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Abstract 

Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk 

and can also have substantial implications for athlete health and injury risk in the elite 

sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, 

hormonal characteristics and physical activity. The interrelationships between such factors, 

and a strong genetic component, suggested to be around 50-85% at various anatomical sites, 

determines skeletal health throughout life. Genome-wide association studies (GWAS) and 

case-control designs have revealed many loci associated with variation in BMD. However, a 

number of the candidate genes identified at these loci have no known associated biological 

function or have yet to be replicated in subsequent investigations. Furthermore, few 

investigations have considered gene-environment interactions - in particular, whether specific 

genes may be sensitive to mechanical loading from physical activity and the outcome of such 

an interaction for BMD and potential injury risk. Therefore, this review considers the 

importance of physical activity on BMD, genetic associations with BMD and how subsequent 

investigation requires consideration of the interaction between these strong determinants. 

Future research using well-defined independent cohorts such as elite athletes, who experience 

much greater mechanical stress than most, to study such phenotypes, can provide a greater 
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understanding of these factors as well as the biological underpinnings of such a 

physiologically “extreme” population. Subsequently, modification of training, exercise or 

rehabilitation programmes based upon genetic characteristics could have substantial 

implications in both the sporting and public health domains once the fundamental research 

has been conducted successfully.  
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Abbreviations: 

AXIN1 Axin 1 

BMD Bone mineral density 

BGLAP Bone gamma-carboxyglutamate protein 

CA++ Intracellular calcium 

CTR Calcitonin receptor 

COMT Catechol‐O‐methyltransferase 

ERC1 ELKS/Rab6-interacting/CAST family member 1 

ERK1/2 Extracellular signal-regulated kinase 1/2 

ESR1 Oestrogen receptor 1 

FOSL1 FOS like 1, AP-1 transcription factor subunit 

GWAS Genome-wide association studies 

IGF1 Insulin like growth factor 1 

IL6 Interleukin 6 

JUNB JunB proto-oncogene, AP-1 transcription factor subunit 

LRP5 LDL receptor-related protein 5 

MMPs matrix metallopeptidases 

NHANES National Health and Nutrition Examination Survey 

NF-kB Nuclear factor -κB translocation 
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OPG Osteoprotegerin 

PGE2 Prostaglandin E2 

PTCH1 Patched 1 

P2RX7 Purinergic receptor P2X 7 

RANK Nuclear factor k-b 

RANKL Nuclear factor k-b ligand 

SFRP4 secreted frizzled related protein 4  

SNP Single nucleotide polymorphism 

SOST Sclerostin 

STARD3NL StAR related lipid transfer domain containing 3 N-terminal like 

TNFRSF11 TNF receptor superfamily member 

TNFRSF11A TNF receptor superfamily member 11a  

TNFRSF11B TNF receptor superfamily member 11b 

VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor 

WNT5B Wnt family member 5B 

WNT16 Wnt family member 16 
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3.3 Genetic association with stress fracture 

 

4. Future direction and conclusions 

 

1. Introduction 

 

Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk 

and can have substantial implications for athlete health and injury risk in the elite sporting 

environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal 

characteristics as well as physical activity (Darling et al. 2009; Pluijm et al. 2001). Physical 

activity/exercise reportedly accounts for up to 30% of the variability in BMD (Valdimarsson 

et al. 1999), although the exact contribution of physical activity to BMD remains unclear and 

requires further exploration across various population groups. Following physical activity, 

osteocytes detect shape and volume changes to increase or decrease the liberation of specific 

bone mediators, which consequently influences bone formation and resorption (Nakashima et 

al. 2011). Consequently, athletic populations tend to possess higher BMD than non-athlete 

counterparts. Training and competition in weight-bearing sports that comprise high strain 

rates and peak-force loading characteristics on bone results in enhanced total or site-specific 

BMD as shown across a number of sports (Torstveit and Sundgot-Borgen 2005). This 

principle, however, can be more complex in sports that are associated with low body mass or 

reduced energy availability, such as endurance running, where low BMD and stress fractures 

can be observed (Pollock et al. 2010; Loucks 2007). Additionally, the volume of physical 

activity completed in childhood and the age at which an athlete may have started their sport, 

may also have implications for BMD across the lifespan. Generally, childhood and the pre-

pubertal years is considered a key period for bone accretion (Weaver et al. 2016). A large 

volume of research into the effect of physical activity on BMD and/or osteoporosis has been 

completed, although limited investigations exist regarding certain athletic populations such as 

endurance runners. Moreover, many studies have used questionnaires to assess physical 

activity level, which can lack accuracy or reliability (Prince et al. 2008) and thus, the exact 

contribution of physical activity remains unclear and requires further exploration across 

population groups.  

A large genetic component to BMD also exists, with heritability of BMD suggested to be 50-

85% depending upon anatomical location (Ralston and Uitterlinden 2010). Knowing the 

genetic variants associated with BMD could have substantial implications for future research, 
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application and rehabilitation management in both the public health domain and elite sporting 

environment. For example, accuracy of fracture risk classification was improved by 7-10% in 

osteopenic patients by adding an early genetic risk score (Lee et al. 2014), whilst modifying 

training programmes based upon genetic characteristics reduced injury rates in endurance 

athletes (Goodlin et al. 2015). Practical application using genetics, however, is currently very 

limited due to limited evidence on proposed candidate genes associated with BMD. Over 66 

genetic loci have been associated with DXA (Dual energy X-ray absorptiometry) derived 

BMD or fracture via GWAS thus far (Hsu and Kiel 2012; Estrada et al. 2012), and this 

number will continue to increase. Additionally, many of the previously-discovered candidate 

genes have had little or no replication through further study, which means only a very small 

number can be confidently suggested to have an association with BMD (Hsu and Kiel 2012). 

The biological function or involvement with bone metabolism of 30 of these has also yet to 

be elucidated and only seven of the 66 have been associated in candidate gene studies 

previously or positively replicated afterwards (Hsu and Kiel 2012), although some have 

received no further study as of yet. Studies so far have only elucidated a fraction of BMD 

variance and thus, some of the unexplained heritability is likely due to a number of factors 

such as gene-environment interactions (Ackert-Bicknell and Karasik 2013). This could apply 

most strongly to certain populations such as athletes, due to the substantial influence of 

physical activity on BMD and a likely gene-mechanical loading interaction.  

The genetic influence on BMD and the relationship with physical activity has not been 

explored extensively. In vitro studies have shown substantial alteration in gene expression 

following mechanical loading (Mantila Roosa et al. 2011), whilst a small number of 

candidate genes have reported physical activity interactions in children (Mitchell et al. 2016). 

A small number of investigations have also been completed in athletic populations across a 

number of different bone phenotypes. For example, higher total BMD in weight-bearing 

athletes than controls was observed in the FF (7.7%) and Ff (6.9%) but not ff (1.8%) 

genotypes of the vitamin D (1,25- dihydroxyvitamin D3) receptor (VDR) FokI rs2228570 

polymorphism, whilst lower total BMD was only observed in the FF (-4.5%) genotype when 

comparing swimmers with a control group (Nakamura et al. 2002b). Additionally, variants in 

the purinergic receptor P2X 7 (P2RX7), human TNF receptor superfamily member 11a 

(TNFRSF11A) and sclerostin (SOST) genes have been associated with stress fracture in elite 

athletes (Varley et al. 2015; Varley et al. 2016; Varley et al. 2017). Substantial further study 

is needed on candidate genes associated with BMD and other phenotypes such as stress 
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fracture, as well as greater exploration of genes that may interact with physical activity and 

the implications this would have for BMD and wider application in public health and elite 

sport.  

Therefore, the aims of this narrative review are to (1) provide a critical review of the current 

literature on the influence of physical activity on BMD, particularly in athletic populations 

such as endurance runners; (2) provide an overview of genetic associations with BMD and 

highlight studies that have assessed this association in athletic populations; and (3) explore 

gene-BMD-physical activity interactions and identify future applications these might have in 

both the public health domain and elite sporting environment.   

2. Bone mineral density (BMD)  

 

Peak bone mass is a function of bone size and volumetric BMD (Leonard and Bachrach 

2012) and thus, is the amount of bony tissue present following skeletal maturation, which can 

have a substantial influence on osteoporotic risk in later life (Bonjour et al. 1994). BMD is 

defined as the ratio of mass to the area or volume of bone, which is known as areal (g/cm2) or 

volumetric (g/cm3) BMD, depending upon the measurement methodology used (Ott et al. 

1997). BMD is considered the primary predictor of osteoporotic fracture, although it is 

important to note other factors when assessing clinical risk (Cranney et al. 2007). BMD 

accounts for 60-65% of the variance in bone strength so other factors such as bone geometry, 

collagen properties as well as trabecular and cortical microarchitecture are also important 

determinants of bone strength (Schoenau et al. 2002; Fonseca et al. 2014; Cheung et al. 

2016).  

Bone mass is regulated by the activity of osteocytes in response to a number of stimuli, such 

as disuse, matrix damage or hormone deficiency (Atkins and Findlay 2012) and the actions of 

osteoblasts and osteoclasts, which are important for bone formation and resorption. 

Disproportionate activity rates of these bone cells, for instance, greater net osteoclastic than 

osteoblastic activity, can cause bone loss, as observed in ageing (Martin and Sims 2005). 

Approximately 85-95% of peak bone mass is attained around late adolescence (Henry et al. 

2004; Walsh et al. 2009). After peak bone mass is reached, BMD loss occurs as we age 

(Figure 1) and the rate of loss plays an important role in bone health and the development of 

related conditions, such as osteoporosis (Hernandez et al. 2003). BMD deterioration varies 

between individuals as well as anatomical sites, with yearly rates of decline after the age of 

25 yr at the distal radius, distal tibia and lumbar spine reportedly 0.40%, 0.24% and 1.61%, in 
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women and 0.38%, 0.40% and 0.84%, in men. Additionally, men and women experience 42% 

and 37% of trabecular bone loss as well as 15% and 6% of cortical bone loss before the age 

of 50 yr (Riggs et al. 2008). Similar to the ability to enhance peak BMD with lifestyle 

choices, it is possible to slow the inevitable decline in BMD with ageing using preventative 

measures via lifestyle modification. Some of these factors include not smoking (Law and 

Hackshaw 1997), maintaining a healthy dietary intake (Darling et al. 2009) and relatively 

high physical activity level (Pluijm et al. 2001; Krall and Dawson‐Hughes 1993).  

 

 

Figure 1: Schematic representation of typical age and sex-related loss of BMD in men and 

women  

 

2.1 BMD and physical activity 

Quantifying the relative contributions of physical activity and other determinants to BMD 

remains difficult. Exercise/physical activity reportedly accounts for up to 30% of the 

variability in total BMD (Table 1), emphasising that the contribution of physical activity to 

BMD remains unclear and requires further exploration across various population groups.  

Table 1: Contribution of physical activity to BMD 

Population  BMD determinant Variability in BMD Reference 

Icelandic women 

aged 16-20 

Lean mass and 

physical exercise 

30% (Valdimarsson et al. 

1999) 

Men and women Sports activities 10.4% - Men (Neville et al. 2002) 
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aged 20-25 <1% - Women  

 

Pre-menopausal 

women 

Member of sports club 

Completing persistent 

weight-bearing 

activity in adulthood 

5-19% (Barnekow‐Bergkvist 

et al. 2006) 

European 

Caucasian men 

aged 65-80 

High-impact unilateral 

training programme 

on one leg (EL) in 

comparison with the 

other leg (CL) 

1.6% net gain in 

femoral neck 

between EL and CL 

(Allison et al. 2015) 

Men and women 

aged 20-54  

Physical activity level Active women and 

men had 2.7-4.6% 

and 1.9-3.0% higher 

BMD respectively  

than sedentary 

counterparts 

(Morseth et al. 2010) 

Men aged 17 - 20 Physical activity 

habits 

10.1% (Pettersson et al. 

2010) 

 

Initially proposed by Wolff’s law and Frost’s mechanostat theory, bone adapts or remodels in 

response to the forces or demands placed upon it (Frost 1990). This mechanotransduction is 

completed through four steps: mechanocoupling, biochemical coupling, signal transmission 

and effector cell response (Duncan and Turner 1995). Bone metabolism is regulated via 

specific pathways, such as the as nuclear factor k-b/nuclear factor k-b ligand/osteoprotegerin 

(RANK/RANKL/OPG), Wnt signalling and purinergic signalling pathways, through 

initiation of osteoblastic or osteoclastic activity (Tyrovola and Odont 2015). Following 

physical activity, osteocytes detect shape and volume changes to increase or decrease the 

liberation of these bone mediators, which consequently influences bone formation and 

resorption (Nakashima et al. 2011). This notion has been observed in numerous populations 

including children, adults and older adults, with those who complete a large volume of 

physical activity/exercise possessing greater BMD, strength and muscle mass (Chilibeck et 

al. 1995; Slemenda et al. 1991; Beck and Snow 2003; Warburton et al. 2006). The point in 

time when this physical activity occurs may also influence bone development and bone mass, 

potentially resulting in lifetime benefits for skeletal health (Gunter et al. 2012). Generally, 

weight-bearing activity in childhood has been shown to increase total BMD in adolescents 

and children (Weeks et al. 2008; Heidemann et al. 2013), as well as demonstrate a continued 

benefit into adulthood at key sites such as the femoral neck and lumbar spine (Strope et al. 

2015). Tveit et al. (2013) reported exercise-associated high BMD in 46 young male athletes 

(mean age = 22 yr) was preserved three decades after retirement and cessation of high 
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volumes of physical activity. Similarly, ex-professional baseball players in their ninth decade 

of life retained more than half of the throwing-related benefits in bone size and a third of the 

throwing-related benefits in bone strength observed in current professionals (Warden et al. 

2014).  

Some studies have suggested that activity completed in the pre-pubertal stage is the most 

favourable to instigate bone development, due to the elevated levels of growth hormone 

present at this time (Bass et al. 1998). Growing bone has an enhanced capability to respond to 

increased mechanical loading and thus initiate greater structural adaptations to this stimulus, 

compared to adult bone (Bass et al. 1998). This notion of an optimal period or “window of 

opportunity” for exercise-induced bone development could be important in improving bone 

health by maximising peak bone mass attainment during this time (Bass et al. 1998), and 

therefore, delaying the onset of age- or menopause-related osteoporosis (Santos et al. 2017). 

Despite this, Behringer et al. (2014) completed a meta-analysis and suggested that weight-

bearing activities in childhood and adolescence had no significant influence on BMD in 

adulthood. The authors based their conclusion, however, on 27 studies out of a possible 109 

completed before 2012 and suggests their findings might have been skewed as a result. 

Therefore, the overall consensus, as outlined by the National Osteoporosis Foundation’s 

recent position statement, is that the best evidence suggests a positive effect of physical 

activity during late childhood and pre-pubertal years and this is a key period for bone 

accretion (Weaver et al. 2016). 

The ability to complete studies that are both longitudinal and valid, accounting for accurate 

measurement of activity (i.e., quantifying intensity in relation to the bone-loading forces 

experienced) is extremely problematic. Many investigations have used self-report activity 

questionnaires rather than more direct measurements, such as via accelerometers or 

pedometers (Ondrak and Morgan 2007). Self-report questionnaires rely upon recall and 

response bias, correlations between self-report and direct measurement of physical activity 

have been reported as low-to-moderate, ranging from -0.71 to 0.96 (Prince et al. 2008). 

Whilst accelerometers are capable of objectively quantifying activity level, this is still an 

estimation limited by validity, reliability and calibration concerns (Troiano et al. 2014), as 

well as being unable to provide direct measurement of the stimulus applied to any particular 

bone or the skeleton as a whole. Furthermore, there has been much methodological variance 

in studies exploring this topic, such as participant characteristics and sample size, the 

differing methods used to measure physical activity and types of physical activity/exercise 
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completed in the training intervention. These factors make it difficult to draw conclusions on 

the exact influence of physical activity on BMD and may explain the large variability in the 

extent of the skeletal response to loading reported in intervention studies. For reviews on this 

topic see Warburton et al. (2006) and Ondrak and Morgan (2007). 

Quantifying the optimum amount of physical activity for bone health is both difficult and 

complex when considering all of the potential confounding variables. Research has suggested 

the current US Department of Health and Human Services and UK Chief Medical Office 

physical activity guidelines do not allow maximisation of BMD potential (Whitfield et al. 

2015). Additionally, the type of physical activity may also be important for optimising BMD. 

Habitual levels of high, but not moderate or light, physical activity was positively related to 

BMD in adolescents (Deere et al. 2012) as well as in older adults (Hannam et al. 2017). 

However, high impacts in adolescents were classed as >4.0g but only >1.5g in the older 

adults. Thus, the impact threshold to be bone protective is likely to be lower in older adults 

but higher g-forces may be required to stimulate acquisition during peak attainment in 

childhood (Tobias 2014), which adds further complexities to understanding the influence of 

physical activity on bone health. Therefore, due to the difficulty of quantifying physical 

activity and the large number of determinants of BMD, investigating the influence or 

association of physical activity on BMD is challenging. Using homogenous cohorts that are 

known to be undertaking similar amounts of physical activity, such as athletic populations, 

can somewhat alleviate this issue.  

2.2 BMD in athletic populations 

Physical activity can be defined as any movement implemented by skeletal muscle that 

results in energy expenditure, whereas exercise refers to physical activity that is planned, 

structured and repetitive with an aim to maintain or improve a physical fitness component 

(Caspersen et al. 1985). Therefore, athletic populations who complete large volumes of 

exercise, also tend to possess higher BMD and bone mass than non-athletic individuals via 

the loading adaptation mechanisms mentioned above (Chilibeck et al. 1995). However, the 

loading characteristics of different sports vary, thus the BMD of athletes partaking different 

sports or disciplines also varies, particularly between different anatomical sites (Mudd et al. 

2007; Bennell et al. 1997). One of the earliest applied studies investigating BMD of athletes 

competing in different sports showed significantly higher total and site-specific BMD in 

volleyball players in comparison with gymnasts, swimmers and non-athletic controls, 

although the BMD of the gymnasts was significantly higher than the other two groups 
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(Fehling et al. 1995). This emphasises that physical activity/exercise, which expresses higher 

impacts through increased strain rates and high peak-force loading characteristics, as can be 

expected of volleyball players, results in enhanced total or site-specific BMD as shown across 

of number of sports (Table 2). 

Table 2: BMD variation across different sports 

Population Sport BMD variation Reference 

300 Norwegian female 

elite athletes (national 

level at senior or 

junior)  

300 non-athletic 

controls 

66 Sports 3-20% higher BMD than 

controls. 3-22% higher BMD in 

high impact sports compared to 

medium or low impact sports 

(Torstveit 

and 

Sundgot-

Borgen 

2005) 

15 elite male athletes 

15 non-athletic controls 

Volleyball 14% and 24% higher BMD at 

the lumbar spine and femoral 

neck respectively in volleyball 

players in comparison with non-

athletic controls 

(Calbet et al. 

1999) 

14 state level female 

athletes 

18 non-athletic controls 

Netball 7.8%, 17.3% and 14% higher 

total body, hip and lumbar spine 

BMD in the netballers in 

comparison with the controls 

(Chang et al. 

2013) 

50 male highly trained 

athletes 

12 non-athletic controls  

12 Judokas 

14 Karate 

athletes 

24 Water 

polo players  

 

Control group total body BMD 

(1.27 g/cm2) was significantly 

lower than the judo (1.40 g/cm2) 

and karate (1.36 g/cm2) group 

but no different to the water polo 

athletes (1.31 g/cm2) 

(Andreoli et 

al. 2001)  

59 competitive Finnish 

female athletes 

25 physical active 

individuals  

25 sedentary 

individuals 
 

 

27 Dancers  

18 Squash 

players       

14 Speed 

skaters  

Squash players had significantly 

higher BMD at the lumbar spine 

(13%), femoral neck (16.8%), 

proximal tibia (12.6%) and 

calcaneus (18.5%) in 

comparison with the sedentary 

group. Aerobic dancers also had 

significantly higher BMD at the 

loaded sites in comparison with 

the sedentary group, ranging 

from 5.3% to 13.5% 

(Heinonen et 

al. 1995) 

60 athletes  

15 controls 

15 Runners 

15 Swimmers 

15 Triathletes 

15 Cyclists 

Runners had significantly higher 

total body, femoral neck and leg 

BMD than controls and 

swimmers as well as higher leg 

BMD than cyclists. 

(Duncan et 

al. 2002) 
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In endurance runners specifically, most studies have shown a higher BMD than control 

populations, particularly at the primary loading sites (tibia, femoral neck, calcaneus), 

although this is not always the case due to other variables, such as low energy availability 

(Scofield and Hecht 2012). However, endurance runners tend to have lower BMD than 

athletes from other weight-bearing sports, such as sprinters or gymnasts, where forces applied 

to bone are more likely to be varied in magnitude and directions (Scofield and Hecht 2012). 

Master athletes over the age of 65 years old who are still competing in running events have 

been shown to possess higher BMD than non-active counterparts (Velez et al. 2008). 

Furthermore, former elite runners, soccer players and weightlifters have been shown to 

possess higher BMD than non-active controls as well as suffer osteoporotic hip fractures at a 

significantly older age (Kettunen et al. 2010). This emphasises the potential of BMD to be 

maintained and the importance of weight-bearing exercise in contributing to skeletal integrity 

in later life.  

Studying athletes who experience extreme amounts of loading can somewhat compensate for 

the aforementioned limitations associated with quantifying physical activity. Elite athletes in 

weight-bearing sports are a unique population who generally experience extreme amounts of 

mechanical loading, which, although not a perfect solution, presents an attractive model for 

future research studies hoping to investigate the impact of exercise on BMD. Additionally, by 

selecting homogeneous athlete groups, who compete in the same event to a similar standard, 

it would be reasonable to assume these individuals undertake similar training 

regimes/volumes. For instance, Billat et al. (2001)  reported high-level male marathon 

runners with a personal best of < 2 h 16 min ran an average weekly distance of 168 km (± 20 

km) and females with a personal best of < 2h 36 min completed 150 km (± 17 km) on 

average.  

2.3 BMD, elite athletes and injury risk 

Despite the benefits of weight-bearing activity for BMD, at the elite sporting level, too much 

activity to the point of overtraining can result in negative outcomes (Kuipers and Keizer 

1988). A stress fracture would be one such outcome and is defined as a partial or complete 

fracture of bone from repeated application of force lower than that required to fracture a bone 

in a single loading (Iwamoto and Takeda 2003). Stress fracture injury occurs due to the 

repetitive mechanical loading that stimulates an incomplete remodelling response (Jones et al. 

2002) and several factors are known to influence an individual’s susceptibility to 

experiencing a stress fracture (Bennell et al. 1999). Such factors include biomechanical gait 
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(Milner et al. 2006), bone size and mechanical properties (Tommasini et al. 2005), nutritional 

factors (Nieves et al. 2010), training volume and rapid increments in volume (Snyder et al. 

2006), small musculature and low BMD (Beck et al. 2000).  

Unsurprisingly, higher incidence of lower limb stress fractures is observed in endurance 

runners in comparison with non-athletic controls. Significant amounts of site-specific loading 

combined with other factors typical of this group, such as low energy availability, can result 

in lower BMD and a higher risk of fracture occurrence (Loucks 2007). Stress fractures 

reportedly account for 50% of all injuries sustained by runners and military recruits, with 

higher incidence observed in females (Milner et al. 2006). However, there is a lack of 

research on stress fractures in running populations (Wright et al. 2015). Although lower 

BMD has been observed at the foot in female athletes with a history of stress fracture, 

compared to those without, this was accompanied by lower lean mass, leg-length discrepancy 

and fewer menstrual cycles per year, which may be influential (Bennell et al. 1996). 

Furthermore, determining accurate prevalence is also difficult due to the problematic nature 

of defining stress fractures. Significant misdiagnosis will occur unless limited to radiography 

because other methods used lack sensitivity and specificity (Wright et al. 2015).  

Investigating BMD, with a particular emphasis on injury, is undoubtedly important because 

stress fractures have substantial implications for athletes. For instance, Marathon world 

record holder, Paula Radcliffe, reportedly suffered a stress fracture 3 months before the 

Beijing 2008 Olympics, limiting her preparation for and performance at that competition. 

Furthermore, Ranson et al. (2010) reported 43% of the elite fast bowlers they investigated 

developed symptomatic acute lumbar stress fractures in a two-year follow-up period and 

subsequently missed 169 days of cricket, per episode, on average.   

If athletes are unable to complete their desired or required training volume due to injury, this 

could have substantial negative effects on their performance and success. Additionally, if an 

athlete knows they may be susceptible to injury this could be accounted for in their training 

programmes, by placing a greater emphasis on appropriate strengthening exercises and/or 

allowing longer rest periods between sessions. This valuable information for tailored training 

could then ultimately influence progression of athletes from amateur to elite or have 

implications for selection into high-level teams or sporting competitions. It is apparent that a 

substantial proportion of research in this area has been completed in military recruits (Wright 

et al. 2015). This is probably due to the ease of accessing large samples who undertake a 
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quantifiable training load, as well as a desire to minimise waste of human and financial 

resources caused by injuries. However, it is difficult to directly extrapolate the findings of 

these military studies to elite runners due to differences in the level of physical fitness, 

footwear and the loads carried whilst running between these groups. Despite possible stress 

fractures, the positive benefits of physical activity/exercise on BMD in a broad population are 

evident. As discussed, there are a number of determinants influencing BMD but relatively 

little is known about the genetic influence on this phenotype and stress fractures, which could 

be pivotal for future understanding in both the sporting and public health domains.  

3. The genetic influence on bone mineral density 

 

Although BMD is a multi-factorial phenotype, heritability of BMD is suggested to be 50-85% 

depending upon anatomical location (Ralston and Uitterlinden 2010). However, it must be 

emphasised that this proposed large genetic component is in a free-living population where 

most people will not complete extreme volumes of physical activity or be severely 

malnourished and thus, the influence of these other environmental factors on BMD will be 

reduced. Therefore, even a very substantial genetic contribution to BMD does not mean 

physical activity or other factors cannot notably affect an individual’s BMD (as shown in 

section 2.1).  

Due to this substantial genetic component, knowing the associated variants could be 

extremely beneficial for both functional research focus as well as application. For example, 

accuracy of fracture risk classification was improved by 7-10% at various sites in osteopenic 

patients by adding a genetic risk score from proposed common or rare variants associated 

with BMD and/or osteoporosis (Lee et al. 2014). In the future, this application might be 

utilised in athletic populations for risk stratification and injury prevention. However, utilising 

a genetic risk score with elite athletes is currently difficult due to a lack of known candidate 

genes associated with BMD in athletic populations, which emphasises the need for 

replication of potential candidate genes and specific studies on particular populations, who 

may possess high or low BMD, or demonstrate specific lifestyle choices/habits that influence 

BMD.  

Beginning in clinical populations, studies that selected candidate genes for association with 

BMD due to known biological function, such as VDR, insulin like growth factor 1 (IGF1) and 

oestrogen receptor 1 (ESR1) (Gong and Haynatzki 2003), produced inconclusive findings. 

Candidate gene selection can be based on the premise that the protein plays a role in 
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regulating bone cell function or calcium metabolism (Ralston and de Crombrugghe 2006), 

and the differing variants may affect bone mediators and consequently influence BMD. For 

example (as highlighted in Figure 2 below), the human TNF receptor superfamily member 

11b (TNFRSF11B) gene encodes the protein osteoprotegin (OPG), which regulates bone 

resorption by inhibiting differentiation and activation of osteoclasts. OPG-deficient mice 

have been found to develop early onset osteoporosis, and increased tissue mRNA expression 

has been observed in participants who possess specific haplotypes accompanied with reduced 

BMD, which may be due to increased expression resulting in stimulated osteoclast activity 

(Takács et al. 2010). This simplistic model forms the basis of genetic regulation on BMD but, 

in reality, the process is much more complex due to environmental factors and various kinds 

of interactions, which could have a substantial effect on gene expression and phenotype 

outcome. This potential impact of mechanical loading on gene expression can be understood 

by the substantial upregulation and downregulation of numerous genes following mechanical 

loading in rats (Mantila Roosa et al. 2011). Genes including FOS like 1, AP-1 transcription 

factor subunit (FOSL1) and JunB proto-oncogene, AP-1 transcription factor subunit (JUNB) 

were both upregulated within 4 hours after loading, whilst expression of Wnt/β‐catenin 

signaling genes SOST and secreted frizzled related protein 4 (SFRP4) was also altered at the 

synthetic phase of bone formation (Mantila Roosa et al. 2011). In the case of OPG, in vitro 

evidence demonstrated that compressive forces increases IL-6 and PGE2 production through 

activation of intracellular calcium/extracellular signal-regulated kinase 1/2 and nuclear factor 

-κB translocation (Ca++/ERK1/2/NF-kB) signalling pathways, which results in decreased 

osteoblast OPG expression (and a decreased OPG/RANKL ratio) and enhanced matrix 

metallopeptidases (MMPs) production, consequently increasing bone resorption (Sanchez et 

al. 2009).  

 

          Environmental factors/gene-gene interactions/gene-environment interactions 

 

 

TNFRSF11B genotype 1 >>>>>>  OPG protein available  >>>>>> increased bone formation 

TNFRSF11B genotype 2 >>>>>>       OPG deficiency      >>>>>> decreased bone formation 
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Figure 2: TNFRSF11B genotype influence on OPG availability and subsequent bone 

formation with the potential of environmental and interaction effects.  

Recent technological advances and large collaborations have seen a number of genome-wide 

association studies (GWAS) with BMD completed, which identified many more potential 

candidate genes and SNPs (Richards et al. 2012; Clark and Duncan 2015). However, the most 

prominent study to date, a meta-analysis conducted by Estrada et al. (2012), identified 56 loci 

associated with BMD, osteoporosis and/or fracture that accounted for ~6% of the variation in 

BMD. Overall, more than 66 genetic loci have been associated with (DXA-derived) BMD via 

GWAS method, as well as many others through candidate gene association studies, and this 

number continues to increase, emphasising the extremely polygenic nature of BMD (Golchin 

et al. 2016). A further 153 loci have been associated with BMD estimated by quantitative 

ultrasound of the heel (Kemp et al. 2017). A specific recent addition, for instance, is a locus 

harbouring the Patched 1 (PTCH1) gene in an Icelandic population (Styrkarsdottir et al. 

2016). This rapid discovery rate of new candidate genes and the fact many previously 

discovered candidate genes have had little or no replication through further study, means only 

a very small number can be confidently suggested to have an association with BMD. 

Furthermore, the biological function or involvement with bone metabolism of 30 of these has 

yet to be elucidated and only seven of the 66 have been associated in candidate gene studies 

previously or positively replicated afterwards (Hsu and Kiel 2012), although some have 

received no further study as of yet. To have only seven candidate genes positively associated 

through both methods so far is surprising, considering almost 100 different loci have been 

associated with BMD via a candidate gene approach (Hsu and Kiel 2012). Hsu and Kiel 

(2012) suggested a number of reasons why this may have occurred; firstly, false-negative 

findings due to the stringent level of statistical significance typically applied to GWAS data, 

or inadequate statistical power in some studies that were unable to replicate associations with 

modest effect sizes. On the other hand, false-positive findings of candidate gene association 

studies may have prevailed due to small sample sizes or publication bias (Munafo et al. 

2004).  

Additionally, strong gene-gene or gene-environment interactions could alter the number and 

identity of loci associated with BMD. This could apply to specific populations, such as 

athletes, due to the substantial influence of physical activity on BMD. Ultimately, this has 

resulted in few candidate genes emerging from GWAS and/or association studies that also 

have a known biological function relevant to bone. Therefore, further research using well-
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defined independent cohorts is needed to provide further evidence (Agueda et al. 2010). 

Clark and Duncan (2015) suggest greater use of “extreme cohorts” who might possess 

variants that have stronger associations with relevant phenotypes, which could include elite 

athletes at one end of a continuum (as mentioned in section 2.2) and osteoporotic individuals 

at the other. This approach has been applied to BMD successfully in a study of 

postmenopausal women with extremely high or low BMD, where GWAS revealed six novel 

genetic associations (Duncan et al. 2011).  

Studies so far have only elucidated a small fraction of BMD variance and thus, some of the 

unexplained heritability is likely due to a number of factors, including gene-environment 

interactions (Ackert-Bicknell and Karasik 2013). Despite the substantial effect of physical 

activity/exercise on BMD, there has been little research regarding gene-physical activity 

interactions and its effects on BMD in athletic populations. Therefore, due to this limited 

amount of research, as well as the variance in sample size and participant characteristics, 

means it is difficult to evaluate the extent of the gene-physical activity interaction with BMD 

or propose any definitive candidate genes that interact with environmental factors in 

determining BMD. However, looking at this relationship using specific cohorts or 

populations is gathering momentum - for example, investigations exploring interactions with 

others phenotypes, including obesity, are now being conducted (Marti et al. 2008). As 

mentioned previously (section 2.2), athletes would be an excellent sample group to explore 

this interaction as they present an extreme cohort regarding exercise undertaken and BMD.  

3.1 Genetic influence on BMD and the relationship with physical activity  

Mitchell et al. (2016) were the first to investigate the genetic influence on BMD and the 

relationship with physical activity using SNPs that had been associated with BMD using 

GWAS (Estrada et al. 2012). Analysis revealed physical activity interacted with ELKS/Rab6-

interacting/CAST family member 1/Wnt family member 5B (ERC1/WNT5B) rs2887571 to 

influence bone mineral content in males and nominal interactions with physical activity were 

also observed with Wnt family member 16 (WNT16) rs3801387, axin 1 (AXIN1) rs9921222, 

SOST rs4792909 and stAR related lipid transfer domain containing 3 N-terminal like 

(STARD3NL) rs6959212. Sclerostin has a negative effect on bone formation by inhibiting 

canonical Wnt signalling in osteoblasts and also stimulates osteoclastic bone resorption by 

increasing the RANKL/OPG ratio (via enhanced RANKL expression) (Appelman-Dijkstra 

and Papapoulos 2016). Despite this strong influence on bone metabolism, conflicting results 
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regarding SOST variants and association with BMD have been reported in the literature 

(Sharma et al. 2015). Additionally, serum sclerostin concentration has been positively 

correlated with lumbar spine, femoral neck and total hip BMD but no variants were 

associated with BMD or sclerostin concentration (He et al. 2014). It is important to note that 

children/young adults (age 5-19 yr) were the investigated cohort in the Mitchell et al. (2016) 

study. It is suggested some BMD-associated loci may exert age-specific effects (Medina-

Gomez et al. 2012), and thus the findings cannot be generalised to other populations.    

Interesting findings have also been reported in candidate gene association studies. Kiel et al. 

(2007) discovered two SNPs in the LDL receptor-related protein 5 (LRP5) gene associated 

with differences in BMD, which were dependent upon volume of physical activity completed. 

The TT genotype of both the rs3736228 and rs2396862 SNPs was associated with lower 

BMD in more physically active men, but with higher BMD in less physically active men. 

Thus, the authors hypothesised that the substitution of a C with a T allele in the rs3736228 

SNP could alter LRP5-mediated Wnt signalling in the case that the catabolic signals induced 

from the mechanical loading prevail over anabolic signalling. This was also the case when 

expressing alleles as a haplotype in vitro, where the T allele was associated with a decreased 

response to canonical Wnt3a signalling in comparison to the C allele. Activation of Wnt/β-

catenin (canonical) signaling increases the sensitivity of osteoblasts to mechanical loading, 

which can occur via Wnt binding to low-density lipoprotein receptor-related proteins 5 and 6 

co-receptors (Robinson et al. 2006; Krishnan et al. 2006). This mediation of Wnt signaling 

via different LRP5 variants can both enhance and decrease BMD (Ferrari et al. 2005). Loss-

of-function mutations in LRP5 are also responsible for low bone mass disorders, such as 

osteoporosis pseudoglioma, whereas gain-of-function mutations have been suggested to cause 

high bone mass syndromes (Levasseur et al. 2005). Furthermore, LRP5 variants, such as 

C135242T, have been associated with BMD variability in the general population (Koay et al. 

2004) and ds2306862 in osteoporotic individuals (Mizuguchi et al. 2004), which highlights 

the strong influence LRP5 may have on bone metabolism, particularly when considering a 

mechanical loading interaction.  

Similarly to some LRP5 variants, the catechol‐O‐methyltransferase (COMT) val158met 

(rs4680) SNP has been reported to influence the association between physical activity and 

BMD, suggesting that certain variants may be particularly important for BMD in individuals 

with low physical activity levels. Higher total BMD was observed in individuals completing 
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greater levels of physical activity (> 4 hours) compared to those undertaking lower activity (< 

4 hours) for GA and AA (lower enzyme activity) but not GG (higher enzyme activity) 

genotypes (Lorentzon et al. 2007). Although lower BMD was observed in the lower enzyme 

activity group, estradiol serum levels were not. COMT catalyses the methylation of catechol 

oestrogens to methoxy oestrogens (inactive metabolites) and thus, lower COMT enzyme 

activity should result in less efficient inactivation of catechol oestrogens and higher BMD in 

these genotypes as has been shown in other studies (Eriksson et al. 2005). Therefore, a 

COMT genotype interaction may be present and the potential regulation of the BMD response 

to mechanical loading may be due to the involvement of oestrogen receptors as facilitators in 

a number of key pathways by which mechanical strain stimulates bone formation (Galea et al. 

2013).  

Interleukin 6 (IL6) is another potential candidate gene with a number of functional 

polymorphisms, suggested as candidates associated with BMD and/or osteoporosis. Meta-

analysis revealed an association between the GG genotype in the IL6 -174G/C (rs1800795) 

polymorphism and low BMD, as well as increased risk of osteoporosis, in a Caucasian 

population (Ni et al. 2014). In the -634C/G (rs1800796) polymorphism, the CC genotype was 

significantly associated with greater BMD in Chinese pre-menarche girls who completed 

higher levels of physical activity (Li et al. 2008). Similarly, total body, lumbar spine and 

femoral neck BMD was lower in the GG genotype compared to the CC genotype by 0.03, 

0.03 and 0.01 g/cm2 respectively in an Asian population (n=3068) following meta-analysis 

(Yan et al. 2015). IL-6 is primarily sourced in osteoblastic cells and increases interactions 

between osteoblasts and osteoclasts, thus stimulating bone resorption (Steeve et al. 2004). IL-

6 is suggested to indirectly stimulate osteoclastogenesis by increasing RANKL gene 

expression in osteoblasts (Bakker and Jaspers 2015) and the G allele has been associated with 

elevated production and secretion of IL-6 in vitro (Kitamura et al. 2002). Therefore, the G 

allele and thus elevated IL-6 may be disadvantageous for bone density. Although there are 

limitations regarding control of other BMD-influencing variables and various cohorts used in 

these studies, IL6 remains interesting, particularly when analysing a possible relationship 

with physical activity. In vitro studies have suggested IL-6 is produced by shear-loaded 

osteocytes and may influence bone mass by osteocytes reducing osteoblast activity via IL-6 –

mediated intercellular signalling (Bakker et al. 2014). Elevated IL-6 serum concentrations in 

have also been observed in trained marathon runners immediately post-race, with a positive 

correlation between IL-6 concentration and running intensity (Ostrowski et al. 2000). In 
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longitudinal studies, serum IL-6 concentration has been negatively associated with bone 

resorption and BMD in older adults, although the literature is somewhat conflicting (Ding et 

al. 2008). IL6 demonstrates the possibility of strong gene-environment interactions and 

studies that do not control for physical activity risk erroneous findings and/or results that are 

only applicable to limited portions of the population.  

Overall, completing weight-bearing physical activity has been shown to increase BMD as 

discussed in Section 2.1. The effect of potential gene-physical activity interactions on BMD 

across the lifespan, however, has yet to be determined. It could be hypothesised that if an 

individual has a disadvantageous genetic profile and completes low levels of weight-bearing 

physical activity, they may be at risk for low BMD and potentially osteoporosis in later life 

(Disadvantageous TGS and low levels of PA). Those who may have a disadvantageous 

genetic predisposition, however, but complete sufficient weight-bearing activity to produce a 

substantial osteogenic response may be able to combat their negative genetic predisposition 

resulting in increased BMD, as evidenced in children (Mitchell et al. 2016) (Advantageous 

TGS or high levels of PA). Similarly, those who do not complete suitable levels of activity 

but possess an advantageous genetic profile, may also present with moderate BMD 

(Advantageous TGS or high levels of PA). Those with an advantageous genetic profile who 

also complete large volumes of weight-bearing physical activity are likely to have the highest 

BMD (Advantageous TGS and high levels of PA), which could be induced from a gene-

physical activity interaction.  
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Figure 3: Schematic representation of typical age and sex-related loss of BMD in men and the 

effect of physical activity and genetics.   

 

 

Figure 4: Schematic representation of typical age and sex-related loss of BMD in women and 

the effect of physical activity and genetics.   

In the case of a gene-physical activity interaction, a hypothetical relationship between 

genetics, physical activity and the resultant BMD is presented below (Figure 5). Each bar 

represents a different individual and a hypothetical scenario for BMD ranging from a low 

BMD to a high BMD (the bar colour indicates BMD at any given level of physical activity in 

Figures 5 and 6). BMD is dependent on both genetics and physical activity level, so as 

physical activity level increases, BMD is enhanced for every individual regardless of their 

BMD before this increase in physical activity occurred. The magnitude of increase in BMD, 

and maximum BMD level attained, however, is under the influence of genetics (Ralston and 

Uitterlinden 2010). Consequently, those with a more advantageous genetic predisposition, 

indicated by a higher total genotype score (TGS), combined with a higher volume of 

mechanical loading are more likely to reach a higher BMD than those with a disadvantageous 

genetic predisposition and/or a lower volume of mechanical loading, assuming all else is 

equal.  
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Figure 5: Schematic hypothetical representation of the BMD outcome for different 

individuals representing variable genetic profiles (TGS) and levels of physical activity.  

It is possible, however, that a linear relationship between physical activity dose and BMD 

response does not exist at the extremes of physical activity (PA). NHANES (National Health 

and Nutrition Examination Survey) data has previously demonstrated that BMD did not differ 

between males who reported completing 4-6 times more physical activity than the 

recommended guidelines (Whitfield et al. 2015). The physical activity and BMD relationship 

is still poorly understood and in the case of endurance runners, overtraining can negatively 

affect BMD (Figure 6) due to the associated influence of energy availability. Other factors 

such as the type of activity and dietary intake, however, are also important in regards to the 

bone adaptation as discussed in Section 2.2 and would consequently affect this relationship.  
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Figure 6: Schematic hypothetical representation of the BMD outcome for different 

individuals (e.g. endurance runners) representing variable genetic profiles (TGS) and levels 

of physical activity.   

 

3.2 Genetic influence on BMD in athletic populations 

In 212 young males, significantly higher total BMD in 84 weight-bearing athletes than 80 

controls was observed in the FF (7.7%) and Ff (6.9%) but not ff (1.8%) genotypes of the VDR 

FokI rs2228570 polymorphism, whilst significantly lower total BMD was only observed in 

the FF (-4.5%) genotype when comparing 48 swimmers with a control group (Nakamura et 

al. 2002b). This suggests that individuals with the FF genotype may be more responsive to 

mechanical loading, resulting in greater BMD when that environmental factor is prominent. 

This notion was further reinforced in 44 Japanese track and field athletes, where higher bone 

volume was expressed in those with the FF genotype, but not in those with the Ff genotype 

(Nakamura et al. 2002a). This particular polymorphism, Fokl (rs2228570), exhibits a C to T 

transition that creates an upstream initiation codon, leading to the production of VDR 

proteins that are three more amino acids in length. The F allele codes for the absence of the 

restriction, whilst the f allele codes for the presence of the initiation codon, which leads to the 

longer amino acid length (Gross 1996; Ames et al. 1999). It is suggested that the F variant 

shows greater transactivation (protein expression) than the f variant and this increased 

biological activity (and associated increased intestinal absorption of calcium) could explain 

why higher BMD has been reported in those with the FF genotype (Arai et al. 1997; Colin et 

al. 2000; Uitterlinden et al. 2004; Ames et al. 1999) as detailed below (Figure 7). VDR 
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controls the transcription of other genes including bone gamma-carboxyglutamate 

protein/osteocalcin (BGLAP) that are instrumental for this calcium absorption and bone 

formation (Moran et al. 2014). A direct effect of osteoblastic/osteocytic VDR signalling on 

bone remodelling has also been proposed, although specific understanding of this notion is 

still lacking and largely depends on calcium balance (Lieben and Carmeliet 2013).  

 

 

 

 

 

 

 

 

Figure 7: VDR rs2228570 FF genotype and the associated pathways leading to enhanced 

BMD 

The potential association of VDR with BMD and/or fracture has also been supported across a 

number of different SNPs (rs1544410, rs7975232 and rs731236) in various cohorts, such as 

pre and postmenopausal women (Riggs et al. 1995; Horst-Sikorska et al. 2007; Ji et al. 2010; 

Marozik et al. 2013). However, contradictory results have also been reported across these 

cohorts (Horst-Sikorska et al. 2013; Moran et al. 2015; Castelán-Martínez et al. 2015; 

Dabirnia et al. 2016). The highly conflicting nature of the findings may be due to not 

adjusting for covariates (e.g., BMI) as well as the different ethnic groups, sample sizes and 

study designs utilised (Xu et al. 2005).  

A recent study of 99 elite academy footballers found a number of SNPs associated with bone 

phenotypes (trabecular density, cortical thickness and cross sectional area) using pQCT 

analysis. However, these associations were only observed before, but not after, a 12-week 

period of increased football training volume and thus association between genotype and 

changes in bone parameters over time were observed. These variants included SOST 

rs1877632, P2RX7 rs1718119, P2RX7 rs3751143 as well as TNFRSF11A (RANK), TNFSF11 
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(RANKL) and TNFRSF11B (OPG) SNPs rs9594738, rs1021188 and rs9594759 (Varley et al. 

2018). Although no genotype-training interactions were observed for the SNPs analysed in 

this investigation, other candidate genes could be sensitive to physical loading (i.e. gene-

environment interaction) and thus modulate athlete health (and, by extension, enhance 

endurance performance). Specifically, if an athlete has a genetic predisposition towards low 

BMD or elevated risk of stress fracture, exercise training and/or diet could be modified to 

accommodate.  

3.3 Genetic influence on stress fractures 

There is a lack of conclusive evidence regarding external determinants of stress fractures 

(Wright et al. 2015) as mentioned in section 2.3. In more recent times, the idea of a proposed 

genetic influence has been investigated primarily in military recruits, due to the abrupt 

increase in training, large training volumes and high prevalence of stress fractures (Lappe et 

al. 2008). Examples have included the calcitonin receptor (CTR) rs1801197 and LRP5 

rs2277268 polymorphisms, which were associated with femoral neck stress fractures in 72 

Finnish military recruits (Korvala et al. 2010). Participants who possessed the CTR C allele 

together with a VDR C-A haplotype were more protected from stress fractures, which may be 

due to the role of CTR in osteoclast mediated bone resorption (Pondel 2000).   

Furthermore, larger sized CAG androgen receptor (AR) gene repeats (>16) were more 

common in Israeli military personnel who had suffered stress fractures (23%) than those who 

had not suffered this injury (13%) (Yanovich et al. 2011). A higher number of CAG repeats 

within the AR gene are inversely associated with the transcriptional response to testosterone 

(Zitzmann et al. 2001) and deficiency in such hormones could influence bone metabolism and 

potential bone loss (Mohamad et al. 2016; Khosla 2015).  

Stress fracture susceptibility, in relation to genetics, has also been investigated in athletes for 

the first time recently, with findings suggesting that athletes with specific genetic variants 

may have an increased vulnerability to this injury (Varley et al. 2015; Varley et al. 2016; 

Varley et al. 2017). Interestingly, three of the same SNPs (VDR FokI rs2228570, RANKL 

rs1021188 and the loss of function P2RX7 rs3751143) as mentioned above, alongside RANK 

rs3018362, were associated with stress fracture incidence in the Stress Fracture in Elite 

Athlete (SFEA) cohort. However, a gain of function P2RX7 SNP (rs1718119) was associated 

with increased stress fracture occurrence. Functional expression of purinergic receptor P2X 7 

primarily regulates configuration of osteoclasts (Agrawal et al. 2010), as well as augmenting 



26 
 

bone formation via a cell-autonomous role that leads to stimulation of mineralisation 

(Panupinthu et al. 2008), which may explain why some P2RX7 polymorphisms have also 

been associated with low baseline and accelerated bone loss in post-menopausal women 

(Gartland et al. 2012). P2RX7 is a particularly interesting candidate gene in regards to 

potential gene-physical activity interactions and outcomes for BMD. Mice with a null 

mutation of P2RX7 have been reported to show >73% reduced sensitivity to mechanical 

loading (Li et al. 2005). Fluid shear stress increased prostaglandin (PG) E2 release in wild 

type osteoblast cells but no effect was observed on PGE2 release in knockout osteoblast cells. 

PGE2 administration activates cortical bone modelling resulting in increased bone mass (Jee 

et al. 1990) and Li et al. (2005) suggested these findings indicate ATP signalling through 

P2RX7 is important for mechanically induced release of prostaglandins by bone cells and 

subsequent bone formation. Consequently, variation in P2RX7 SNPs such as rs3751143 could 

result in differing responses to mechanical loading and alterations to BMD, potentially 

influencing stress fracture susceptibility. 

Although research investigating genetic influence on stress fracture has begun using the 

SFEA cohort, this was a loosely defined group, which comprised athletes of mixed abilities 

and from a range of sports. A more focussed approach, which removes the variability (i.e., 

loading/training patterns) introduced by incorporating athletes from different sports into one 

investigation, would be advantageous. 

4. Future directions and conclusions 
 

There are numerous polymorphisms that need further exploration vis-à-vis BMD. In 

particular, gene-environment (i.e. gene-physical activity) interactions are likely to contribute 

substantially to inter-individual differences in BMD throughout the human lifespan. Exciting 

findings have been observed in regards to gene-physical activity interactions and genetic 

associations with stress fracture, particularly in variants of pathways involved in the 

adaptation of bone to mechanical loading, such as the RANK/RANKL/OPG system. 

Therefore, the study of specific cohorts, who experience unusually high mechanical loads and 

who may display unusual bone phenotypes and/or possess genetic characteristics that differ 

from the norm, may provide novel insight into the area. Such individuals include elite 

athletes, who are at the extremes of human physiological capability, experience much greater 

environmental (mechanical) stress than most and might possess a genotype particularly 

suitable to tolerate those stresses.  
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GWAS or ideally whole genome sequencing (WGS) studies using athletic populations with 

their differentiating extreme phenotypes are, in principle, the next logical steps to identify 

key polymorphisms. Detailed study of gene function can follow. However, most GWAS 

designs cannot account for gene-gene/gene-environment interactions and only analyse SNPs 

with minor allele frequencies of more than 1%, not rare variants that may lie between 0.1-1% 

or even lower. Thus, GWAS is appropriate for the discovery of common variants that may 

confer low/moderate risk but are underpowered for the detection of rare variants, which may 

have a large influence on a complex phenotype according to the common disease/rare variant 

hypothesis (Li and Leal 2008). Conducting GWAS or WGS studies is also extremely 

challenging due to the associated costs and difficulty in recruiting sufficiently large numbers 

of such a specific population. Even a panel of SNPs for investigation that is far lower in 

number than used in contemporary GWAS, for example 500 SNPs, would require a sample 

size of 1200 to detect an effect size of 0.02 in a continuous trait, assuming 80% statistical 

power, a minor allele frequency of 20% and an alpha level of 0.0001. Approximately the 

same size of sample would be needed for each group of a case-control study design, assuming 

the same parameters and an effect size (odds ratio) of up to 1.4 (Bouchard 2011). 

While the large cohorts necessary for GWAS and eventually WGS studies of BMD in 

athletes are built, smaller samples (steps towards building the bigger sample) can be used to 

test hypotheses about genetic variants emerging from GWAS in relevant clinical populations. 

Assessing bone and injury phenotype data in those athletes will also enhance understanding 

of any observed genotype-phenotype relationship (Wang et al. 2013). A relatively 

homogenous group of athletes who experience high mechanical loads on some bone 

structures, such as endurance runners, would be suitable for this kind of investigation. 

Specifically, measuring areal BMD via DEXA scanning, with a particular emphasis on the 

primary loading sites in this population, would probably provide appropriate data to combat 

some of the challenges identified in this review. It would be fascinating to discover whether 

those athletes have a genotype that enhances BMD, protects against the effects of the large 

volume of training required and reduces risk of stress fracture. One preliminary report (using 

just 14 participants) even documents an attempt to reduce the risk of tendon, ligament and 

bone injuries by modifying athlete training programmes based upon genetic characteristics 

(Goodlin et al. 2015). This illustrates the kinds of future applications possible in this field, 

after the more fundamental research has been conducted successfully.  
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