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Abstract—Research in analysis of big scholarly data has
increased in the recent past and it aims to understand research
dynamics and forecast research trends. The ultimate objective
in this research is to design and implement novel and scalable
methods for extracting knowledge and computational history.
While citations are highly used to identify emerging/rising re-
search topics, they can take months or even years to stabilise
enough to reveal research trends. Consequently, it is necessary
to develop faster yet accurate methods for trend analysis and
computational history that dig into content and semantics of
an article. Therefore, this paper aims to conduct a fine-grained
content analysis of scientific corpora from the domain of Ma-
chine Learning. This analysis uses DeepHist, a deep learning-
based computational history approach; the approach relies on
a dynamic word embedding that aims to represent words with
low-dimensional vectors computed by deep neural networks. The
scientific corpora come from 5991 publications from Neural
Information Processing Systems (NIPS) conference between 1987
and 2015 which are divided into six 5-year timespans. The
analysis of these corpora generates visualisations produced by
applying t-distributed stochastic neighbor embedding (t-SNE) for
dimensionality reduction. The qualitative and quantitative study
reported here reveals the evolution of the prominent Machine
Learning Kkeywords; this evolution supports the popularity of
current research topics in the field. This support is evident given
how well the popularity of the detected keywords correlates
with the citation counts received by their corresponding papers:
Spearman’s positive correlation is 100%. With such a strong
result, this work evidences the utility of deep learning techniques
for determining the computational history of science.

I. INTRODUCTION

The abundance of scholarly data sources like digital libraries
and academic social networks has enabled big scholarly data
analysis. With this data it is now possible to develop a com-
putational history of science and consequently ask interesting
questions such as what scientific trends are emerging in a given
scientific field.

Many researchers have realised the importance of mining
scholarly data to understand the dynamics of science. Gen-
erally, tracking the dynamics of science is highly related to
revealing hidden trends within the vast quantity of available
resources. Hence, trend analysis has been popular in the
research community of scholarly data analysis [1]] that looks
for popular keywords.
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Commonly the detection of evolving scientific keywords or
trends has widely relied on citation analysis; however, this
analysis is not fool proof. While citation counts can signify
the importance of scientific work, these counts may also grow
for non-scientific reasons [2]. Instead, there can be other
interesting papers — termed as sleeping beauties [3] — which
do not get cited much for several years after publication, but
then unexpectedly start getting cited.

For the reasons cited above and the fact that citation-
based approaches fail to dig into the paper content which
could lead to a more accurate trend detection, some emerging
researchers [4], [5] have followed a particular direction in
computational history which is the use of fopic models to
analyse the rise and fall of research topics and accordingly
the progress of science.

Going beyond the topic models that capture document level
associations between words, our aim in this paper is to learn
word embeddings across time in scientific corpora due to the
ability of word embeddings to detect very local associations.
For instance, it has been shown that word embeddings can suc-
cessfully capture both the semantic and the syntactic features
of words [6]]. They can complement topic models, or stand
alone as an approach to building a computational history of
science.

To do so, this paper introduces DeepHist, a deep-learning
based approach to computational history that uses dynamic
word embedding in order to study the semantic shifts of words
and consequently detect the evolving scientific keywords; in
this paper, words and keywords are used interchangeably. To
detect the semantic shift of words, we build a similarity matrix
that records similarity between frequent keywords embedding
vectors over each timespan. Then, based on these matrices, we
create an acceleration matrix that computes the acceleration
of various keywords over subsequent timespans in order to
detect fast converging keywords. The acceleration represents
the difference in similarities between keywords over two
successive timespans. The subject area used in this work is
Machine Learning. This choice owes both to the authors’
background in this subject area, and the fact that Machine
Learning has enjoyed notable successes in the recent years.

We experiment and evaluate our proposed approach with



5991 publications from the NIPS conference proceedings
between the years 1987 and 2015 that we divided into six
timespans of 5-years each. For evaluating the effectiveness of
our embeddings in detecting emerging scientific keywords, we
adopt both qualitative and quantitative methods.

o Qualitatively, we illustrate the advantages of dynamic
embeddings that show the evolving scientific keywords in
the area of Machine Learning for each timespan by plot-
ting keyword vectors after reducing their dimensions with
t-distributed stochastic neighbor embedding (t-SNE) [(1l].
All t-SNE visualisations show that our embeddings are
able to illustrate the fast acceleration between the emerg-
ing scientific keywords.

e Quantitatively, to validate our approach against the com-
monly used citation analysis approach, we collect the
citation counts of NIPS publications having detected
the emerging keywords in their titles, track the citation
evolution over time and compute its correlation with the
obtained similarities captured by our embeddings. The ex-
perimental results show the effectiveness of our approach
that was able to detect that the keywords “neural” and
“learning” were getting similar across time and rising
by 70% in similarity in the timespan 2007-2011 when
the emerging keyword “deep learning” started to flourish
as a neural-based learning. Interestingly, our approach
succeeded to achieve a 100% positive correlation between
the citation counts and the similarities returned by our
embeddings.

The rest of the paper is organised as follows. Section
details our DeepHist methodology and how we employ word
embeddings, namely skip-gram model to detect rising scientific
keywords in the area of Machine Learning. Section de-
scribes the NIPS dataset we have used, presents and discusses
the obtained results. A summary of existing work is briefly
presented in Section [[V] Finally, in section [V] we conclude the
paper and draw future directions.

II. DEEPHIST

This study introduces a deep-learning based computational
history (DeepHist) that tracks rise or evolution of scientific
keywords and hence the evolution of Machine Learning itself.
Accordingly, we adopt a dynamic word embeddings technique
to learn word vectors in a temporal fashion, in order to capture
words that get geometrically closer, and hence reveal emerging
keywords. The skip-gram (SG) neural network architecture of
word2vec embedding model [8] is used in this paper as it
consistently performed better than the continuous bag of words
(CBOW) architecture.

A. Skip-Gram Neural Network Model

To learn high-quality distributed vector representations, the
skip-gram (SG) neural network model was introduced by
Mikolov et al. [6]; SG can successfully capture both the
semantic and the syntactic word regularities [6].

1) Notation:
lications collected across

We consider the corpora of NIPS pub-
time (1987-2015). Formally,
P=(P;,...,Pr) where each Pit=1,...,T is the
corpus of all publications in the t" timespan, and
V = (wordy, ..., wordy) is the vocabulary that consists of
N words present in the corpora P at any point in time; thus,
it is likely for some word; € V to not appear at all in some
P;. V comprises of both emerging and dying words as they
typically occur in scientific corpora.

Given this time-tagged scientific corpora, our goal is
to find a dense, low-dimensional vector representation
Unord, (1) € R, d < | V| for each word word; € V and each
timespan ¢t = 1,...,T; d is the dimensionality or the length
of the word vectors. .#jppy: is the matrix of size N x d that
represents the input to hidden layer connections with each
row representing a vocabulary word word;, i = 1,..., N, and
Moutpur 18 the matrix of size d x N that describes the
connections from hidden layer to output layer where each
column of .#,y4py: represents a word word; € V.

2) Model: Skip-gram model uses a single hidden layer, fully
connected neural network as simplified in Figure
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Fig. 1: Architecture of Skip-Gram Neural Network Model

Hidden Layer

The neurons in the hidden layer are all linear neurons. The
input layer is set to have as many neurons as there are words
in the vocabulary, i.e, N. The hidden layer size is set to
the dimensionality d of the resulting word vectors. The size
of the output layer is same as the input layer and they are
represented respectively by the matrices #input |Nxa| and
M output |dx |- The input to the network is encoded using “1
-out of - N” representation, meaning that only one input line
is set to 1 and the rest of the input lines are set to zero.

The main idea of skip-gram is to predict the context given a
word word;. Note that the context is a window around word;
of maximum size L that represents the span of words in the
text; the span runs both backwards and forwards when iterating
through the words during model training.

Since the goal of skip-gram model is to produce probabili-
ties for the words in a context (context words) in the output
layer given a word word;, Prob(wordcontest|word;)i=1,... N,
the model needs the neuron outputs in the output layer to sum
to one. Word2vec achieves this by converting activation values
of output layer to probabilities using the softmax function.
Thus, the output of the k’-th neuron is computed by the
following expression:

exp(activation(k'))

Y = Prob(wordeonteqt|word;) =
( contex | z) 25:1 exp(acti'l}ati()n(n))



B. Skip-Gram Hyperparametrisation

Skip-Gram model depends on several hyperparameters;
some of them crucially impact the quality of embeddings,
especially vector dimensionality and context window. Despite
that, the majority of applications that used word embeddings
as features computed their vector representations with a default
or arbitrary choice of hyperparameters.

Since the optimal hyperparameters values are known to
be often data and task dependent, we proposed a domain-
specific approach to hyperparametrisation [9] for skip-gram;
the domain is scientific and specifically concerns Machine
Learning literature. The approach uses the stability of k-
nearest neighbors (k-NN) of word vectors as the objective to
measure while learning word2vec hyperparameters.

Stability is an important aspect of a learning algorithm. It
has been widely used in clustering problems [10] to assess
the quality of a clustering algorithm. Also, it has been applied
in high-dimensional regression [11]] for training parameter
selection. Since word embedding produces high-dimensional
word representations that can be organised into word clusters,
we applied the k-NN algorithm to tune the hyperparameters
of skip-gram model until the k-NN clustering is stable. k-NN
clusters similar words based on their cosine similarities.

The basic idea of word embedding stability is the following:
the quality of embedding inevitably depends on tuning hyper-
parameters defined previously, namely vector dimensionality
and context window. If we choose accurate values of the tuning
hyperparameters, then we expect to find k words from different
embeddings that are similar to a target word word,.

The k-NN embedding stability approach follows four steps:

1) Fix one hyperparameter at the beginning (choose the
default value for example).

2) Tune the second hyperparameter by trying different val-
ues and training the model for each value.

3) Compute word similarities after each training and define
k-nearest neighboring words.

4) Repeat steps 2 and 3 for the second hyperparameter to
be tuned after fixing the first one (step 1) to the optimal
value already obtained.

The k-NN stability is defined as the overlap rate of similar
words resulting from two different embeddings.

word; word;

E), Ep

k

where Sg, and Sg,, are two sets of words that are similar
to a target word word; but were produced from two different
embeddings E}, and Ej with different hyperparameter values.
k is the number of nearest neighbors to word; given by the
cosine similarity. In this study, k£ is set to 5. This choice is
motivated by our aim to keep the word similarities as fine-
grained as possible in order to evaluate the quality of skip-
gram model within scientific text.

In our previous work [9]], we showed that the optimal hy-
perparameters values are 200 and 6 for vector dimensionality
d and the context window respectively for the NIPS corpora

stability = x 100

we are using. Therefore, the skip-gram model is tuned with
these hyperparameters in this work.

C. Dynamic Skip-Gram Model

To track the dynamism of skip-gram embeddings and mea-
sure the accelerations of potential emerging keywords, we pro-
pose to create a similarity matrix M;;(t) of size | V'| x | V'],
V' C V, for each timespan ¢ that corresponds to the distance
metric between two words. Note that V' represent the set of
frequent keywords. All distances between two words word;
(w;) and word; (w;) are calculated by the cosine similarity
between embedding vectors u,, and u,,. Recall that My (t)
is a symmetric matrix.

Uy, * uwj

sim(wi, ;) = cosine(tu ;) =
Wi wj

Then, we generate an acceleration matrix A;; of size
|V"| < |V"], V"= V{N V{,,, that corresponds to the ac-
celeration between two words w; and w; from ¢ to ¢ + 1.
The acceleration between two words w; and w; acceleration
(w;, w;) is defined as follows.

acceleration(w;, w;) = sim(w;, w;)" — sim(w;, w;)*

Two keywords are defined as emerging keywords if their
acceleration over two timespans ¢ and ¢ + 1 is greater than a
defined threshold 6. We set 6 to the acceleration average over

T )
T, 0 = % i 7|V1”| Z” acceleration(w;, w;), w; and w;
are belonging V"',

III. EXPERIMENTS

To analyse the computational history in the domain of
Machine Learning, we evaluate our proposed approach on a
time-stamped text corpora extracted from NIPS publications.
NIPS has been chosen as one of the top Machine Learning
conferences in the world that covers topics from deep learning
and computer vision to cognitive science and reinforcement
learning. We demonstrate that our approach finds acceleration
between trending keywords over time. This allows us to track
the evolving scientific discovery in the field by following
dynamic embeddings. The dynamic embedding is used to
define the acceleration of various keywords over subsequent
timespans in order to detect fast emerging keywords and
subsequently emerging trends.

A. NIPS Dataset and Preprocessing

The data used for this analysis is a set of 5991 papers
published between 1987 and 2015. The dataset is publicly
available on Kaggleﬂ and contains information about papers,
authors and the relation between papers and authors.

The data set was first preprocessed. Data preprocessing
consists of two steps: (i) the removal of stop words from
the text using Stanford NLP stop word lis and a list of
170 academic stop words that we defined from common

Uhttps://www.kaggle.com/benhamner/nips-2015-papers/data
Zhttps://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/
nlp/patterns/surface/stopwords.txt


https://www.kaggle.com/benhamner/nips-2015-papers/data
https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt

academic vocabulary like “introduction, abstract, table, figure,
etc.”’; and (ii) the construction of bag of words where words
are either unigrams used for standard word2vec training or
bigrams extracted with word2phrase. Word2phrase attempts to
learn phrases by progressively joining adjacent pairs of words
with a ‘_’ character [8]. It is used as a method for corpus
augmentation.

To study the temporal evolution of the trends in Machine
Learning by tracking emerging scientific keywords, we divided
the NIPS publications between 1987 and 2015 into six 5-
years timespan; however, the last timespan is 4-years long.
Therefore, the skip-gram embeddings of the year ¢ will
contain a snapshot of the interactions between keywords in the
timespan (¢' — 4,t’). For instance, an embedding of the year
2005 will describe how the word embeddings of keywords
developed in the years 2001 to 2005. The length of the
timespan is based on the study performed by Hoonlor ef al. [1]]
on evolving Computer Science research. That investigation
showed that the average length of the evolutionary chain is 4.5
years. This choice was also tested successfully by Salatino et
al. [S]]. The statistics of the dataset are given in Table

Table ] shows a positive trend in the evolution of the number
of papers per 5-years over the 1987-2015 study period. The
average 5-annual growth rate is 22%, rising to 29.71% in the
timespan 2007-2011.

TABLE I: Statistics of NIPS dataset

Timespan f Papers  fWords fVocabulary
From 1987 to 1991 571 859293 10823
From 1992 to 1996 729 1096455 12651
From 1997 to 2001 800 1301492 13471
From 2002 to 2006 1023 2020697 16493
From 2007 to 2011 1327 3243526 21074
From 2012 to 2015 1541 4002513 24299

B. Results and Discussion

We evaluate the use of dynamic word embeddings on the
content analysis of Machine Learning scientific publications
and their impact on the evolution of the main streams of
Machine Learning keywords. To do so, NIPS publications
published between 1987 and 2015 and divided into six 5-years
timespans, have been used.

Our goal of these experiments is two-fold.

1) We aim to evaluate whether our training data with
dynamic word embedding representations derived from
word2vec skip-gram model (where word is not only a
unigram, but can also be a bigram) is useful for tracking
trends and emerging keywords for the Machine Learning
domain.

2) We want to study the concordance between our deep
learning trend analysis method, and the citation-based
analysis method, commonly used in the literature.

To generate embeddings, we started with a text analysis
step. For each timespan ¢, we created a corpus P; of all
publications published during this time period. Then, after
removing stop words, we performed term frequency statistics
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on unique words of the vocabulary based on two types of
bag-of-words: unigrams and bigrams, in order to study the
evolving keywords over time based on their frequencies. Early
findings [12] illustrated that word frequency itself is correlated
with the success of the keywords historically. We explored the
relation between dynamism and frequency change in order to
gain insights into emerging keywords in the area of Machine
Learning.

By examining the 20 most frequent unigrams and bigrams
from the NIPS publications over the six timespans covering
a total of 28 years, it was clear that the frequencies of n-
grams evolve considerably over time. Interestingly, we found
that the frequencies of some words (unigrams and bigrams)
increase by approximately the same rate in specific timespans.
For example, we found that the frequencies of “neural”
and “learning” rose simultaneously between the timespan
(1987-1991) and the timespan (1992-1996); this indicates that
learning in this time period primarily relied on neural compu-
tation. Interestingly, this observation is justified by bigrams.
For instance, we noticed increasing frequencies of “neural-
networks”, “reinforcement-learning” and “machine-learning”
in the next timespans (1997-2001) and (2007-2011).

It seems that as the word usage increases together, these
words merge and become emerging keywords. To test the
effectiveness of this observation, and assuming that “deep-
learning” is the emerging trend or keyword in the area of
Machine Learning in the last few years while our dataset
is limited to only 2015 publications, we tried to investigate
an intriguing prediction based on the frequencies that we
have. Considering that “deep learning” is learning based on
neural computation, we tracked the frequencies of “learning”,
“neural” and “deep” over time. Recall that “deep” and “deep
learning” do not appear on top-100 words in all timespans. We
notice that suddenly the frequency of “deep” had a jump in the
timespan (2012-2015) that presents the period of emergence
of deep learning. Fig. 2| shows how “deep learning” as neural
learning appears over this 28-year period. The frequency
of “deep” remained steady, basically null (equal to 19 on
the timespan 1997-2001) until 2005 where it started to rise
slightly. Then, it rose dramatically to 2913 in the timespan
2012-2015. In this last time period, the frequencies of the
three unigrams rose in a parallel way which justifies their
concordance.

1) Qualitative results: We show that our approach results
in understandable word embedding trajectories on NIPS cor-



pora. We can automatically detect keywords that accelerate
significantly to get close over time.

Fig. [3|shows t-SNE representations of the six timespans con-
sidering bag-of-unigrams, while Fig. 4] shows t-SNE represen-
tations of the last four timespans considering bag-of-bigrams.
t-SNE takes the 200 dimensions via word2vec vectors, then re-
duces them down to 2-dimensional (z,y) coordinate pairs. The
idea is to keep similar words close together on the plane, while
maximising the distance between dissimilar words (words are
unigrams or bigrams). We plotted the 2-D t-SNE projection of
each unigram’s and bigram’s temporal embedding across time.
For visualisation purposes, we plotted t-SNE representations of
only top-100 and top-20 most frequent unigrams and bigrams
respectively.

We pick 2 unigrams of interest in the t-SNE representations
related to unigrams: “neural” and “learning”. In all visu-
alisations, the embeddings illustrate significant acceleration
between the two unigrams. As a matter of fact, their similarity
(cosine similarity) is increasing over time. For instance, it
increased from 0.0657 in the second timespan (1992-1992)
to 0.2235 in the fifth timespan (2007-2011). Table [[] shows
an increase of 70% in similarity, which suggests that learning
was increasingly based on neural computation/networks and
consequently the combination of these unigrams could lead to
emerging keywords.

TABLE II: Temporal similarity between “neural” and “learn-

t1)

ing
87-91 9296  97-01 02-06  07-11 12-15
0.1657  0.0657 0.09650 0.1806 0.2235  0.1994

Knowing that the unigram “deep” is used together with
the semantics of neural computation/networks and considering
that “deep” is not represented in top-100 frequent unigrams,
we computed the similarity between “deep” and “learning”
to verify if “deep” and “neural” get similarly close to “learn-
ing” over time. Table[[Tl|shows that like “neural”, “deep” gets
close to “learning” chronologically; in fact, it gets even closer
to “learning” with a similarity consistently higher than that
of “neural” over all the timespans. These findings from the
embeddings agree with the statistics previously calculated on
term frequencies and support the effectiveness of our approach.

TABLE III: Temporal similarity between “deep” and “learn-

t1)

ing
87-91 9296  97-01  02-06  07-11 12-15
0.2285 0.1914 0.1286 0.1885 0.2569  0.2458

Fig. @] shows t-SNE representations of the last four times-
pans considering bag-of-bigrams. We plotted the 2-D t-SNE
projection of each bigram’s temporal embedding across time.
For visualisation purposes, we plotted t-SNE representations
of only top-20 most frequent bigrams.

To be consistent, we analyse t-SNE visualisations
for bigrams by choosing bigrams similar to the uni-
grams of interest. The bigrams of interest are: “neural-

networks”, “neural-computation”, “reinforcement-learning”
and “machine-learning”. As we plotted only the top-20
bigrams, not all the selected bigrams appear in all visu-
alisations. Hence, we focus only on visualisations of the
last four timespans as they mostly contain the bigrams
of interest. In Fig. [(a)] (third timespan: 1997-2001), we
see the bigram “reinforcement-learning” and its neighbor-
hood derived from “neural”. i.e. “neural-network”, “neural-
networks” and “neural-computation”. This is: (i) semanti-
cally significant as “reinforcement-learning” by definition is
called neuro-dynamic programming and needs incremental
“neural networks”; and (ii) proved by similarity as the latter
reaches its peak by 0.9998 during this time period. Like-
wise, the similarity between “machine-learning” and “neural-
networks” peaks at almost the same value of 0.9997 while
“machine-learning” is not represented in the figure that
shows only the 20 most frequent bigrams. This also indi-
cates that “reinforcement-learning” was used as “machine-
learning” during this time period; in fact, the similarity
between “reinforcement-learning” and “machine-learning” is
equal to 0.9994.

One timespan later (2002-2006) (Fig. @(b)), “machine-
learning” appears and its similarity to “neural-networks”
drops significantly to 0.8686. This shows that “machine
learning” started to flourish towards the end of 1990s as an
independent topic while “reinforcement learning” remained
linked to “neural computation/networks”.

In the fifth timespan (2007-2011) (Fig. “neural-
networks/computation” does not appear in the top-20 fre-
quent bigrams. However, this timespan highlights the re-
approximation between “machine learning” and “reinforce-
ment learning” that incorporates “neural networks”. This is
insightful as it shows how “machine learning” is increasingly
related to “neural networks/computation”.

The last timespan (2012-2015) (Fig. also shows that
“machine learning” is geometrically very close to “neural
networks” that re-appeared, while “reinforcement learning”
disappeared from the top-20 bigrams. This shows that possibly
“machine learning” increasingly implies “neural networks”
just as “reinforcement learning” did earlier.

Based on the findings of bigrams embedding and knowing
that “deep-learning” was the emerging keyword in the last
few years, we computed the similarity between “machine-
learning” and “deep-learning” and we found that it is equal
to 0.8716 while “deep-learning” does not exist in previ-
ous timespan-vocabularies. Consequently, we can assume that
“deep-learning” is the keyword that emerged from the conver-
gence between “machine-learning” and “neural-networks”.

Our qualitative and quantitative analyses on both unigrams
and bigrams show that the embeddings we learned reveal inter-
esting patterns in the similarity between potentially emerging
keywords over time. To prove that, we created similarity ma-
trices as described in section for the top-20 frequent and
overlapped bigrams and only a couple of unigrams { “neural”,
“learning”} in order to be consistent to the unigrams and
bigrams of interest previously picked. The similarity matrices
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Fig. 3: t-SNE of top 100 unigrams of all timespans; the overlapping keywords — horizontally from left to right, and then vertically from top to
bottom — are as follows: in {“distributed, parallel”, “probability, distribution”, “initial, random™}, in {“problem, task”, “distribution, probability”,
“unit, layer”}, in {“theorem, bound”, “analysis, independant”, “simple, similar”}, in {“optimization, normalization”, “dataset, images”, “prediction,
classification”, “posterior, distribution”}, and in {“training, testing”, “model, architecture”, “prediction, classification”, “min, max”, “problem, task”,

“performance, accuracy”, “large, small”}

contain the cosine similarity between the embedding vectors
of every two keywords.

After creating the similarity matrices, we generated the
acceleration matrix as described in We computed the
average acceleration 6 that corresponds to the average over
all the selected keywords. 6 was negative and equal to
—0.0656. Overall, almost all accelerations are negative but
some of them were speeding up. For instance, the couple of
bigrams { “neural-networks”, “reinforcement-learning”} have
an acceleration of —0.011, which is much greater than the
average 0. Interestingly, we found that the acceleration of the
couple of bigrams { “neural-networks”, “machine-learning”}
is positive and equal to 0.0094. Respectively, the acceleration
of the couple of unigrams { “neural”, “learning”} is positive

and has a value of 0.02. Both of them have an acceleration
much greater than the average (#). These findings support
the previous ones and show that neural-based learning was
speeding up over time. Similar to previous investigations
about the emergence of “deep learning”, we computed the
acceleration of two unigrams { “deep”, “learning”} and two
bigrams { “neural-network”, “deep-learning”}. Their values
are respectively 0.0034 and 0.1649, showing a substantial
speed up over the average 6.

2) Quantitative results: In order to test effectiveness of the
proposed DeepHist in detecting emerging keywords in the area
of Machine Learning, we validate it with the citation counting
approach which is widely used in the literature and provides
a snapshot of a fast-growing field. The objective is to check
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Fig. 4: t-SNE of top 20 bigrams of the four timespans between 1997 and 2015

the extent to which citation analysis supports the findings of
DeepHist. To do so, we retrieved academic citations of all
the NIPS publications in our dataset (1987 to 2015) using
the Public or Perish software E| that uses Google Scholar E| to
obtain the raw citations.

For consistency, we tracked the citation counts of publi-
cations with previously selected frequent keywords (the key-
words of interest we picked in the qualitative analysis) over
time such that in each timespan we noted the citation counts of
the publications that used the picked keywords in their titles;
we assume that the title plays a pivotal role in communicating
research.

We compare the acceleration of citation counts of publica-
tions mentioning the keywords of interest in their titles with
the acceleration of similarities of these keywords that our
embeddings return over all timespans. Spearman’s correlation
coefficient p has been used to measure the strength and
direction of association between these two variables. p is
defined as following:

— ZS(IS — j)(ys - g)
Vs (ws —2)2 30 (ys — §)?

where s is the paired score (citation_count, similarity), «
and y correspond to the citations counts and similarity values,
Z and g correspond respectively to the mean of citations counts
and the mean of similarity values.

P

3https://harzing.com/resources/publish-or-perish
4https://scholar.google.com/

Spearman’s correlation coefficient has been computed for
all the pairs of picked keywords. Interestingly, we found that
100% of cases have a positive correlation with an average of
0.422. 67% of these correlations are strong with p coefficient
greater than 0.6.

Fig. [5(a)] and Fig. [5(b)] show the relationships between
the citation counts and the similarities of the keywords of
interest “machine-learning — neural-networks (ML — NN)” and
“neural-networks — deep-learning (NN — DL)” respectively.
Fig. [5(a)] has Spearman’s correlation coefficient p equal to
0.2. If we do not consider the last point where the similarity
between “machine-learning” and “neural-networks” dropped
in the timespan (2002-2006), p coefficient is much higher
and equal to 0.9. This observation could be justified by
the fact that “machine learning” started to flourish towards
the end of 1990s as an independent topic which justifies
the decrease in similarity with “neural-networks”. Overall,
this new finding confirms our previous findings stating that
learning was correlated to neural networks over time. Fig.
has p coefficient equal to 0.654. This result perfectly matches
with our previous findings where the citation count was
slightly small in the first four timespans. Then, suddenly it
rose dramatically to reach 3223 in the last timespan (2012-
2015). A significant rise of these citation counts is clearly
seen which goes with the increase in the similarity and the
acceleration previously detailed, and shows that “learning”
was increasingly relying on “neural networks”. The emerging
keyword “deep-learning” goes in parallel with the keywords
of interest “neural-networks” and ‘“machine-learning” and
dramatically increased in the last timespan, which supports


https://harzing.com/resources/publish-or-perish
https://scholar.google.com/

the assumption that “deep-learning” is now the trend.
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Fig. 5: Spearman’s coefficient plot of (ML — NN) and (NN —
DL)

These findings resulting from citation counts support the
effectiveness of our approach based on dynamic word embed-
dings in discovering rising keywords in the domain of Machine
Learning.

IV. RELATED WORK

The emerging research addressing trend analysis can be
categorized into three categories: bibliometrics-based ap-
proaches (13| that are based on social network analysis and
citation analysis; content-based approaches [14] that treat
entities — essentially keywords — reflecting the paper con-
tent [14]; and hybrid approaches [15] that combine both
citation and content. These approaches dealing with trend
analysis have been applied to a wide range of disciplines such
as business [16], computer science [[1], [[15], efc. In this paper,
we concentrate on an area within Computer Science (CS).

While we are not aware of previous works on predicting
research trends in CS by drilling into paper content and
following a fine-grained content analysis, there are few works
addressing related research problems in investigating general
publication trends, citation trends and evolution of research ar-
eas following a coarse-grained analysis. For instance, Hoonlor
et al. [1] analysed data on proposals for grants supported
by the U.S National Foundation and on CS publications in
the ACM Digital Library and IEEE Xplore Digital Library
using sequence mining and bursty word detection. Similarly,
Hou et al. revealed the evolution of research topics between
2009 and 2016 using the timeline knowledge map through
Document-Citation Analysis (DCA). In the same context,
Effendy and Yap [15] performed trend analysis using the
Microsoft Academic Graph (MAG) dataset. Both the above
approaches to trend analysis in CS focus on citation analysis
which fails to dig into the paper content and takes time to
reveal trends.

V. CONCLUSIONS

We offer DeepHist, a deep learning-based approach for
computational history and apply it to the NIPS publications
to produce insights about the field of Machine Learning and
track the evolution of new trends.

This work addressed this challenge in an innovative way by
bringing together qualitative and quantitative analysis of NIPS
publications during the time period 1987-2015. Both analyses

drilled into the paper content by computing and visualising
temporal keyword embeddings over six 5-years timespans.
We explored the similarity between keywords by embedding
vectors to create a similarity matrix of frequent keywords.
Then, based on this matrix we created an acceleration matrix
that reports the acceleration between keywords over time in
order to capture the speeding up keywords that may result in a
trending keyword. Our results were able to detect that “deep-
learning” was the convergence between “machine-learning”
and “neural-networks”. Our approach has been validated
against citation count analysis, and its effectiveness has been
demonstrated.

As future work, we plan to generalise our approach on
different research areas such as physics, biology or medicine
where it would be interesting to see whether a novel treatment
or a certain combination of drugs for cancer is beginning to
rise. Furthermore, we plan to expand the embedding technique
with more text analysis techniques that explore the semantics
of paper content and help to detect emerging topics such as
topic modeling.
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