14 }

15 private LatLng getAlteredLocationForCurrentPlace(String app ,

16 int privacyLevel) {

17 double lat = 0;

18 double lon = 0;

19 // add an interface using shared preferences (app+place as key)

20 // doesn ’t exist , create one. And then add to it

21 // doesn ’t interfere with the existing structure of privacy rules

22 // everything passes through the rule interface

23 Util.Log("rule", "" + privacyLevel );

24 int currentPlace = mainService.getCurrentPlace (). getPlaceID ();

25 LatLng currentLoc =

26 mainService.getCurrentPlace (). getCurrentLoc ();

27 long t1 = System.nanoTime ();

28 // privacy level via settings UI

29 LatLng alteredLocation = ruleBridge.getFixedLocation(app ,

30 currentPlace , privacyLevel , context );

31 Util.Log("lp_time", "cached␣location:␣" +

32 (System.nanoTime () - t1));

33 if (alteredLocation != null) {

34 Util.Log("rule", "found␣existing␣rule" +

35 alteredLocation.toString ());

36 return alteredLocation;

37 }

38 // now if null , get it from math tools

39 alteredLocation =
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40 MathTools.getAlteredLocation(currentLoc , privacyLevel );

41 ruleBridge.setFixedLocation(app , currentPlace , alteredLocation ,

42 privacyLevel , context );

43 return alteredLocation;

44 }

45 // rule decision making method and resume the app

46 public void finishDecisionMaking(String appLPPM , String result ,

47 String source , int reportedPlaceID) {

48 // send the intent back to the app launcher to allow the app to start

49 mainService.instructApptoLaunch(appLPPM ,

50 result , source , reportedPlaceID );

51 appHelper.setStartedApp(appLPPM , reportedPlaceID );

52 }

Listing C.6 contains block for the three types of location privacy rules: adjust

granularity (i.e., truncate), obfuscate (i.e., transform) and no change are applied on the

user’s geo-coordinates. To apply privacy rules, we need to convert the geo-coordinates

(received via location object) from dms (degree, minutes, seconds) to decimal format.

For this, we used geo-coordinate parser util library. The geo-coordinate truncation and

transformation levels and scaling factor both are decided by the user inputs. Hence,

for truncation, geo-coordinates are rounded to 6/7/8 decimals ( 1m to 1km precision).

Listing C.6 Block of code for the location privacy rules given in the personalised

permissions algorithm

1 // convert geo - coordinates from dms to decimal format .

2 public class MathTools{

3 public static LatLng getAlteredLocation(LatLng currentLoc ,

4 int accuLevel) {

5 double altLat;
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6 double altLong;

7 double radius = getRadius(accuLevel );

8 double privacyLevel = Math.log (4);

9 Random rand = new Random ();// generate randomness

10 double theta = rand.nextDouble () * 360;

11 double phi = privacyLevel / radius; // (~1m to 1km precision )

12

13 altLat = currentLoc.lat

14 altLong = currentLoc.long

15 altLat = Math.asin(Math.cos(theta) Math.sin(currentLoc.lat) -

16 Math.cos(currentLoc.long) Math.sin(theta) Math.cos(currentLoc.lat))

17 altLong = Math.atan2(sin(currentLoc.long), Math.tan(currentLoc.lat)

18 Math.sin(theta) + Math.cos(currentLoc.long) Math.cos(theta )) - phi

19 return Util.calculateDerivedPosition(currentLoc ,

20 altLat , altLong , theta);

21 }

22 private static double getRadius(int accuLevel) {

23 switch (accuLevel) {

24 case RuleData.ANON_LOW:

25 return 10;

26 case RuleData.ANON_MEDIUM:

27 return 100;

28 case RuleData.ANON_HIGH:

29 return 1000;

30 default:

31 return 1000;

32 }

33 }

34 // truncate geo - cordinates (x) using value of p set by the user.

35 private static Double TrunctateToDecimals(LatLng currentLoc , int p)

36 {

37 public parseLatLongtoDecimal(LatLng currentLoc ){
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38 public CoordinateParseUtils cordParse =

39 new CoordinateParseUtils ()

40 cordParse.OccurrenceParseResult(String.valueOf(currentLoc ));

41 return this;

42 }

43 return x == null ? null :

44 Math.round(currentLoc * Math.pow(10, p))/ Math.pow(10, p);

45 }

46 }

47 // no change

48 private static Double noChange(LatLng currentLoc ){

49 return currentLoc;

50 }

51 }



Appendix D
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Evaluation



194 Results for the Middleware Evaluation

Figure D.1 Screenshot of a collected SQLite database opened on DB Browser tool
The collected SQLite database, i.e., AppData22.db, is opened on DB Browser tool.

We used this tool to analyse the collected versions of SQLite databases and monitor
the increase of the on-device cache storage.
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Table D.3 Data collected to calculate communication overhead for apps.
Please note: we collected datasets of 5 apps running in both environments baseline
(WDelay and Wfreq) vs PL-Protector (Delay and Freq).

AppSets Sessions Delay Freq WDelay WFreq

AppSet 1 5 1 1 1 1

AppSet 1 10 9 10 7 8

AppSet 1 20 9 19 7 15

AppSet 1 30 8 27 6 21

AppSet 1 40 12 39 10 31

AppSet 1 50 9.5 48.5 7 38

AppSet 1 60 8 56.5 5 43

AppSet 1 70 7 63.5 4 47

AppSet 1 80 13 76.5 11 58

AppSet 1 90 10 86.5 6 64

AppSet 1 100 14 100.5 11 75

AppSet 2 5 2 2 0.5 0.5

AppSet 2 10 6 8 5 5.5

AppSet 2 20 9 17 7 12.5

AppSet 2 30 7 24 5 17.5

AppSet 2 40 6 30 5.5 23

AppSet 2 50 7 37 5 28

AppSet 2 60 6 43 6 34

AppSet 2 70 9 52 5 39

AppSet 2 80 7 59 6 45

AppSet 2 90 6.5 65.5 4 49

AppSet 2 100 7.2 72.7 5 54

AppSet 3 5 4 4 3 3

AppSet 3 10 14 18 11 14



198 Results for the Middleware Evaluation

AppSets Sessions Delay Freq WDelay WFreq

AppSet 3 20 11 29 12 26

AppSet 3 30 14 43 12 38

AppSet 3 40 13 56 9 90

AppSet 3 50 10 66 10 97

AppSet 3 60 15 81 12 99

AppSet 3 70 17 98 15 101

AppSet 3 80 13 111 13 107

AppSet 3 90 18 129 16 113

AppSet 3 100 22 151 20 123

AppSet 4 5 3 3 1.5 1.5

AppSet 4 10 7 10 5 6.5

AppSet 4 20 4 14 1 7.5

AppSet 4 30 5 19 3 10.5

AppSet 4 40 4 23 4 14.5

AppSet 4 50 12 35 11 25.5

AppSet 4 60 14 49 13 38.5

AppSet 4 70 8 57 8 46.5

AppSet 4 80 9 66 10 56.5

AppSet 4 90 10 76 8 64.5

AppSet 4 100 14 90 12 76.5

AppSet 5 5 2 2 1 1

AppSet 5 10 14 16 10 11

AppSet 5 20 13 29 9 20

AppSet 5 30 21 50 17 37

AppSet 5 40 16 66 15 52

AppSet 5 50 18 84 17 79

AppSet 5 60 21 105 21 80
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AppSets Sessions Delay Freq WDelay WFreq

AppSet 5 70 14 119 12 98

AppSet 5 80 17 136 16 118

AppSet 5 90 15 151 14 122

AppSet 5 100 13 164 12 140

Table D.4 Data collected to calculate response rate by PL-Protector when interacting
with apps

No. AC-Set1 AC-Set2 AC-Set3 AC-Set4 AC-Set5

1 0.85 0.7 0.83 0.82 0.78

2 0.87 0.92 0.92 0.7 0.86

3 0.85 0.77 0.83 0.68 0.79

4 0.84 0.76 0.82 0.78 0.85

5 0.91 0.84 0.83 0.8 0.73

6 0.82 0.42 0.72 0.75 0.84

7 0.87 0.72 0.73 0.77 0.73

8 0.75 0.75 0.88 0.88 0.75

9 0.85 0.77 0.82 0.95 0.84

10 0.81 0.89 0.81 0.86 0.76

11 0.38 0.78 0.72 0.81 0.78

12 0.77 0.78 0.82 0.78 0.77

13 0.84 0.84 0.83 0.81 0.88

14 0.97 0.85 0.94 0.69 0.95

15 0.84 0.77 0.74 0.75 0.76

16 0.98 0.88 0.72 0.84 0.21

17 0.88 0.81 0.83 0.75 0.11

18 0.82 0.11 0.84 0.81 0.87

19 0.89 0.74 0.82 0.74 0.78
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No. AC-Set1 AC-Set2 AC-Set3 AC-Set4 AC-Set5

20 0.89 0.81 0.91 0.83 0.67

21 0.85 0.7 0.83 0.82 0.78

22 0.87 0.92 0.92 0.7 0.86

23 0.85 0.77 0.83 0.68 0.79

24 0.84 0.74 0.82 0.78 0.85

25 0.91 0.84 0.83 0.8 0.73

26 0.82 0.77 0.72 0.75 0.84

27 0.87 0.72 0.73 0.77 0.73

28 0.75 0.85 0.88 0.88 0.75

29 0.85 0.77 0.82 0.95 0.84

30 0.81 0.89 0.81 0.86 0.76

31 0.38 0.78 0.72 0.1 0.78

32 0.77 0.78 0.72 0.78 0.77

33 0.84 0.84 0.83 0.81 0.88

34 0.97 0.75 0.94 0.69 0.95

35 0.84 0.87 0.74 0.75 0.76

36 0.98 0.88 0.72 0.84 0.21

37 0.88 0.81 0.83 0.75 0.11

38 0.82 0.11 0.84 0.81 0.87

39 0.89 0.78 0.82 0.74 0.78

40 0.89 0.81 0.91 0.83 0.67

41 0.87 0.7 0.83 0.82 0.78

42 0.84 0.92 0.92 0.7 0.86

43 0.85 0.77 0.83 0.68 0.79

44 0.87 0.76 0.82 0.78 0.85

45 0.91 0.84 0.83 0.8 0.73

46 0.82 0.42 0.72 0.75 0.84
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No. AC-Set1 AC-Set2 AC-Set3 AC-Set4 AC-Set5

47 0.87 0.72 0.73 0.77 0.73

48 0.75 0.75 0.88 0.88 0.75

49 0.85 0.77 0.82 0.95 0.84

50 0.81 0.89 0.81 0.86 0.76

51 0.38 0.78 0.72 0.81 0.78

52 0.77 0.78 0.82 0.78 0.77

53 0.84 0.84 0.83 0.81 0.88

54 0.97 0.85 0.94 0.69 0.95

55 0.84 0.77 0.74 0.75 0.76

56 0.98 0.88 0.72 0.84 0.21

57 0.88 0.81 0.83 0.75 0.11

58 0.82 0.11 0.84 0.81 0.87

59 0.89 0.74 0.82 0.74 0.78

60 0.89 0.81 0.91 0.83 0.67

61 0.85 0.7 0.83 0.82 0.78

62 0.87 0.92 0.92 0.7 0.86

63 0.85 0.77 0.83 0.68 0.79

64 0.89 0.74 0.82 0.78 0.85

65 0.85 0.84 0.83 0.8 0.73

66 0.87 0.77 0.72 0.75 0.84

67 0.85 0.72 0.73 0.77 0.73

68 0.75 0.85 0.88 0.88 0.75

69 0.85 0.77 0.82 0.95 0.84

70 0.81 0.89 0.81 0.86 0.76

71 0.38 0.78 0.72 0.1 0.78

72 0.77 0.78 0.72 0.78 0.77

73 0.84 0.84 0.83 0.81 0.88
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No. AC-Set1 AC-Set2 AC-Set3 AC-Set4 AC-Set5

74 0.97 0.75 0.94 0.69 0.95

75 0.84 0.87 0.74 0.75 0.76

76 0.98 0.88 0.72 0.84 0.21

77 0.88 0.81 0.83 0.75 0.11

78 0.82 0.11 0.84 0.81 0.87

79 0.75 0.78 0.82 0.74 0.78

80 0.91 0.81 0.91 0.83 0.67

Table D.5 Data collected to calculate on-device cache mechanism accuracy of the
inter-request interval over time for 5 apps (Time vs Response rate)

Time Appset 1 AppSet 2 AppSet 3 AppSet 4 AppSet 5

0 0.6 0.52 0.4 0.54 0.57

5 0.58 0.4 0.6 0.48 0.6

10 0.64 0.5 0.58 0.54 0.7

15 0.7 0.7 0.65 0.75 0.8

20 0.81 0.7 0.78 0.71 0.85

25 0.84 0.8 0.75 0.89 0.85

30 0.87 0.8 0.89 0.8 0.9

35 0.79 0.7 0.87 0.77 0.9

40 0.85 0.85 0.9 0.85 0.95

45 0.92 0.89 0.85 0.89 0.95

50 0.95 0.9 0.89 0.9 0.9
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Abstract. Emerging indoor positioning and WiFi infrastructure enable
building apps with numerous Location-based Services (LBS) that repre-
sent critical threats to smartphone users’ location privacy provoking con-
tinuous tracking, profiling and unauthorized identification. Currently, the
app eco-system relies on permission-based access control, which is proven
ineffective at controlling how third party apps and/or library developers
use and share users’ data. In this paper we present the design, deploy-
ment and evaluation of PL-Protector, a location privacy-enhancing mid-
dleware, which through a caching technique minimises the interaction
and data collection from wireless access points, content distributors and
location providers. PL-Protector also provides a new series of control
settings and privacy rules over both, the information and control flows
between sources and sinks, to prevent user information disclosure during
LBS queries. We implement PL-Protector on Android 6, and conduct
experiments with real apps from five different categories of location-
based services such as instant messaging and navigation. Experiments
demonstrate acceptable delay overheads (lower than 22ms) within prac-
tical limits; hence, our middleware is practical, secure and efficient for
location-demanding apps.

Keywords: Location privacy · Location-based services · Smartphones ·
Caching · Location-based applications · Android · Mobile platforms

1 Introduction

The explosive growth of Internet of Things, Smart Cities and Smart-Home appli-
cation frameworks, e.g., Samsung SmartThing [23] and Google Weave/Android
of Things [12], leverage third party developers to build apps that compute on
user’s sensitive data. For instance, emergent context-aware mobile apps bring
about tremendous opportunities for a whole new class of Location-Based Services
(LBS) [21]. Geo-marketing and geo-social networking, location-based games, and
assisted eHealth represent a small subset of these opportunities that can certainly
pose a serious threat to the users’ privacy [17,24].

c© Springer International Publishing AG 2017
J. Lopez et al. (Eds.): TrustBus 2017, LNCS 10442, pp. 32–45, 2017.
DOI: 10.1007/978-3-319-64483-7 3
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Currently, privacy settings of user location on smartphones1 are modeled
after existing permission controls that are based on a binary process2. In general,
apps use permission-based access control for data sources and sinks, but they
do not control flows between the authorised sources and sinks. Besides, users
are forced to rely on third party service providers/sinks that in many cases
continuously collect, use and share their location data, and in some cases even
prompt the user to give away their position on page load [1,24]. Moreover, both
academia and industry agree on the urgent need of adopting a Privacy-by-Design
(PbD) approach for the development of more user-friendly and socially-accepted
solutions to privacy preservation on their mobile products and services [6].

To encounter this challenge, our approach campaigns new design principle
and privacy policy recommendation that forces the smartphone app ecosystem
to make location data use patterns explicit, while preventing all other sensitive
data flows. In this paper, we present the design, deployment and evaluation of
the middleware called Private Location Protector (PL-Protector), which imple-
ments the LP-Caché model introduced in [20]. PL-Protector envisions beyond
the simple grant/deny access method and provides the user with advanced mech-
anisms to decide the extent of disclosing location data with service providers. It
also incorporates caching technique to determine users’ geographical location in
a privacy preserving manner by means of wireless access points, and with mini-
mum cache storage requirements. The contributions of this work are as follows:

– To identify the required functionality goals that protect users from location-
demanding apps through the analysis of location privacy specific challenges
and security design issues within the existing mobile platforms.

– Design of the on-device location computation model that enables robust and
efficient source to sink (unauthorised apps and third party app providers) flow
control. We present implementation details of the PL-Protector middleware
for mobile platforms. Our prototype runs on a Nexus 6p with Android that
acts as platform’s location privacy knob. PL-Protector only requires process
isolation and IPC services from the underlying operative system (OS); thus,
minimizing the requirements placed on the hardware/OS.

– Evaluation of PL-Protector in terms of Quality of Service (QoS), communica-
tion and computational overheads. We ported five real location-based apps to
PL-Protector. Macro-benchmarks of these apps (latency) and our empirical
settings indicate that PL-Protector performance overheads are acceptable,
and it is practical, secure, and efficient middleware for location-demanding
apps.

The rest of the paper is organized as follows. Section 2 outlines the back-
ground and related work. Section 3 overviews PL-Protector’s privacy model.

1 Throughout this paper, we use the terms Smartphone and Mobile interchangeably.
2 Data protection directives and acts [8,15] across the globe state that personal data
should not be disclosed or shared with third parties without consent from subject(s).
Such a consent is typically obtained by mandatory acceptance of the conditions men-
tioned in the End User License Agreement (EULA), or through opt-out possibilities
and other regulations [16].
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Section 4 fully elaborates on the design decisions, architecture and implemen-
tation of the middleware. We evaluate PL-Protector’s performance overheads in
Sect. 5. Finally, Sect. 6 concludes and sets future plans.

2 Background

In this section we analyze the location privacy threats within the smartphone app
ecosystem. This includes studying how the location calculation process works in
smartphones and how LBS apps collect the user location data. We also justify our
decision on implementing PL-Protector as middleware for Android platforms.
Nonetheless, our results can be extrapolated to other permission-based mobile
platforms such as iOS.

2.1 Location Sources

To understand location privacy specific challenges and security design issues, we
start analysing the process of location calculation in smartphones when using
LBS. Based on our prior study [20], we understand that the three major existing
mobile platforms, namely Android, Windows and iOS that span the domains
of smartphones, follow common patterns of location data retrieval. Basically,
the standard architecture of using LBS on a mobile platform comprises of four
main entities: (1) User Device i.e. installed apps, (2) App Provider, (3) Network
Infrastructure, and (4) Location Provider. The user device collects the unique
identifiers from the surrounding network access points along with GPS data,
and sends these over to the location provider to get the exact device location.
Calculation3 of the user device’s actual position is then performed at the location
provider who sends it back to the user device in the shape of a location object
containing geo-coordinates. At the device, this location object is shared amongst
apps, and then, it is transmitted to app providers along with LBS query via the
standard programming interface/API [3].

Simple eavesdropping on this location object is a major threat to this archi-
tecture even if users put in place the corresponding location sharing preferences4,
which generally are highly context sensitive and use dependent [26]. Moreover,
existing OS’s location access controls by system services respond inadequately
to major privacy threats [1,10].

2.2 Operating System Controls and Apps’ Location Access

In Android, apps can only access sensitive resources through the official APIs
once the corresponding permissions declared at the manifest files are granted and

3 i.e., WiFi Triangulation and Cell-tower Triangulation, GPS Mapping, etc.
4 Types and levels of controls for user location privacy settings depend on the OS
and apps. In some cases, apps do not allow users to control others’ access to their
location data.
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authorised by the user. Since Android 6.0 (API level 23), users grant permissions
to apps while the app is running, not when they install the app. However, in both
cases, a positive user authorisation might result in other remote third parties and
external sources benefiting from this information made available in ad-libraries
for commercial purposes and/or untrusted code execution [7,9]. These existing
studies and reports of data-stealing malware on smartphones clearly show the
need of a better run-time permission method regulating the way apps and ad
libraries are integrated into Android and other permission based platforms.

2.3 Middleware

Privacy Enhancing Techniques (PETs) and other cryptographic schemes [19,25]
have been proposed to the location query formation and privacy preservation
between the app/LBS providers in the different architectures and settings.
Besides, several proposals apply caching scheme, along with PETs, to address
location privacy challenges. Most of these techniques, however, rely on a series
of theoretical assumptions such as the existence of a trusted infrastructure pro-
viding privacy protection, a group of similar app users being at the same time
and same place, or a data collection servers complying with location privacy
regulations, e.g., MobiCaché [4,18,27].

Caché [2] maintains an on-device cache to store entire location based queries
contents and data-types to be re-used in future LBS queries that increases the
cache storage requirements. Besides the storage overhead, Caché also requires
the abilities of app developer to modify the way app access location data. PL-
Protector only caches the network fingerprints and mapped geo-coordinates,
which reduces the memory requirements significantly. Our middleware, PL-
Protector, considers installed apps as black boxes; this way, it does not require
app developer to modify the app code.

The service called Koi in [13] is cloud-based and demands numerous changes
in the existing smartphone ecosystem. It requires developers to use a different
API for the local access to the device location and implements a comparison
mechanism and location criteria. Similar to ours, solution proposed in [11] does
not rely neither on the adaptation of the apps code nor on the existence of
theoretically trusted infrastructure. However, it does not allow the user to con-
trol wireless and location data that is shared with the location provider and/or
the app provider. This issue is mainly due to considering the location provider
as the only source of the user location when developing location-based apps.
Moreover, it applies indistinguishability on the location data, which increases
the computational overhead over time.

LP-Caché introduced in [20] and its implementation as the middleware PL-
Protector are, to our knowledge, first working prototype leading the new design
principles and policy recommendations to secure the computation and transmis-
sion of user location data within the existing mobile ecosystem. Main achieve-
ments lead to a minimisation of the wireless AP data collection by both, the
wireless content distributors and location providers, and the provision of the
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control settings preventing user information disclosure from the generated LBS
queries (e.g., points of interests (PoIs) and nearest neighbors).

3 Privacy Model

We characterize PL-Protector’s privacy model considering the threat model and
evaluation metrics for both app usage and privacy protection.

3.1 Threat Model

We consider two different threat scenarios to PL-Protector mainly caused by the
level of access to user location in and out the device, as follows:

Android’s Middleware Layer Threats. A series of attacks operates at
Android’s middleware layer [5]. PL-Protector mitigates the location privacy
attacks coming from over-privileged and malicious 3rd party apps and libraries.

Privacy Threats. User tracking, identification and profiling (i.e., personal
habits, movement patterns, etc.) are fundamental threats to location privacy
[25]. Without PL-Protector, the continuous flow of LBS queries between user
devices and service providers, that include device’s exact geo-coordinates infor-
mation, leverages malicious misuse of the user location data, especially in the
presence of a malicious location provider, app provider and via advanced network
sniffing practices.

PL-Protector computes the exact location within the user device, without
the location provider’s involvement, whilst trusting the device on the storage
of sensitive data. However, the user has still the option of giving consent for
app providers and/or location providers to access location data. Mobile network
providers might, however, collect user location data via cellular clients. It is also
excluded from our work the option of manually inserting the location data (e.g.,
street name and post code) within the LBS query.

3.2 Preliminaries

We now model the user mobility and app usage (specifically at private places) as
a series of privacy evaluation metrics that will be used to validate PL-Protector’s
working assumptions.

Mobility Model. We formulate users’ points of interests (PoIs), (e.g., Home
or Work) as private places that users frequently visit. Hence, pi represent ith

private place identification, which is derived from a series of scanned beacons nx

and the representative location lr for that private place, and Pl is a set of user’s
total private places, as shown in Eqs. 1 and 2.

pi = [n1], [n2], . . . , [nx] → [lr] (1)

Pl = [pi], [pj ], . . . , [pn] (2)
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Fig. 1. Mechanism to access user’s location in Android (left), and PL-Protector’s
deployment in Android (right).

At location pi, the user can then visit a subset of private places Upi
⊆

p1, p2, · · · , pj , running the different LBS apps on his device. PL-Protector relies
on the user input to define the set of private places that are distinct for every
user mobility profile. Moreover, to set up network fingerprints at pi, we measure
the response rate as the ratio of detection count and the total number of scans
for each beacon as follows:

Rnc,x =

∑nc

i=1 bx,i
nc

, bx,i =

{
1 if beaconx found in ith scan
0 otherwise

(3)

where Rnc,x is the response rate of beacon x at pi and nc is the total scan
count since the private place was entered. The detection count of each beacon
is maintained to identify the frequently occurring beacons. Beacons with higher
response rate are used to create the network fingerprint for that pi. Rnc,x will be
maintained in the PL-Protector database to update the response rate of every
detected beacon during a specified time interval t spent at private place pi.

App-Usage Model. We will apply privacy rules to the app sessions taking
place at private places. We define “app session” as the duration of the app
usage. In Android, according to the execution status, an app can run in three
different states: foreground, background and perceptible. In general, apps get
access to the user’s location in foreground. When the user exits an app, this is
cached and moved to background state for faster execution. Persistent status
is informed by notifications. Background state allows prolonged location access;
therefore, tracking threats are more harmful here.
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3.3 Privacy Metrics

Table 1 compiles the hereinafter metrics to be used for evaluating the location
privacy threats. We define value of Pls as the identifier of applied privacy set-
ting and measure the achieved privacy by analysing the collected dataset of the
actual location traces at user’s private places. To evaluate location privacy, we
use Haversine formula in [22] to quantify tracking and profiling threats as the
distance Pld (Eq. 4) between two positions with longitude and latitude (φ, λ)
and the radius r of the Earth:

Pld = 2r sin−1(

√
sin2(

φ1− φ2)

2
+ cos(φ1) cos(φ2) sin2(

λ2− λ1

2
)) (4)

where the haversine function is given by Hsin(θ) = sin2( θ2 ), φ1 & φ2 are the
original geo-coordinates, and λ1 & λ2 are the observed geo-coordinates. Secondly,
the privacy rules (see more details in Sect. 4.1) pre-set by user will, later, be used
to measure achieved privacy using the distance scale 〈Phigh, Pmedium, Plow〉.

Table 1. The evaluation metrics for the location privacy threats.

Metric Description

Pls Unique value to identify applied privacy settings

Pld Distance between two points with longitude and latitude

Phigh Distance is >111.32 km

Pmedium Distance is >11.132 km

Plow Distance is >1.1132 km

4 PL-Protector on Android

In this section we describe the architecture and implementation decisions for
PL-Protector middleware on Android.

4.1 Architecture

PL-Protector enables users to control per-location access sessions.

App-Session Handler component is responsible of intercepting location access
events so to lead the LBS apps’ control flow to our middleware. It first pauses
the requesting app and, retrieves the newly acquired location object to be
sent to the Private Location Manager component for rule checking. Once the
privacy policy rules are applied, the App-Session Handler will receive the
anonymised/transformed location and resume the requesting app’s control flow.

The Private Location Manager is the central component that receives both
events (actions) and data from the different components as well as it maintains
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Fig. 2. User interface: (left) WiFi settings screen, and (middle and right) screens to
manage per-app/location rule settings

the Cache DB database. User inputs via user interface (UI) are used to create
privacy rules for specific private locations and network fingerprints. Moreover,
the Private Location Manager detects unique identifiers of the surrounding wire-
less APs and maintains a binary flag to detect private places. When the flag is
ON, the location data is retrieved from the Cache DB and sent to the Policy
Controller. In case of an unmatched query on the cached locations, and the user
do not want to input geo-coordinates manually (via maps provided in UI) the
location data is received by location providers from the Location Receiver.

The Policy Controller gathers the location objects from the Private Loca-
tion Manager as to apply the corresponding user permissions on the location
coordinates, altering them if needed, and transferring the processed location to
the App Session Handler module. The two privacy policies that the User can set
per-app/place basis are the Standard Policy and Per-location Policy (see Fig. 2),
as follows:

1. The Standard Policy consists of three location settings as follow:
(a) The Behaviour Protection setting implements the geo-coordinate obfus-

cation equation defined in [20] to generate transformed/obfuscated geo-
coordinates (l′, l′g) for every app session. The behaviour protection level
is defined by a scale (Low, Medium, and High) that determines random-
ness of the obfuscation equation’s parameters 〈s, θ, (l, lg)〉, where s is the
scaling factor, θ is the random rotation angle, and (l, lg) are the original
coordinates.

(b) The Location Protection setting implements the geo-coordinate trunca-
tion equation defined in [20] and follows a location granularity scale like

211



40 A. Patel and E. Palomar

(Low, Medium, and High) to adjust the location precision level for every
app session.

(c) The Block/Fixed Location setting picks high behaviour and location pro-
tection level by default and determines a constant value of altered geo-
coordinates for every app session.

2. The Per-location policy allows the User to apply standard policy settings for
each pre-marked private places that are displayed on the map.

Once processed geo-coordinates (l′ l′g) that comply with pre-set privacy rule are
generated, we measure achieved level of privacy on per-session basis using values
of both Pld and Pls (as defined in Sect. 3.3).

The Location Receiver component receives a location object, which includes
the user device’s geo-coordinates from location providers, and sends it over to
the Private Location Manager for further processing.

4.2 Middleware Implementation

PL-Protector orchestrates a mobile platform based location protection service
on Android to modify the location resource handling process. The middleware
communication requires process isolation and IPC services; hence, minimising
the requirements placed on hardware or OS modifications.

PL-Protector Life Cycle. In Android, there are two methods to access user’s
location: (1) Location Manager Service (Old), and (2) Fused Location Manager
Service (New) that are part of Google Play Services. However, both methods
require the app to request a callback function to get regular updates by regis-
tering a location listener. The app receives a new location object when a new
location is available, the callback function is invoked (Fig. 1 (left)). Modifying
these two Google services is complicated, but we make PL-Protector communi-
cate with the location requesting apps by intercepting the location object before
it reaches requesting apps (Fig. 1-(right)). One of the main task is to add a system
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Fig. 3. PL-Protector’s overall computation latency caused at 34 distinct private places.
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Fig. 4. Apps communication overhead without (left) and with (right) PL-Protector.

service, where the class belongs to the location APIs. Thus, the PL-Protector’s
service is placed in the android.location package, which detects private loca-
tions via WiFi APs and can also be used by other components when calling
context. In Android, a context allows an app to interact with the OS resources.
Similar to [11], we add a static context field to the location class, which will be
populated when the app is invoked; this enables PL-Protector to know which
app is currently requesting the location object, and also communicate with the
OS. Besides, Fused Location Manager combines sensors, GPS, Wi-Fi, and cel-
lular data into a single API for location-based applications [14], hence separating
data from GPS PROVIDER and NETWORK PROVIDER is no longer straight forward.
PL-Protector addresses this issue by preventing app’s location request to reach
the Fused Location Manager that collects and sends the network session data
to the location provider. Instead, the requested location is retrieved from the
on-device cache, and then, it is sent to the requesting app (with privacy rules
applied).

Bootstrapping. When PL-Protector first boots and before turning ‘ON’ the
location sharing setting, the user will have to perform an initial setup. This will
allow WiFi AP scanning, input geo-coordinates and set privacy choices using
User Interfaces (UI) (Fig. 2 - left). PL-Protector’s UI incorporates a map to
get the corresponding geo-coordinates so achieving an effective privacy without
affecting the location accuracy. At the same time, this prevents non-authorised
sharing of device’s exact location and network session data. The UI (Fig. 2 -
middle and right) enables users to set and manage their private locations and
apps distinctly.

5 Evaluation

We evaluate PL-Protector in terms of QoS, communication and computational
overheads.
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Fig. 5. Total response rate by PL-Protector when interacting with apps

5.1 Experimental Setup

We deployed PL-Protector middleware on a Nexus 6 with Android 6.0 (API 23)
and ported apps of five different LBS queries categories namely (1) Social Net-
working (e.g., Facebook), (2) Instant Messaging/chatting (e.g., Whatsapp), (3)
Tracking (e.g., Fitness), (4) Utilities (e.g., Weather, Alarm, etc.) and (5) Finder
(PoI Finder/Geo-search). Based on app operations, we assume that both types
(1) and (3) require continuous access to location data; whereas, types (2), (4)
and (5) involve sporadic access. We have collected empirical data from a number
of sessions running at different time intervals over a period from 1 to 6months.
We then created two datasets at 34 selected private places. In the first dataset,
we include the ported apps’ session data running over the conventional Android
environment without interacting with PL-Protector. The second dataset consists
of the same apps running in the presence of PL-Protector.

5.2 Impact on the Quality of Service

Crucial for its functionality, we measure latency as the time PL-Protector
takes to interact with the app and perform an entire computational cycle, i.e.,
to compute the location on-device and to apply the privacy rules. On aver-
age, PL-Protector presents a latency lower than 22ms upon all the location-
access calls executing PL-Protector’s privacy controls at runtime (as shown in
Fig. 3). The reason for increased latency is due to PL-Protector’s load time, and
cross-process/IPC service transfers of location updates. However, this latency is
smaller than 100ms and, thus, small enough to not cause user-noticeable delays
while utilising apps on the device. Furthermore, Fig. 4 show the communication
overhead for the 5 app categories and compares both execution environments. In
per-location access sessions, we found <19ms delays when continuous location
updates, and <8ms delay for sporadic location updates. Thus, PL-Protector is
suitable to run all the existing apps of aforementioned five LBS categories since
their core functionality already accepts delays in this range.
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5.3 Cache Accuracy

To analyse the accuracy of the on-device cache method at runtime, we measure
cache hits and misses that includes three possible outcomes: 1. The location is
cached and up-to-date, 2. The location is cached but is out-of-date, and 3. The
location is not cached. The total observed response rates range between 70% to
90% accuracy (Fig. 5) that demonstrates the suitability of PL-Protector’s on-
device location computation process with types of apps requiring both sporadic
and continuous location-updates. This indicates PL-Protectors’s on-device cache
update frequency is within practical limits, and it provides accurate location data
at runtime.

6 Conclusion

In this paper, we have presented the design, deployment and evaluation of PL-
Protector, a location privacy-enhancing middleware, which minimises the inter-
action and data collection from wireless access points, content distributors and
location providers. The middleware also provides a new series of control set-
tings to prevent user information disclosure during formation of LBS queries.
PL-Protector enforces these privacy rules over both the information and con-
trol flows occurred between sources and sinks. We have fully implemented PL-
Protector on Android 6 and validated with real apps from five different LBS
queries categories. Experiments demonstrated acceptable delay overheads and
within efficient and practical limits. Immediate future work pursues analysis on
the threat model to read its compliance with the three privacy settings and mea-
sure achieved level of privacy. Additionally, we plan deployment improvements
related to the on-device computation and cache storage, i.e., by incorporating
PL-Protector as a part of Android custom Read-Only-Memory. We are also plan-
ning to conduct a usability study that will allow us to enhance PL-Protector’s
privacy and usability rates.
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Abstract. Smartphones equipped with advanced positioning technol-
ogy continuously collect users’ location information and make that in-
formation easily accessible to third party app and/or library developers.
Users are becoming increasingly aware of the resultant privacy threats,
and demanding effective privacy preserving solutions that will allow them
to securely use location-based services. In addition, academic and indus-
trial communities are paying special attention to the development of
more friendly and socially-accepted approaches to location privacy. In
this work, we model, design and evaluate LP-Caché, a mobile platform
based service that protects locations by modifying the location resource
handling process. It applies caching technique to protect users’ private
locations and establishes personalised location permission controls. We
define the design decisions and implementation requirements towards the
viability and feasibility of the model deployment. We also evaluate re-
sources and storage requirements in order to minimise the computational
and communication overheads. Empirical results of 2 months compara-
tive study show a 2.26% change in the network fingerprints at 34 distinct
places that required only 2.07% change in the overall cache storage. Both
these results demonstrate feasibility of the model.

Keywords: Location Privacy, Location-based Services, Smartphones,
Caching, Location-based Applications

1 Introduction

The explosive growth of context-aware mobile apps has leveraged tremendous
opportunities for a whole new class of Location-Based Services (LBS) [32]. Geo-
marketing and geo-social networking, location-based games, monitoring, assisted
eHealth, and energy consumption 3D maps represent a small subset of the third-
party apps nowadays available as LBS and can certainly pose a serious threat
to the users’ privacy [26, 33].

? Updated and extended version of SECRYPT 2016 conference paper with title “LP-
Caché: Privacy-aware Cache Model for Location-based Apps.”
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2 Protecting Smartphone Users’ Private Locations through Caching

Currently, approaches to privacy settings of user location on smartphones1

are based on a binary process2. Users are forced to rely on third party service
providers that in many cases continuously collect, use and share their location
data, and in some cases even prompt the user to give away their position on page
load [2, 26, 16, 33]. Moreover, both academia and industry agree on the urgent
need of adopting a Privacy-by-Design (PbD) approach for the development of
more user-friendly and socially-accepted solutions to location privacy preserva-
tion on their mobile products and services [9].

To encounter these challenges, in [31] the authors introduced the model called
Location Privacy Caché (LP-Caché). LP-Caché envisions beyond the simple
grant/deny access method and provides the user with advanced mechanisms
to decide the extent of disclosing location data with service providers. Several
caching based solutions [40, 3, 29] have been proposed to minimise the risk of ma-
jor location privacy threats, but lacking of deployment feasibility. They rely on
unrealistic assumptions such as vast cache data storage requirements, or on the
app developers modifying the code to incorporate their cached databases. LP-
Caché incorporates caching technique to determine users’ geographical location
in a privacy preserving manner, and with minimum cache storage requirements.

In this paper we overview the main contributions presented in [31] and, fur-
ther prove LP-Caché’s features in an extended experimental setting. In particu-
lar, we describe

– A detailed analysis of the current location computation process deployed in
smartphones when running location-based apps.

– A detailed definition of the LP-Caché model and architecture as well as its
main implementation requirements.

– A complete performance evaluation of LP-Caché, analising the wireless ac-
cess point data availability and consistency, and the estimated user resource
and storage requirements. We will also show that LP-Caché is feasible with-
out modifying installed apps. Estimated storage requirements and monthly
datasets of wireless acess points have been analysed. Results from the ex-
tended experimental setting help us to determine the scalability of LP-Caché.

The rest of the paper is organized as follows. Section 2 outlines the current loca-
tion computation process and its evaluation. Section 3 reviews the related work.
Section 4 presents the design and architecture of LP-Caché, and Section 5 fully
elaborates on design decisions and implementation requirements. We evaluate
the feasibility of WiFi APs availability, resources and storage requirements in
Section 6. Finally, Section 7 concludes and describes current work as well as sets
future research plans.

1 Throughout this paper, we use the terms smartphones and mobile interchangeably
2 Data protection directives and acts [14, 20] across the globe state that personal

data should not be disclosed or shared with third parties without consent from
subject(s). Such a consent is typically obtained by mandatory acceptance of the
conditions mentioned in the End User License Agreement (EULA), or through opt-
out possibilities and other regulations[25].
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Fig. 1. Current location computation architecture

2 Overview of the Current Location Computation
Process

In this section, we describe roles and processes involved in the current architec-
ture for computing user’s device location.

2.1 Current Architecture

The current location computation architecture to use location-based apps on
smartphones comprises four main entities: 1. Smartphones with installed apps,
2. App Provider, 3. Network Infrastructure, and 4. Location Provider. This archi-
tecture (Figure 1) mainly relies on third party location providers, e.g., Google
Location Service [18], Skyhook [34], and Navizon [27]. The location provider
represents the central database, which maps the received signatures of nearby
wireless access points to the geo-coordinates, i.e., latitude and longitude, so han-
dling every geo-location request. Therefore, the location provider has constant
access to the user’s location as well as to the trajectory data. To respond to
any location request, the location provider maintains a database of surrounding
network infrastructure, including WiFi Access Points (APs), cellular-towers, and
IP addresses, which must be mapped to their exact geographical co-ordinates.
Compared to GPS and cell-tower based positioning, WiFi Positioning Systems
(WPS) is nowadays considered as a very accurate method for location calcula-
tion [34]. Location providers rather use enhanced WPS than GPS, primarily due
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4 Protecting Smartphone Users’ Private Locations through Caching

to current smart-mobile devices benefit from built-in WiFi clients that perform
faster than most expensive GPS receivers. This enables the service provider to
get user’s precise location at all times and, as a result, more effective privacy
preservation measures are needed in the current process to mitigate privacy
threats.

WiFi APs continuously announce their existence in the way of network
frames/beacons and transmit their Service Set Identifier (SSID) and Basic Ser-
vice Set Identifier (BSSID)/MAC addresses. Location providers use these WiFi
APs identifers to create network signatures and map them with geo-coordinates,
also called geolocation. IEEE 802.11 states two standardised ways to collect
beacons from WiFi APs: 1. Active scanning, and 2. Passive scanning. Location
providers are capable of deploying systems with either active scanning, passive
scanning, or both together. Location providers use three different ways to collect
geo-location of WiFi APs:

1. Statically- They collect WiFi beacons by the so called wardiving process.
Basically, they map the equipped vehicle’s exact geo-coordinates along with
the signal strength of the captured beacons from surrounded APs.

2. Dynamically- They can collect data from WiFi APs automatically once the
user device uses location services, e.g. Maps and Navigation applications.
The user device as configured to be geolocated acquires unique identifiers
from the surrounding WiFi APs, even if the network is encrypted, and then
sends it over to the location provider in order to perform geolocation calcula-
tion. The collected information is utilised to build and update the database
autonomously, for example, by applying crowdsourcing [41].

3. User input- They encourage users to manually input the WiFi APs’ informa-
tion, i.e., BSSID and the geo-coordinates, into their databases, e.g., Skyhook3

to register WiFi APs.

2.2 Evaluation of Current Location Computation Process

We conducted a series of experiments on different mobile devices installed with
Android, Windows Phone, and iOS operating systems to categorise the data flow
in the current location computation process. With the assistance of sniffers, such
as Wireshark [39] and tPacketCapture [36], we captured and analysed sequence
and location data transmission when using location-based apps, e.g., Navigation
and Friend Finder.

Observation. These experiments were designed to understand whether there is
any difference on the location calculation process on each of these three mobile
operating systems. Based on the results, all of them display common patterns
of location data retrieval. The user device collects the unique identifiers from
the surrounding network along with GPS data, and sends it to the location

3 Submit a Wi-Fi Access Point. See http://www.skyhookwireless.com/submit-access-
point (last access in March 2016).
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Fig. 2. Structure of (a) WiFi AP object and (b) cell-tower object sent to the location
provider [31].

Fig. 3. Structure of the location object received from the location provider [31].

provider to get the exact device location. Figure 2 shows the structure of the
WiFi and Cell-tower objects sent to the location provider. Once calculation is
performed, the location provider sends to the device the precise location in the
way of a geo-location object containing geo-coordinates. Figure 3 represents the
structure of the location object received from the location provider. In short, the
app developer over any mobile platform can utilize this location object to get
the user’s geo-location with no need of focusing on the details of the underlying
location technology. In the following section, we give the detailed description of
the process sequence.

Process Sequence. Figure 4 illustrates the sequence of processes and messages
involved in the current location computation architecture. Note that, on a smart-
phone, location sharing service settings must be ‘ON’ while using any location-
based app. If the location sharing is ‘OFF’, then the device prompts for changing
the setting from ‘OFF’ to ‘ON’; otherwise, user cannot use the service. Once the
app obtains the location object from OS, it is then used by the app provider
to send the corresponding reply to LBS query via the standard programming
interface/API [5].
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Fig. 4. Sequence diagram of current location computation process [31].

3 Related Work

Existing approaches to preservation of the location privacy can be classified into
three categories: 1. Mobile Platform4, 2. Location Query, and 3. Privacy-aware
Network Communication.

3.1 Mobile Platform

A few studies have proposed static and dynamic methods to detect privacy leaks
in mobile platforms. The former method statistically analyses apps by creating
permission mapping, generating call graphs and data flow analysis to report
privacy leaks for further auditing, e.g, AndroidLeaks [17] and PiOS [12] for An-
droid and Apple iOS, respectively. The application of dynamic methods involves
modification of the existing mobile platform. For example, TaintDroid [13] adds
taint tracking information to sensitive sources calls from apps, and it tracks
location data flow as it generated through applications during execution. Mock-
Droid [8] relies on instrumenting Android’s manifest permission mechanism to
mock sensitive data from OS resource, including location data, which can af-
fect apps’ usability and functionality. LP-Caché not only monitors the location
sources but also modifies, if required, the generated location data based on de-
fined user permissions. In another attempt[15], indistinguishability technique is
applied as location privacy preservation mechanism into the advertising and an-
alytics libraries as well as on installed apps; however, it does not give control

4 Throughout this paper, we use the terms mobile platform and operating system
interchangeably
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on the amount of WiFi and location data that is being shared with the loca-
tion provider. Moreover, indistinguishability technique increases computational
overhead on smartphones.

3.2 Location Query

Apps share location information with the provider in the form of LBS queries.
The transmission of such queries to the location server may allow attackers to
gain access to user location data. Privacy Enhancing Techniques (PET) like
k-anonymity, dummy locations, region cloaking, location perturbation and ob-
fuscation, and mix-zone pseudonyms have been applied to different architectures
for location query formation and privacy preservation from LBS providers [30,
37, 22]. Most of these techniques rely on theoretical assumptions - like trusted
infrastructure to provide the privacy protection, requiring a group of similar app
users to be at the same time and same place. The main issue with PETs and
cryptographic schemes is that it relies entirely on the data collection servers to
comply with location privacy.

Caching. Several authors have used caching scheme along with PETs to build
to a database consisting of different contents/datatypes used within location
based queries to be re-used in future LBS queries. MobiCaché [40] applies k-
anonymity for caching location based queries. Similarly, Niu et al. [29] attempt to
improve k-anonymity based caching by adding dummy locations. Both proposals
require a trusted infrastructure to maintain privacy. Caché [3] maintains a local
cache within the device to reuse the data types available from applications in
future location based queries; however, storing entire LBS query data increases
the cache storage requirements. Besides, Caché also requires app developer to
modify the way app access location data. By contrast, LP-Caché caches the
network fingerprints and geo-coordinates, which reduces the storage overhead
drastically; it considers installed apps as black box, and therefore, does not
require app developer to modify the code, it works as a middleware between
the app and the mobile platform. All these cache-based systems either intent
to generalise or obfuscate the LBS query or minimise the number of queries
sent to the app providers, but they do not provide privacy from WiFi content
distributors. Besides, mobile devices not only send vast amounts of location
data to app providers but also to location providers creating different location
privacy shortcomings [2, 33]. In this regard, limited work has been published on
privacy preservation from the location provider’s perspective [10, 11]. Damiani
(2011) proposes a theoretical approach for privacy-aware geolocation-based web
services to encourage further research to minimise the amount of location data
being shared with the location provider. This is mainly due to that the location
provider is considered as the only source to get the user location when developing
any location-based app. In LP-Caché, we minimise the process of wireless AP
data collection by the WiFi content distributors or location providers, and we
control information disclosure within the generated LBS query (e.g., points of
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8 Protecting Smartphone Users’ Private Locations through Caching

interests (POIs) and nearest neighbor) since it will be sent to the third-party
app provider.

3.3 Privacy-aware Network Communication

Besides location queries, device’s IP address can also reveal user’s private loca-
tions. To this regard, anonymous communication protocols, e.g., Anonymizer [6]
and TOR [35], deal with anonymous service usage at the network layer while
communicating over Internet (i.e., the server cannot infer user’s location via re-
ceived device’s IP address along with the location query), and they are most
prominent and commonly used network layer solutions.

4 LP-Caché Model

In this section, we describe LP-Caché’s threat model, design goals, architecture
and main processes’ sequence diagram.

4.1 Threat Model

Apps deliberately collect user’s sensitive data, including location and other sen-
sitive information as part of their operations. User tracking, identification and
profiling (i.e. personal habits, movement patterns, etc.) are fundamental threats
to location privacy [16, 37]. Furthermore, the current direct link of smartphones
to the location provider and the continuous flow of LBS queries that include
device’s exact geo-coordinates over network create a serious risk to the protec-
tion of users’ sensitive information, even more challenging, in the presence of a
malicious location provider and via advanced network sniffing practices.

LP-Caché computes the exact location within user device, without service
provider’s involvement, and trusts the device on the storage of sensitive data.
However, the user has still the option of giving consent for app providers or loca-
tion provider to access their location. Mobile network providers might, however,
collect user location data via cellular clients. It is also excluded from our model
the option of manually inserting the location data (e.g., street name, zip code,
post code) within LBS query.

4.2 LP-Caché Control Flow Architecture

LP-Caché’s three main design goal are: 1) the third-party app provider will not
be able to infer the device’s exact location without getting uses’s consent; 2) the
user can set distinct privacy preferences for different apps and private places;
and 3) the model works independently without the need of modifying the app’s
code. Figure 5 depicts the block diagram for LP-Caché architecture; its main
components are:
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Fig. 5. LP-Caché architecture [31].

Permission Setter is the user interface (UI), which enables users to set and
manage their private places and apply improved personalised permissions
when running installed location-based apps. Once received the user inputs,
pre-set private locations are sent to the Private Location Manager module,
and permissions are sent to the Rule Mapper Module.

Request Manager is responsible to intercept the event of location access calls,
and then lead the app’s control flow to the Private Location Manager mod-
ule. Besides, it will also be in control of receiving the processed user location
(i.e., could be either anonymised or altered) from Rule Mapper, and then
delivering it to the app in order to maintain every session’s control flow.

Private Location Manager module’s main task is to detect unique identi-
fers of the surrounding WiFi APs and compare them with the stored net-
work fingerprints to determine whether the user is within the set of private
places. User inputs from the Permission Setter will create network finger-
prints for known private locations, which are then added or updated in the
Cach database. Moreover, it maintains a binary flag to detect private places.
In the case of a hit the location data is sent to the Rule Mapper. Otherwise,
the location is received from the Location Receiver. Whenever the Private
Location Manager receives a new private place request, the received loca-
tion is mapped to the detected network fingerprint and stored in the Caché
database.

Rule Mapper dynamically collects and checks set permissions from Permis-
sion Setter. Once the representative location object is received from the
Private Location Manager, it applies the user permissions on the location
co-ordinates, alters them (if required), and outputs the processed location
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Fig. 6. Sequence diagram of location computation process using proposed model [31].

to the Request Manager module. If the flag is negative, then it forwards the
exact location.

Cache is the established on-device cached database, and it is routinely queried
by the Private Location Manager module, which can add, update and delete
the cached location data. The locations in cach are those which are to be pro-
tected, and they can also represent regions of space. Each entry is recorded
along with a network fingerprint and geo-location that is acquired from the
location provider.

Location Receiver module receives a location object, which includes the user
device’s geo-coordinates (as in Figure 3), from location providers and sends
it over to the Private Location Manager for further processing.

4.3 Process Sequence

LP-Caché modifies the current location resource handling process; however, the
involved entities (as in Section 2) remain the same. Figure 6 illustrates the
sequence of processes and messages involved in LP-Caché:

1. At the event of app requesting the device location, our service will intercept
the request to get the location from the cache database instead of sending
the request to the location provider.

2. Upon receiving the location request, our service will scan the surrounding
network infrastructure.
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3. Using observed network frames our service will execute as follows:
(a) Our service compares the collected beacons with the stored network fin-

gerprints to retrieve corresponding stored representative location coor-
dinates.

(b) In the case of an unmatched entry on the database, the LP-Caché prompts
the user two options either input the location using UI, or allow the query
to be sent to location provider that will calculate and send the current
location coordinates. Note that this will only occur if the user has set
the current location as private but the geo-coordinates are not cached.

(c) The received location data for the encountered APs will be tracked within
the local cache database for future use.

4. User location coordinates can be altered based on the privacy settings. LP-
Caché provides three options for controlled information disclosure: (1) Adjust
Location Granularity, (2) Obfuscate Location, and (3) No Change. Com-
puted location is populated in the location object and sent to the app.

5. Once the app obtains the location object, it is then used by the app provider
to send the corresponding reply to LBS query via the standard programming
interface/API [5].

5 LP-Caché Implementation Requirements

In the following sections, we describe LP-Caché’s implementation requirements.
LP-Caché orchestrates a mobile platform based location protection service to
modify the location resource handling process. For instrumenting the LP-Caché
implementation, Android will be the best choice since it is open source; however,
it can also be implemented on other permission-based mobile platforms.

5.1 Bootstrapping

LP-Caché aims to protect user’s private places. Initially, LP-Caché does not have
enough information to function, the two main required information are private
places’s network fingerprints and geo-coordinates. LP-Caché cannot collect net-
work fingerprints and geo-cordinates for private places at runtime, as by the time
we have this information, other installed apps will have access to it. Therefore,
when LP-Caché first boots and before turning ‘ON’ location sharing settings,
user will have to do the initial setup, which includes allow WiFi AP scanning,
input geo-cordinates and set privacy choices (see Section 5.4). In 2013, Google
presented a new service API (also works on older Android versions) for location-
based apps that allows developers to use the new and advanced Location and Ac-
tivity API, i.e., they changed Location Manager to Fused Location Manager,
hence combining sensors, GPS, Wi-Fi, and cellular data into a single API for
location-based applications [19]. As a result, separating data from GPS PROVIDER

and NETWORK PROVIDER is no longer straight forward. LP-Caché addresses this is-
sue by preventing app’s location request to reach the Fused Location Manager

that collects and sends the network session data to the location provider. Instead,
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the requested location is retrieved from the on-device cache, and then, it is sent
to the requesting app (with privacy rules applied). Besides, geographic tool5 can
be incorporated in the LP-Cache’s UI to get the corresponding geo-cordinates.
This will allow LP-Caché to achieve effective privacy without affecting location
accuracy, at the same time, prevent from the non-authorised sharing of device’s
exact location and network session data.

5.2 Mobile Platform

For performance evaluation, there are two possible ways of implementing LP-
Caché location protection service. The first requires modifying the app’s loca-
tion accessing interfaces and intercepting location updates before they reach the
app provider. Whereas, the second option requires modifying the platform and
changing the location data before reaching the app.

App Code Modification. This comprises unpacking the app, rewriting the code
to work according to the new rules, and then repackaging it again, e.g.,[21].
However, app repackaging changes the signature and stops future updates, and
therefore, affects its functionality. Another way to modify app’s location access-
ing interfaces is through the creation of an Android service and allowing apps
to register with it. Then, Apps can use the location data provided by this ser-
vice. This approach is easy to implement but relies heavily on app developers to
modify their app’s code, which is highly infeasible and unrealistic. Nonetheless,
this approach can be used as simulated testing environment for any developed
service.

Platform Modification. For the sake of experimentation, we develop LP-Caché
via platform modification. One of the main task is to add a system service, where
the class belongs to the location APIs; thus, it is placed in the android.location
package, which detects private locations via APs and can also be used by other
components when calling context. In Android, a context allows an app to interact
with the OS resources. Another task is to make LP-Caché communicate with
location requesting apps. On Android there are two methods to access user’s
location: 1) Location Manager Service (Old), and 2) Fused Location Manager
Service (New) that is a part of Google Play Services. Both methods require
the app to request a callback function to get regular updates by registering a
location listener. The app receives a new location object when a new location is
available, the callback function is invoked. Modifying these two Google services
is complicated, but there is a possibility to intercept the location object before it
reaches requesting apps. We will add a static context field to the location class,
which will be populated when the app is invoked; this will enable us to know
which app is currently requesting the location object, and also communicate with
the OS [15]. The created location object will have reference to the requesting
app’s context, and therefore, it can interact with our external service.

5 LatLong is a geographic tool. See http://www.latlong.net/ (last access in March.
2016)
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Algorithm 1 Location Calculation Algorithm [31]

Require: nx: Network Frames
Ensure: lr: Representative Location
1: nx = 0
2: read nx

3: while nx 6= null do
4: if nx = ni , ∀ i ∈ p then
5: (step 1) retrieve the corresponding lr
6: add flag f = (if private 1, else 0)
7: send lr
8: else
9: (step 2) request lr from user or location provider

10: set received lr to corresponding pi
11: update c
12: send lr
13: end if
14: end while

5.3 On-device Cache Database Creation

LP-Caché requires fixed wireless APs data (i.e., 802.11) to create cached database
of private locations. Initially, we decided to focus on WPS since it infers accu-
rate user location. However, we can later include other fixed radio sources (e.g.,
cell-tower unique identifiers).

Network Fingerprinting. We can distinguish two main types of WPS techniques
to determine the position of client devices with respect to APs [7]: 1) Signal
trilateration and 2) Fingerprinting. The former undertakes trilateration of Re-
ceived Signal Strength (RSS), Angle of Arrival (AoA), and Time of Flight (ToF)
from observed APs, and the later involves mapping observed APs signatures
with a stored database. LP-Caché uses fingerprinting to create cached location
database; however, fingerprinting performance is highly related to the number
of APs. Therefore, in Section 6 we have evaluated WiFi AP availability and con-
sistency. The detected network management frames/beacons are mapped with
the device’s representative geo-location to create a network fingerprint, which is
then stored in the local cached database, an example private location fingerprint
is shown in Equation 1. Moreover, to reduce storage and computation overhead,
our model only caches network fingerprints of private places (e.g., home, work,
frequently visited places or particular stores), and it relies on user input for ini-
tial pre-set up. The user will have to select the option (via LP-Caché UI) to
set current location as private place pi, and then fingerprint will be recorded.
Later, the private place will be detected automatically with respect to observed
beacons [nx], such that

pi = [n1], [n2], ..., [nx] → [lr] (1)

where pi represent ith private place IDs, n is the scanned beacon, and lr is a
representative location for that private place. WiFi AP beacons [nx] consists of
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Algorithm 2 Enhanced Permissions Algorithm [31]

Require: lr: Representative Location
Ensure: l′r: Processed Location
1: up = User Input
2: read l, lg, f , up

3: if up = Adjust Granularity then
4: check granularity level gl
5: truncate(l, lg)
6: replace l to l′ and lg to l′g
7: return l′r
8: else if up = Obfuscate then
9: randomly generate angle θ

10: obfuscate(l, lg, θ)
11: replace l to l′ and lg to l′g
12: return l′r
13: else
14: unchanged
15: return l′r
16: end if

four attributes 〈SSID, BSSID/MAC address, Signal-strength, and Timestamp〉.
The private representative location [lr] consists of a tuple 〈Lattitude, Longitude,
and Accuracy〉.

In LP-Caché, to set up network fingerprints at every private place, we mea-
sure the response rate as the ratio of detection count and the total number of
scans for each beacon:

Rlc,x =

∑nlc
i=1 bx,i
nc

, bx,i =

{
1 if beacon x found in ith scan
0 otherwise

(2)

where Rlc,x is the response rate of beacon x at the current private location lc
and, nlc is the total scan count since the private place was entered. The detection
count of each beacon is maintained to identify the frequently occurring beacons;
and therefore, beacons with higher response rate are used to create the network
fingerprint for the current private place [lc]. Rlc,x will be maintained in the LP-
Caché database to update the response rate of every detected beacon during a
specified time interval spent at private place [lc].

On-device Cache-based Location Calculation Algorithm. The detailed steps of
privacy-aware geo-location calculation process are summarised in Algorithm 1.
The surrounded beacons [nx] are scanned and compared to the list of private
WiFi fingerprints [ni] to detect private place [pi] stored in cached database [c].
Further, the representative [lr] is altered based on set permissions (see Section
5.4).
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5.4 Personalised Permissions for Location Sharing

A general LBS query consists of different attributes, e.g., LBS query {POI, Lat-
itude and Longitude, User-Info}, where included geo-coordinates estimate the
device’s geo-location. To satisfy one of the privacy property called controlled
information disclosure, we designed enhanced permission mechanism to control
these geo-coordinates before it is sent to app providers. When using LP-Caché,
for every installed app and set private place, the UI provides three distinct
privacy settings: (1) Adjust Location Granularity, (2) Obfuscate Location and,
(3) No Change. In the first option, geo-coordinate truncation method adjusts
location precision level; in the second option, geo-coordinate transformation ob-
fuscate user’s location; whereas, in the third option, the exact unchanged geo-
coordinates are sent to the requesting app.

Enhanced Permissions Algorithm. Once LP-Caché receives an invoked location
object [lr], it alters the location data according to the enhanced permission set-
tings and returns processed location [l′r]. The steps involved in enhanced permis-
sion mechanism are summarised in Algorithm 2, where up is the set permission,
gl is the adjusted location precision level, l is the latitude, and lg is the longitude.

Geo-coordinates Truncation. The geographical coordinates are represented by a
tuple consisting of {latitude : 52◦28’59.200” N , and longitude : 1◦53’37.0001”
W}, where the last digits specify more accurate geo-location. Geo-coordinate
truncation method will enable us to adjust the location precision level, i.e., by
removing last digits and rounding the location accuracy from street to city level
or even more general. Generally, for any third party reuse, service providers or
data collectors assure in the EULA that this method will be applied on the
collected data since the truncated coordinates increase the ambiguity level [1].
On the contrary, LP-Caché applies this method on the user device with user’s
permission in order to minimise the user’s sensitive data collection and privacy
concerns.

Geo-coordinates Transformation. For privacy preservation, position transfor-
mation functions such as scaling, rotation and translation have been used by
location data distributors or anonymisers [24, 37]. In LP-Caché, we use geo-
coordinate transformation on the device to obfuscate user’s private locations.
Our service represents the geo-coordinate transformation using scaling and ro-
tation, and denotes its parameters as a tuple 〈s, θ, (l, lg)〉, where s is the scaling
factor, θ is the rotation angle, and (l, lg) are the original coordinates. It applies
Equation 3 to generate transformed or obfuscated geo-cordinates (l′, l′g), where
angle θ is randomly generated.

l′ = θ(s.l)

l′g = θ(s.lg)
(3)
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Table 1. WiFi measurement dataset comparative summary.

1 Month 2 Months Total scans.
Total number of scans 25480 21140 46620

Distinct private locations selected 34 % Change

Total APs detected 486 497 2.26%

Average APs detected 396 393 - 0.76 %

6 Feasibility and Usability Analysis

LP-Caché’s actual performance evaluation depends on the location-based apps
performance. In this section, we analise the WiFi AP data availability and con-
sistency to measure feasibility of WiFi fingerprinting method to be included
in LP-Caché’s implementation. In [31], we presented a WiFi APs dataset sum-
mary for a month; we have extended the sample size for a couple of months
and conducted a comparative study of the observations from both, 1st and 2nd
month datasets to evaluate the scalability of the WiFi fingerprinting method.
For the sake of illustration, we have maintained unique ID and sequence for all
the selected 34 private places.

6.1 WiFi APs Availability and Consistency

Experimental Set-up. The experimental set-up to measure WiFi AP data avail-
ability and consistency consists of the following three steps:

1. Data collection. We collected beacons from fixed WiFi APs using WiEye

[38] and Network Info II [28] apps on Android smartphones that have
802.11a/b/g/n radio feature so they can operate in both 2.4GHz and 5GHz
bands at 34 different private places for a period of two months.

2. Location categorisation. App users are more concern about sharing their
private locations[2]; therefore, in our analysis, we selected three distinct
categorise of private places: 1. Home (i.e., residential place), 2. Work (i.e.,
commercial place), and 3. Arbitrary (i.e., any frequently visited place) to
determine categorical distribution pattern of WiFi APs.

3. Data analysis. We collected and statistically analysed the scanned WiFi AP
data. Table 1 compiles the included sample size and the measured percent-
age changes; whereas, Figure 7 shows the relative difference between WiFi
APs density, and Figure 8 depicts the relative average accuracy distribution
pattern of detected WiFi APs for each category over the 2 months period.

Observation 1. For each category of private places, experiments revealed the
following:

Home The results demonstrate that Wifi APs are fixed and frequent and the
difference between number of constant beacons and minimum number of sim-
ilar beacons is comparatively less, and therefore, it achieved highest accuracy
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Fig. 7. Measured density of 1 month (left) and 2 months (right) detected WiFi APs
at private places.

Fig. 8. Relative average accuracy distribution pattern of detected WiFi APs at private
places of 1 month (left) and 2 months (right).

rate. Moreover, the ratio of SSID to BSSID is 1:1, i.e., 1 SSID (abc) has 1
BSSID (a0:12:b3:c4:56:78), this makes fingerprints distinct so improving the
location detection performance.

Work This category has many fixed WiFi APs but with fluctuating signal
strengths, and therefore, the sequence of available APs changes. However,
the observed ratio of SSID to BSSID is many to one, i.e., 1 SSID has many
BSSIDs; therefore, in this case, SSIDs along with BSSIDs can be used as
unique identifiers to create a fingerprint to detect a private place dynami-
cally.

Arbitrary In this category, the data collector could select any frequently visited
locations, e.g., gym, shop, or friend’s home. Figure 8 demonstrates that the
outcome of this category is related to the other two categories, it either shows
results similar to home or work.
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The range of average accuracy for all the three categories of private places
falls between 75% to 97%. Hence, it is evident that smartphones regularly detect
similar beacons at frequently visited place, for place detection at least one beacon
should match with the stored fingerprints. Thus, the result demonstrates that
WiFi fingerprinting can be effectively used as private place detection source in
LP-Caché. Nonetheless, to achieve efficient capability for place recognition via
beacons, a place discovering algorithm like [23] can be implemented (in future
work).

Observation 2. Table 1 shows comparative analysis of WiFi APs data that has
been scanned and collected during both 1st and 2nd month. Considering per-
centage changes, the number of total detected APs has increased with 2.26%
and the number of frequently detected APs remained without change, i.e, with a
negligible difference of -0.76%. Equation 2 has been used statistically to identify
frequently detected beacons whilst at a particular private place. Pre-set unique
IDs and a sequence for all the selected 34 private places allowed us to measure
the relative density and distribution pattern of the WiFi APs during both 1st
and 2nd month. Figure 7 shows the relative difference between WiFi APs den-
sity, and Figure 8 depicts the relative average accuracy distribution pattern of
detected WiFi APs for each category over the period on 2 months.

6.2 Estimated storage requirements

Location-based queries that are generated/received from running applications
and service providers include several attributes, and their data types require
vast amount of storage space. This is the case of some location privacy solu-
tions (e.g., [3, 40]) that apply caching techniques on location-based queries as
a resukt of their storage requirement. LP-Caché does not cache location-based
queries, instead it stores the WiFi AP data and geo-coordinates of users’ private
locations. Moreover, the user’s pre-set privacy rules are applied to the mapped
geo-coordinates at runtime. As a result, comparatively, LP-Caché’s on-device
cache database does not demand massive storage requirement. By considering
the 802.1 Standard and datatypes sizes, Table 2 presents the storage require-
ments in bytes and database components, where network fingerprint table is a
tuple of 〈no.ofbeacons, beaconfield, counter〉, and permission table is a tuple
of 〈location, placeid, accuracy counter, no.ofprivateplaces〉. Moreover, Table
3 presents the measured changes in the 1st and the 2nd month of WiFi data
collected at 34 distinct private places. The results conclude that the average
change has increased by 2.07%. cache storage of total 25844 bytes that includes
the sum of permissions and network fingerprints for 34 distinct private places.
Thus, we can anticipate that the current mobile device internal storage capacity
is sufficient for the required storage [4].
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Table 2. Estimated storage

Field storage Size Database Com-
ponent

Size

Beacon field

BSSID/MAC 6 bytes
Network
fingerprint table

= (beaconfield +
SSID 32 bytes counter)×
Place ID 3 bytes no.ofbeacons
Timestamp/Age 8 bytes

Location field
Geo-coordinates 32 bytes

Permission table
= (location+ placeid

Region 32 bytes + accu. counter)×
no.ofprivateplaces

Table 3. Relative difference of monthly storage

Storage 1 Month 2 Months % Change

Network fingerprint 25272 bytes 25844 bytes 2.26% increase

Permissions 2380 bytes 2380 bytes No change

Total storage 27652 bytes 28224 bytes 2.07% total increase

6.3 Cache hits and cache misses

In LP-Caché, up-to-date cache database and network fingerprint search result
accuracy are main challenges. The three possible outcomes when looking for
device’s location based on the scanned beacons are:

1. The location is cached and up-to-date This case comes with positive result,
and therefore, data can be used effectively.

2. The location is cached but is out-of-date This can occur if the network in-
frastructure changes, e.g., if router is changed then the cache data needs to
be updated. The overall results of Section 6.1 and Section 6.2 prove that
this case does not occur frequently. Nonetheless, for data accuracy a method
that uses Equation will be incorporated to detect and measure occurrence of
such situations of cache misses at runtime. Moreover, the developed method
can likewise be deployed to maintain data freshness and data consistency.

3. The location is not cached This occurs when the observed WiFi AP is not
cached and/or mapped to the private locations, then our service will have
to interact with user to update the location cache. Besides, the response
rate Rlc,x can be further extended to measure runtime occurrences of these
outcomes.

6.4 Ongoing Evaluation of Caching Method

Following WiFi data availability and consistency analysis, LP-Caché’s feasibility
evaluation will be extended to analyse how frequently the cache needs to be up-
dated and what are the trade-offs between the cache update frequency and loca-
tion privacy and accuracy in order to measure computational and communication
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overheads. We also intent to conduct a thorough user study to determine usabil-
ity for the users to accommodate LP-Caché’s functionality. Moreover, we plan to
extend the fundamental caching-related technical challenges such as cache hits
and cache misses, data freshness, data consistency, and estimated bandwidth re-
quirements in an advanced development and implementation of LP-Caché hence
paying special attention to storage-efficient caching.

7 Conclusion

Secure gathering and transmission of the location data by mobile apps while pre-
serving users’ privacy is a major concern that needs reconsideration. Evaluation
of current location handling process confirms that it is vulnerable to location
privacy attacks; therefore, we presented a privacy-aware model that provides
users with advanced location controls to mitigate major privacy threats. Within
a dataset generated in 2 months of experimental setting, we observed a 2.26%
change in detected WiFi APs at 34 distinct places and 2.07% change in estimated
storage. These results are promising and benefit deployment of LP-Caché’s. In
this paper, we mainly focused on establishing the design decisions, implemen-
tation requirements, and on measuring the feasibility of LP-Caché. Work in
progress is on (1) deploying our model on a mobile platform to measure its
functionality and efficiency while interacting with different location-based apps;
(2) carrying out run-time measurements of the cache storage over an extended
period of time, and (3) performing critical analysis of the network fingerprinting
and permission mapping methods with dynamic movement patterns. We plan to
further assess LP-Caché’s scalability in future large scale scenarios and, address
end user as well as service providers concerns.
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Abstract: The daily use of smartphones along with third-party apps, which involve location data to be continuously
collected, shared and used, have become a significant privacy concern. Besides, taking advantage of the rapid
growth of wireless access points, the capability of these location-based services to track users’ lives, even
sometimes with their consent, creates an urgent need for the development of more user-friendly and socially-
accepted approaches to location privacy preservation. In this paper, we introduce a novel privacy-aware model
for location-based apps to overcome the shortcomings related to user privacy during the location calculation
process. By making the user device play a bigger role in the process, our model prevents users from relying
on service providers’ trustworthiness. The model applies a cache-based technique to determine the position
of client devices by means of wireless access points and achieve data minimisation in the current process.
The model also establishes new personalised permission settings for the users while sharing their location
information. We outline possible implementation of the proposal, and preliminary findings of the work-in-
progress evaluation on the wireless data feasibility and usability that demonstrate deployment viability.

1 INTRODUCTION

The explosive growth of context-aware mobile apps
has leveraged tremendous opportunities for a whole
new class of Location-Based Services (LBS) (Pontes
et al., 2012). Geo-marketing and geo-social net-
working, location-based games, monitoring, assisted
eHealth, and energy consumption 3D maps represent
a small subset of the third-party apps nowadays avail-
able as LBS and can certainly pose a serious threat to
the users’ privacy. (Muslukhov et al., 2012; Shklovski
et al., 2014).

Currently, approaches to privacy settings of user
location on smartphones are based on a binary pro-
cess1. Users are forced to rely on third party ser-
vice providers that in many cases continuously col-
lect, use and share their location data, and in some
cases even prompt the user to give away their posi-
tion on page load (Almuhimedi et al., 2015; Mus-
lukhov et al., 2012; Felt et al., 2012; Shklovski et al.,

1Data protection directives and acts (European Commis-
sion, 2016; IETF, 2016) across the globe state that personal
data should not be disclosed or shared with third parties
without consent from subject(s). Such a consent is typi-
cally obtained by mandatory acceptance of the conditions
mentioned in the End User License Agreement (EULA), or
through opt-out possibilities and other regulations(Michael
and Clarke, 2013).

2014). Moreover, both academia and industry agree
on the urgent need of adopting a Privacy-by-Design
(PbD) approach for the development of more user-
friendly and socially-accepted solutions to location
privacy preservation on their mobile products and ser-
vices (Cranor and Sadeh, 2013).

To encounter these challenges, we introduce the
model called Location Privacy Caché (LP-Caché).
LP-Caché envisions beyond the simple grant/deny ac-
cess method and provides the user with advanced
mechanisms to decide the extent of disclosing lo-
cation data with service providers. Several caching
based solutions (Zhu et al., 2013; Amini et al., 2011;
Niu et al., 2015) have been proposed to minimise the
risk of major location privacy threats, but lacking of
deployment feasibility. They rely on unrealistic as-
sumptions such as vast cache data storage require-
ments, or on the app developers modifying the code
to incorporate their cached databases. LP-Caché in-
corporates caching technique to determine users’ ge-
ographical location in a privacy preserving manner,
and with minimum cache storage requirements. The
main contributions in this paper are:

• Detailed analysis of the current location computa-
tion process deployed in smartphones when run-
ning location-based apps.

• Definition of LP-Caché and its main implementa-
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tion requirements. The main identified benefits of
LP-Caché are twofold:

– Provides enhanced personalised location pri-
vacy settings that control every installed app
distinctly and protect sharing of user’s private
location with third-party app providers.

– Minimises the amount of wireless access point
data that is being shared within the current ar-
chitecture for computing the device’s location
by means of minimum on-device caching.

• Evaluation of wireless access point data availabil-
ity and consistency, and of the implementation re-
quirements to demonstrate that LP-Caché is feasi-
ble without modifying installed apps.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the current location computation pro-
cess and its evaluation. Section 3 reviews the related
work. Section 4 presents the design and architecture
of LP-Caché, and Section 5 fully elaborates on design
decisions and possible implementation. We evaluate
the feasibility and usability requirements in Section 6.
Finally, Section 7 concludes and sets future research
plans.

2 CURRENT LOCATION
COMPUTATION PROCESS

In this section, we describe roles and processes
involved in the current architecture for computing
user’s device location.

2.1 Current Architecture

The current location computation architecture to use
location-based apps on smartphones comprises four
main entities: 1. Smartphones with installed apps,
2. App Provider, 3. Network Infrastructure, and 4.
Location Provider. This architecture mainly relies
on third party location providers, e.g., Google Loca-
tion Service (Google Location Service, 2016), Sky-
hook (Skyhook, 2016), and Navizon (Navizon, 2016).
The location provider represents the central database,
which maps the received signatures of nearby wire-
less access points to the geo-coordinates, i.e., lati-
tude and longitude, so handling every geo-location
request. Therefore, the location provider has con-
stant access to the user’s location as well as to the
trajectory data. To respond to any location request,
the location provider maintains a database of sur-
rounding network infrastructure, including WiFi Ac-
cess Points (APs), cellular-towers, and IP addresses,

which must be mapped to their exact geographical co-
ordinates. Compared to GPS and cell-tower based po-
sitioning, WiFi Positioning Systems (WPS) is nowa-
days considered as a very accurate method for loca-
tion calculation (Skyhook, 2016). Location providers
rather use enhanced WPS than GPS, primarily due
to current smart-mobile devices benefit from built-
in WiFi clients that perform faster than most expen-
sive GPS receivers. This enables the service provider
to get user’s precise location at all times and, as a
result, more effective privacy preservation measures
are needed in the current process to mitigate privacy
threats.

WiFi APs continuously announce their existence
in the way of network frames/beacons and transmit
their Service Set Identifier (SSID) and Basic Ser-
vice Set Identifier (BSSID)/MAC addresses. Location
providers use these WiFi APs identifers to create net-
work signatures and map them with geo-coordinates,
also called geolocation. IEEE 802.11 states two stan-
dardised ways to collect beacons from WiFi APs: 1.
Active scanning, and 2. Passive scanning. Location
providers are capable of deploying systems with ei-
ther active scanning, passive scanning, or both to-
gether. Location providers use three different ways
to collect geo-location of WiFi APs:

1. Statically- They collect WiFi beacons by the so
called wardiving process. Basically, they map the
equipped vehicle’s exact geo-coordinates along
with the signal strength of the captured beacons
from surrounded APs.

2. Dynamically- They can collect data from WiFi
APs automatically once the user device uses lo-
cation services, e.g. Maps and Navigation appli-
cations. The user device as configured to be ge-
olocated acquires unique identifiers from the sur-
rounding WiFi APs, even if the network is en-
crypted, and then sends it over to the location
provider in order to perform geolocation calcula-
tion. The collected information is utilised to build
and update the database autonomously, for exam-
ple, by applying crowdsourcing (Zhuang et al.,
2015).

3. User input- They encourage users to manually
input the WiFi APs’ information, i.e., BSSID
and the geo-coordinates, into their databases, e.g.,
Skyhook2 to register WiFi APs.

2Submit a Wi-Fi Access Point. See http://www.skyhook
wireless.com/submit-access-point (last access in March.
2016).

SECRYPT 2016 - International Conference on Security and Cryptography

184

241



2.2 Evaluation of Current Location
Computation Process

We conducted a series of experiments on differ-
ent mobile devices installed with Android, Windows
Phone, and iOS operating systems to categorise the
data flow in the current location computation pro-
cess. With the assistance of sniffers, such as Wire-
shark (Wireshark, 2016) and tPacketCapture (tPack-
etcapture, 2016), we captured and analysed sequence
and location data transmission when using location-
based apps, e.g., Navigation and Friend Finder.

Observation. These experiments were designed to
understand whether there is any difference on the lo-
cation calculation process on each of these three mo-
bile operating systems/ platforms. Based on the re-
sults, all of them display common patterns of location
data retrieval. The user device collects the unique
identifiers from the surrounding network along with
GPS data, and sends it to the location provider to get
the exact device location. Figure 1 shows the structure
of the WiFi and Cell-tower objects sent to the location
provider. Once calculation is performed, the loca-
tion provider sends to the device the precise location
in the way of a geo-location object containing geo-
coordinates. Figure 2 represents the structure of the
location object received from the location provider.
In short, the app developer over any mobile platform
can utilize this location object to get the user’s geo-
location with no need of focusing on the details of the
underlying location technology. In the following sec-
tion, we give the detailed description of the process
sequence.

Figure 1: Structure of WiFi AP object (left) and cell-tower
object(right) sent to the location provider.

Process Sequence. Figure 3 illustrates the sequence
of processes and messages involved in the current
location computation architecture. Note that, on a

Figure 2: Structure of the location object received from the
location provider.

smartphone, location sharing service settings must be
‘ON’ while using any location-based app. If the lo-
cation sharing is ‘OFF’, then the device prompts for
changing the setting from ‘OFF’ to ‘ON’; otherwise,
user cannot use the service.

3 RELATED WORK

Existing approaches to location privacy preservation
can be classified into three categories: 1. Mobile Plat-
form, 2. Location Query, and 3. Privacy-aware Net-
work Communication.

3.1 Mobile Platform

A few studies have proposed static and dynamic
methods to detect privacy leaks in mobile platforms.
The former method statistically analyse apps by creat-
ing permission mapping, generating call graphs, and
data flow analysis to report privacy leaks for further
auditing, e.g, AndroidLeaks (Gibler et al., 2012) and
PiOS (Egele et al., 2011) for Android and Apple iOS,
respectively. The latter involves modification of ex-
isting mobile platforms, such as TaintDroid (Enck
et al., 2014) and MockDroid (Beresford et al., 2011).
TaintDroid adds taint tracking information to sensi-
tive sources calls from apps, and it tracks location data
flow as it generated through applications during exe-
cution. Whereas, MockDroid relies on instrumenting
Android’s manifest permission mechanism to mock
sensitive data from OS resource, including location
data, which can affect apps’ usability and functional-
ity. LP-Caché not only monitors the location sources
but also modify, if required, the generated location
data based on defined user permissions. Fawaz and
Shin (Fawaz and Shin, 2014) apply indistinguisha-
bility into the advertising and analytics libraries as
well as on installed apps as location privacy preser-
vation mechanism; however, it does not give control
on the amount of WiFi and location data that is be-
ing shared with the location provider, indistinguisha-
bility technique increases computational overhead on
smartphones.
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Figure 3: Sequence diagram of current location computation process.

3.2 Location Query

Apps share location information with the provider
in the form of LBS queries. The transmission of
such queries to the location server may allow at-
tackers to gain access to user location data. Pri-
vacy Enhancing Techniques (PET) like k-anonymity,
dummy locations, region cloaking, location perturba-
tion and obfuscation, and mix-zone pseudonyms have
been applied to different architectures for location
query formation and privacy preservation from LBS
providers (Patel and Palomar, 2014; Wernke et al.,
2014; Khoshgozaran et al., 2011). Most of these tech-
niques rely on theoretical assumptions - like trusted
infrastructure to provide the privacy protection, re-
quiring a group of similar app users to be at the same
time and same place. The main issue with PETs and
cryptographic schemes is that it relies entirely on the
data collection servers to comply with location pri-
vacy.

Caching. Several authors have used caching
scheme along with PETs to build privacy preserving
location based queries. MobiCaché (Zhu et al.,
2013) applies k-anonymity for caching location
based queries. Similarly, Niu et al. (Niu et al.,
2015) attempt to improve k-anonymity based caching
by adding dummy locations. Both proposals re-
quire trusted infrastructure to maintain privacy.
Caché (Amini et al., 2011) maintains a local caché
within the device to reuse the data types available
from applications in future location based queries;
however, storing entire LBS query data increases
the cache storage requirements. Besides, Caché

also requires app developer to modify the way app
access location data. Whereas, LP-Caché caches
the network fingerprints and geo-coordinates, which
reduces the storage overhead drastically; it considers
installed apps as black box, and therefore, does not
require app developer to modify the code, it works
as a middleware between the app and the mobile
platform. All these cache-based systems either intent
to generalise or obfuscate the LBS query or minimise
the number of queries sent to the app providers,
but they do not provide privacy from WiFi content
distributors. Besides, mobile devices not only send
vast amounts of location data to app providers but
also to location providers creating different location
privacy shortcomings (Almuhimedi et al., 2015;
Shklovski et al., 2014). In this regard, limited work
has been published on privacy preservation from
the location provider perspective (Damiani, 2011;
Doty and Wilde, 2010). Damiani (2011) proposes a
theoretical approach for privacy-aware geolocation-
based web services to encourage further research to
minimise the amount of location data being shared
with the location provider. This is mainly due to
that the location provider is considered as the only
source to get the user location when developing any
location-based app. In LP-Caché, we minimise the
process of wireless AP data collection by the WiFi
content distributors or location providers, and we
control information disclosure within the generated
LBS query (e.g., points of interests (POIs) and nearest
neighbor) since it will be sent to the third-party app
provider.
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3.3 Privacy-aware Network
Communication

Besides location queries, device’s IP address can also
reveal user’s private locations. To this regard, anony-
mous communication protocols, e.g., Anonymizer
(Anonymizer, 2016) and TOR (TOR, 2016), deal with
anonymous service usage at the network layer while
communicating over Internet (i.e., the server cannot
infer user’s location via received device’s IP address
along with location query), and they are most promi-
nent and commonly used network layer solutions.

4 LP-CACHÉ MODEL

In this section, we describe LP-Caché’s threat model,
design goals, architecture and main processes’ se-
quence diagram.

4.1 Threat Model

Apps deliberately collect user’s sensitive data, includ-
ing location and other sensitive information as part of
their operations. User tracking, identification and pro-
filing (i.e. personal habits, movement patterns, etc.)
are fundamental threats to location privacy (Felt et al.,
2012; Wernke et al., 2014). Furthermore, the current
direct link of smartphones to the location provider
and the continuous flow of LBS queries that include
device’s exact geo-coordinates over network create a
serious risk to the protection of users’ sensitive infor-
mation, even more challenging, in the presence of a
malicious location provider and via advanced network
sniffing practices.

LP-Caché computes the exact location within user
device, without service provider’s involvement, and
trusts the device on the storage of sensitive data.
However, the user has still the option of giving con-
sent for app providers or location provider to access
their location. Mobile network providers might, how-
ever, collect user location data via cellular clients. It
is also excluded from our model the option of manu-
ally inserting the location data (e.g. street name, zip
code, post code) within LBS query.

4.2 LP-Caché Control Flow
Architecture

LP-Caché’s three main design goal are: 1) the third-
party app provider will not be able to infer the de-
vice’s exact location without getting uses’s consent;
2) the user can set distinct privacy preferences for
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Figure 4: LP-Caché architecture.

different apps and private places; and 3) the model
works independently without the need of modifying
the app’s code. Figure 4 depicts the block diagram
for LP-Caché architecture; its main components are:

Permission Setter is the user interface (UI), which
enables users to set and manage their private
places and apply improved personalised permis-
sions when running installed location-based apps.
Once received the user inputs, pre-set private lo-
cations are sent to the Private Location Manager
module, and permissions are sent to the Rule Map-
per Module.

Request Manager is responsible to intercept the
event of location access calls, and then lead the
app’s control flow to the Private Location Man-
ager module. Besides, it will also be in control of
receiving the processed user location (i.e., could
be either anonymised or altered) from Rule Map-
per, and then delivering it to the app in order to
maintain every session’s control flow.

Private Location Manager module’s main task is to
detect unique identifers of the surrounding WiFi
APs and compare them with the stored net-
work fingerprints to determine whether the user is
within the set of private places. User inputs from
the Permission Setter will create network finger-
prints for known private locations, which are then
added or updated in the Caché database. More-
over, it maintains a binary flag to detect private
places. In the case of a hit the location data is sent
to the Rule Mapper. Otherwise, the location is re-
ceived from the Location Receiver. Whenever the
Private Location Manager receives a new private
place request, the received location is mapped to
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the detected network fingerprint and stored in the
Caché database.

Rule Mapper dynamically collects and checks set
permissions from Permission Setter. Once the
representative location object is received from the
Private Location Manager, it applies the user per-
missions on the location co-ordinates, alters them
(if required), and outputs the processed location to
the Request Manager module. If the flag is nega-
tive, then it forwards the exact location.

Caché is the established on-device cached database,
and it is routinely queried by the Private Loca-
tion Manager module, which can add, update and
delete the cached location data. The locations in
caché are those which are to be protected, and
they can also represent regions of space. Each en-
try is recorded along with a network fingerprint
and geo-location that is acquired from the loca-
tion provider.

Location Receiver module receives a location object,
which includes the user device’s geo-coordinates
(as in Figure 2), from location providers and sends
it over to the Private Location Manager for fur-
ther processing.

4.3 Process Sequence

LP-Caché modifies the current location resource han-
dling process, however, the involved entities (as in
Section 2) remain the same. Figure 5 illustrates the
sequence of processes and messages involved in LP-
Caché:
1. At the event of app requesting the device location,

our service will intercept the request to get the lo-
cation from the cache database instead of sending
the request to the location provider.

2. Upon receiving the location request, our service
will scan the surrounding network infrastructure.

3. Using observed network frames our service will
execute as follows:

(a) Our service compares the collected beacons
with the stored network fingerprints to re-
trieve corresponding stored representative loca-
tion coordinates.

(b) In the case of an unmatched entry on the
database, the LP-Caché prompts the user two
options either input the location using UI, or al-
low the query to be sent to location provider
that will calculate and send the current location
coordinates. Note that this will only occur if
the user has set the current location as private
but the geo-coordinates are not cached.

(c) The received location data for the encountered
APs will be tracked within the local cache
database for future use.

4. User location coordinates can be altered based on
the privacy settings. LP-Caché provides three op-
tions for controlled information disclosure: (1)
Adjust Location Granularity, (2) Obfuscate Loca-
tion, and (3) No Change. Computed location is
populated in the location object and sent to the
app.

5. Once the app obtains the location object, it is
then used by the app provider to send the corre-
sponding reply to LBS query via the standard pro-
gramming interface/API (Android Developer Ref-
erence, 2016).

5 IMPLEMENTATION
REQUIREMENT

In the following sections, we describe LP-Caché’s
implementation requirements. LP-Caché orchestrates
a mobile platform based location protection ser-
vice to modify the location resource handling pro-
cess. For instrumenting the LP-Caché implementa-
tion, Android will be the best choice since it is open
source; however, it can also be implemented on other
permission-based mobile platforms.

5.1 Bootstrapping

LP-Caché aims to protect user’s private places. Ini-
tially, LP-Caché does not have enough informa-
tion to function, the two main required information
are private places’s network fingerprints and geo-
coordinates. LP-Caché cannot collect network fin-
gerprints and geo-cordinates for private places at run-
time, as by the time we have this information, other
installed apps will have access to it. Therefore, when
LP-Caché first boots and before turning ‘ON’ location
sharing settings, user will have to do the initial setup,
which includes allow WiFi AP scanning, input geo-
cordinates and set privacy choices (see Section 5.4).
In 2013, Google presented a new service API (also
works on older Android versions) for location-based
apps that allows developers to use the new and ad-
vanced Location and Activity API, i.e., they changed
Location Manager to Fused Location Manager,
hence combining sensors, GPS, Wi-Fi, and cellular
data into a single API for location-based applications
(Hellman, 2013). As a result, separating data from
GPS PROVIDER and NETWORK PROVIDER is no longer
straight forward. LP-Caché addresses this issue by
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Figure 5: Sequence diagram of location computation process using proposed model

preventing app’s location request to reach the Fused
Location Manager that collects and sends the net-
work session data to the location provider. Instead,
the requested location is retrieved from the on-device
cache, and then, it is sent to the requesting app (with
privacy rules applied). Besides, geographic tool3 can
be incorporated in the LP-Cache’s UI to get the corre-
sponding geo-cordinates. This will allow LP-Caché
to achieve effective privacy without affecting loca-
tion accuracy, at the same time, prevent from the non-
authorised sharing of device’s exact location and net-
work session data.

5.2 Mobile Platform

For performance evaluation, there are two possible
ways of implementing LP-Caché location protection
service. The first requires modifying the app’s loca-
tion accessing interfaces and intercepting location up-
dates before they reach the app provider. Whereas, the
second option requires modifying the platform and
changing the location data before reaching the app.

App Code Modification. This comprises unpack-
ing the app, rewriting the code to work according
3LatLong is a geographic tool. See http://www.latlong.net/
(last access in March. 2016)

to the new rules, and then repackaging it again,
e.g.,(Jeon et al., 2012). However, app repackaging
changes the signature and stops future updates, and
therefore, affects its functionality. Another way to
modify app’s location accessing interfaces is through
the creation of an Android service and allowing apps
to register with it. Then, Apps can use the location
data provided by this service. This approach is easy
to implement but relies heavily on app developers to
modify their app’s code, which is highly infeasible
and unrealistic. Nonetheless, this approach can be
used as simulated testing environment for any devel-
oped service.

Platform Modification. For the sake of experimen-
tation, we develop LP-Caché via platform modifica-
tion. One of the main task is to add a system service,
where the class belongs to the location APIs; thus, it
is placed in the android.location package, which
detects private locations via APs and can also be used
by other components when calling context. In An-
droid, a context allows an app to interact with the OS
resources. Another task is to make LP-Caché com-
municate with location requesting apps. On Android
there are two methods to access user’s location: 1) Lo-
cation Manager Service (Old), and 2) Fused Location
Manager Service (New) that is a part of Google Play
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Services. Both methods require the app to request a
callback function to get regular updates by registering
a location listener. The app receives a new location
object when a new location is available, the callback
function is invoked. Modifying these two Google ser-
vices is complicated, but there is a possibility to inter-
cept the location object before it reaches requesting
apps. We will add a static context field to the loca-
tion class, which will be populated when the app is
invoked; this will enable us to know which app is cur-
rently requesting the location object, and also com-
municate with the OS (Fawaz and Shin, 2014). The
created location object will have reference to the re-
questing app’s context, and therefore, it can interact
with our external service.

5.3 On-device Cache Database Creation

LP-Caché requires fixed wireless APs data (i.e.,
802.11) to create cached database of private locations.
Initially, we decided to focus on WPS since it infers
accurate user location. However, we can later include
other fixed radio sources (e.g., cell-tower unique iden-
tifiers).

Network Fingerprinting. We can distinguish two
main types of WPS techniques to determine the po-
sition of client devices in respect to APs (Bell et al.,
2010): 1) Signal trilateration and 2) Fingerprinting.
The former undertakes trilateration of Received Sig-
nal Strength (RSS), Angle of Arrival (AoA), and Time
of Flight (ToF) from observed APs, and the later
involves mapping observed APs signatures with a
stored database. LP-Caché uses fingerprinting to cre-
ate cached location database; however, fingerprinting
performance is highly related to the number of APs.
Therefore, in Section 6 we have evaluated WiFi AP
availability and consistency. The detected network
management frames/beacons are mapped with the de-
vice’s representative geo-location to create a network
fingerprint, which is then stored in the local cached
database, an example private location fingerprint is
shown in Equation 1. Moreover, to reduce storage and
computation overhead, our model only caches net-
work fingerprints of private places (e.g., home, work,
frequently visited places or particular stores), and it
relies on user input for initial pre-set up. The user
will have to select the option (via LP-Caché UI) to set
current location as private place pi, and then finger-
print will be recorded. Later, the private place will be
detected automatically with respect to observed bea-
cons.

pi = [n1], [n2], ..., [nx]→ [lr] (1)

Algorithm 1: Location Calculation Algorithm.

Input: nx: Network Frames
Output: lr: Representative Location

1: nx = 0
2: read nx
3: while nx 6= null do
4: if nx = ni , ∀ i ∈ p then
5: (step 1) retrieve the corresponding lr
6: add flag f = (if private 1, else 0)
7: send lr
8: else
9: (step 2) request lr from user or location

provider
10: set received lr to corresponding pi
11: update c
12: send lr
13: end if
14: end while

where pi represent ith private place IDs, n is the
scanned beacon, and lr is a representative location
for that private place. WiFi AP beacon frame n con-
sists of four attributes 〈SSID, BSSID/MAC address,
Signal-strength, and Timestamp〉. The private rep-
resentative location lr consists of a tuple 〈Lattitude,
Longitude, and Accuracy〉.

On-device Cache-based Location Calculation Al-
gorithm. The detailed steps of privacy-aware geo-
location calculation process are summarised in Algo-
rithm 1. The surrounded beacons nx are scanned and
compared to the list of private WiFi fingerprints ni
to detect private place p stored in cached database c.
Further, the representative lr is altered based on set
permissions (see Section 5.4).

5.4 Personalised Permissions for
Location Sharing

A general LBS query consists of different attributes,
e.g., LBS query {POI, Latitude and Longitude, User-
Info}, where included geo-coordinates estimate the
device’s geo-location. To satisfy one of the privacy
property called controlled information disclosure,
we designed enhanced permission mechanism to
control these geo-coordinates before it is sent to app
providers. When using LP-Caché, for every installed
app and set private place, the UI provides three
distinct privacy settings: (1) Adjust Location Gran-
ularity, (2) Obfuscate Location and, (3) No Change.
In the first option, geo-coordinate truncation method
adjusts location precision level; in the second option,
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Algorithm 2: Enhanced Permissions Algorithm.

Input: lr: Representative Location
Output: l′r: Processed Location

1: up = User Input
2: read l, lg, f , up
3: if up = Adjust Granularity then
4: check granularity level gl
5: truncate(l, lg)
6: replace l to l′ and lg to l′g
7: return l′r
8: else if up = Obfuscate then
9: randomly generate angle θ

10: obfuscate(l, lg, θ)
11: replace l to l′ and lg to l′g
12: return l′r
13: else
14: unchanged
15: return l′r
16: end if

geo-coordinate transformation obfuscate user’s loca-
tion; whereas, in the third option, the exact unchanged
geo-coordinates are sent to the requesting app.

Enhanced Permissions Algorithm. Once LP-
Caché receives an invoked location object lr, it alters
the location data according to the enhanced permis-
sion settings and returns processed location l′r. The
steps involved in enhanced permission mechanism are
summarised in Algorithm 2, where up is the set per-
mission, gl is the adjusted location precision level, l
is the latitude, and lg is the longitude.

Geo-coordinates Truncation. The geographical
coordinates looks like 52◦28’59.200” N
1◦53’37.0001” W, where the last digits specify more
accurate geo-location. Geo-coordinate truncation
method will enable us to adjust the location precision
level, i.e., by removing last digits and rounding the lo-
cation accuracy from street to city level or even more
general. Generally, for any third party reuse, ser-
vice providers or data collectors assure in the EULA
that this method will be applied on the collected data
since the truncated coordinates increase the ambiguity
level(Aad and Niemi, 2010). On contrary, LP-Caché
applies this method on the user device with user’s per-
mission in order to minimise the user’s sensitive data
collection and privacy concerns.

Geo-coordinates Transformation. For privacy
preservation, position transformation functions such
as scaling, rotation and translation have been used

Table 1: WiFi measurement dataset summary.

Total number of scans 25480
Distinct private locations selected 34
Total APs detected 486
Average APs detected 396

by location data distributors or anonymisers (Lin
et al., 2008; Wernke et al., 2014). In LP-Caché,
we use geo-coordinate transformation on the device
to obfuscate user’s private locations. Our service
represents the geo-coordinate transformation using
scaling and rotation, and denotes its parameters as a
tuple 〈s, θ, (l, lg)〉, where s is the scaling factor, θ is
the rotation angle, and (l, lg) are the original coordi-
nates. It applies Equation 2 to generate transformed
or obfuscated geo-cordinates (l′, l′g), where angle θ is
randomly generated.

l′ = θ(s.l)
l′g = θ(s.lg)

(2)

6 FEASIBILITY AND USABILITY
ANALYSIS

LP-Caché’s actual performance evaluation depends
on the location-based apps performance. In this sec-
tion, we analise the WiFi AP data availability and con-
sistency to measure feasibility of WiFi fingerprinting
method to be included in LP-Caché’s implementation.

6.1 WiFi APs Availability and
Consistency

Experimental Set-up. The experimental set-up to
measure WiFi AP data availability and consistency
consists of three steps:

1. Data collection. We collected beacons from
fixed WiFi APs using WiEye (WiEye, 2016) and
Network Info II (NetworkInfoIi, 2016) apps
on Android smartphones that have 802.11a/b/g/n
radio feature so they can operate in both 2.4GHz
and 5GHz bands at 34 different private places for
a period of one month.

2. Location categorisation. App users are more
concern about sharing their private loca-
tions(Almuhimedi et al., 2015); therefore, in our
analysis, we selected three distinct categorise of
private places: 1. Home (i.e., residential place),
2. Work (i.e., commercial place), and 3. Arbitrary
(i.e., any frequently visited place) to determine
categorical distribution pattern of WiFi APs.
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Figure 6: Measured density of detected WiFi APs at private
places.

3. Data analysis. We collected and statistically anal-
ysed the scanned WiFi AP data. Table 1 compiles
the included sample size; whereas, Figure 6 shows
the relative difference between WiFi APs density,
and Figure 7 depicts the relative average accuracy
distribution pattern of detected WiFi APs for each
category.

Observation. For each category of private places,
experiments revealed the following:

Home The results demonstrate that Wifi APs are
fixed and frequent and the difference between
number of constant beacons and minimum num-
ber of similar beacons is comparatively less,
and therefore, it achieved highest accuracy rate.
Moreover, the ratio of SSID to BSSID is 1:1, i.e.,
1 SSID (abc) has 1 BSSID (a0:12:b3:c4:56:78),
this makes fingerprints distinct so improving the
location detection performance.

Work This category has many fixed WiFi APs but
with fluctuating signal strengths, and therefore,
the sequence of available APs changes. However,
the observed ratio of SSID to BSSID is many to
one, i.e., 1 SSID has many BSSIDs; therefore, in
this case, SSIDs along with BSSIDs can be used
as unique identifiers to create a fingerprint to de-
tect a private place dynamically.

Arbitrary In this category, the data collector could
select any frequently visited locations, e.g., gym,
shop, or friend’s home. Figure 7 demonstrates that
the outcome of this category is related to the other
two categories, it either shows results similar to
home or work.

The range of average accuracy for all the three cat-
egories of private places falls between 74% to 96%.
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Figure 7: Relative average accuracy distribution pattern of
detected WiFi APs at private places.

Hence, it is evident that smartphones regularly de-
tect similar beacons at frequently visited place, for
place detection at least one beacon should match with
the stored fingerprints. Thus, the results demonstrates
that WiFi fingerprinting can be effectively used as pri-
vate place detection source in LP-Caché. Nonethe-
less, to achieve efficient capability for place recog-
nition via beacons place discovering algorithm like
(Kim et al., 2009) can be implemented (in future
work).

6.2 Ongoing Evaluation of Caching
Method

Following WiFi data availability and consistency
analysis, LP-Caché’s feasibility evaluation will be ex-
tended to analyse how frequently cache needs to be
updated and what are the trade-offs of cache update
frequency vs location privacy and accuracy in order
to measure further computational and communication
overheads. We also intent to conduct a thorough user
study to determine comfortability of the users to ac-
commodate LP-Caché’s functionality. Moreover, we
plan to consider the fundamental caching based tech-
nical challenges such as cache hits and cache misses,
data freshness, data consistency, and estimated band-
width requirements in the further development and
implementation of LP-Caché paying special attention
to storage-efficient caching.

7 CONCLUSIONS

Secure gathering and transfer of location data via
smart mobile devices while at the same time preserv-
ing users’ privacy are concerning needs. Research and
industry communities are making joint efforts to iden-
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tify the requirements for LBS applications in future
large scale scenarios and addressing end user con-
cerns. Studies based on cryptographic schemes and
PETs have been tested on service provider’s data col-
lection servers but neither are implemented on the
mobile platform, nor on the actual app operation. In
addition, the lack of usability is one of the factors that
hinders the adoption of existing privacy-aware solu-
tions. We presented detailed analysis of the current
location computation process and proposed a novel
privacy-aware model. Both the end users and ser-
vice providers benefits from LP-Caché since the on-
device caching technique works on the minimisation
of the user’s private location collection process. With
a personalised permission mechanism, users can man-
age each app and private place distinctly. Immedi-
ate future work focuses on the implementation of the
model to measure the feasibility, usability and effi-
ciency of our approach while interacting with differ-
ent location-based apps.
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Abstract—Proliferation of mobile devices equipped with po-
sition sensors has made Location-based Service (LBS) increas-
ingly popular. These mobile devices send user’s actual location
information to the third party location servers, which compile
and, in some cases, share with other service providers. As a
result, users aware of the privacy implications feel continuously
tracked. Effective and, even more important, socially-accepted
privacy enhancing technologies for these services have recently
received a lot of attention in academia and industry. This paper
presents an overview of the privacy preserving techniques cur-
rently applied by LBS applications. It classifies these techniques
into a classification model consisting of three layers. Thus, a
brief description of all the protocols, mechanisms and interfaces
covering from the application layer to the network layer are
presented, also providing a comparative analysis of current
privacy-aware location solutions. To guide future research, a new
perspective of the literature findings is proposed and research
questions, methods and implications are discussed. Novel to
related work, our classification embraces a holistic picture of
approaching privacy-aware mobile LBS.

I. INTRODUCTION

Mobile devices equipped with improved positioning tech-
nology (e.g. GPS, wifi triangulation, IP address approximation,
cell tower based identification, user provided information)
have drastically increased the use of Location-Based Services
(LBSs). In addition, cheap data storage allows information
collectors to record many activities of such advanced mobile
device users[1]. Nowadays, LBS applications are being lever-
aged by many companies because of the business growing
around them, e.g. location-based games, location-based media,
geo-marketing and geo social networking, to name a few.
However, such applications can also be a serious threat to
users’ privacy [2]. The traditional approach to guarantee users’
privacy has been based on the End User License Agreement
(EULA) and other regulations or privacy policies, which do
more to protect company’s interests than to safeguard users’
rights [3]. As a result, users aware of the privacy implications
are reluctant to use such services on their mobile devices [4].

Example 1: Consider Foursquare, one of the most popular
LBS which is completely location-based. To use the service,
the user must turn on the location sharing settings on his/her
device, and provide personal details for registration. At this
stage, the user agrees on the terms and conditions via EULA
stating “By submitting any personal information, I consent
to having my personal information transferred to and pro-

cessed in the US, which I understand may have different data
protection rules than my country”. This is also followed by
another two EULAs: (i) giving consent of access to the user’s
contacts, and (ii) to push notifications. Some studies have
already proven that users sensitive information collected by
Foursquare’s third party location servers is shared with other
services causing sever privacy leakage [5]. However, benefits
of LBS for the society are reasonably apparent, especially
when they are associated with Assistive Healthcare Systems
and emergent wearable technologies.

Certainly, a natural conflict arises when attempting to pro-
tect user privacy while building a system that allows for
flexible use of location information [6]. Approaches to this
challenge have applied cryptography and Privacy Enhancing
Technologies (PETs) [7], [8], [9] which are still far from
being socially-accepted. To avoid major privacy implications
well known companies (e.g. Google and Microsoft) have
identified the need of adopting a Privacy-by-Design (PbD)
approach to consider privacy as an integral part in the design
process of LBS applications and enhance PETs [10].

Thus, to guide future research a brief description of all the
protocols, mechanisms and interfaces covering from the appli-
cation layer to the network layer are presented in this paper.
Compared to other related work, our classification embraces
a holistic picture of approaching privacy-aware mobile LBS.
This new perspective allows us to characterize and classify
the protocols, to analyze the tradeoffs produced by different
design decisions for mobile location-based applications, and
to link the various aspects and data flows at every stage of
the service, ranging from the users using the mobile device to
the transmission of the user sensitive information within the
query over the network.

The rest of the paper is organized as follows. Section II
outlines our novel classification consisting of three layers
for privacy protection of mobile LBS applications. We fully
elaborate on each layer: mobile platform, query formation,
and network communication in Sections III, IV, and V, re-
spectively. In these sections, we highlight existing techniques,
protocols, mechanisms, potential research areas, and related
challenges also providing a comparative analysis of current
privacy-aware location solutions. Section VI will conclude
discussing promising directions for future research.
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II. OVERVIEW OF OUR CLASSIFICATION

According to Duckham and Kulik [11], “location privacy is
the right of individuals to decide how, when, and for which
purposes their location information can be released to other
parties”. Furthermore, Suikkola [12] specified that the success
of any PETs for LBS applications depends on critical factors
such as the need of standardized interfaces, usability, security,
privacy and society-acceptance.

Therefore, to identifying most effective solution, we must
know who can officially collect such information? and how
this information can violate users privacy? Observing the com-
mon architecture for LBS - which consist of four main entities:
mobile device, positioning technologies, network communi-
cation, and service providers- there are three main types of
service providers: 1.) Mobile Network Operator (MNO), 2.)
Mobile Platform Providers (MPP), and 3.) Mobile Application
Providers (MAP).

Example 2. Consider a mobile device with LBS application
installed. MNO collects location information for providing
signals. MPP provides services to develop mobile applications
and distribute on there official repositories. MAP has to
register with MPP (e.g. Android or iOS) in order to publish
their application on the official repositories. Alternatively, such
application can also be distributed on third party repositories
(e.g. Cydia and Amazon).

Therefore, MNO/MPP/MAP are the main service providers,
who can collect users location data and, in some cases,
share for third party use. But, existing work presented so
far surveying on privacy preservation in LBS [13], [14], [15]
have considered the above challenge mainly by following
an application-specific approach or by only focusing on the
application of cryptographic primitives. Coming to network
layer solutions, these solutions mainly depend on anonymous
network communication techniques, in which even if the
data packet is encrypted, both the source and destination
addresses located in the packet’s IP header are still visible
to an eavesdropper. In our classification, we examine all
the roles of these service providers at each layer based on
the common LBS architecture to identify the most potential
and promising directions to achieve socially-accepted PETs.
Such, socially-accepted PETs will also benefit the sharing
of location-based information amongst all the three service
providers. Figure 1 depicts our classification which consists
of three layers: Layer 1.) Mobile OS and APPs - to provide
privacy-aware mobile device, Layer 2.) Query Formation - to
provide privacy-aware location query processing, and Layer 3.)
Network Communication - to provide privacy-aware networks
communication.

III. LAYER 1. MOBILE PLATFORM

In this layer, we analyse existing work on improving poten-
tial security mechanism and minimizing privacy risks in major
MPP. Later, we propose some guidelines for further research
directions in this domain. In particular, Layer 1 classifies
existing and other proposed solutions used to provide users’
privacy and security for using any third party applications (i.e.

Mobile OS and APPs
(Focus: Privacy-aware mobile device )

Query Formation
(Focus: Privacy-aware Location query )

 Network Communication
(Focus: Privacy-aware Network)

Layer 1

Layer 2

Layer 3App and 
Markets 

Location 
Sensors

Mobile OS

The architecture of any mobile device 
equipped with positioning technology

Approaches for providing location privacy

MNO 
MPP
MAP 

Service providers

Fig. 1. Overview of Classification

by thirty party MAP). Thus, this layer is divided into two sub
topics: A) Current mobile OS protection mechanisms and B)
Securing Mobile Applications and Repositories.

A. Current mobile OS protection mechanisms

Existing literature confirms that attackers mainly target
users of popular MPP like Android, iOS, and Windows
Mobile to get maximum amount of sensitive information.
Therefore, lets understand the current prevention mechanism
in such popular mobile platforms security models.

a) Android Security models: Android OS and Windows
Mobile have similar security models for approving any third
party applications to be distributed over their official repos-
itories. Android OS security model consist of three main
techniques:

• Sandboxes: Sandbox approach (i.e. creating an environ-
ment in which the actions of a process are restricted
according to a security policy) for dynamic monitoring
of third-party apps so they are restricted from accessing
files stored by other apps, cannot make changes to the
device and have limited access to the OS [16].

• Digital Signature or Code Signing: Developer must dig-
itally sign the installation package file of every mobile
application. The security model then maps the signature
of the developer with a unique ID of the application pack-
age and enforces signature level permission authorization
[17].

• Permission based controls: Android OS uses permission
control using manifest file to show all required permis-
sions to the user at installation time. If the user decides
to grant permission to the application, then the protected
resources are available to the application, otherwise the
access to the resources is blocked [18].
b) iOS Security Model: On the contrary, Apple prefers

keeping the actual vetting/reviewing process for a third-party
application to be published on their official repositories un-
known [19]. Yet, similar to techniques used by Android OS
and Windows Mobile, iOS security model uses sandbox-
ing and digital signatures but do not give permission based
controls to their device users. Instead it uses heuristic-based
method, i.e. defines and distributes application configuration
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settings by an installed configuration profile in the form of
XML file and user cannot make changes in this file. According
to apple’s security policy, the identity verification process
of developers to issue certificate is always unknown. Like,
other platforms any third-party applications must conform
to the predefined privacy rules and must be digitally signed
using certificates issued by apple [20]. Moreover, if the user
installs application from third party repositories or the device
is jailbroken, Apple do not take responsibility of any private
data leakage. This makes iOS platform very restricted, it
prevents the developers to understand the flows in iOS security
models and creates an assumption amongst apple users that
the restricted and pre-defined terms and conditions are built to
safeguard their privacy and security.

However, Mylonas have experimented location privacy
attack on all mobile platforms, including Android OS,
BlackBerry OS, Apple iOS, Windows Mobile, and
Symbian OS, the result demonstrates that all the security
models of existing mobile platforms are still vulnerable to
location tracking attack and malicious code attack [21]. This
proves that security models based on signature-based methods
and heuristic-based methods (i.e. pre-defined rules) cannot
secure user’s privacy rights and require several major fixes.
For this reason, many researchers[22], [23] are trying to
incorporate another techniques (e.g. host-based intrusion de-
tection application) to improve current security models. Table
I compiles more details of the literature findings at this layer.

B. Securing Mobile Applications and Repositories

We now analyse the incorporation of security and privacy
solutions into LBS applications running on users mobile
devices. We mentioned earlier once the LBS application is
installed and user grants access to their location, all the exist-
ing mobile OS security models are vulnerable towards location
data tracking/leakage attacks. In essence, all the existing secu-
rity models focus more towards companies policies rather than
securing user’s privacy rights. As a consequence, malicious
attacks on location-based mobile applications (or Apps) is
becoming very common amongst the the official marketplaces
(e.g. Apple store or Google market) or the third-party
App marketplaces (e.g. Cydia, Amazon AppStore) [36].

Many studies proposed application-specific layer solutions,
mainly for Android platform. These studies are based
on Android’s permission mechanisms for addressing two
main goals. First, there is a focus on detecting and provid-
ing alerts when a leakage is recognized by applying a re-
delegation of permission mechanism, e.g. AndroidLeaks
[37], TaintDroid [38], and Kirin [39]. Secondly, to em-
power users with privacy controls aims at adjusting permission
settings at run-time, e.g. TISSA [25] and Locaccino [26].
In addition, DroidMOSS [36] uses fuzzy hashing technique
to match digital signatures and to detect repackaged Apps
in third-party Android repositories. DroidRanger [40]
uses permission-based behavioral footprinting and heuristics-
based filtering to detects repackaged Apps in both, official and
third-party, Android repositories. Both approaches identify

that the third-party repositories facilitate users’ information
leakage.

In contrast, Apple does not provide user with permission-
based control, this makes iOS platform restricted, limiting
the monitoring and identification of potential sensitive in-
formation leakages. Nevertheless, PiOS [19] demonstrated
several privacy threats within the iOS platform. Also, some
applications available on iOS official repositories prompt for
location sharing settings to be switched on, although it is
not needed at all. Thus, users/MPP are unaware of such data
gathering, manipulation or other usage of sensitive information
by malicious MAP. In this layer, most promising research
direction is to minimise/avoid unnecessary collection of users’
personal information by the third-party applications and im-
prove existing MPP security model against location tracking
attack.

IV. LAYER 2: LOCATION QUERY FORMATION

LBS applications share location information with service
providers in the form of query. The sharing of such queries
may allow attackers to gain access to user location data.
In location tracking applications, users’ privacy can be at a
higher risk because of continuous location queries are sent to
the location server. Hence, in this layer, we analyse different
privacy concepts and approaches to form privacy preserving
location-based queries.

M. F. Mokbel [14] classified location-based queries into
three categories namely private queries over public data, public
queries over private data, and private queries over private data.
Additionally, Shin et al. [13] categorised LBS privacy queries
into two types: query privacy and location privacy. Wernke et
al. [15] stated that privacy protection relies on three different
attributes of the location query: identity, position, and time.
In short, all of them emphasize that the privacy of LBS query
depends on two main factors: the protection of users’ sensitive
data within the query, and the unlinkability between the user’s
location and the query.

Most proposals so far have classified the existing techniques
for location privacy protection focusing on two popular lo-
cation privacy metrics: entropy and k-anonymity [15], [41],
[42]. Additionally, Chow and Mokbel [43] described how these
techniques can be used in different architectures including
Client-Server, Trusted Third Party (TTP), Mobile Peer-to-
Peer P2P and fully distributed. We refer reader to the cited
bibliography for details. Most commonly used techniques are
briefly described as follows:

1) Privacy metrics: Most existing techniques in the privacy
literature largely adopt privacy metrics such as k-anonymity
(i.e. a total of k locations are sent in a request and the
service provider is then unable to identify the user’s real
location with a probability higher than 1

k ) and location entropy,
but are mainly centralized (i.e. rely on trusted location-based
server/Anonymisers).

a) Dummy locations: Dummy locations are generated
and sent to location servers along with the actual position
to hide users’ location [27]. This technique uses k-anonymity
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TABLE I
ANALYSIS OF TECHNIQUES AND APPROACH STUDIED FOR EACH LAYER.

Privacy properties ( • = Fully, � = Partially, ◦ = Not at all)
Layers Techniques Drawbacks Related

Work
Unlinkability Unobservability Anonymity Controlled info

Disclosure

L1

Mobile OS - Permission based con-
trols

Over declaration [16] ◦ � ◦ •

- Sandbox and digital
signature

Weak to detect colluding
applications attacks

[20][16] ◦ ◦ ◦ •

- Host based IDS Needs to be installed as
a separate application

[22] ◦ ◦ ◦ •

Secure Mobile
Apps and
repositories

- Re-delegation of per-
missions and policies

Weak towards malicious
codes

[24] ◦ ◦ ◦ •

- Runtime Privacy Con-
trols

Requires user interfer-
ence

[25] [26] ◦ � ◦ •

L2

Location query -Dummy locations Usability issue [27][28] � • • •
using Privacy
metrics

-Cloaked region Vulnerable to continuous
querying

• • • •

-Mix- zone Specifically for location
tracking applications

[29] • • • ◦

-Location Perturbation
and Obfuscation

Obfuscation might re-
duce usability of data

[30] • • • ◦

Location query -PIR High computational and
communication overhead

[9] • • • •

using cryptog-
raphy

-Encryption Requires strong cryptog-
raphy

[31] • • • •

L3
Anonymous
communica-
tion

Anonymous routing pro-
tocols

More Expensive and vul-
nerable to internal at-
tacks

[32][33] [34] • • • ◦

Cryptographic primitive Computational overhead [35] • • • ◦

metric to measure users’ location privacy. This approach can
decrease the usability of actual data over dummy data, but
essential advantage of this approach is that the user is able to
generate dummies without the need of TTPs [28].

b) Cloaked region: Based on k-anonymity, several ap-
proaches [44] [7] used spatial and temporal cloaking to pre-
serve location privacy. This technique can also be used with
other privacy metrics such as l-diversity in CliqueCloak
[45]. It is more suited for LBS requiring user’s location
information at a specific time, but with continuous querying
the cloaked region becomes extremely large, and therefore, it
fails to provide accuracy/usability, e.g. ICliqueCloak [46].

c) Mix-zone: A mix-zone technique refers to a service re-
stricted area where mobile users can change their pseudonyms
so that the mappings between their old pseudonyms (i.e. enter-
ing restricted area) and new pseudonyms (i.e. exiting restricted
area) are not disclosed [29]. This techniques is suitable for
services that continuously tracking users’ movement in LBS
applications. It depends on geometric location transformation
and uses privacy metrics to measure the level of location
privacy.

d) Location Perturbation and Obfuscation: Obfuscation-
based techniques perturb (i.e. alter or move from its original
position) the actual location information while maintaining a
binding with the users identities. The idea of this approach is
to utilize a log of historical user locations rather than the real-
time location information to generate cloaked or obfuscated
regions[30][47]. Again, it uses k-anonymity as a metric to
measure user’s location privacy.

2) Cryptographic approach: Cryptographic based tech-
niques for query privacy are mainly used when location servers
are not trusted. Following are few cryptographic approaches

used in LBS applications for query executions:

a) PIR based techniques: Private Information Retrieval
(PIR) based approach uses standard public key cryptography
to provide location privacy without the need of privacy metrics
or TTP. PIR protocols allow clients to retrieve the information
privately from the server, without the server learning what
information was requested by client. This techniques provides
maximum query privacy but it causes high computational and
communication overhead on the server, which makes it hard
to be practically implemented in LBS [48] [49].

b) Other encryption base techniques for query privacy:
Encryption based approach to query un-trusted servers are
heavy-weight homomorphic [50], symmetric or asymmetric
[51]. Compared to symmetric key encryption, asymmetric key
encryption nodes are relatively much more expensive and
it can be used for location query in location based social
applications, e.g. LocX [31]. Other cryptographic primitives
like group signature, blind signature and ring signatures are
used into privacy preserving communication protocols. These
cryptographic primitives have been used for anonymous user
authentication or other access control operations. In LBS appli-
cations cryptographic primitives are mainly used in continuous
spacial-temporal tracking applications [35].

In short, query formation using cryptographic approach is
more suited for privacy preserving but cryptographic oper-
ations can incur high query processing, computational and
communication overheads on the servers. As a result, this
opens another research direction to minimise these overheads
on the location servers.
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V. LAYER 3: PRIVACY-AWARE NETWORK
COMMUNICATION

This layer reviews major technologies and communication
protocols including mixed networks, onion routing to identify
possibility of improvements and variations for mobile/LBS
scenario. In LBS, mobile network is used for calculating
the user location by having network nodes communicating
between each others. Existing network layer solutions mainly
depend on anonymous network communication techniques, in
which even if the data packet is encrypted, both the source
and destination addresses located in the packet’s IP header
are still visible to an eavesdropper. Therefore, academia and
industrial research are focus on designing and building privacy
and security schemes as an infrastructure that run on the top
of existing Internet protocols allowing users to communicate
with each others without disclosing their network identifiers.
Some of the successful anonymous routing protocols are:

A. Anonymous communication techniques

Communicating over anonymous network can provide
LBS users with strong unlinkability, unobservability, and
anonymity. Privacy preserving solutions like Anonymizer
[33], and TOR [32] deal with anonymous service usage at
the network layer while communicating over Internet (i.e.
the server can see the location data without knowing the
identity of users). They create a circuit with randomly selected
Tor relays, which encrypts the original data from source
to destination including the destination IP address. Another
solution called Crowds [34] is based on the idea of blending
into a crowd (i.e. users request can either be submitted to the
end location server or forward it to another random chosen
router). As a result, no third-party knows the origin of the re-
quested query. Hordes [52], uses multicast routing to achieve
anonymous communication over the Internet. However, all of
these protocols have to be prevented from several security
attacks such as the inference of the user location using the GPS
trace without affecting the performance of the LBSs. Amongst
all the above protocols only few anonymizing networks have
been tested for the mobile Internet scenario and it is an area
that attracted research interest.

B. Measuring Anonymity

Anonymity set size, k-anonymity, individual anonymity
degree, and entropy anonymity are few anonymity metrics to
measure anonymity in an anonymous network [53].

In this layer, existing literature proves that both anonymous
routing and anonymous communication protocols, requires
further research to complement/improve current privacy pre-
serving network layer solutions. Also, there are other cryp-
tographic primitives that provide a high degree of anonymity,
but cannot be applied into network communication due to high
cost in terms of network traffic and processing, e.g. the Dining
Cryptographers.

A brief depiction of our findings

LAYER 1

LAYER 2

LAYER 3

Fig. 2. A summary using pie diagram.

VI. CONCLUSION AND FUTURE DIRECTION

Standards for LBS applications exist in both the 3GPP
[54] and IETF [55] arenas. The need to securely gather and
transfer location information for LBS, while at the same time
protecting the privacy of the users involved have been identi-
fied. However, industry and academia are making joint efforts
to identify the requirements for LBSs in future large scale
community and better addressing end user concerns. Current
research demands PETs to protect user location privacy while
encouraging the use of LBS applications, this will benefit both
the end users and service providers. In this paper, we have pro-
posed a novel classification which embraces a holistic picture
of approaching privacy-aware mobile LBS. Hence, our survey
provides better focused classification of the possible solutions
towards improving location privacy preserving mechanisms.
We have identified three different layers: Layer 1) Mobile OS
and APPs, Layer 2) Query formation, and Layer 3) Network
Communication.

In summary, to come up with an efficient socially-acceptable
solution, all the above layers must be considered. We have
described each layer’s shortcomings. Figure. 2 provides a
sketch of our findings, and Table I illustrates each layer’s most
common approaches satisfying the privacy properties. Based
on entire conducted analysis, compared to approaches in all the
layers in our classification Layer 2 approaches fully satisfy the
required privacy properties. Besides, following are the three
main directions we have identified for future research in each
layer:

• Layer 1: Insights from current mobile OS security models
regarding location attacks attract the attention for a more
rigorous vetting process for regulation of third-party
location application and repositories. The future research
that aims at an application level solution must incorporate
other techniques against intrusion.

• Layer 2: We distinguish two direction for future work to
this regard. First, new metrics can be applied such as l-
diversity, t-closeness and differential privacy to measure
query privacy. Secondly, applying better cryptographic
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approaches but sametime reducing the computational and
communication overheads on the location servers’ side.

• Layer 3: Anonymous and unlinkable sharing of location
information between the LBS applications and the loca-
tion servers over the network can be further elaborated
to provide a privacy-aware LBS framework form the
network layer’s viewpoint.
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Abstract

In the evolving mobile age, use of smartphones equipped with advanced positioning tech-
nology can pose critical threats to users’ location privacy provoking continuous tracking,
profiling and unauthorized identification. At present, the mobile app ecosystem relies on
permission-based access control and policy practices, which are proven ineffective at con-
trolling how third party apps and/or library developers use and share users’ data. In this
paper, we present and evaluate a privacy-enhancing middleware that enforces location
privacy over both the information and control flows occurred between sources and sinks.
Through a caching-based mechanism, our middleware minimises the interaction and data
collection from wireless access points, content distributors and location providers, and it
provides enhanced privacy controls to prevent disclosure of user’s private locations. We
implement our middleware on Android 6, and present its comprehensive evaluation in
terms of performance and security. Using our middleware, we conducted series of exper-
iments with real apps from five different categories of location-based services, e.g., instant
messaging and navigation. Experiments demonstrate acceptable computational efforts,
memory consumption (upto 21.3 MB of RAM usage), delay overheads within practical
limits (below 22 milliseconds), limited storage overhead (136 KB on device storage for
a period of 3 months). To assess privacy/data leakage within the collected datasets, we
conduct security analysis that demonstrate our middleware mitigates critical location
privacy threats at a tolerable loss of in Quality-of-Service (QoS) of location-based apps
and the underlying OS. Hence, our middleware is practical, secure and efficient location
privacy preserving solution.

Keywords: Location Privacy, Location-based Services, Smartphones, Caching,
Location-based Applications, Android, Mobile Platforms

1. Introduction

Recent advancement in wireless indoor positioning techniques and systems have
leveraged tremendous opportunities for a whole new class of Location-Based Services(LBS)
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that mobile1 users can benefit from while at home, work, shopping mall, or university
[1]. Moreover, today’s demand for indoor localisation services have become a key prereq-
uisite in some commercial markets that lead to futuristic geo-marketing and geo-social
networking, monitoring, and assisted eHealth techniques, to name a few, as well as some
new platforms, e.g., for location-based educational augmented reality games or energy
consumption 3D maps in smart communities. Such growing businesses and easy access to
location data via mobile devices both result in high number of location-demanding apps,
which compute on user’s sensitive data and pose a serious threat to the users’ privacy
[2, 3].

Common approaches to privacy of user location on smartphones are based on two
methods namely i) permission controls as a binary process2 and ii) privacy policies3.
In former method, mobile Operating Systems (OS4) implement permission-based access
control for data sources and sinks (third-party apps and libraries); however, they do not
control flows between the authorised sources and sinks. In latter method, privacy policies
are encoded in natural language and are directly enforced by users. Hence, users are
forced to rely on third party service providers that in many cases continuously collect,
use and share their location data and, in some other cases, prompt the user to give away
geo-position upon page loading [7, 2, 8, 3].

Motivation. To analyse users’ location privacy preferences, we conducted a field study.
We designed a survey questionnaire and distributed it within the University and on social
media platforms. In total, we surveyed 190 smartphone users. 89.19% of the respondents
expressed that they are concerned about their location privacy, and that they care about
who has access to their location information. Whereas, 91.89% users think granting per-
missions to apps on their device to access continuous and precise location can result in
violation of their privacy. 89.10% the respondents are more concerned about their privacy
while sharing their private locations such as home and work. 82.18 % of the respon-
dents rely on location result accuracy and location-based app functionality when they are
anywhere outside or unknown places. Further, 78.92% users agreed that their is need to
for better privacy controls on their devices and are willing to install a location privacy
enhancing tool on their devices.

Hence, we adopt a Privacy-by-Design (PbD) approach for the development of a more
user-friendly and socially-accepted solution to location privacy on LBS, in compliance
with the existing privacy regulations for mobile products and services [9]. In particular,

1Throughout this paper, we use the terms smartphones and mobile interchangeably
2Data protection directives and acts [4, 5] across the globe state that personal data should not be

disclosed or shared with third parties without consent from subject(s). Such a consent is typically obtained
by mandatory acceptance of the conditions mentioned in the End User License Agreement (EULA), or
through opt-out possibilities and other regulations[6].

3A privacy policy specifies the privacy practices of an organisation, basically what kind of personal
information is collected, the purpose and how the information will be used/shared.

4Throughout this paper, we use the terms OS and mobile platform interchangeably

2
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our approach campaigns for a new design principle and privacy policy recommendation
that forces the smartphone app ecosystem to make location data use patterns explicitly,
while preventing all other sensitive data flows from unauthorised leakage.

In this article, we present the design, deployment and evaluation of the middleware
called Private Location Protector (PL-Protector), which implements the LP-Caché model in-
troduced in [10] and enhances [11]. PL-Protector envisions beyond the simple grant/deny
access method and provides the user with advanced mechanisms to decide the extent of
disclosing location data with service providers. It also incorporates caching technique to
determine users’ geographical location in a privacy preserving manner by means of wire-
less access points (AP), and with minimum cache storage requirements. Several caching
based solutions [12, 13, 14] have been proposed to minimise the risk of major location
privacy threats, but lacking of deployment feasibility. They rely on unrealistic assump-
tions such as vast cache data storage requirements, or on the app developers modifying
the code to incorporate their cached databases. By contrast, PL-Protector incorporates
caching technique with minimum cache storage requirements. The main contributions of
our proposal are as follows:

• Based on the analysis of existing mobile platforms and users’ perspectives, we
present enhanced design and implementation of a location privacy-enhancing mid-
dleware, which is a prototype developed to validate the theoretical model, LP-Caché.
We have successfully implemented our middleware on Android Platform (Android
version 6) to enforce the privacy rules over both the information and control flow
occurred between source (OS) and sink (apps).

• Through the implementation of our middleware, we proved the deployment fea-
sibility of a new series of privacy controls on a mobile platform to prevent private
location disclosure during the formation of LBS queries. It only requires process iso-
lation and IPC services from the underlying OS; thus, minimizing the requirements
placed on the hardware/OS.

• We perform a thorough evaluation of our middleware in terms of performance
and security analysis. Our results show that our middleware provides users with
location privacy at a tolerable loss of app functionality and acceptable overheads on
the underlying OS. Hence, we find our proposal to be a practical, privacy-enhanced,
secure, and efficient for location-demanding apps.

The rest of the paper is organized as follows. Section 2 outlines the current location
computation process and its evaluation. Section 3 overviews PL-Protector’s system model
system roles, threat, mobility, app usage and privacy model. In Section 4, we fully
elaborate on the design decisions, architecture and implementation of the middleware.
We evaluate PL-Protector’s performance in terms of developer efforts, cache storage
overheads, communication and computation overheads, and analyse its security all in
Section 5. Section 7 reviews the related work. Finally, Section 8 concludes and describes
current work as well as future research plans.
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2. Background

In this section, we analyse the location privacy threats within the smartphone app
ecosystem by studying how the location calculation process works in smartphones and
how LBS apps collect the user location data. We also justify our decision on implementing
PL-Protector as middleware for Android platforms. Nonetheless, our results can be
extrapolated to other permission-based mobile platforms such as iOS.

2.1. Location sources
To understand location privacy specific challenges and security design issues, we

start analysing the process of location calculation in smartphones when using LBS. Based
on our prior study [10], we understand that the three major existing mobile platforms,
namely Android, Windows and iOS that span the domains of smartphones, follow common
patterns of location data retrieval. Basically, the standard architecture of using LBS on a
mobile platform comprises four main entities: 1) User Device i.e. installed apps, 2) App
Provider, 3) Network Infrastructure, and 4) Location Provider. The user device collects
the unique identifiers from the surrounding network access points along with GPS data,
and sends these over to the location provider to get the exact device location. Listing 1
and 2show the structure of the WiFi and Cell-tower objects sent to the location provider.

Listing 1 Structure of WiFi AP object sent to the location provider

1: { "wifiAccessPoints": [ {
2: "macAddress/BSSID": "11:22:33:44:55:YZ",

3: "signalStrength": 50,

4: "age": 0,

5: "signalToNoiseRatio":-60,

6: "channel": 8

7: {
8: "macAddress/BSSID": "11:22:33:44:55:YZ",

9: "signalStrength": 50,

10: "age": 0,

11: }
12: } ]
13: }

Listing 2 Structure of cell-tower object sent to the location provider

1: "CellTowers": [

2: {
3: "cellId": 01,

4: "locationAreaCode": 415 ,

5: "mobileCountryCode": 310,

6: "mobileNetworkCode": 410’

7: "age": 0,

4
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8: "signalStrength": -60,

9: "timingAdvance":15

10: } ]
Calculation5 of the user device’s actual position is then performed by the location

provider who sends back a location object (see Listing 3) containing exact geo-coordinates.

Listing 3 Structure of the location object received from the location provider

1: { "location": {
2: "lat": 54.0,

3: "lng": -0.012,

4: } ,
5: "accuracy": 190.2,

6: }
At the user device, this location object is shared amongst installed apps as well as

with the app provider who will transmit it as a LBS query via the standard programming
interface/API [15]. Moreover, this location object is also used to estimate places of interest
(PoI) of users’ daily lives. Simple eavesdropping on this location object is a major threat to
this architecture even if users put in place the corresponding location sharing preferences6,
which generally are highly context sensitive and use dependent [16].

2.2. Estimation of PoIs
A general LBS query consists of different attributes, e.g., LBS query { PoI, Latitude and

Longitude, User-Info}, where included geo-coordinates estimate the device’s geo-location
and then generate user’s PoIs. Service providers use two categories of techniques to
estimate the user’s PoI from collected smartphone data [17]:

Geometry-based techniques. Geometry-based algorithms use LBS queries (i.e., location data)
to trace geo-coordinates, circles or polygons of regions to define the significant PoIs or
private places where the user goes in real life.

Fingerprint-based algorithms. Fingerprint (or signature) based algorithms obtain a list of
places where the user goes, but provide no direct information about where the place
is geographically located unless the signature of observed fixed network infrastructure
is mapped to the geo-coordinates. In general, fingerprint-based technique detects fixed
radio/wireless environments that indicate a stay or frequent visits of user device for PoI
estimation. WiFi-based fingerprinting involves mapping of observed wireless APs with
signatures, pre-stored on a remote location servers, to generate list of PoIs.

5Location calculation is commonly based on the positioning technologies such as WiFi Triangulation
and Cell-tower Triangulation, GPS Mapping, etc.

6Types and levels of controls for user location privacy settings depend on the OS and apps. In some
cases, apps do not allow users to control others’ access to their location data.
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PL-Protector uses fingerprinting to create private location database within the device
instead of storing it on a remote location servers. This minimises the process of wireless
AP data collection by the WiFi content distributors or location providers. In addition,
PL-Protector controls information disclosure within the generated LBS query (e.g., PoIs
and nearest neighbor) since it will be sent to third-party app providers.

2.3. Operating System Controls and Apps’ Location Access
In any permission-based mobile OS, apps can only access sensitive resources through

the official APIs once the corresponding permissions declared at the manifest files are
granted and authorised by the user. For instance, in iOS and Android (6.0 or API level
23 onwards) users grant permissions to apps while the app is running, not when they
install the app. However, in both cases, a positive user authorisation might result in other
remote third parties and external sources benefiting from this information made available
in ad-libraries for commercial purposes and/or untrusted code execution [18, 19]. These
existing studies and reports of data-stealing malware on smartphones clearly show the
need of a better run-time permission method regulating the way apps and ad libraries
are integrated into Android and other permission based platforms. Since existing OS’s
location access controls by system services respond inadequately to major privacy threats
[7, 20], we deployed enhanced permission mechanism to control user’s sensitive location
data before it is sent to app providers.

3. System Model

We characterize PL-Protector’s system model considering system roles, the threat
model and evaluation metrics for both app usage and privacy protection.

3.1. System roles
PL-Protector modifies the current location resource handling process in mobile sys-

tems; however, the involved entities and their roles remain the same. PL-Protector
follows the sequence of processes and messages as described in [10]. Here we clarify
the role of each entity by describing the overall communication procedure in presence of
PL-Protector as follows (Figure 1).

1. Middleware determines two main components privacy settings and on-device cache
to overcome the shortcomings related to user privacy within the existing mobile
systems. It then functions according to the pre-set privacy rules that secure the
calculation and transmission of sensitive location data.

2. User needs to set privacy choices using settings, i.e., User Interface (UI), by marking
sensitive locations as private, selecting preferred level of privacy for every app and
location distinctly. User also has an option to manually map the location (i.e, geo-
coordinate) with the observed network signature that will result into no involvement
of the location provider.

6
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Figure 1: System roles

3. Service providers’ operations are unaffected, i.e., they can follow their standard pro-
cess. However, service providers benefit from secure gathering and transfer of location
data using mobile devices while at the same time preserving users’ privacy since
the middleware minimises sensitive location data flows and privacy concerns without
affecting their app’s operations or QoS.

4. Mobile platform’s location access controls respond inadequately to major privacy
threats [7, 20]; however, the middleware complements existing controls by better
regulating the way apps and ad libraries access private location data at run-time.

5. Network infrastructure availability and consistency is extremely important to the
performance of included fingerprinting method, which requires fixed wireless APs7

data to create on-device cache of private locations.

6. In case of an unmatched entry on the cached locations, only if the user has set the
current location as private and do not want to input geo-coordinates manually (via
UI), the location provider is required to calculate and send the exact geo-coordinates
(via location object, see Listing 3) first time.

Pseudocode in Listing 4 illustrates a social networking app interacting with PL-Protector.
Our middleware ensures that when the app requests a location update at private place,
the privacy policies are applied before sending LBS query to the service provider (i.e., the
social networking app provider).

7Initially, we decided to focus on WiFi APs since they infer accurate user location. However, we can
later include other fixed radio sources (e.g., Cell tower unique identifiers).
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1: application SocialApp

2: request {LBS_Query.NearestNeighbour -> loc}

3: return flag(PrivLoc_recog(appContext , nBeacons));
4: if (flag = ON)
5: Location loc = extractCacheLoc(appContext , nBeacons);
6: void applyPolicy(loc);
7: Handle appSession = sessionHandler(appContext);
8: receive loc from PL-Protector;
9: send request to service provider;

Listing 4 Pseudocode for a social networking app interacting with PL-Protector - get location data and
send LBS query response.

3.2. Threat Model
We consider two different attack scenarios to PL-Protector mainly caused by the level

of access to user location in and out the device, as follows:

OS’s Middleware Layer Threats: A series of attacks operates at Android’s middleware
layer[21]. PL-Protector mitigates the location privacy attacks coming from over-
privileged and malicious 3rd party apps and libraries. The former can threaten user
privacy by gaining unauthorized access to location, and other user sensitive infor-
mation, that are not required for their operation. Underlying purpose lies in general
in feeding advertisement libraries and, ultimately, exploiting the permissions of the
host app [22]. The later can leverage unauthorized location permissions for finan-
cial gains and leak users’ mobility and behaviour information (e.g., unauthorized
profiling).

Privacy Threats: User tracking, identification and profiling (i.e. personal habits, move-
ment patterns, etc.) are fundamental threats to location privacy [23]. Without
PL-Protector, there is a continuous flow of LBS queries between user devices and
location providers that include device’s exact geo-coordinates and other sensitive
information. This can leverage malicious misuse of location data, especially in
the presence of a malicious location provider and via advanced network sniffing
practices.

PL-Protector computes the exact location within the user device, without the service
provider’s involvement, whilst trusting the device on the storage of sensitive data. How-
ever, the user has still the option of giving consent for app providers and/or location
providers to access location data. Mobile network providers might, however, collect user
location data via cellular clients. It is also excluded from our work the option of manually
inserting the location data (e.g., street name, post code, post code) within the LBS query.

8
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3.3. Preliminaries
We now model the user mobility and app usage (specifically at private places) as a

series of privacy evaluation metrics that will be used to validate PL-Protector’s working
assumptions.

3.3.1. Mobility Model
We formulate user’s PoIs (e.g., Home and Work) as private places that the user fre-

quently visit; hence, pi represent ith private place identification, which is derived from a
series of scanned beacons nx and the representative location lr for that private place, as
shown in Eq. 1 and 2).

pi = [n1], [n2], ..., [nx]→ [lr] (1)

Pl = [pi], [p j], ..., [pn] (2)

At location pi, the user can then visit a subset of private places Upi ⊆ p1, p2, · · · , px while
running different LBS apps on his device. Hence, Pl is the total number of user’s private
locations (as given in Equation 2). PL-Protector relies on the user input to define the set
of private places that are distinct for every user mobility profile. Moreover, to set up
network fingerprints at pi, we measure the response rate as the ratio of detection count
and the total number of scans for each beacon as follows:

Rnc,x =

∑nc
i=1 bx,i

nc
, bx,i =

{
1 if beacon x found in ith scan
0 otherwise (3)

where Rnc,x is the response rate of beacon x at pi and, nc is the total scan count since the
private place was entered. The detection count of each beacon is maintained to identify
the frequently occurring beacons. Beacons with higher response rate are used to create
the network fingerprint for that pi. Rnc,x will be maintained in the PL-Protector database
to update the response rate of every detected beacon during a specified time interval t
spent at private place pi.

3.3.2. App-Usage Model
We will apply privacy rules to the app sessions taking place at private places. We

define “app session” as the duration of the app usage. In Android, according to the
execution status, an app can run in three different states: foreground, background and
perceptible. In general, apps get access to the user’s location in foreground. When the user
exits an app, this is cached and moved to background state for faster execution. Persistent
status is informed by notifications. Background state allows prolonged location access;
therefore, tracking threats are more harmful here.

In further sections, we will specify how our work handles all these three app running
state to mitigate viable location privacy threats.

9
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Table 1: The evaluation metrics for the location privacy threats.

Metric Description

Plguess Number of correctly guessed private locations
Pltotal Number of total collected private locations
Pls Unique value to identify applied privacy settings
Pld Distance between two points with longitude and latitude
Phigh Distance is > 111.32km
Pmedium Distance is > 11.132km
Plow Distance is > 1.1132km
LoPper Fraction of achieved privacy level at a private place
LoPtotal Fraction of achieved privacy level at all private place

3.4. Privacy Model
Table 1 compiles the hereinafter metrics to be used for evaluating the location privacy

threats. We define value of Pls as the identifier of applied privacy setting and measure
the achieved privacy by analysing the collected dataset of the actual location traces at
user’s private places. To evaluate location privacy, we use Haversine formula in [24] to
quantify tracking and profiling threats as the distance Pld (Eq. 4) between two positions
with longitude and latitude (φ, λ) and the radius r of the Earth:

Pld = 2r sin−1(

√
sin2(

φ1 − φ2)
2

+ cos(φ1) cos(φ2) sin2(
λ2 − λ1

2
)) (4)

where the haversine function is given by Hsin(θ) = sin2(θ2 ), φ1 & φ2 are the original
geo-coordinates, and λ1 & λ2 are the observed geo-coordinates. Secondly, the privacy
rules (see more details in Section 4.1) pre-set by user will, later, be used to measure
achieved privacy using the distance scale 〈Phigh,Pmedium,Plow〉. Location privacy threats can
be quantified as the probability of occurrence of an event exploiting the vulnerabilities.
Therefore, we use the metric given in [25] that allows us to measure the ability of apps
to find private locations from the collected location traces and thus pose location privacy
threats. Hence, LoPper and LoPtotal are calculated as:

LoPper =
Plguess

Pltotal
, and (5)

LoPtotal =
∑

LoPper (6)

4. PL-Protector on Android

In this section we describe the architecture and implementation for PL-Protector mid-
dleware on Android.

10
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4.1. Architecture
Since app users are more concern about sharing their private locations[7], PL-Protector

enforces privacy for such user’s sensitive locations. PL-Protector’s three main design goal
are: 1) the third-party app provider will not be able to infer the device’s exact location
without getting uses’s consent; 2) the user can set distinct privacy preferences for different
apps and private places; and 3) the model works independently without the need of mod-
ifying the app’s code. Figure 2 depicts the block diagram for PL-Protector architecture;
its main components are:

User Input is the User Interface (UI), which enables users to set and manage their private
places and apply improved personalised permissions when running installed location-
based apps. Once received the user inputs, pre-set private locations are sent to the Location
Manager module, and permissions are sent to the Policy Controller module.

App Session Handler is responsible to intercept the event of location access calls and
then lead the app’s control flow to our middleware. When the flag is positive (i.e., user
at private place), it monitors app launch and exit events that need to be intercepted. It
first pauses the requesting app’s execution, saves its sate, and sends the location intent
to the Location Manager component for rule checking (step 1 in Figure 2). Once the pri-
vacy rules are applied, the App-Session Handler will receive the anonymised/transformed
location object from Policy Controller. It will then resume the requesting app’s control
flow to maintain every session (step 3 in Figure 2). In Android, the middleware’s back-
ground service frequently checks (every 10s) the currently running foreground app using
getRunningAppProcesses on older versions and UsageStasManager on Android 6 (or
later). To use the UsageStasManagerAPI the user of the device needs to grant permission
through the Android’s Settings application. When an app is no longer running in the
foreground, it blocks app’s background access to location updates that leaves an app
limited to foreground sessions. In Android, for maintaining a set of session operations,
PL-Protector executes process isolation and IPC services .
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Location Manager & Place Detector are the central components that receive both events
(actions) and data from the different components as well as it maintains the Cache DB
database. The Location Manager component receives privacy rules for specific private
locations and network fingerprints via User Input. Whereas, the Place Detector component
detects unique identifiers of the surrounding wireless APs and maintains a binary flag
to detect private places. When the flag is ON, if the Location Manager receives location
updates (i.e., Intents) from App Session Handler, the location data is retrieved from the
Cache DB and sent to the Policy Controller. In case of an unmatched query on the cache and
the user do not want to input geo-coordinates manually (via maps provided in UI), the
location data is received by location providers from the Location Receiver. Later, the Place
Detector monitors user’s mobility pattern and updates the mobility profile of the user (see
Mobility Model in Section 3.3.1). Moreover, if the location is user’s one of the frequently
visited places, thePlace Detector consults with the user to check if he is comfortable with
release of the location. If the user isn’t comfortable, the location is sent to the Policy
Controller to hide the visited place, else the location is released as it is.

Policy Controller it gathers the location object from the Location Manager as to apply
the corresponding user permissions on the location coordinates, altering it if needed, and
transferring the processed location to the App Session Handler component. The two privacy
policies that the user can set per-app/place basis are the Standard Policy and Per-location
Policy (see Figure 4), as follows:

1. The Standard Policy consists of three location settings as follow:

(a) The Behaviour Protection setting implements the geo-coordinate obfuscation
equation defined in [10] to generate transformed/ obfuscated geo-coordinates
(l′, l′g) for every app session. The behaviour protection level is defined by a
scale (Low, Medium, and High) that determines randomness of the obfuscation
equation’s parameters 〈s, θ, (l, lg)〉, where s is the scaling factor, θ is the random
rotation angle, and (l, lg) are the original coordinates.

(b) The Location Protection setting implements the geo-coordinate truncation equa-
tion defined in [10] and follows a location granularity scale like (Low, Medium,
and High) to adjust the location precision level for every app session.

(c) The Block/Fixed Location setting picks high behaviour and location protection
level by default and determines a constant value of altered geo-coordinates for
every app session.

2. The Per-location policy allows the User to apply standard policy settings for each
pre-marked private places that are displayed on the map.

Once processed geo-coordinates (l′ l′g) that comply with pre-set privacy rule are generated,
we measure achieved level of privacy on per-session basis using values of both Pld and
Pls (as defined in Section 3.4). Listing 5 contains pseudocode for calculating haversine
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distance (Pld) between two positions with longitude and latitude (φ, λ) and the radius r
of the Earth.

1: initialise static final int EARTH_RADIUS = 6371;
2: request double haversin(double val)
3: return Math.pow(Math.sin(val / 2), 2);

4: request HaverDistance(double originalLat , double originalLong ,
5: double observedLat , double observedLong)

6: double dLat = Math.toRadians((observedLat - originalLat));

7: double dLong = Math.toRadians((observedLong - originalLong));

8: originalLat = Math.toRadians(originalLat);

9: observedLat = Math.toRadians(observedLat);

10: double a = haversin(dLat) + Math.cos(originalLat)

11: * Math.cos(observedLat) * haversin(dLong);

12: double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

13: return EARTH_RADIUS * c;

Listing 5 Pseudocode for calculating Haversine Distance (Pld) between two positions with longitude
and latitude (φ = original, λ = observed)

Cache DB & Location Receiver Cache DB is the established on-device cached database,
and it is routinely queried by the Location Manager module, which can add, update and
delete the cached location data. The locations in Cache DB are those which are to be
protected, and they can also represent regions of space. In Android, Cache DB stores
the network fingerprints in an SQLite table that contains the mapping of each observed
WiFi APs signature to their representative geo-coordinates. Each SQLite table entry is
recorded along with a network fingerprint and geo-location that are acquired either from
UI and/or the Location Receiver. When the location update request is sent to the Loca-
tion Receiver component, it receives the location object, which includes the user device’s
geo-coordinates (as in Figure 3), from location providers and sends it over to the Location
Manager for further processing.

4.2. Middleware Implementation
PL-Protector orchestrates a mobile platform based privacy protection service on An-

droid to modify the location resource handling process. PL-Protector’s communication
operations only require process isolation and IPC services; hence, minimising the require-
ments placed on hardware or OS modifications. In Android, there are two methods to
access user’s location: 1) Location Manager Service (Old), and 2) Fused Location Manager
Service (New) that is a part of Google Play Services. However, both methods require the
app to request a callback function to get regular updates by registering a location listener.
The app receives a new location object when a new location is available, the callback
function is invoked (Figure 3 (left)). Modifying these two Google services is complicated,
but we make PL-Protector communicate with the location requesting apps by intercepting
the location object before it reaches requesting apps (Figure 3-(right)). One of the main
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Figure 3: Computation Mechanism.

task is to add a system service, where the class belongs to the location APIs; thus, the
new service is placed in the android.location package, which detects private locations
via APs and can also be used by other components when calling context. In Android, a
context allows an app to interact with the OS resources. Similar to [26], we add a static
context field to the location class, which will be populated when the app is invoked;
this enables PL-Protector to know which app is currently requesting the location object,
and also communicate with the OS. Besides, Fused Location Manager combines sen-
sors, GPS, Wi-Fi, and cellular data into a single API for location-based applications [27],
hence separating data from GPS PROVIDER and NETWORK PROVIDER is no longer straight
forward. PL-Protector addresses this issue by preventing app’s location request to reach
the Fused Location Manager that collects and sends the network session data to the
location provider. Instead, the requested location is retrieved from the on-device cache,
and then, it is sent to the requesting app (with privacy rules applied).

User Privacy Preferences. Complex policies, fine-grained configurations and explicit tech-
nical details in the UI discourage users from fully exploiting the provided functionalities.
To this end, we designed PL-Protector’s UI (see Figure 4) in an intuitive and straightfor-
ward manner that maintains balance between the usability and expressiveness of users
privacy preferences.

Bootstrapping. When PL-Protector first boots and before turning ‘ON’ location sharing
settings, the user will have to perform the initial setup. This will allow WiFi APs scanning,
input geo-coordinates and set privacy choices using User Interfaces (UI) (Figure 4 - 1st &
2nd). PL-Protector’s UI incorporates a map to get the corresponding geo-coordinates so
achieving an effective privacy without affecting the location accuracy. At the same time,
this prevents non-authorised sharing of device’s exact location and network session data.
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Figure 4: User Interface to manage: WiFi/location input settings (1st & 2nd screens), and per-app/location
privacy rule settings (3rd & 4th screens)

The UI (Figure 4 - 3rd & 4th) enables users to set and manage their private locations and
apps distinctly.

5. Evaluation

We evaluate PL-Protector considering three different research questions: RQ1. What is
the overall performance overhead of PL-Protector while interacting with real-world apps
over time? RQ2. How well the on-device cache perform in practice? Can it find accurate
location data corresponding to the cached network fingerprints and apply permission rule
in real-time? RQ3. How well PL-Protector can perform with respect to user privacy/data
leakage using actual mobility traces collected from real-world apps?

5.1. Experimental setup
We deployed PL-Protector, a middleware on a Nexus 6 with Android 6.0 (API 23)

that have 802.11a/b/g/n radio feature so it can operate in both 2.4GHz and 5GHz bands
at 34 different private places. We considered two different experimental set-up for PL-
Protector’s performance evaluation:

1. Location-based apps performance. Experiment 1 studies the efficiency of PL-Protector
in terms of QoS and usability on operations relevant to the location-based apps
and privacy leakage tests. For this purpose, we ported real apps of five different
LBS queries categories: 1) Social Networking (e.g., Facebook), 2) Instant Messag-
ing/Chatting (e.g., Whatsapp), 3) Tracking (e.g., Fitness), 4) Utilities (e.g., Weather,
Alarm, etc.) and 5) Finder (PoI Finder/Geo-search). Based on app operations we
assume that both types 1) and 3) require continuous access to location data; whereas,
types 2), 4) and 5) involve sporadic access.
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Figure 5: PL-Protector’s overall computation latency caused at 34 distinct private places.

2. WiFi Fingerprinting and caching performance. The statistical study [10] on WiFi AP
data availability and consistency demonstrates smartphones regularly detect similar
beacons at frequently visited place, for place detection at least one beacon should
match with the stored WiFi fingerprints. Whereas, in Experiment 2, we investigate
the performance of WiFi fingerprinting method, which is used in our middleware
as private place detection source, at runtime. Using 2 or more different LBS apps
at 34 distinct private places, we sent a sequence of location update requests to our
middleware in order to measure its dynamic response rate and cache accuracy over
time.

Data collection and analysis. We have collected empirical data from a number of sessions
running at different time intervals over a period from 3 to 9 months. We then created two
datasets: In a first dataset, we include the session data of ported apps that runs over the
conventional Android environment without interacting with PL-Protector. Henceforth,
we call the conventional Android environment as Baseline. The second dataset consists
of the same apps but running in the presence of PL-Protector. Based on the two datasets,
we can draw the following observations and conclusions.

5.2. Results for RQ1: Impact on the quality of service
In this section, we assess developer effort and complexity of implementing PL-

Protector directly into Android platform core, highlighting its efficiency and feasibility.

Impact on the underlying OS: computational effort and memory consumption. Android provides
a flexible model of process isolation, inter-component communication (ICC) and IPC
services. Since Android development architecture is comprised of multiple components,
PL-Protector used ICC calls known as Intents and IPC services to communicate messages
with benchmark apps’ components. We assess PL-Protector’s computational overhead
posed on the base OS (i.e., Android) while responding to apps’ location calls. We used
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Android’s MemoryInfo API and Android Monitor tool to log observed computational
and memory overhead caused by PL-Protector’s presence. Equation 7 is used to calculate
total memory consumption required for the computational lifecycle of PL-Protector, where
Ccomp represents total memory consumption by the LLPMs, Ci is a location computation
operation, Mi is a rule mapping operation, and ln is the number of received location
update calls from apps.

Ccomp =

ln∑

i=1

Ci + Mi (7)

We sent 1 to 10 location calls to the middlware using benchmarked apps and recorded the
memory consumption. Our results show that PL-Protector’s core functionality requires
7.3 MB of device memory while interactions with each app requires 2.8 MB of memory on
an average. To justify this overhead, we argue that NEXUS 6P comes with built-in 3GB
memory RAM (< RAM size in later versions) and the official Google Chrome browser
app on page load with an empty page consumes around 97 MB of the memory. Thus,
PL-Protector’s consumption of 21.3 MB of memory to communicate with 5 apps (at once)
falls within acceptable limits of the base OS.
For improving the response time, while the user is stationary the location result is cached
in the device memory and shared with other apps that has similar permissions. PL-
Protector requires 125 bytes for caching a single location result as an object in cache
memory. The current built-in caching limit for Android is 1 MB [28]. Therefore, the
maximum number of location query result saved as cached messages must be < 8388,
which is sufficient for PL-Protector’s functionality since it only considers user’s private
locations.
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Table 2: Observed difference in monthly dynamic DB storage

Storage Overhead 1 Month 3 Month Observed Change in DB
size

Network Fingerprint 54 KB 108 KB 44 KB Increase in size
Permissions 21 KB 28 KB 7 KB increase in size
Total DB Storage 75 KB 136 KB 51 KB Total increase in size

Impact on location-based apps functionality. Crucial for its functionality, we measure latency
as the time PL-Protector takes to interact with the app and perform an entire computational
cycle, i.e., to compute the location on-device and to apply the privacy rules. To measure
the overall functionality overhead for each app, we varied the range of location calls –
over 10 trials of 2 to 5 types of LBS queries – in collected databases for both baseline and
PL-Protector. For instance, PL-Protector took 187ms to successfully reply to the location
based query requested by the app, compared to 179ms on baseline, i.e., 8ms increase. On
average, PL-Protector presents a latency lower than 22 milliseconds upon all the location-
access calls executing PL-Protector’s privacy controls at runtime for all the 34 private
places (as shown in Figure 5). The reason for increased latency is due to PL-Protector’s
load time, and cross-process/IPC service transfers of location updates. However, this
latency is smaller than 100 ms and, thus, small enough to not cause user-noticeable
delays while utilising apps on the device. Furthermore, Figure 6 and Figure 7 show
the communication overhead during different sessions and the overall app functionality
overhead for the 5 app categories and compares both baseline and PL-Protector execution
environments. In per-location access sessions, we found < 19ms delays when continuous
location updates, and less than 8 ms delay for sporadic location updates (see Figure
7). Figure 6 shows PL-Protector delay decreases after a number of repeated sessions
and it remains well within the bounds throughout the sessions. Thus, PL-Protector is
suitable to run all the existing apps of aforementioned five LBS categories since their core
functionality already accepts delays in this range.

5.3. Results for RQ2: On-device cache performance
Cache accuracy. To analyse the accuracy of the on-device cache method at runtime, we
measured occurrence of cache hits and misses that includes three possible outcomes: (a)
The location is cached and up-to-date, (b) The location is cached but is out-of-date, and (c) The
location is not cached. Figure 8 indicates the performance of on-device cache improves
over time. Initially, for upto 8 hrs duration, the result accuracy of on-device cache range
from 40% to 60% that gradually increases to 90%. This indicates PL-Protector’s on-device
cache update frequency is within practical limits, and it provides accurate location data
at runtime to requesting apps requiring both sporadic and continuous location-updates.

Cache storage Overhead. Location privacy solutions (e.g., [13, 12]) that apply caching tech-
niques on location-based queries that are generated/received from running applications
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and service providers include several attributes, and their data types require vast amount
of storage space. PL-Protector does not cache location-based queries, instead it stores the
WiFi AP data and geo-coordinates of users’ private locations and the user’s pre-set privacy
rules are applied to the mapped geo-coordinates at runtime. As a result, comparatively,
PL-Protector’s on-device cache database does not demand massive storage requirement.
Considering the 802.1 standards and datatypes sizes, we created PL-Protector’s embed-
ded database structure. The SQLite table attributes of the network fingerprint consists of a
tuple of 〈no.o f beacons, beacon f ield , counter〉, and the permission table is a tuple of 〈location,
placeid, accuracy counter , no.o f privateplaces〉. While PL-Protector is installed and running
on the NEXUS 6P, we dynamically collected regular versions of its database for a period
of 1 to 3 months by implementing built-in datasets collection mechanism. Table 2 presents
the observed monthly increase in the database size. The results evident that PL-Protector
does not have a massive on-device cache storage requirements. PL-Protector’s DB size of
136 KB include dynamically collected network fingerprints for 34 private places, privacy
rules for 5 location-based apps, and other database attributes needed during the devel-
opment, implementation and data collection stages. Since the internal storage limit for
Nexus 6P range from 32 GB, 64 GB to 128 GB [29], we argue that PL-Protector’s DB size of
136 KB for 3 months is within acceptable internal storage limit and that the current mobile
device internal storage capacity is sufficient for PL-Protector’s overall functionality.

6. Security Analysis

In this section, we analyse user privacy/data leakage that is likely to affect PL-Protector
by an adversary’s access to user location in and out the device and can launch an attack.

6.1. Security
We discuss data security risks that each of the five apps pose when running on existing

mobile platforms, and find that PL-Protector mitigates those risks successfully under
privacy leakage tests.
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Continuous access. Apps (e.g., Social Networking and Tracking) have higher potential to
leak location information to attackers, e.g., unauthorized 3rd party service providers and
content distributors, since users access such apps for longer duration and in frequent
manner. The social networking app has constant Internet access for ads and sending
troubleshoot/crash reporting. PL-Protector separates private locations from public/less-
sensitive locations and enforces privacy rules.

Sporadic access. Apps (e.g., Instant Messaging, Utilities or Finder) can leak location data
along with other sensitive user information as we note that these apps require Internet
access for core functionality. Therefore, under current OS controls it is very easy for this
app to leak location data. PL-Protector isolates the private location flow to be restricted
within device, eliminating any possibility of cross-flows between apps and 3rd party
service providers over Internet.

Covert access. A potential malicious apps leverages vulnerabilities in other already in-
stalled benign apps to perform actions that are beyond its individual privileges such as
sending device location through text messages. Current mobile OS access control model
is per app and it cannot detect such location attacks as it cannot check security posture
of the entire system. PL-Protector, enforces location privacy policies before releasing the
data that mitigates most, if not all, of such covert access exploits.

6.2. Results for RQ3: Privacy Threats Mitigation
Here we present an informal analysis concerning correctness of our proposal in terms

of three fundamental threats: identification, profiling, and tracking. We use the afore-
mentioned privacy metrics (Section 3.4) to evaluate achieved privacy. To compute LoPper

and (overall) LoPtotal, We identify applied privacy settings using (labeled) value of Pls

in the collected location traces of apps’ sessions and compare them with the privacy
rule. We measured LoPtotal against observed value of Pld for every location-access session,
higher the value of LoP more protected is the private location. We can draw the following
conclusions from observing Figure 9.

User Tracking Threat. This requires protection of private location anonymity and sensitive
behaviour pattern from the adversary. We observed that the continuous location updates
can pose high risk to locate the user in real time. PL-Protector blocks app’s background
access to location updates that leaves tracking limited to foreground sessions, which are
mainly sporadic (once/twice a day) and initiated from same private place for about 96%.
By preventing consistent user’s mobility patterns, PL-Protector mitigated tracking threats
by preventing sensitive behaviour pattern and location prediction in 40%, 40% and 50%
of released location-access sessions at Plow, Pmedium, and Phigh settings, respectively.

Identification Threat. Even sporadic location access can allow an adversary to isolate the
user’s private locations, such as home and work. These places can be used as quasi-
identifiers to reveal the user’s identity from anonymous location traces. We report that
locations released in the sessions at Pl (Equation 2) follow privacy rules and prevent
location identify in 60% (Plow), 50% (Pmedium) and 78% (Phigh) of released location traces.
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Profiling Threat. This requires protection of sensitive behaviour profiling such as health
clinics, religious places, shopping habits, etc. Compared to the first dataset, the user’s
mobility traces in the second dataset did not include places that would reveal his identity;
but, places that the adversary could use to profile him were observed. Figure 9 reports
that in the released apps sessions profiling threat increases with more relaxed privacy
rule (Plow= 20%, Pmedium = 50% and Phigh = 90%) since this will enable releasing more of the
user’s private locations ⊆ (Pl).

OS’s Middleware Layer Threats. Android security model considers all apps as potentially
malicious and, therefore, runs each app in its own process, known as process isolation,
and access its own files by default. This security practice protects apps with sensitive in-
formation from malware. Despite this process isolation mechanism, apps can optionally
communicate via inter-message passing, which can become an attack vector. Further, loca-
tion data can be stolen by eavesdroppers and permissions can be accidentally transferred
between applications. If a developer sends location data to the wrong recipient (inten-
tionally or intentionally), then it might leak sensitive user information. PL-Protector’s
enhanced permission mechanism enables robust and efficient source (OS) to sink (apps)
flow control to user’s sensitive location data before it is sent to app providers. Hence,
this enhanced mechanism protects user’s private locations from both over-privileged,
malicious 3rd party apps, and inter app communication-based attacks.

6.3. Field study: Users Perspectives
Results of field study indicate that 82.18% of smartphone users rely on location-

based app functionality when they are anywhere outside or unknown places. 77.03 % of
smartphone users think not all apps need continuous access to their locations; whereas,
10.81% were not sure. We gave users to chose their preferred accuracy level while
sharing their private locations with 5 different categories of location-based apps: 1. Social
networking (e.g., Facebook), 2. Instant messaging (e.g., Whatsapp), 3. Sports/Fitness
Tracking (e.g., Fitness/Workout), 4. Utilities (e.g., Weather, Alarm) and 5. Finder (e.g.,
PoI-search, Geo-search). Out of the 5 given location-based app categories, users where
more relaxed to share their private location with (3) Sports and (5) Finder both app
categories. However, (1) Social, (2) Messaging and (3) Utilities app categories scored the
lowest scale that indicates users are more reluctant to share their private locations with
these app categories.
To summarise, it is evident from the aforementioned results and empirical findings of the
performance and security analysis that PL-Protector provides users with location privacy
at a tolerable loss of app functionality and acceptable overheads on the underlying OS.

7. Related Work

We have categorised existing approaches to preservation of the location privacy in
mobile devices as:
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Policy-based approaches. Service providers’ privacy policies are defined in compliance with
the existing privacy regulations. Standards for location-based products and services exist
in both the 3GPP [30] and IETF [5] arenas. Although such privacy policies aims to
be flexible and support the personalisation of privacy preferences, they only provide
a deterrent against privacy violations. Therefore, if a third party decides to violate
those norms, in spite of the risk of penalties, the user’s privacy cannot be protected.
Moreover, manual enforcement is expensive and thus policies are often ignored by users,
particularly when users are unaware of privacy regulations. And, automating privacy
policy enforcement has been the main objective of early research on privacy protection.
Our approach automates recommended privacy policy that enforces private location
protection.

Theoretical approaches. Apps share location information with the provider in the form of
LBS queries. The transmission of such queries to the location server may allow attackers to
gain access to user location data. Privacy Enhancing Techniques (PETs) like k-anonymity,
dummy locations, region cloaking, location perturbation and obfuscation, pseudonyms,
and differential privacy have been applied to different architectures for location query
formation and privacy preservation from LBS providers [31, 23, 32]. Most of these tech-
niques rely on theoretical assumptions - like trusted infrastructure to provide the privacy
protection, requiring a group of similar app users to be at the same time and same place.
The main issue with PETs and cryptographic schemes is that it relies entirely on the data
collection servers to comply with location privacy. Besides, mobile devices not only send
vast amounts of location data to app providers but also to location providers creating
different location privacy shortcomings [7, 3]. In this regard, limited work has been pub-
lished on privacy preservation from the location provider’s perspective [33, 34]. Damiani
[33] proposes a theoretical approach for privacy-aware geolocation-based web services
to encourage further research to minimise the amount of location data being shared with
the location provider. This is mainly due to that the location provider is considered as the
only source to get the user location when developing any location-based app.

Practical approaches. A few studies have proposed static and dynamic methods to detect
privacy leaks in mobile platforms. The former method statistically analyses apps by creat-
ing permission mapping, generating call graphs and data flow analysis to report privacy
leaks for further auditing, e.g, AndroidLeaks [35] and PiOS [36] for Android and Apple
iOS, respectively. The application of dynamic methods involves modification of the ex-
isting mobile platform. For example, TaintDroid [18] adds taint tracking information to
sensitive sources calls from apps, and it tracks location data flow as it generated through
applications during execution. MockDroid [37] relies on instrumenting Android’sman-
ifest permission mechanism to mock sensitive data from OS resource, including location
data, which can affect apps’ usability and functionality. LP-Caché not only monitors
the location sources but also modifies, if required, the generated location data based on
defined user permissions. In another attempt[26], indistinguishability technique is applied
as location privacy preservation mechanism into the advertising and analytics libraries
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as well as on installed apps; however, it does not give control on the amount of WiFi and
location data that is being shared with the location provider. Moreover, indistinguishability
technique increases computational overhead on smartphones.

Cache-based approaches. Several authors have used caching scheme along with PETs to
build to a database consisting of different contents/datatypes used within location based
queries to be re-used in future LBS queries. MobiCaché [12] applies k-anonymity for
caching location based queries. Similarly, Niu et al. [14] attempt to improve k-anonymity
based caching by adding dummy locations. Both proposals require a trusted infrastruc-
ture to maintain privacy. Caché [13] maintains a local cache within the device to reuse the
data types available from applications in future location based queries; however, storing
entire LBS query data increases the cache storage requirements. Besides, Caché also re-
quires app developer to modify the way app access location data. By contrast, LP-Caché
caches the network fingerprints and geo-coordinates, which reduces the storage overhead
drastically; it considers installed apps as black box, and therefore, does not require app
developer to modify the code, it works as a middleware between the app and the mobile
platform. All these cache-based systems either intent to generalise or obfuscate the LBS
query or minimise the number of queries sent to the app providers, but they do not
provide privacy from WiFi content distributors. In PL-Protector, we minimise the process
of wireless AP data collection by the WiFi content distributors or location providers, and
we control information disclosure within the generated LBS query (e.g., PoIs and nearest
neighbor) since it will be sent to the third-party app provider.

Network layer approaches. Besides location queries, device’s IP address can also reveal
user’s private locations. To this regard, anonymous communication protocols, e.g.,
Anonymizer [38] and TOR [39], deal with anonymous service usage at the network
layer while communicating over Internet (i.e., the server cannot infer user’s location via
received device’s IP address along with the location query), and they are most prominent
and commonly used network layer solutions.

8. Conclusion

To summarise, we present the design and implementation of PL-Protector, a loca-
tion privacy-enhancing middleware, which is a prototype system developed to validate
the theoretical model (LP-Caché). We mainly focused on supporting our design goals,
justifying the design decisions and elaborated on PL-Protector’s functionality. We have
successfully implemented PL-Protector on Android Platform (Android version 6) to
enforce the privacy rules over both the information and control flows occurred between
sources and sinks. Through the implementation of the middleware, we proved the de-
ployment feasibility of a new series of privacy controls on a mobile platform to prevent
private location disclosure during the formation of LBS queries. This also minimises
the interaction and data collection from wireless access points, content distributors and
location providers. Later, we assessed developer efforts and complexity of implementing
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PL-Protector directly into Android platform core. We comprehensively described PL-
Protector’s evaluation in terms of performance and security. Followed by presentation of
results and finding in terms of usability and efficiency of PL-Protector when interacting
with real apps in real-time. We also present security analysis based on the threat model
to test its compliance with the three privacy settings and achieved privacy guarantees. In
future work, we are also plan to conduct a usability study that will allow us to enhance
PL-Protector’s privacy and usability rates.
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