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Abstract  
 

N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, 

playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of 

Mettl3, which depends on additional proteins whose precise functions remain poorly 

understood. Here we identified Flacc/Zc3h13 as a novel interactor of m6A 

methyltransferase complex components in Drosophila and mouse. Like other 

components of this complex, Flacc controls m6A levels and is involved in sex 

determination in Drosophila. We demonstrate that Flacc promotes m6A deposition by 

bridging Fl(2)d to the mRNA binding factor Nito. Altogether, our work advances our 

molecular understanding of conservation and regulation of the m6A machinery. 



Knuckles, Lence et al.  

 

4 

 
Introduction 

In the past years N6-methyladenosine RNA (m6A) has emerged as an abundant and 

dynamically regulated modification throughout the transcriptome (Dominissini et al. 

2012; Meyer et al. 2012). m6A affects almost every stage of mRNA metabolism and its 

absence is associated with various defects in meiosis, embryonic stem cell 

differentiation, DNA repair, circadian rhythm, neurogenesis, dosage compensation and 

sex determination (for a recent review see (Roignant and Soller 2017; Zhang et al. 

2017)). Alteration of m6A levels also promotes glioblastoma progression and is linked to 

poor prognosis in myeloid leukemia (Yu et al. 2012; Cui et al. 2017; Kwok et al. 2017; 

Zhang et al. 2017). 

 

Formation of m6A is catalyzed by the activity of methyltransferase like 3 (METTL3, also 

called MT-A70) (Bokar et al. 1997), which physically interacts with methyltransferase 

like 14 (METTL14) (Liu et al. 2014; Ping et al. 2014; Schwartz et al. 2014; Wang et al. 

2014), Wilms tumor 1-associated protein (WTAP) (Zhong et al. 2008; Agarwala et al. 

2012), Vir-like m6A methyltransferase associated (KIAA1429/VIRMA) (Schwartz et al. 

2014), and RNA Binding Motif 15 (RBM15) and its paralogue RBM15B (Patil et al. 

2016b). Drosophila has corresponding homologues Mettl3, Mettl14, Fl(2)d, Virilizer 

(Vir), and Spenito (Nito) (Lence et al. 2017). Recent crystal structural studies 

investigated the molecular activities of the two predicted methyltransferases METTL3 

and METTL14 (Sledz and Jinek 2016; Wang et al. 2016a; Wang et al. 2016b). Only 

METTL3 was shown to contain the catalytic activity and to form a stable heterodimer 

with METTL14, which was required to enhance METTL3 enzymatic activity by binding 

substrate RNA and by positioning the methyl group for transfer to adenosine. Besides, 

WTAP (Fl(2)d) ensures the stability and localisation of the heterodimer to nuclear 
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speckles (Ping et al. 2014; Lence et al. 2016). VIRMA (Vir) is essential for m6A 

deposition but its molecular function is currently unknown. Lastly, RBM15 and 

RBM15B (Nito) have been suggested to recruit the methyltransferase complex to its 

target transcripts via direct binding to U-rich sequences on mRNA. In humans this 

function is important to control m6A promoted X-chromosome inactivation via XIST-

mediated transcriptional repression (Patil et al. 2016b). In Drosophila, Nito promotes 

m6A function in the sex determination and dosage compensation pathways (Lence et al. 

2016). 

  

To date it is unknown how Nito in Drosophila interacts with other members of the 

methyltransferase writer complex to ensure their recruitment to mRNA targets.  

Although in human cells RBM15/15B were reported to interact with METTL3 in a 

WTAP-dependent manner (Patil et al. 2016a), it is unclear whether this interaction is 

conserved in other organisms. In order to address these questions we have performed 

interactome analyses from Mus musculus and Drosophila melanogaster cell extracts 

using Rbm15 and Nito as bait, respectively. We identified mouse zinc finger CCCH 

domain-containing protein 13 (Zc3h13) and its fly homolog CG7358, which we named 

Fl(2)d Associated Complex Component (Flacc), as novel interactors of the m6A writer 

machinery. Lack of these proteins dramatically reduces m6A levels in both organisms. 

Consistent with the role of m6A in sex determination in Drosophila, Flacc depletion 

results in aberrant splicing of Sex lethal (Sxl) and leads to transformations of female into 

male-like structures. Moreover, we demonstrate that Flacc interacts with Nito and Fl(2)d, 

and serves as an adaptor between these two proteins, thereby stabilizing the complex and 

promoting m6A deposition on mRNAs.  
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Results  

1- Zc3h13 interacts with the m6A machinery 

In our recent work we identified Nito as a novel interactor of the m6A methyltransferase 

complex (Lence et al. 2016). Because the role of the mouse Nito homolog Rbm15 in 

m6A deposition appears to be evolutionarily conserved (Patil et al. 2016), we sought to 

identify interaction partners to obtain further insights into Rbm15’s function. To this 

end, we tagged endogenous Rbm15 with the FLAG-Avi tag using CRISPR-Cas9 

genome editing in mouse embryonic stem cells (mESCs) that express the bacterial BirA 

ligase (Flemr and Buhler 2015) (Supplemental Fig. S1A and B). Subsequently, we 

performed tandem affinity purification coupled to liquid chromatography and mass 

spectrometry (TAP-LC-MS). We found that Rbm15 co-purifies with Wtap, Virma, and 

Hakai (Fig.1A) under stringent conditions (350mM NaCl), demonstrating that these 

proteins stably interact with each other. Hakai was recently found to interact with other 

subunits of the m6A methyltransferase complex in plants (Ruzicka et al. 2017). 

Interestingly, we also observed Zc3h13 amongst the top hits. Although it was reported to 

interact with WTAP in human cells, it has previously not been linked to adenosine 

methylation (Horiuchi et al. 2013; Wan et al. 2015). 

Previous work suggested that the interaction of the heterodimer Mettl3/14 with Wtap, 

Virma and Rbm15 is important to guide the methylation complex to its targets and 

correctly methylate mRNA (Ping et al. 2014; Schwartz et al. 2014; Patil et al. 2016b). To 

test whether the Zc3h13 containing protein complex described above interacts with 

Mettl3/14 in mouse, we also endogenously tagged Mettl3 with the FLAG-Avi tag in 

mESCs (Supplemental Fig. S1A and B) and performed TAP-LC-MS. Consistent with 

previous reports, we found that Mettl3 co-purifies with Mettl14, Wtap, Virma, Rbm15 

and Hakai. (Fig. 1B and Supplemental Fig. S2A). Importantly, we also recovered 
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peptides from Zc3h13 (Fig. 1B and Supplemental Fig. S2A). Whereas these interactions 

resisted 350mM NaCl, only the Mettl3/Mettl14 interaction remained at 500 mM NaCl 

(Fig. 1B). These results indicate the existence of two stable protein complexes 

(Mettl3/Mettl14 and Rbm15/Zc3h13/Wtap/Virma/Hakai), which we refer to as m6A-

METTL Complex “MAC” and m6A-METTL Associated Complex “MACOM”, 

respectively.  

To gain further insight into the relative amounts of MAC to MACOM we performed 

iBAQ analysis on TAP-LC-MS data from endogenously tagged Mettl3. We could 

observe comparable stoichiometry between the bait (Mettl3) and Mettl14. In contrast, 

WTAP and other MACOM components were less than 1% abundant compared to Mettl3 

and Mett14 (Supplemental Fig. S2B), an observation that we interprete as a sign of a 

weak and/or short-lived interaction. Alternatively, the abundance of MAC bound to 

MACOM could be very scarce relative to the level of each independent complex. 

Regardless of the precise mechanism, because components of both complexes are 

required to install m6A, we propose that MAC and MACOM interact with each other in 

order to deposit the methylation.  

 

2- The Drosophila Zc3h13 homolog Flacc interacts with components of the m6A 

methyltransferase complex  

To address whether Nito interacts with the same set of proteins that we identified in 

mouse, we took a very similar approach as above using extracts from Drosophila S2R+ 

cells. To find Nito interacting partners we used stable isotope labeling of amino acids in 

cell culture (SILAC)-based quantitative proteomics. A Myc-tagged version of Nito was 

used to perform co-immunoprecipitation experiments from S2R+ cells. In total, we 

identified 40 factors that showed more than 1.5-fold enrichment in the Nito-Myc 
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precipitate in comparison to control cells transfected with Myc alone (Fig. 1C and 

Supplemental Table 1). In agreement with mouse Rbm15 proteomic analysis, the 

homolog of Wtap in Drosophila, Fl(2)d, was among the top candidates. We also found 

the previously reported m6A writers Vir and Hakai (refer to Fig. 1F for Mus musculus 

and Drosophila melanogaster nomenclature of m6A factors). We observed an overall 

enrichment for mRNA binding proteins (Fig. 1D) and, importantly, Flacc, which is the 

closest homolog of Zc3h13. To confirm the interaction of this protein with Nito, we 

generated tagged proteins and performed co-immunoprecipitation assays. These 

experiments confirmed that Flacc interacts with Nito, and that this occurs in an RNA-

independent manner (Fig. 1E). To verify that Flacc interacts with other components of 

the m6A methyltransferase complex, we immunoprecipitated Flacc-Myc and tested for 

the presence of Vir and Fl(2)d. As shown in Supplemental Fig. S3A, B, Flacc interacts 

with both proteins independently of RNA, indicating that it might be a novel regulator of 

the m6A pathway. In contrast to mouse Zc3h13 (see below), however, Flacc does not 

contain a zinc finger motif (Supplemental Fig. S4). 

 

3- Zc3h13/Flacc regulates the m6A pathway 

To test whether Zc3h13 is necessary for adenosine methylation in mice, we measured 

global m6A levels by LC-MS/MS in Zc3h13 knock out (KO) mESCs (Supplemental Fig. 

S1C). We found a 90% reduction of m6A, similar to isogenic Mettl3 KO mESCs (Fig. 

2A). Consistent with a global reduction in m6A levels, Zc3h13 KO cells displayed a 

drastic change in morphology, reminiscent to Mettl3 KO, with loss of dome-shaped 

colony formation and an overall increase in cell size (data not shown). In addition, we 

performed m6A RNA-immunoprecipitation coupled to deep sequencing (m6A-RIP-seq) 

on oligo-dT selected mRNA from wild type, Mettl3-/-, and Zc3h13-/- mESCs. As 
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observed with Mettl3 KO cells, ablation of Zc3h13 resulted in a drastic reduction of m6A 

enrichment, particularly at the 3’ end of target mRNAs (Fig. 2B and C). Hence, we 

conclude that Zc3h13 is essential for m6A installation in mouse embryonic stem cells. To 

investigate evolutionary conservation of this activity in Drosophila, we quantified m6A 

levels using LC-MS/MS analysis upon Flacc depletion in Drosophila S2R+ cells. 

Similar to the reduction observed upon knock down of other m6A components, depletion 

of Flacc also resulted in strongly reduced m6A levels (Fig. 2D and Supplemental Fig. 

S5A). This was not due to an indirect effect on expression of other components of the 

methyltransferase complex (Fig. S5B-D). In agreement with decreased m6A levels, we 

found that binding of the reader protein Ythdc1 to its target transcripts was reduced in 

the absence of Flacc (Fig. 2E). Together, these results demonstrate that Zc3h13 and its 

Drosophila orthologue Flacc are novel and essential components of the m6A pathways in 

mouse and flies.   

 

4- Flacc is required for pre-mRNA splicing 

To further corroborate Flacc as a bona fide m6A writer, we tested whether it was required 

to control m6A-splicing related events. As previously reported, splicing of several 

transcripts, including AldhIII, Dsp1, and Hairless is dependent on the m6A pathway 

(Lence et al. 2016). Remarkably, depletion of Flacc affected all those transcripts (Fig. 2F 

and Supplemental Fig. S5E). We next expanded this analysis to a transcriptome wide 

level, which revealed that depletion of Flacc in S2R+ cells leads to changes in gene 

expression and splicing that substantially overlap with changes observed upon knock 

down of other m6A writers (Fig. 3A, supplemental Fig. S6A). In particular, the Flacc-

depleted transcriptome clusters very closely with Fl(2)d- and Vir-depleted 

transcriptomes (Fig. 3B). Notably, Nito depletion induced greater changes, and poorly 
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clustered with the others, suggesting that Nito might be pleiotropic. Regardless of Nito’s 

potential role in other pathways, common mis-regulated transcripts among components 

of the MACOM complex are larger than the average transcript size (Figure 3C, P value 

=) and are significantly methylated (61.5%; P value <) (Fig 3D). Importantly, 

differentially expressed genes generally change in the same direction upon the different 

KD, confirming that MACOM components belong to the same complex and share 

similar functions (Fig 3E). We noticed that common up-regulated genes tend to be larger 

than average expressed gene (p=2.9e-40) and more methylated compared to down-

regulated ones (78.2%, p= 6.1e-31 vs. 44.5%, p=0.086) (Fig. 3C, D). Up regulated genes 

were enriched for processes involved in embryonic development as well as epithelial cell 

differentiation and migration (Fig. 3F). Thus, it is possible that down-regulated genes, 

which are mostly enriched for metabolic processes, are affected indirectly (Fig. 3F).  

We next performed similar analysis with respect to splicing changes. We found that 

knock down of each of the known m6A writer components, including Flacc, resulted in 

an increase of both alternative 5’ splice site usage and intron retention (Supplemental 

Fig. S6A, B). Moreover, common mis-spliced transcripts upon KD of MACOM 

components are highly methylated (82.2%, p=1.3e-8), show similar splicing defects, and 

are enriched for neuronal processes, which is consistent with our previous findings 

(Lence et al. 2016) (Supplemental Fig. S6C-E). Of note, KD of Mettl3/Mettl14 generally 

produces less effect compared to KD of MACOM components. This may be explained 

by residual m6A activity upon KD of the methyltransferases. Alternatively, MACOM 

components may have additional function(s) beyond m6A activity (see also discussion).   

 

5- Flacc subcellular localization and expression through development 
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To further investigate the role of Flacc in Drosophila, we examined its subcellular 

localization as well as its developmental expression profile. We observed that Flacc is 

strictly localized in the nucleus in S2R+ cells (Supplemental Fig. S7A) and that its 

transcript is broadly expressed during embryogenesis, but shows enrichment in the 

neuroectoderm (Supplemental Fig. S7B). Overall, flacc mRNA follows the same 

distribution as transcripts of other subunits of the methyltransferase complex (Lence et 

al. 2016) and as m6A levels in mRNA. An exception is the stage of maternal to zygotic 

transition (2 hours post fertilization) where a boost of flacc expression is observed, while 

m6A is rapidly decreasing (Supplemental Fig. S7C), suggesting that Flacc might have an 

additional function in early embryogenesis. 

 

6- Flacc is required for sex determination and dosage compensation via Sxl 

alternative splicing  

Components of the m6A machinery were previously shown to affect sex determination 

and dosage compensation in Drosophila via the control of Sxl alternative splicing 

(Haussmann et al. 2016; Lence et al. 2016; Kan et al. 2017a). To address whether Flacc 

bears similar functions, we depleted its products by expressing its corresponding double-

stranded RNA (dsRNA) in both the legs and genital discs using the dome-GAL4 driver. 

Strikingly, these females displayed clear transformations into male structures, as 

previously shown for Nito (Fig. 4A) (Yan and Perrimon 2015). This is illustrated by the 

appearance of sex combs in the forelegs of females that were depleted for Flacc. The 

phenotype is observed in about 20% of females examined (Fig. 4B). Using a dsRNA that 

targets a distinct region of flacc (GD35212), the penetrance was even increased to all 

female escapers. Furthermore, typical female external structures, such as vaginal bristles, 
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were absent on the same individuals (Fig. 4A). Altogether, these data indicate that Flacc 

plays a major role in the control of sex determination in flies. 

To address how Flacc affects sex determination, we tested whether alternative splicing of 

Sxl, the master regulator of sex determination and dosage compensation, was affected. 

RNA extracts from fly heads, depleted by RNAi for Fl(2)d, Nito, or Flacc, were 

subjected to reverse transcription followed by PCR using primers spanning the common 

exons 2 and 4. While the male specific exon 3 is absent in control female heads, it was 

clearly included upon loss of components of the m6A machinery, including Flacc (Fig. 

4C). This experiment indicates that Flacc regulates sex determination and dosage 

compensation via Sxl alternative splicing, as previously shown for other m6A writers. 

To confirm the effect of Flacc on sex determination via Sxl alternative splicing observed 

when using RNAi, we analyzed a lethal flacc mutant allele harboring a stop codon at 

amino acid 730 (Fig. 4D). Reducing one copy of m6A components (Mettl3, Mettl14, 

fl(2)d, vir, nito or Ythdc1) in a sensitized background (heterozygous for Sxl and 

daughterless) significantly alters female viability (Fig. 4E). We previously showed for 

the Mettl3 allele that this is due to activation of dosage compensation in females 

(Haussmann et al. 2016). Consistent with its role in N6-adenosine methylation, we found 

that removing one copy of the flacc allele results in female lethality (Fig. 4E). Likewise, 

the female–lethal single amino acid substitution allele vir2F interferes with Sxl 

recruitment, resulting in impaired Sxl auto-regulation and inclusion of the male-specific 

exon (Hilfiker et al. 1995). We observed that female lethality of these alleles was rescued 

by flacc and nito double heterozygosity, further confirming the involvement of Flacc in 

Sxl alternative splicing (Fig. 4F). 

 
 

7- Zc3h13/Flacc stabilizes Wtap/Fl(2)d - Rbm15/Nito interaction 
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To obtain insights into the molecular function of Flacc, we investigated interactions 

between m6A writers in the absence of Flacc. We previously found that knock down of 

Fl(2)d diminishes the interaction between Mettl3 and Mettl14 (Lence et al. 2016). 

Interestingly, we found that this interaction is not affected upon Flacc knock down 

(Supplemental Fig. S8A and B). However, we observed that depleting Flacc almost 

completely abolished the association between Nito and Fl(2)d (Fig. 5A), whereas the 

interaction between two different isoforms of Fl(2)d and Vir, Nito and Vir, as well as 

Nito and Metll3/Mettl14 were not affected (Supplemental Fig. S8C-I). This indicates that 

Flacc stabilizes the complex and might serve as an adapter that connects the RNA 

binding protein Nito to Fl(2)d. If this prediction was true, depletion of Flacc should 

prevent binding of Fl(2)d, but not Nito, to its mRNA targets. To test this hypothesis, we 

performed RNA immunoprecipitation (RIP) experiments to monitor the binding of these 

components to well-characterized m6A targets in the presence or absence of Flacc. As 

shown in figure 5B, binding of Fl(2)d to AldhIII, Hairless, and Dsp1 mRNA was 

strongly decreased upon Flacc knock down, whereas Nito binding was only slightly 

affected. Thus, we conclude that Flacc serves as an adapter between Fl(2)d and the 

mRNA recruiting factor RBM15/Nito.  

To test functional conservation of Flacc, we cloned a human isoform of ZC3H13 and 

probed for the interaction between Nito and Fl(2)d upon depletion of endogenous Flacc 

protein in Drosophila S2R+ cells. Remarkably, expression of ZC3H13 was sufficient to 

re-establish the interaction between Nito and Fl(2)d (Fig. 5C and D), even though the 

two orthologs bear very low sequence similarity at the amino acid level (21% identity). 

These results hint towards a conserved role of this newly characterized protein in 

stabilizing interactions within the MACOM complex. To address this more directly, we 

generated Zc3h13 KO mESCs that express FLAG-Avi tagged Rbm15 and performed 
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TAP-LC-MS/MS experiments. Starting both with whole cell extracts or nuclear 

fractions, Rbm15 interaction with Wtap was markedly reduced (Fig. 6A, B and 

Supplemental Fig. S9A, B), which is consistent with observations in the fly KD 

experiments (Nito and Fl(2)d respectively). Furthermore, the reduced interaction was not 

attributable to a global decrease of Wtap, nor other components of MACOM 

(Supplemental Fig. 9A). As an alternative approach to test MACOM integrity, we 

employed a protein fragment complementation assay (Dixon et al. 2016), generating 

fusion constructs of Rbm15 and Wtap to NanoBiT subunits. The optimal combination of 

fusions reconstituted luciferase signal when transfected into WT cells (Wtap N-

terminally tagged with the small Nanoluciferase subunit and Rbm15 C-terminally tagged 

with the large Nanoluciferase subunit (Fig. 6C and Supplemental Fig. 9D-F). Relative 

luciferase signal intensity was strikingly reduced when fusion constructs were 

transfected in Zc3h13 KO but not in Mettl3 KO, discarding a secondary effect of global 

m6A loss (Fig. 6C). Taken together, these findings suggest that Zc3h13 acts as an adapter 

that connects the RNA binding protein Rbm15 to Wtap also in mammals.  
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Discussion 

Our study identified a novel interactor of the m6A methyltransferase complex, which is 

conserved in Drosophila and mouse. Its function in the m6A pathway is essential in both 

species as its absence results in dramatic reduction of m6A levels. The fact that the 

human homolog was recently found in interactome studies with WTAP (Horiuchi et al. 

2013; Wan et al. 2015), and that it can rescue the interaction between Fl(2)d and Nito in 

Drosophila, suggests that it has a similar role in human cells. Despite this functional 

conservation, the protein sequence identity amongst different homologs is rather weak 

(Supplemental Fig. S5). Mouse Zc3h13 contains several additional domains as compared 

to Flacc. In particular, it differs by the presence of a zinc finger domain, which is present 

in a common ancestor but was lost in dipterian (Supplemental Fig. S5). Other species 

like Ciona intestinalis also lack the zinc finger motif. In addition, the zinc finger motif 

can be found in two variants across evolution, one short and one long. As zinc finger 

motifs are commonly involved in nucleic acid binding or protein-protein interactions, it 

will be interesting to address the functional importance of this domain when present in 

the protein. Of note, Zc3h13 appears completely absent in nematodes, as it is also the 

case for Mettl3 (Dezi et al. 2016), possibly indicating that these two proteins have co-

evolved for the regulation of adenosine methylation. 

 

Our work strongly supports the existence of at least two distinct stable complexes that 

interact weakly to regulate m6A biogenesis. This result is consistent with earlier studies 

by Rottman and colleagues who isolated two protein components using an in vitro 

methylation assay and HeLa cells nuclear extracts, which are readily dissociable under 

non-denaturing conditions. Gel filtration and gradient glycerol sedimentation estimated 

molecular weights of 200 and 875 kDa (Bokar et al. 1997). While biochemical 
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characterization will be required to address the exact identity of the different complex 

components, recent biochemical analysis suggests that the 200 kDa complex consists of 

Mettl3 and Mettl14 (Liu et al. 2014). Although the exact composition of the larger 

complex is currently unknown, we postulate that it is probably MACOM, consisting of 

WTAP, VIRMA, HAKAI, RBM15, and ZC3H13. The calculated total molecular weight 

of these proteins (600 kDa) is lower than the large complex (875 kDa), which suggests 

the presence of other factors or the inclusion of some subunits in multiple copies. For 

instance, recombinant WTAP can form aggregates, suggesting the possibility of higher 

complex organization (Liu et al. 2014). Finally, the existence of two complexes is also 

supported by our genetic analyses, showing that the knock out of Mettl3 and Mettl14 

results in viable animals, while loss of function of fl(2)d, vir, nito, and flacc are lethal 

during development. This indicates that the MACOM complex acts beyond m6A 

methylation via METTL3.  

 

The physiological role of ZC3H13 in human cells has been poorly investigated. Recent 

reports suggest that mutant ZC3H13 facilitates glioblastoma progression and 

schizophrenia (Oldmeadow et al. 2014; Chow et al. 2017). It is possible that these 

diseases originate from misregulation of the m6A pathway upon ZC3H13 alteration. For 

instance, the association of m6A with cancer progression, in particular with glioblastoma 

and acute myeloid leukemia, has been recently demonstrated (Yu et al. 2012; Cui et al. 

2017; Kwok et al. 2017; Li et al. 2017; Visvanathan et al. 2017; Zhang et al. 2017). 

Likewise, m6A plays an important role in cortical neurogenesis in human forebrain 

(Yoon et al. 2017), a region of the brain that has been previously associated with 

schizophrenia (Heimer 2000). Hence, future studies should determine whether the role of 

ZC3H13 in these diseases is connected to its m6A-dependent function.  
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Materials and Methods  

mESC culture and genome editing 

Mouse embryonic stem cells (129 × C57Bl/6 genetic background, kindly provided by D. 

Schübeler of the Friedrich Miescher Institute for Biomedical Research) were cultured on 

gelatin-coated dishes in mES medium (DMEM, Gibco, 21969-035), supplemented with 

15% FBS (Gibco), 1× nonessential amino acids (Gibco), 1 mM sodium pyruvate 

(Gibco), 2 mM L-glutamine (Gibco), 0.1mM 2-mercaptoethanol (Sigma), 50 mg/ml 

penicillin, 80 mg/ml streptomycin, MycoZap Prophylactic and LIF conditioned medium) 

at 37 °C in 5% CO2. Cultured cells were routinely tested for mycoplasma contamination 

using the VenorGeM Mycoplasma detection kit (Sigma). For endogenous gene tagging 

using SpCas9-2A-mCherry (Knuckles et al. 2017), Rosa26:BirA-V5-expressing cells 

(RosaB) were transfected with 2 μg of SpCas9-sgRNA-2A-mCherry and 500ng of 

ssODN as donor when integration was desired. Small guide RNAs constructs were 

generated as described in (Knuckles et al. 2017). The ssODNs were synthesized as 

Ultramers by Integrated DNA Technologies, and their sequences are listed in 

Supplementary Table 2. All transfections were carried out using Lipofectamine 3000 

reagent (Invitrogen). 24 h post-transfection, mCherry-positive edited cells were sorted on 

a BD FACSAria III cell sorter (Becton Dickinson). mES cells were then sparsely seeded 

for clonal expansion, then clones individually picked, split, and screened by PCR for 

desired mutation or integration. For tagging of Mettl3 and Rbm15 clones were 

subsequently screened by western blotting using anti FLAG (Sigma) or HRP-coupled 

Streptavidin to confirm expression of endogenously tagged proteins. For Zc3h13 KO 

lines, two independent sgRNA constructs were transfected to target sequences flanking 

exons 9-10 leading to a frame-shift mutation and non-functional truncated protein. 
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Deletion was confirmed via western blotting using an anti Zc3h13 antibody (Abcam 

ab70802). Sequences of small guide RNAs are described in Supplementary Table 2.  

 

Drosophila stocks and genetics 

Drosophila melanogaster w1118 were used as wild-type controls. Other fly stocks used 

were: Fl(2)d shRNA (HMC03833, BDSC_55674), Nito shRNA (HMS00166) obtained 

from DRSC, Harvard, Flacc dsRNA (GD35212, KK110253) obtained from VDRC, 

Vienna. For genetic interaction studies, Mettl3null (Haussmann et al. 2016), Mettl14fs 

(Lence et al. 2016), Ythdc1MI02006 (Bloomington), fl(2)d2 (Bloomington), virts1 (kind gift 

from Jamilla Horabin), nito1 (Yan and Perrimon 2015) and flacc mutant allele CG7358C 

(Bloomington). To remove daughterless, Df(2L)BSC209 (Bloomington) was used. 

Driver lines used in this study were dome-GAL4 (kind gift from Erika Bach, NYU 

Langone Medical Center) and elav-GAL4 (Bloomington). For the analysis of male to 

female transformations, flies of selected genotypes were chosen randomly. 

 

Drosophila Cell line 

Drosophila S2R+ are embryonic-derived cells obtained from Drosophila Genomics 

Resource Center (DGRC; FlyBase accession FBtc0000150). The presence of 

Mycoplasma contamination was not tested. 
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Cloning 

The plasmids used for immunohistochemistry and co-immunoprecipitation assays in 

Drosophila S2R+ cells were constructed by cloning the corresponding cDNA in the 

pPAC vector (Lence et al. 2016) with N-terminal Myc tag and the Gateway-based 

vectors with N-terminal Flag–Myc tag (pPFMW) as well as C-terminal HA tag (pPWH) 

(obtained from Drosophila Genomics Resource Center at Indiana University).  

 

Tandem affinity purification and Mass Spectrometry 

One confluent 15cm dish of mESC’s per sample was resuspended in 1 ml of ice-cold 

TAP lysis buffer (NaCl (150 mM-500mM depending on experiment), Tris-HCl (pH 7.5) 

20 mM, NP-40 0.5%, EDTA 1 mM, Glycerol 10% and DTT 1 mM supplemented with 

protease inhibitor cocktail (Roche)) after Trypsin/EDTA (0.25%) dissociation and PBS 

wash.  Samples were shaken at 1,000 rpm at 4°C for 30 min. Lysate was cleared by 

centrifugation at 4°C at maximum speed on a tabletop centrifuge. Protein concentration 

of each sample was determined using Bradford assay (Bio-Rad Dye). Equal amounts of 

lysate (5 mg) from the control sample (parental untagged cells) and the bait-protein 

sample (gene tagged cells) were normalized adding an appropriate amount of cold TAP 

lysis buffer to each sample to adjust the final sample concentration to be ~5 mg/mL. 

Equilibrated FLAG M2 Dynabeads (Sigma, 10μl of packed bead slurry per 5 mg 

protein / sample) previously washed twice with 1 ml of cold TAP lysis buffer, were 

added to each 5mg/mL lysate. Tubes containing beads and lysates were incubated with 

end-over-end rotating at 4°C overnight. 

Dynabeads were washed the next day in TAP buffer (4x10min), followed by 3x15min 

elution of bound proteins with 3xFLAG peptide (final concentration of 0.3 mg.ml-1 in 
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TAP buffer, Sigma). Next, elutions were pooled and added to the TAP washed 

Strepavidin Dynabeads (Thermofisher), and incubated overnight, rotating at 4°C. 

Streptavidin Dynabeads were washed the next day with TAP buffer (4x10min), followed 

by a wash with TAP buffer without NP40. The enriched proteins were digested directly 

on the Dynabeads with 0.1 mg.ml-1 trypsin in Digestion buffer (50mM Tris pH 8.0, 1mM 

CaCl2, 1mM TCEP). 

The generated peptides were acidified with TFA to a final concentration of 0.8% and 

analyzed by capillary liquid chromatography tandem mass spectrometry with an EASY-

nLC 1000 using the two-column set-up (Thermo Scientific). The peptides were loaded 

with 0.1% formic acid, 2% acetonitrile in H2O onto a peptide trap (Acclaim PepMap 

100, 75um x 2cm, C18, 3um, 100Å) at a constant pressure of 800 bar. Peptides were 

separated, at a flow rate of 150 nl/min with a linear gradient of 2–6% buffer B in buffer 

A in 3 minutes followed by an linear increase from 6 to 22% in 40 minutes, 22-28% in 9 

min, 28-36% in 8min, 36-80% in 1 min, and the column was finally washed for 14 min 

at 80% B (Buffer A: 0.1% formic acid, buffer B: 0.1% formic acid in acetonitrile) on a 

50um x 15cm ES801 C18, 2um, 100Å column (Thermo Scientific) mounted on a DPV 

ion source (New Objective) connected to an Orbitrap Fusion mass spectrometer (Thermo 

Scientific). The data were acquired using 120000 resolution for the peptide 

measurements in the Orbitrap and a top T (3s) method with HCD fragmentation for each 

precursor and fragment measurement in the ion trap according to the recommendation of 

the manufacturer (Thermo Scientific).  

Protein identification and relative quantification of the proteins was done with 

MaxQuant version 1.5.3.8 using Andromeda as search engine (Cox et al. 2011) and label 

free quantification (LFQ (Cox et al. 2014)) as described in (Hubner et al. 2010). The 

mouse subset of the UniProt version 2015_01 combined with the contaminant DB from 
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MaxQuant was searched and the protein and peptide FDR were set to 0.01. All 

MaxQuant parameters can be found in the uploaded parameterfile: mqpar.xml.   

Statistical analysis was done in Perseus (version 1.5.2.6) (Cox et al. 2011; Cox et al. 

2014; Tyanova et al. 2016). Results were filtered to remove reverse hits, contaminants 

and peptides found in only one sample. Missing values were imputed and potential 

interactors were determined using t-test and visualized by a volcano plot. Significance 

lines corresponding to a given FDR have been determined by a permutation-based 

method (Tusher et al. 2001). Threshold values (FDR) were selected between 0.005 and 

0.05 and SO (curve bend) between 0.2 and 2 and are shown in the corresponding figures. 

Results were exported from Perseus and visualized using statistical computing language 

R. 

iBAQ Analysis 

Intensity based absolute quantification (iBAQ) was performed as described in 

(Schwanhausser et al. 2011) to evaluate protein abundances in MAC and MACOM 

complexes in Mettl3 TAP-LC-MS experiments. 

 

m6A RNA immunoprecipitation 

Total RNA from mESCs was isolated using Absolutely RNA Microprep Kit 

(Stratagene), followed by mRNA selection using double Oligo d(T)23 (NEB) 

purification. 5 µg mRNA cells was incubated with 4 µg of anti-m6A antibody (Synaptic 

Systems; polyclonal Rabbit - Cat. No. 202 003) in m6A-IP buffer (150 mM NaCl, 10 

mM Tris-HCl pH 7.4, 0.1% NP-40) supplemented with 5 U /mL of Murine RNase 

inhibitor (NEB) for 2 h at 4°C. 10 µL of protein G magnetic beads (Invitrogen) were 

added to all m6A-IP samples for 2 h at 4°C. On bead digestion with RNase T1 (Thermo 
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Fisher) at final concentration 0.1 U/mL was performed for 15 min at RT. Beads with 

captured RNA fragments were then immediately washed 2 times with 500 µL of ice-cold 

m6A-IP buffer, 2 times with RT m6A-IP buffer and further eluted with 100 µL of elution 

buffer (20 mM DTT, 150 mM NaCl, 50 mM Tris-HCl pH 7.4, 1 mM EDTA, 0.1% SDS, 

5 U/mL Proteinase K) at 42°C for 5 min. Elution step was repeated 4 times and 600 µL 

of acidic phenol/chloroform pH 4.5 (Ambion) was added to 400 µL of the combined 

eluate per sample in order to extract captured RNA fragments. Samples were mixed and 

transferred to Phase Lock Gel Heavy tubes (5Prime) and centrifuged for 5 min at 12000x 

g. Aqueous phase was precipitated O/N, -80°C. On the following day, samples were 

centrifuged, washed twice with 80% EtOH and re-suspended in 15 µL of RNase-free 

H2O (Ambion). Recovered RNA was analyzed on RNA Pico Chip (Agilent) and 

concentrations were determined with RNA HS Qubit reagents. Since no RNA was 

recovered in the m6A-IP no-antibody control samples, libraries were prepared with 30 ng 

of two independent m6A-IPs performed on RNA from WT, Mettl3 and Zc3h13 KO cells. 

For every condition, input material (200ng mRNA) was also sequenced. Both m6A-IPs 

and inputs were sequenced using the NEB-Next RNA Directional Library Preparation 

Kit. 

 

m6A-RNA immunoprecipitation sequencing analysis 

MACS2 was used to call peaks of m6A enrichment for wildtype and H4 IP vs input 

samples, using the default parameters. Peaks were assigned to overlapping gene bodies 

within 500 bp. The intersection of the resulting gene lists (3285 genes) was taken as the 

set of m6A target genes.  
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BigWig files for each sample were created using the qExportWig function from the 

QuasR package in R (Gaidatzis et al. 2015). Read counts were binned in 50 bp windows, 

and counts for each sample were scaled to the mean aligned library size of all samples. 

The deepTools suite was used for metagene analysis (Ramirez et al. 2016). The 

bigwigCompare function was used to calculate the log2 ratio between each wildtype or 

ZC3H13-KO sample and the Mettl3-KO samples. m6A target CDS regions were scaled 

to 5 kb, and m6A enrichment vs. Mettl3-KO was calculated in 50-bp bins across scaled 

target regions as well as 2 kb up- and downstream using the computeMatrix command. 

 

NanoBiT protein complementation assay 

Fusion construct of mouse Rbm15 and Wtap to NanoBiT subunits were generated as 

follows: Full length Rbm15 and Wtap coding sequences were amplified with 

oligonucleotides indicated in Supplementary Table 2 from poly-A selected mRNA using 

NEBNext High-Fidelity 2X PCR Master Mix (New England BioLabs). Overhangs with 

homology to destination vectors (pBiT1.1-C, pBiT2.1-C, pBiT1.1-N, pBiTN.1-C; 

Promega) were included in oligonucleotide sequences. Gel purified PCR products were 

cloned into EcoRI sites using NEBuilder HiFi DNA assembly kit (New England 

BioLabs) following manufacturers recommendations. The optimal combination of N or 

C-termini tagged fusions to small (Sm) or large (Lg) subunits, were determined through 

transfection of 20,000 cells/well WT mESC’s cells with Lipofectamine 3000 reagent 

(Invitrogen) seeded in 96-well tissue culture plates (Corning Cat. #3917). Measurements 

were performed using the Nano-Glo Live cells Assay system (Promega) and measured in 

a microplate luminometer (Berthold LB960). The Rbm15/Wtap fusion combination 

yielding the highest luciferase activity was then transfected into distinct mESC genetic 
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backgrounds and expression level of fusion construct quantified via RT-qPCR using 

oligonucleotides described in Supplementary Table 2. 

 

Drosophila staging 

Staging experiment was performed as described previously (Lence et al. 2016) using 

Drosophila melanogaster w1118 flies. A total of three independent samples were collected 

for each Drosophila stage as well as for heads and ovaries. Samples from the staging 

experiment were used for RNA extraction to analyse m6A abundance in mRNA and 

expression levels of different transcripts during Drosophila development. 

 

RNA isolation and mRNA purification 

Total RNA from S2R+ cells was isolated using Trizol reagent (Invitrogen) and DNA was 

removed with DNase-I treatment (NEB). Fly heads from 3-5 day old flies were separated 

and homogenized in Trizol prior to RNA isolation. mRNA was isolated by two rounds of 

purification with Dynabeads Oligo d(T)25 (NEB).  

 

RT–PCR 

cDNA was prepared using M-MLV Reverse Transcriptase (Promega). Transcript levels 

were quantified using Power SYBR Green PCR Master Mix (Invitrogen) and 

oligonucleotides indicated in Supplementary Table 2. RT-PCR was performed using the 

oligonucleotides described in Supplementary Table 2 to analyse Sxl splicing. 
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RNA in situ hybridization 

For in situ hybridization Drosophila melanogaster w1118 flies were kept at 25 °C in 

conical flasks with apple juice agar plates and embryos were collected every 24 h. 

Embryos were transferred in a sieve and dechorionated for 2 min in 50% sodium 

hypochloride. After 5 min wash in water, embryos were permeabilized with PBST (0.1% 

Tween X-100 in PBS) for 5 min. Embryos were transferred in 1:1 mixture of heptane 

(Sigma) and 8% formaldehyde (Sigma) and fixed for 20 min with constant shaking at 

room temperature. After fixation the lower organic phase was removed and 1 volume of 

MeOH was added to the aqueous phase containing fixed embryos. Following 5 min of 

extensive shaking all liquid was removed and embryos were washed 3 times with 100% 

MeOH. At this point embryos were stored at −20 °C or used for further analysis. For in 

situ hybridization MeOH was gradually replaced with PBST with 10 min washes and 

with three final washes in PBST. Embryos were further washed for 10 min at room 

temperature with 50% HB4 solution (50% formamide, 5× SSC, 50 µg/ml heparin, 0,1% 

Tween, 5 mg/ml torula yeast extract) diluted in PBST. Blocking was performed with 

HB4 solution, first for 1 h at room temperature and next for 1 h at 65 °C. In situ probes 

were prepared with DIG RNA labelling Kit (Roche) following the manufacturer’s 

protocol. Two microlitres of the probe were diluted in 200 µl of HB4 solution, heated up 

to 65 °C to denature the RNA secondary structure and added to blocked embryos for 

further overnight incubation at 65 °C. The next day, embryos were washed 2 times for 30 

min at 65 °C with formamide solution (50% formamide, 1× SSC in PBST) and further 3 

times for 20 min at room temperature with PBST. Embryos were then incubated with 

anti-DIG primary antibody (Roche) diluted in PBST (1:2,000) for 2 h at room 

temperature and later washed 5 times for 30 min with PBST. In order to develop the 
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staining, embryos were rinsed with AP buffer (100 mM Tris pH 9.5, 50 mM MgCl2, 

100 mM NaCl, 0.1% Tween) and incubated with NBT/BCIP solution in AP buffer 

(1:100 dilution) until the intense staining was observed. Reaction was stopped with 

several 15 min PBST washes. Prior to mounting, embryos were incubated in 20% 

glycerol and later visualized on Leica M205-FA stereomicroscope. 

 

RNA immunoprecipitation (RIP) 

S2R+ cells were transfected with Myc-tagged constructs using Effectene reagent. 72 h 

post transfection cells were washed with ice cold PBS and collected by 5 min 

centrifugation at 1000x g. The cell pellet was lysed in 1 ml of lysis buffer (50 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 0.05% NP-40) supplemented with protease inhibitors, 

rotated head-over-tail for 30 min at 4 °C and centrifuged at 18,000x g for 10 min at 4 °C 

to remove the remaining cell debris. Protein concentrations were determined using 

Bradford reagent (BioRad). For RNA immunoprecipitation, 2 mg of proteins were 

incubated with 2 µg of anti-Myc antibody coupled to protein-G magnetic beads 

(Invitrogen) in lysis buffer and rotated head-over-tail for 4h at 4 °C. The beads were 

washed 3 times for 5 min with washing buffer. One fourth of immunoprecipitated 

protein – RNA complexes were eluted by incubation in 1× NuPAGE LDS buffer 

(Thermo Fisher) at 70 °C for 10 min for protein analysis. RNA from the remaining 

protein-RNA complexes was further isolated using Trizol reagent.  
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Immunostaining 

For staining of Drosophila S2R+ cells, cells were transferred to the poly-lysine pre-

treated 8-well chambers (Ibidi) at the density of 2 × 105 cells/well. After 30 min, cells 

were washed with 1× DPBS (Gibco), fixed with 4% formaldehyde for 10 min and 

permeabilized with PBST (0.2% Triton X-100 in PBS) for 15 min. Cells were incubated 

with mouse anti-Myc (1:2000; #9E10, Enzo) in PBST supplemented with 10% of 

donkey serum at 4 °C, overnight. Cells were washed 3× for 15 min in PBST and then 

incubated with secondary antibody and 1× DAPI solution in PBST supplemented with 

10% of donkey serum for 2 h at 4 °C. After three 15 min washes in PBST, cells were 

imaged with Leica SP5 confocal microscope using ×63 oil immersion objective. 
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Western blotting 

Proteins were extracted for 30 min on ice, the lysates were centrifuged at 16,000 × g for 

5 min at 4°C, and protein concentration in the supernatant was determined using the Bio-

Rad protein assay. Protein samples were separated on NuPAGE-Novex Bis-Tris 4-12% 

gradient gels (Invitrogen) in MOPS buffer at 200V for 40 min. Semi-dry transfer to 

nitrocellulose membrane (Whatman) was performed at 15 V for 40 min. Membranes 

were blocked for 30 min 2% non-fat dry milk in TBS-0.05% Tween 20 (TBST), and 

incubated with primary antibodies at 4°C overnight (Mettl3 (Protein Tech 15073), 

Rbm15 (Abcam ab70549), Zc3h13 (Abcam ab70802), Hakai (Cbll1 ARP39622, Aviva 

systems biology), Wtap (Protein Tech 60188) and Tubulin (Abcam clone YL1/2). Signal 

was detected with corresponding HRP-conjugated secondary antibodies and Immobilon 

Western Chemiluminiscent HRP Substrate (Millipore). 

 

Cell culture, RNA interference and transfection 

Drosophila S2R+ cells were grown in Schneider`s medium (Gibco) supplemented with 

10% FBS (Sigma) and 1% penicillin–streptomycin (Sigma). For RNA interference 

(RNAi) experiments, PCR templates were prepared using oligonucleotides indicated in 

Supplementary Table 2. dsRNA were prepared using T7 megascript Kit (NEB). dsRNA 

against bacterial beta-galactosidase gene (lacZ) was used as a control for all RNA 

interference (RNAi) experiments. S2R+ cells were seeded at the density of 106 cells/ml 

in serum-free medium and 7.5 µg of dsRNA was added to 106 cells. After 6 h of cell 

starvation, serum supplemented medium was added to the cells. dsRNA treatment was 

repeated after 48 and 96 h and cells were collected 24 h after the last treatment. 
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Effectene (Qiagen) was used to transfect vector constructs in all overexpression 

experiments following the manufacturer`s protocol. 

 

Co-immunoprecipitation assay and western blot analysis 

For the co-immunoprecipitation assay, different combinations of vectors with indicated 

tags were co-transfected in S2R+ cells. Forty-eight hours after transfection cells were 

collected, washed with DPBS and pelleted by 10 min centrifugation at 400g. The cell 

pellet was lysed in 1 ml of lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% 

NP-40) supplemented with protease inhibitors and rotated head-over-tail for 30 min at 

4 °C. Nuclei were collected by 10 min centrifugation at 1,000g at 4 °C re-suspended in 

300 µl of lysis buffer and sonicated with 5 cycles of 30 s ON, 30 s OFF low power 

setting. Cytoplasmic and nuclear fractions were joined and centrifuged at 18,000x g for 

10 min at 4 °C to remove the remaining cell debris. Protein concentrations were 

determined using Bradford reagent (BioRad). For immunoprecipitation, 2 mg of proteins 

were incubated with 2 µg of anti-Myc antibody coupled to protein-G magnetic beads 

(Invitrogen) in lysis buffer and rotated head-over-tail overnight at 4 °C. The beads were 

washed 3 times for 15 min with lysis buffer and immunoprecipitated proteins were 

eluted by incubation in 1× NuPAGE LDS buffer (Thermo Fisher) at 70 °C for 10 min. 

Eluted immunoprecipitated proteins were removed from the beads and DTT was added 

to 10% final volume. Immunoprecipitated proteins and input samples were analysed by 

western blot after incubation at 70 °C for additional 10 min. 

For western blot analysis, proteins were separated on 7% SDS–PAGE gel and transferred 

on Nitrocellulose membrane (BioRad). After blocking with 5% milk in PBST (0.05% 

Tween in PBS) for 1 h at room temperature, the membrane was incubated with primary 
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antibody in blocking solution overnight at 4 °C. Primary antibodies used were: mouse 

anti-Myc 1:2,000 (#9E10, Enzo); mouse anti-HA 1:1,000 (#16B12, COVANCE); mouse 

anti-Tubulin 1:2,000 (#903401, Biolegend); mouse anti-Fl(2)d 1:500 (#9G2, DSHB); 

rabbit anti-Mettl14 and guinea pig anti-Mettl3 1:500 (Lence et al. 2016). The membrane 

was washed 3 times in PBST for 15 min and incubated 1 h at room temperature with 

secondary antibody in blocking solution. Protein bands were detected using SuperSignal 

West Pico Chemiluminescent Substrate (Thermo Scientific). 

 

SILAC experiment and LC–MS/MS analysis 

For SILAC experiments, S2R+ cells were grown in Schneider medium (Dundee Cell) 

supplemented with either heavy (Arg8, Lys8) (Cambridge Isotope Laboratories) or light 

amino acids (Arg0, Lys0) (Sigma). For the forward experiment, Myc–Nito was 

transfected in heavy-labelled cells and Myc-alone in light-labelled cells. The reverse 

experiment was performed vice versa. The co-immunoprecipitation experiment was done 

as described earlier. Before elution, beads of the heavy and light lysates were combined 

in 1:1 ratio and eluted with 1× NuPAGE LDS buffer that was subject to MS analysis as 

described previously (Bluhm et al. 2016). Raw files were processed with MaxQuant 

(version 1.5.2.8) and searched against the Uniprot database of annotated Drosophila 

proteins (Drosophila melanogaster: 41,850 entries, downloaded 8 January 2015). 

 

LC–MS/MS analysis of m6A levels 

Three-hundred nanograms of purified mRNA was digested using 0.3 U Nuclease P1 

from Penicillum citrinum (Sigma-Aldrich, Steinheim, Germany) and 0.1 U Snake venom 
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phosphodiesterase from Crotalus adamanteus (Worthington, Lakewood, USA). RNA 

and enzymes were incubated in 5 mM ammonium acetate at pH 5.3 for 2 h at 37 °C. 

Remaining phosphates were removed by 1 U FastAP (Thermo Scientific, St Leon-Roth, 

Germany) in a 1 h incubation at 37 °C in 10 mM ammonium acetate at pH 8. The 

resulting nucleoside mix was then spiked with 13C stable isotope labelled nucleoside mix 

from Escherichia coli RNA as an internal standard (SIL-IS) to a final concentration of 6 

ng/µl for the sample RNA and 2 ng/µl for the SIL-IS. For analysis, 10 µl of the before 

mentioned mixture were injected into the LC–MS/MS machine. Generation of technical 

triplicates was obligatory. Mouse mRNA samples were analysed in biological duplicates 

and fly samples in triplicates. LC separation was performed on an Agilent 1200 series 

instrument, using 5 mM ammonium acetate buffer as solvent A and acetonitrile as buffer 

B. Each run started with 100% buffer A, which was decreased to 92% within 10 min. 

Solvent A was further reduced to 60% within another 10 min. Until minute 23 of the run, 

solvent A was increased to 100% again and kept at 100% for 7 min to re-equilibrate the 

column (Synergi Fusion, 4 µM particle size, 80 Å pore size, 250 × 2.0 mm, 

Phenomenex, Aschaffenburg, Germany). The ultraviolet signal at 254 nm was recorded 

via a DAD detector to monitor the main nucleosides. 

MS/MS was then conducted on the coupled Agilent 6460 Triple Quadrupole 

(QQQ) mass spectrometer equipped with an Agilent JetStream ESI source which was set 

to the following parameters: gas temperature, 350 °C; gas flow, 8 l/min; nebulizer 

pressure, 50 psi; sheath gas temperature, 350 °C; sheath gas flow, 12 l/min; and capillary 

voltage, 3,000 V. To analyse the mass transitions of the unlabelled m6A and all 13C m6A 

simultaneously, we used the dynamic multiple reaction monitoring mode. The 

quantification was conducted as described previously (Kellner et al. 2014) 
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RNA-seq and Computational analysis 

Ilumina TruSeq Sequencing Kit (Illumina) was used. The RNA libraries were sequenced 

on a NextSeq500 with a read length of 85 bp. The data was mapped against Ensembl 

release 90 of Drosophila Melanogaster using STAR (v2.5.1b). Counts per gene were 

derived using featureCounts (v.1.5.1). Differential expression analysis was performed 

using DESeq2 (v. 1.16.1) and filtered for an FDR < 1%. Differentially splicing analysis 

was performed using rMATS (v 3.2.5) and filtered for an FDR < 10%. Sequencing depth 

normalised coverage tracks were generated using bedtools (v.2.25.0 ), samtools (v.1.3.1 ) 

and kentutils (v.302). Heatmap of the foldchange (log2) of commonly misregulated 

genes was clustered according to rows and columns. The color gradient was adjusted to 

display the 1% lowest/highest values within the most extreme color (lowest values as the 

darkest blue, highest values as the darkest red). Splice events for different knockdown 

conditions are represents by pie charts. “Control” depicts the detected splice events on 

average in all the comparisons Control vs. knockdown. The pie chars for the individual 

knockdowns depict the amount of significantly different splicing events with a FDR 

value below 10%. The GO term analysis was performed using the package 

ClusterProfiler. The GO -terms were semantic similarity reduced using the “simplify” 

function of the package. The tested genes in all the conditions were used as a background 

gene set. Default parameters were used for the analysis (Yu et al. 2012). m6A gene 

annotation was retrieved from mCLIP paper (Kan et al. 2017b). m6A containing gene 

names were translated to used annotation and filtered for tested genes in the diff. 

expression analysis (in any condition). These genes were overlapped with the genes 

commonly differentially regulated in the knockdowns (either commonly up, commonly 

down or mis-regulated in all conditions). Similarly, the m6A containing genes were 
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overlapped with the genes commonly mis-spliced in all conditions. The significance of 

the overlap was tested using a hypergeometric test. 

 

Phylogenetic analysis 

The phylogenetic tree was constructed with ClustalX from multiple sequence alignments 

generated with MUSCLE of the Drosophila sequence with orthologs from human and 

other representative species. 

 

Data availability statement 

The data that support the findings of this study have been deposited in the NCBI Gene 

Expression Omnibus (GEO) under accession GSE106614. All other relevant data are 

available from the corresponding author. 
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Figure legends 

Figure 1. Zc3h13/Flacc interacts with the m6A machinery 

(A) TAP-LC-MS/MS of endogenously FLAG-Avi tagged Rbm15 mESC’s Parental cells 

were used as background control and proteins were purified in the presence of 350mM 

NaCl. Highlighted in the volcano plot are enriched proteins that were members of the 

WTAP complex (red) as well as Zc3h13 (green). (B) Heatmap comparing relative LFQ 

intensities of selected Mettl3 bound proteins across increasing NaCl concentrations. 

Statistical analysis was done with Perseus (see methods for details). Mass spectrometry 

raw data is deposited in ProteomeXchange. (C and D) SILAC-coupled mass spectrometry 

analysis using Nito-Myc as bait. Scatterplot of normalized forward versus inverted 

reverse experiments plotted on a log2 scale. The threshold was set to a 1.5-fold 

enrichment (red dashed line). Proteins in the upper right quadrant are enriched in both 

replicates. GO-term analysis (Ashburner et al. 2000) for enriched proteins is shown in 

(D). (E) Co-immunoprecipitation experiments were carried out with lysates prepared 

from S2R+ cells, transfected with FlagMyc-Flacc and HA-Nito. In control lanes, S2R+ 

cells were transfected with FlagMyc alone and identical HA-containing protein. Extracts 

were immunoprecipitated with Myc antibody and immunoblotted using Flag and HA 

antibodies. 2% of input was loaded. The same experiment was repeated in the presence of 

RNaseT1. Nito and Flacc interact with each other in an RNA independent manner. (F) 

Table representing orthologous proteins of MAC and MACOM complexes in mouse and 

fly. 

 

Figure 2. Flacc/Zc3h13 regulates the m6A pathway 

(A) LC-MS/MS quantification of m6A levels in mRNA extracts from WT mESC’s, 

Mettl3 KO, Mettl3 KO plasmid-rescue, and Zc3h13 KO cells. Mean of two biological 
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replicates and three independent measurements is shown; errors bars indicate standard 

deviation (s.d.). *, P<0.01 and n.s., not significant (Student’s t-test) (B) UCSC Genome 

Browser shots of m6A-IP profiles of RNA isolated from Mettl3 KO, Zc3h13 KO and WT 

cells and input samples for each genetic background at the Wtap encoding locus. Scale is 

mapped reads in 100-bp bins normalized to mean library size. (C) Meta plot depicting 

reads from m6A-IP’s at target genes (defined as genes overlapping or within 500bps of 

MACS identified peaks of m6A-IP/input in WT cells) aligned to the transcription start site 

(TSS) and transcription end site (TES). (D) LC-MS/MS quantification of m6A levels in 

either control samples or in mRNA extracts depleted for the indicated proteins in S2R+ 

cells. Bar chart is showing the mean of three biological replicated and three independent 

measurements; errors bars indicate standard deviation (s.d.). *, P<0.01 (Student’s t-test). 

KD of indicated proteins significantly reduces m6A levels. (E) Fold enrichment of m6A-

regulated transcripts (Aldh-III and Dsp1) over input in Myc-Ythdc1 RNA 

immunoprecipitation after control or Flacc depletion. Bar chart is showing the mean of 

three biological replicates; errors bars indicate standard deviation (s.d.). *, P<0.01; **, 

P<0.001 (Student’s t-test). Loss of Flacc affects Ythdc1 binding. (F) Relative isoform 

quantification of m6A-regulated genes (Aldh-III, Hairless and Dsp1) upon depletion of 

indicated components. Flacc is required for m6A-dependent splicing events. 

 

Figure 3. Flacc regulates common transcripts with other components of the m6A 

complex.  

(A) Number of differentially expressed genes upon KD of indicated proteins (left) and 

venn diagram of common differentially expressed targets regulated by components of 

MACOM complex (right). (B) Scatterplot of the first two principal components of a PCA 

of the 500 most variable genes in all conditions. The biological replicates are indicated in 
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the same colour, with elliptic areas representing the standard deviation of the two depicted 

components. (C) Boxplot plots of the gene length distribution for genes tested in the 

differential expression analysis and the differential expressed genes up- or down- 

regulated in all conditions. The distributions were tested for difference using the 

Kolmogorov-Smirnov test. (D) Overlap between common up, down or all differentially 

expressed genes and m6A containing genes (miCLIP data from (Kan et al. 2017b)). The 

significance of the overlap was tested using a hypergeometric test. (E) Heatmap of the 

foldchange (log2) of commonly mis-regulated genes. The heatmap is clustered according 

to rows and columns. The color gradient was adjusted to display the 1% lowest/highest 

values within the most extreme color (lowest values as the darkest blue, highest values as 

the darkest red). (F) The GO term analysis of common common up and down regulated 

genes, performed using the package ClusterProfiler. Top 10 GO-terms are displayed. 

 

 

Figure 4. Flacc is required for sex determination via control of Sex lethal alternative 

splicing 

(A and B) domeGAL4 driven expression of shRNA or dsRNA in genital discs and first 

pair of leg discs against Nito or Flacc respectively. (top) Foreleg of a WT male and 

female flies depleted for Nito or Flacc show appearance of male specific sex comb 

bristles (red arrow). (below) Depletion of Nito or Flacc results in transformations of 

female genitalia and loss of vaginal bristles (red arrowhead). (B) Quantification of female 

survival and transformations in escapers upon depletion of Nito or Flacc using 

DomeGAL4 driver. n – number of analysed flies with the expected number of escapers in 

brackets. Depletion of Nito and Flacc results in high level of transformation in female 

genitalia and appearance of male specific sex combs on forelegs. (C) Semi-quantitative 
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RT-PCR analysis of Sxl isoforms in male and female heads from flies depleted for Fl(2)d, 

Nito or Flacc respectively using ElavGAL4 driver. Inclusion of male specific exon L3 is 

observed in flies lacking m6A components. (D) flacc locus (flaccC) with premature stop 

codon at amino acid Leu730. Sites of dsRNA fly lines KK110253 and GD35212 are 

shown below gene loci. (E) Viability of female flies from a cross of indicated genotypes 

mated with Sxl7BO males. Loss of one copy of flacc significantly reduces female survival 

in a genetic background where one copy of Sxl and da are absent. The same compromised 

survival is observed for other m6A components (Mettl3, Mettl14, Ythdc1, fl(2)d, vir and 

nito). (F) Viability of female flies with homozygous vir2F mutation can be rescued by 

loss of single copy of flacc and nito. 

   

Figure 5. Flacc bridges the methyltransferase complex to mRNA targets via binding 

to Nito 

(A) Co-immunoprecipitation experiments were carried out with lysates prepared from 

S2R+ cells, transfected with GFPMyc-Nito and Fl(2)d-HA. In control lanes, S2R+ cells 

were transfected with Myc alone and identical HA-containing protein. Extracts were 

immunoprecipitated with Myc antibody and immunoblotted using Myc and HA 

antibodies. 2% of input was loaded. The same experiment was repeated in Flacc KD 

condition. Interaction between Nito and Fl(2)d is strongly reduced upon depletion of 

Flacc. (B) Fold enrichment of m6A-regulated transcripts (AldhIII, Hairless, Dsp1) over 

input in Myc-Fl(2)d and Myc-Nito RNA immunoprecipitation upon depletion of Flacc or 

in control condition. Bar chart is showing the mean of three biological replicates; errors 

bars indicate standard deviation (s.d.). *, P<0.01; **, P<0.001; ***, P<0.0001 and n.s., 

not significan (Student’s t-test).  Loss of Flacc strongly affects Fl(2)d binding and to 

milder extent binding of Nito to m6A regulated transcripts. (C and D) Co-
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immunoprecipitation experiments were carried out with lysates prepared from S2R+ cells, 

transfected with either FlagMyc-Nito and Fl(2)d-HA. In control lanes, S2R+ cells were 

transfected with FlagMyc alone and identical HA-containing protein. Extracts were 

immunoprecipitated with Flag antibody and immunoblotted using Myc and HA 

antibodies. 2% of input was loaded. The same experiment was performed upon depletion 

of Flacc. Human ZC3H13 was transfected in identical set of experiment. Interaction 

between Nito and Fl(2)d is strongly reduced upon loss of Flacc (lane 6), but can be 

rescued upon expression of human ZC3H13 protein (lane 8). Quantification of two 

replicates is shown in (D).  

 

Figure 6. Zc3h13 stabilized the interaction between RBM15 and WTAP 

(A and B) Comparison of TAP-LC-MS/MS of endogenously FLAG-Avi tagged Rbm15 

mESC’s in either a WT or Zc3h13 KO background. Rbm15 and associated proteins were 

purified in the presence of 350mM NaCl. (A) Volcano plot showing enriched proteins in 

WT cells (right) vs Zc3h13 KO cells. (B) Table of spectral counts, unique peptides and % 

coverage of TAP-LC-MS/MS data in (A). (C) Split luciferase NanoBiT assay examining 

the interaction of mouse Rbm15 and Wtap. Left, scheme representing Luciferase 

reconstitution upon transfection of LgBit and SmBit NanoLuc subunit fusions and 

interaction of Rbm15 and WTAP. Right, comparison of Rbm15-Wtap NanoBiT NanLuc 

signal in WT, Zc3h13 and Mettl3 KO cells. Mean of three independent experiments, three 

transfections each; errors bars indicate standard deviation (s.d.). * P=0.026, calculated 

using two-tailed Student’s t-test.  

 

Figure 7. Schematic Representation of the role of MACOM and MAC complexes.. 
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MACOM complex can regulate gene expression in two ways; either on its own (MAC 

independent functions) or by interacting with MAC components (m6A methylation). Flacc 

(Zc3h13) is a novel component of the MACOM complex that stabilizes the interaction 

between Fl(2)d and Nito (WTAP and RBM15) proteins, thereby ensuring deposition of 

m6A to targeted transcripts. 
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Supplemental Figure 1. Generation of tagged and knock-out mESC lines 

(A) Schematic of CRISPR/Cas9 strategy to endogenously N-terminally tag Rbm15 and 

Mettl3 in mESCs expressing the bacterial BirA ligase. A ssODNA with homology arms 

was used as donor to integrate the tag. (B) Western blot confirmation of clones expressing 

FLAG-Avi Tagged Rbm15 and Mettl3. For Rbm15, presence of tagged protein was 

verified by probing a membrane with streptavidin coupled HRP (left); the Mettl3 

membrane was probed with anti-Flag antibody as mESCs express an endogenously 

biotinylated protein of circa. 70Kd (right). (C) Scheme of CRISPR/Cas9 strategy to ablate 

Zc3h13. Two independent sgRNAs guide Cas9 to remove exons 9 and 10 resulting in a 

non-functional truncated protein. Western blot of Zc3h13 to confirm deletion (below).  

 

Supplemental Figure 2. Flacc/Zc3h13 regulates the m6A pathway, supporting data I 

(A) TAP-LC-MS/MS of endogenously FLAG-Avi tagged Mettl3 mESC’s compared to 

Parental untagged in presence of 150mM NaCl. Highlighted are enriched proteins (red) 

including novel protein Zc3h13 (green). (B) iBAQ values for selected proteins for (A). 

 

Supplemental Figure 3. Flacc/Zc3h13 regulates the m6A pathway, supporting data II 

 (A and B) Co-immunoprecipitation experiments were carried out with lysates prepared 

from S2R+ cells, transfected with FlagMyc-Flacc and HA-Fl(2)d (A) or HA-Vir (B) . In 

control lanes, S2R+ cells were transfected with FlagMyc alone and identical HA-

containing protein. Extracts were immunoprecipitated with Myc antibody and 

immunoblotted using Flag and HA antibodies. 2% of input was loaded. The same 

experiment was repeated in the presence of RNaseT1. Fl(2)d and Vir interact with Flacc 

in an RNA independent manner. (C and D) Western blot validation of RNA 

immunoprecipitation experiments, which were carried out with lysates prepared from 



S2R+ cells, transfected with GFPMyc-tagged control, Fl(2)d, Nito and Ythdc1 constructs. 

Extracts were immunoprecipitated with Myc antibody and immunoblotted using Myc 

antibody. 2% of input was loaded. The same experiment was performed upon Flacc 

depletion. Relative expression of flacc levels is shown in (D).   

 

Supplemental Figure 4. Phylogenetic characterization of ZC3H13 proteins.  

(A) Phylogenetic tree of the full sequence alignment of orthologs of ZC3H13 in 23 

species. The labels indicate the gene names (from the NCBI’s Entrez database) and the 

abbreviated species name. (B) N-terminal part of the multiple sequence alignment used to 

construct the phylogenetic tree, including the zinc-finger (boxes). (C) Tree of the 23 

species included in the phylogenetic analyses. Coloring indicates whether the indicated 

taxa or species contain a ZC3H13 ortholog, and whether the ortholog has the zinc finger 

or not. The names of 15 species are displayed. The vertebrates included, whose names 

were not displayed, were: Danio rerio, Callorhinchus milii, Latimeria chalumnae, Anolis 

carolinensis, Ornithorhynchus anatinus, Gallus gallus, Mus musculus and Homo sapiens. 

See methods for details. 

 

Supplemental Figure 5. Flacc regulates common transcripts with other components 

of the m6A complex, supporting data I 

(A) Relative expression of indicated transcripts upon control (LacZ), Mettl3, Mettl14, Vir, 

Nito and Flacc KD. The mean standard deviation of three technical measurements from 

three biological replicates is shown. (B) Boxplots of average expression (rpkm) for all 

genes expressed by at least 1 rpkm in the different conditions. The black dots indicate the 

position of m6A components in comparison to other expressed genes. (C) Relative 

expression of indicated transcripts upon control (LacZ) and Flacc KD. (D) WB for Mettl3, 



Mettl14 and Fl(2)d in control (LacZ) and Flacc KD. (E) (A) Relative isoform 

quantification of m6A-regulated genes (CG8929, dorsal, fl(2)d) upon depletion of 

indicated components. Flacc is required for m6A-dependent splicing events. 

 

Supplemental Figure 6. Flacc regulates common transcripts with other components 

of the m6A complex, supporting data II 

(A) Number of differentially spliced genes upon KD of indicated proteins. (B) 

Distribution of splicing events in the different KD conditions. The pie chart for “Control” 

depicts the detected splice events on average in all the comparisons “control vs. KD”. The 

pie chars for the individual KD depict the amount of significantly different splicing events 

with a FDR value below 10%. Intron retention and alternative 5`splice site usage are over-

represented upon KD of m6A components. (C) Overlap between common differentially 

spliced genes and m6A containing genes (miCLIP data from (Kan et al. 2017)). The 

significance of the overlap was tested using a hypergeometric test. Common differentially 

spliced genes are highly methylated. (D) Venn diagrams of common differentially spliced 

events regulated by components of MACOM complex (E) The GO term analysis of 

common differentially spliced genes, performed using the package ClusterProfiler. Top 

10 GO-terms are displayed. 

 

Supplemental Figure 7. Flacc sub-cellular localization and expression through 

development  

(A) Immunostaining of Myc-tagged Flacc protein in S2R+ cells. GFP-tagged Barentsz 

was used as a cytoplasmic marker. Scale bar, 5 µm. (B) in situ RNA hybridization of flacc 

(flacc-as), flacc control (flacc-s), elav positive control (elav-as) and elav negative control 

(elav-s) are shown. Scale bars, 100 µm. (C) Relative flacc mRNA expression and levels 



of m6A in mRNA during Drosophila development. Number of hours post-fertilization for 

different embryo, larval and pupal stages is indicated below. The mean with standard 

deviation of three technical measurements from three biological replicates is shown. (D) 

Relative expression of indicated transcripts in fly heads upon control, Fl(2)d, Nito or 

Flacc KD. The mean standard deviation of three technical measurements from two 

biological replicates is shown. 

 

 

Supplemental Figure 8. Flacc depletion does not interfere with interactions between 

two methyltransferases or between Vir and Fl(2)d.  

(A-F) Co-immunoprecipitation experiments were carried out with lysates prepared from 

S2R+ cells, transfected with either GFPMyc-Mettl3 and Mettl14-HA (A), or Myc-Nito 

and Vir-HA (C), or Myc-Fl(2)d short isoform, Myc-Fl(2)d long isoform and Vir-HA (E). 

In control lanes, S2R+ cells were transfected with GFPMyc alone and identical HA-

containing proteins. Extracts were immunoprecipitated with Myc antibody and 

immunoblotted using Myc and HA antibodies. 2% of input was loaded. The same 

experiments were performed upon depletion of Flacc. Interactions between Mettl3 and 

Mettl14, and Fl(2)d and Vir do not depend on the presence of Flacc (A, C and E). 

Relative expression of flacc levels is shown in (B, D and F). Star indicates IgG band in 

figure (A).  (G and H) Co-immunoprecipitation experiments were carried out with lysates 

prepared from S2R+ cells, transfected with either FlagMyc-Nito and Mettl3-HA (A), or 

FlagMyc-Nito and Mettl14-HA (C). In control lanes, S2R+ cells were transfected with 

GFPMyc alone and identical HA-containing proteins. Extracts were immunoprecipitated 

with Myc antibody and immunoblotted using Myc and HA antibodies. 2% of input was 

loaded. The same experiments were performed upon depletion of Flacc. Interactions 



between Nito and Mettl3/Mettl14 are not affected by depletion of Flacc. (I) Related to 

Figure 5A. Relative levels of flacc in indicated samples. The mean with standard 

deviation of three technical measurements is shown. (J and K) Related to Figure 5C. 

Relative levels of human ZC3H13 transfected in indicated samples (J) and Relative levels 

of flacc in indicated samples (K). The mean with standard deviation of three technical 

measurements from two biological replicates is shown. 

 

Supplemental Figure 9. Zc3h13 stabilizes the interaction between Rbm15 and Wtap. 

(A and B) Comparison of TAP-LC-MS/MS of endogenously FLAG-Avi tagged Rbm15 

mESC’s in either a WT or Zc3h13 KO background. Rbm15 and associated proteins were 

purified from nuclear fractions of lysates. (A) Volcano plot showing enriched proteins in 

WT cells (right) vs Zc3h13 KO cells. (B) Table of spectral counts, unique peptides and % 

coverage of TAP-LC-MS/MS data in (A). (C) Western blot analysis comparing WT to 

Zc3h13 KO mESCs levels of Rbm15, Mettl3, Wtap and Hakai, Tubulin was used as 

loading control). * Denotes shift in Rbm15 due to Flag-Avi tag. (D) Split luciferase 

NanoBiT assay examining mouse Rbm15 and Wtap. Scheme depicting example fusion 

constructs generated to determine optimal configuration of fusion proteins. e.g. Wtap-C-lg 

is C-terminally tagged Wtap fused to the large subunit of NanLuc. (E) Luciferase assays 

comparing all possible LgBit and SmBit NanoLuc subunit fusions to Rbm15 and Wtap to 

determine which combination provides the strongest signal. (F) RT-qPCR measurements 

of WT-N-sm and Rbm15-C-lg fusion constructs in WT, Zc3h13 and Mettl3 backgrounds.  
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Tunicata; Ascidiacea; …; Ciona intestinalis

Ephydroidea; Drosophilidae; …; Drosophila melanogaster
Tephritoidea; Tephritidae; …; Ceratitis capitata

Nematocera; Culicomorpha; …; Anopheles gambiae

Echinodermata; Eleutherozoa; …; Strongylocentrotus purpuratus

Chaldicoidea group; …; Pteromalinae; Nasonia vitripennis

Vespoidea; Formicidae; …; Camponotus floridanus

Megachilidae; Megachilinae; …; Megachile rotundata
Apidae; Apinae; …; Apis mellifera

Papilionoidea; Papilionidae; …; Papilio machaon
Bombycoidea; Bombycidae; …; Bombyx mori

Hemichordata; Enteropneusta; …; Saccoglossus kowalevskii

Lophotrochozoa; Annelida; …; Capitella teleta

Cephalochordata; Branchiostomidae; Branchiostoma floridae

Cnidaria; Anthozoa; …; Nematostella vectensis

Craniata; Vertebrata

Nematoda

No protein
Short zinc finger
Long zinc finger
Missing zinc finger

Eumetazoa 

Bilateria 
Deuterostomia 

Protostomia 

Ecdysozoa 

Chordata 

Panarthropoda; … ; Endopterygota Diptera 

Hymenoptera; Apocrita 

Amphiesmenoptera; […]; Obtectomera 

Brachycera; …; Acalyptratae 

Aculeata 

Apoidea

Placozoa

Metazoa
Opisthokonta

Fungi

Choanoflagellida
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C

B C-x8-C-x5-C-x3-H

LOC100186678 (C.i.)
LOC100891806 (S.p.)
NEMVEDRAFT_v1g24058 (N.v.)
CAPTEDRAFT_222693 (C.t.)
BRAFLDRAFT_120702 (B.f.)
LOC100374861 (S.k.)
zc3h13 (D.r.)
zc3h13 (C.m.)
ZC3H13 (L.c.)
zc3h13 (A.c.)
ZC3H13 (O.a.)
ZC3H13 (G.g.)
Zc3h13 (M.m.)
ZC3H13 (H.s.)
CG7358 (Flacc) (D.m.)
Cby1 (C.c.)
AgaP_AGAP013495 (A.g.)
LOC106713818 (P.m.)
LOC101744864 (B.m.)
LOC100679030 (N.v.)
LOC105254639 (C.f.)
LOC100875329 (M.r.)
LOC552765 (A.m.)

C-x8-C-x5-C-x5-H
* * * *

* * * *
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