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Abstract 

Anaerobic digestion, AD, of brown macroalgae biomass species Saccharina latissima 

(S. Latissima) was investigated in this research study for its biochemical methane 

potential in batch and continuous operations, co-digestion performance and techno-

economic feasibility. Environmental conditions of the cultivation site were observed to 

have a significant effect on the organic and inorganic content of the samples from 

different locations. For S.Latissima harvested from three different locations, the 

specific methane production of biomass from Strangford Lough was found to be 

0.393 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑, while biomass from Ventry Harbour had a methane 

production of 0.391 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. The lowest of the specific methane production 

was shown for the biomass from Isle of Seil with a value of 0.265 𝐿 𝐶𝐻4/

𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. Growth cycle of the macroalgae was found an important indicator to 

optimise harvest times to target highest storage carbohydrates in the biomass. Highest 

methane production was obtained for summer biomass which showed highest carbon 

percentages and C/N ratios. Biomass characteristics of wild and cultivated S. Latissima 

was found to be significantly different. The specific methane potential of the 

macroalgae biomass exhibited an inverse relationship with the volatile solids and ash 

content. Co-digestion with S. Latissima in a 70:30 ratio resulted in higher rates of 

methane production and methane yields. Co-digestion of wheat and sugar beet – 

vegetable mix was found synergistic with S. Latissima with a specific methane 

production of 0.472 and 0.373 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 however antagonistic with pig 

manure with methane production of 0.172 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. The net percentage 

increase observed for wheat was 21.59%, and 15.95% of SBV mix however a decrease 

of -17.43% for pig manure while co-digested with S. Latissima. Semi-continuous 

digestion experiments showed that mesophilic temperatures were more stable with 

higher gas production while thermophilic digesters had higher volatile solids 

destruction. In the case of S. Latissima macroalgae biomass, addition of trace element 

solution only enhanced the methane concentrations in the biogas production. In the 

techno economic analysis, AD of S. Latissima as a monodigestion feedstock was found 

to be economically not feasible due to the high price of the macroalgae biomass. 

However co-digestion with sugar beet – vegetable mix with a gate fee of 29 Euros per 

tonne was found to be economically feasible with macroalgae biomass priced at 50 

Euros per tonne.    
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1 Introduction  

This research study titled “Anaerobic digestion of Saccharina latissima” intends to 

investigate the potential of the species Saccharina latissima for anaerobic digestion 

purposes. S. Latissima has previously been reported to be a feasible feedstock for AD 

due to its favourable biomass composition for easier degradation during microbial 

reactions of AD. However, the impact of environmental conditions, harvest times and 

growth type on the biomass is not completely understood to utilise the species. In 

addition, there have been few studies on the performance of S. Latissima during 

continuous studies and its techno-economic potential for large scale applications. The 

outline of this thesis is given in Figure 1.  

 

 

Figure 1 Thesis outline diagram 
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Aim and Objectives 

The aim of this study is to optimise the anaerobic digestion of macroalgae biomass 

species Saccharina latissima, (S. Latissima). 

 

The objectives for this study are as follows: - 

 

 To determine the extent to which biomass characteristics vary with 

environmental conditions, macroalgae growth cycle and growth type 

 To identify the differences in the biomethane potential of Saccharina latissima 

related to its characteristics varying with environmental conditions, harvest 

times and growth type  

 To investigate the semi-continuous digestion performance of Saccharina 

latissima for three hydraulic retention times 

 To identify the characteristics of Saccharina latissima for co-digestion with other 

organic feedstock 

 To determine the techno-economic feasibility of Saccharina latissima as a 

mono-digestion and co-digestion feedstock   
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1.1 Renewable energy and Anaerobic Digestion 

Energy demand has continued to grow globally in recent decades. The decline of 

natural resources, environmental deterioration due to climate change, the growing 

need for electricity and power, and the exponential growth of the human population 

has contributed massively to the energy crisis (Mercuri et al., 2016). Increasing 

concerns over the impacts of greenhouse gases (GHG) emissions and global warming 

have also triggered the search for alternative cleaner energy resources. Global climate 

change can only be tackled by improving energy efficiency and reducing energy 

demand (Sorrell, 2015). The International Energy Agency (IEA) and other similar 

bodies worldwide are placing priority on reducing energy demand, and in Europe, the 

European Commission (EC) has proposed long-term targets for energy demand 

reduction. Countries all over the globe are introducing a range of policies to help 

achieve similar targets (Hasanuzzaman et al., 2017, Sorrell, 2015).  

An overview of renewable energy resources is shown in Figure 2.  

.  

Figure 2 Renewable energy technologies 

Source (Ellabban et al., 2014) 

In March 2007, the EU heads of state agreed to set a target of 20% of renewable 

energy use of the total EU energy needs by 2020 (Popp et al., 2011). Very recently in 

2018, the EU commission has reached a political agreement with a binding energy 

target for the EU for 2030 of 32% with a revision by 2023. The renewable energy 

progress report from the EU stated that in 2016, EU as a whole achieved a renewable 

energy share of 17% of the final energy consumption (EU Commission, 2018). In the 

UK, renewable electricity has had a specific delivery mechanism since 1990 and in 

2003, the UK government White paper set out the bold vision of a sustainable energy 

future and an ambition to achieve 60% cuts in carbon dioxide emissions by 2050 

(Mitchell and Connor, 2004). There has been a growing research since then with 

current focus on life cycle analyses (LCA) of new technologies and approaches to 

ascertain the sustainability of renewable technologies (Walker et al., 2015). 
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Renewable energy technologies provide an alternative to fossil fuels, however 

designing and implementing them on a commercial level has technical and financial 

challenges associated with it (Martinez-Val, 2013). Transitioning of the fossil fuel-

based economy to a green economy is an ongoing challenge and the higher 

penetration of renewable energy pathways is currently the backbone of green economy 

efforts (Gasparatos et al., 2017). Therefore, more focus is drawn towards bioenergy or 

energy production from biomass or waste resources. Biomass overcomes some of the 

challenges of traditional renewable energy technologies by being geographically 

diverse and widely available, present in large quantities and with high potential for 

numerous energy vectors (gas, solid and liquid fuels) and utilisation pathways. 

Bioenergy has an important role to play if the UK is to meet its low carbon objectives 

by 2050. If biomass is excluded from the energy mix, then the cost of decarbonising 

our energy system would increase by £44 billion (Energy Technologies Institute, 2016). 

The UK renewable energy roadmap (2011) has also set out bioenergy as an important 

part of the UK government’s plan to meet the renewable energy directive objectives in 

2020. The strategy defines uses of wastes, heating provided by biomass sources, 

biofuels for transport and use of sustainable biomass to generate electricity (DECC, 

2012). Various pathways of utilising low carbon technologies to generate sustainable 

energy from sources like biomass will be discussed in the following sections. 

1.2 Fundamentals of Anaerobic digestion 

Anaerobic digestion (AD) is a commercial level conversion technology resulting in the 

production of renewable energy in the form of methane. Anaerobic digestion is a 

biochemical process where energy is released by the breakdown of substances in the 

absence of oxygen (Beavis and Charlier, 1987). Renewed interest in the renewable 

energy technologies has developed AD processes not only to produce methane to 

reduce the greenhouse gases emissions, but also as an effective solution for treatment 

and disposal of large quantities of organic wastes. AD provides a pathway for closed 

balanced carbon cycle with respect to atmospheric carbon dioxide and also utilise 

wastes and biomass as a significant renewable energy resource (Chynoweth et al., 

2001).   

1.3 Products of anaerobic digestion 

There are mainly 2 products of anaerobic digestion – Biogas and digestate.  
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1.3.1 Biogas 

Biogas is a renewable gaseous fuel harvested from different varieties of organic waste 

as they break down under anaerobic conditions produces biogas (50 – 60%) and 

carbon dioxide (40 – 50%) by volume. In addition, the process produces trace gases 

such as ammonia, hydrogen sulphide, or nitrogen (Hornung, 2014). Currently biogas 

is mainly used to generate electricity for local use and for feeding into the national gas 

grid and fore renewable heat production through combined heat and power (CHP) 

mechanisms. When methane is injected into the national gas grid, then this leads to a 

replacement of natural gas and consequent reduction in GHG emissions (DEFRA, 

2011).  

1.3.2 Digestate  

Digestate contains a solid fraction of undigested fibrous material and a liquid fraction 

high in nutrients such as nitrates and phosphates. Digestion of the biomass provides 

biogas, but the digestate is still high in organic content with dissolved nutrients that can 

be further utilised via nutrient stripping (N, P, K), or to produce secondary fuels 

including solid recovered fuel generation or use of fibrous materials extracted from the 

digestate in construction materials (DEFRA, 2011). Digestate can also be used as a 

bio-fertiliser. The composition of digestate varies considerably and this can impact the 

quality of the fertiliser applied on the land. This is crucial to the quality of the soil, the 

chemical and biological compounds in the digestate affecting the water resources, and 

crop cultivation (Hornung, 2014).  The application of digestate is regulated by the 

framework of regulations – PAS (Publicly Available Specification, BSI 110). However, 

nitrogen vulnerable zone legislation, pathogen control and seasonal restrictions can 

limit the use of digestate on agricultural land. Therefore, a more recent focus has been 

in recycling the nutrients from digestate for growing newer resources such as algae 

and thereby enhancing sustainability within a circular economy (Stiles et al., 2018). 

1.4 Biochemical processes in anaerobic digestion  

The AD process is mediated by microorganisms where organic matter is subjected to 

four interrelated and sequential steps (Horan et al., 2011). Anaerobic digestion is a 

complex process which can be divided into four phases of degradation named 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis according to the main 

process of degradation linked to each phase (Deublein and Steinhauser, 2011).  
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The mechanism of the anaerobic degradation occurs at the cellular level and involves 

varied microbial populations. The four main metabolic microbial groups that govern the 

biochemical reactions are hydrolytic fermentative bacteria, proton reducing acetogenic 

bacteria, hydrogenotrophic methanogens and acetoclastic methanogens (Zinder et al., 

1984). These groups of bacteria work in sequence, with the products of one group 

forming the substrates of the next group, where each group is linked to other groups 

in a chain like fashion (Gerardi, 2003). The four different stages of anaerobic digestion 

process are described below in Table 1 Four different stages of ADTable 1. 

Table 1 Four different stages of AD 

AD stage Process & 

Duration 

Governing 

bacterial 

population 

Products Significance Reference 

Hydrolysis Complex 

biomass 

material is 

degraded into 

smaller 

counterparts. 

Carbohydrates 

- a few hours 

Proteins and 

lipids - a few 

days. 

Hydrolytic 

bacteria or 

facultative 

anaerobes 

Cellulosic 

material 

converted to 

simple 

glucose, 

 

proteins into 

amino acids, 

 

lipids into 

long chain 

fatty acids 

Rate-limiting 

step in an AD 

process due 

to slow 

chemical 

decomposition 

of complex 

polymeric 

substances. 

(Sorensen, 

2011) 

(Deublein 

and 

Steinhause

r, 2011) 

Gerardi, 

2003) 

Acido-

genesis 

Degradation of 

monomers 

formed in the 

hydrolysis 

stage into short 

chain organic 

acids C1 – C5 

molecules. 

Quickest step 

in the AD 

process 

 

facultative 

and 

obligatorily 

anaerobic 

bacteria 

Volatile fatty 

acids such 

as butyric 

acid, 

propionic 

acid, acetate 

and acetic 

acid, 

alcohols, 

hydrogen, 

carbon 

dioxide 

Lowering of 

pH and can 

lead to 

inhibition of 

the bacteria in 

the 

subsequent 

stages. 

(Deublein 

and 

Steinhause

r, 2011). 

(Vavilin et 

al., 2008) 

(Sørensen, 

2011) 

(Hornung, 

2014) 



 

Introduction  

  7 Roshni Paul 

Aceto-

genesis 

Fermentation 

of fatty acids 

into acetic acid, 

carbon dioxide, 

hydrogen and 

water. 

homoacetog

enic (acetate 

forming) 

bacteria 

Acetic acid, 

carbon 

dioxide, 

hydrogen 

and water 

Controls the 

quality and 

composition of 

biogas formed 

in the final 

stage 

(Hornung, 

2014) 

(Sorensen, 

2011, 

Gerardi, 

2003) 

Methano-

genesis 

Formation of 

methane 

 

Can take up to 

weeks 

methanogeni

c archaea -  

acetoclastic 

methanogen

s and 

hydrogenotr

opic 

methanogen

s 

Biogas, 

Methane, 

ammonia 

Longer 

retention 

times leading 

to inhibition 

and rate 

limiting step in 

the process 

(Deublein 

and 

Steinhause

r, 2011) 

 

 

1.5 Factors influencing anaerobic digestion – Process parameters  

The operation of an anaerobic digester is a complex process. Hence, these systems 

are very sensitive to small changes in conditions and each intermediate step is 

governed by strict requirements (Horan et al., 2011). Optimised process control of 

anaerobic digesters is challenging because of the interrelationship between 

operational conditions and biomass composition. Operational parameters require 

constant monitoring and adjustment according to the biomass composition and the 

conditions within the reactor which can impact upon the bacterial populations (Gerardi, 

2003). Factors affecting anaerobic digestion process are shown in Figure 3.  
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Figure 3 AD process parameters 

1.5.1 Inoculum characteristics and acclimation  

Anaerobic digestion functions in the degradation of the waste feedstock requiring a 

range of several types of bacteria and hence the use of an inoculum containing the 

optimal bacterial populations is crucial for the success of the degradation process 

(Angelidaki and Sanders, 2004). Primary and secondary sludge from an existing 

operational AD plants provide the bacteria required for hydrolysis and production of 

methane (Gerardi, 2003). The selection of suitable inoculum source is essential as the 

success of the start-up phase is crucial to reach stable operation and the type of 

bacteria found in the inoculum will also depend on the operational conditions and type 

of feedstock they have originated from (Fernandez et al., 2001). The volume of 

inoculum added in an anaerobic batch system is usually dependent on the 

concentration of the feedstock but should be enough to avoid acidification and offer 

process stability (Hansen et al., 2004). Acclimation is the process by which the bacteria 

and their communities adapt to a given set of environmental conditions. This stage is 

critical to any digestion as this affects the methane production rates and the activity of 

the bacteria in the presence of inhibitors (Chen et al., 2008).  

Once an anaerobic digester is seeded and is operating efficiently (acclimated), the 

feedstock can be fed into the reactor. 
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1.5.2 Feedstock characteristics  

Characteristics of the feedstock relates to the physical, chemical and biological 

characteristics of the material including the composition of feedstock in its organic and 

elemental form which can either be favourable for AD or as toxic substances causing 

inhibition towards AD processes. The key to successful anaerobic digestion relies on 

the characteristics of the feedstock. This is measured by optimal biogas yields and the 

rates of organic degradation. The biochemical composition of the feedstock determines 

the quality of anaerobic degradation. The specific methane potential of a feedstock is 

influenced by a variety of factors such as: - 

 Composition - The amount of carbohydrates, proteins and lipids in the 

feedstock.  Feedstock rich in carbohydrates can be easily converted to volatile 

fatty acids (Jiang et al., 2012). Lipid rich feedstock are also considered easily 

biodegradable but because of the accumulation of long chain fatty acids during 

hydrolysis of neutral lipids, they can also induce inhibition in the process.  

 Presence of toxic substances - Proteinaceous feedstock might result in high 

ammonia levels by the degradation of nitrogenous matter (Chen et al., 2008), 

and feedstock with lignin content reducing the hydrolysis rate and consequently 

reducing the extent of degradation (Mata-Alvarez et al., 2000).  

 Inoculum to feedstock (substrate) (I/S) ratio affects the biodegradability of an 

organic feedstock. Instability in the anaerobic processes can trigger acidification 

phenomena for a ration less than 0.5 gVS. Further studies have also shown that 

the biogas yield is in an inverse proportion to the I/S ratio in the range 1.6 – 

5.0 gVS/gVS (Esposito et al., 2012a).   

 The main organic elements in an organic feedstock are 𝐶, 𝐻, 𝑂, 𝑁, and 𝑆 and 

the minor inorganic elements are normally 𝑆𝑖, 𝑀𝑔, 𝐴𝑙, 𝑆, 𝐹𝑒, 𝑃, 𝐶𝑙, and 𝑁𝑎. The 

major elements are present in higher percentages >1% while the minor 

elements in trace quantities (<1%). The elemental composition of a feedstock 

is a key factor as it can indicate the potential inhibitors for a successful 

anaerobic digestion (Vassilev et al., 2010). 

Apart from the feedstock characteristics, there are a number of key parameters that 

need to be monitored and controlled to ensure optimal conditions within the digester. 

These parameters (Figure 3) are however influenced by the feedstock choice and the 

degradation products evolved during the AD process.  



 

Introduction  

  10 Roshni Paul 

1.6 Benefits and challenges of anaerobic digestion  

Anaerobic digestion has its advantages as well as challenges. Anaerobic digestion is 

not only feasible in large scale industrial installations, but can also be applied to small 

scale applications, which makes it appropriate for community or domestic use in 

developed and developing countries and rural areas where energy supply is limited. It 

is a robust process and its benefits include treatment of high moisture containing 

biomass, and the suitability of various types of feedstock leading to higher process 

efficiencies (Appels et al., 2011).  

From a socio-economic perspective, centralised AD plants offer solutions to many 

challenges encountered in agriculture and rural districts. Digestate offers a nutrient rich 

fertiliser which can be applied to land and overcomes some of the issues of odour 

production from silage as well as application of manures to agricultural land in Nitrate 

Vulnerable Zones for example. The impact an AD plant has on the local community is 

significant as the possibility of local communities becoming energy efficient with clean 

renewable energy is higher which can also be in turn a strong motivating factor for AD 

implementation (Madsen et al., 2011). 

Based on the discussion in the previous sections, some of the key challenges for 

anaerobic digestion are given below.  

 Limited understanding of the complex microbiological processes of AD 

 Understanding utilisation of heterogeneous feedstock  

 Developing biogas upgrading technologies to use biomethane and the digestate 

(Appels et al., 2011).  

The AD sector is growing in the UK but there are legislative barriers currently that 

needs to be overcome for successful AD practice (Madsen et al., 2011). As discussed 

earlier there are opportunities for successful AD operation, however there still needs 

optimising practices such as pre-treatment techniques to achieve optimal yield of 

biogas from feedstock. The AD process can be optimised by improving the 

characteristics of the feedstock via pre-treatment techniques, or by controlling the 

different factors influencing AD and optimising the process parameters or by effectively 

changing the design of the reactors to enhance overall methane production from the 

process. An additional approach commonly adopted for AD optimisation is co-digestion 

of multiple feedstock. Co-digestion is digestion of more than one feedstock in 

combination, adopted to improve the characteristics of the composite feedstock. 

Additionally, co-digestion has also shown to enhance biogas production by increasing 
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the nutrients or moisture deficiency that certain feedstock can have and when 

effectively treated anaerobically (Hornung, 2014). This can also have impacts on the 

commercial feasibility of a centralised facility where co-digestion is planned to be 

practiced with a base material (Callaghan et al., 2002). Therefore, it is important to 

understand the economic feasibility of the AD process to critically evaluate the 

performance of the digesters in their intended level of application. 

Anaerobic digestion is widely used in European countries. Along with benefits such as 

pollution control, odour and pathogen level reduction, nutrient recovery and digestate 

production, energy production through biogas is of commercial interest provided the 

economics are favourable. Economic efficiency is dependent on investment and 

operating costs of the biogas plant and on optimum methane production. Biogas 

utilisation depends on biogas quality, and the levels of contaminants present in the 

biogas derived from the waste resources. Overall AD is reviewed as an economically 

favourable process however there is a need for more research to identify the best 

operational practices to enhance methane production from the chosen feedstock 

(Hublin et al., 2014).  

Despite advances in both design and configuration of AD systems and the optimisation 

of feedstock through pre-treatment, one of the prevailing challenges is security and 

consistency of feedstock supplies. The ambition to increase biogas yields lies in the 

availability of the easily digestible waste resources. The following sections will discuss 

the common and new biomass sources and characteristics of biomass feedstock used 

for AD. The section will also examine the advantages and disadvantages of using the 

selected feedstock for AD. 

1.7 Biomass feedstock for anaerobic digestion  

Biomass is a term defining any living or recently dead organic matter that can be 

converted to energy (McKendry, 2002a, Bracmort, 2015). Based on the characteristics 

of the raw materials, conversion processes and their features, biomass feedstock are 

categorised into first generation (e.g. food crops), second generation (e.g. energy 

crops) and third generation (e.g. algae) biomass feedstock and other feedstock (e.g. 

municipal solid wastes) (Srirangan et al., 2012).  

The majority of the biomass which can potentially be used for anaerobic digestion can 

be classified into 2 main categories depending on the source from which it is derived.  

 

 Virgin biomass 
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 Waste biomass 

The different biomass feedstock used for anaerobic digestion is given in Table 2.  

Table 2 Biomass feedstock used for AD 

Feedstock type Examples Importance for AD Reference 

Virgin First and third 

generation biomass 

resources 

Can source from 

plants directly. 

(Fantini, 2017) 

Agricultural crop 

wastes 

crop residues 

include wheat, 

wheat straw, grass, 

grass silage, 

vegetable residues, 

and purpose grown 

like sugar beet 

Can optimise and 

reduce waste 

management. 

Average of 

1530PJ/year is 

available for 

bioenergy 

production using 

crop residues 

(EU Commission, 

1999) 

(Lehtomäki and 

Björnsson, 2006, 

Parawira et al., 

2008) 

(Chandra et al., 

2012) 

(Scarlat et al., 2010) 

Industrial wastes Food processing 

waste, and other 

organic solid wastes 

from industrial 

processes such as 

brewing etc. 

Largest component 

of waste streams in 

the UK and Europe 

(Khalid, 2011) 

(Zhang et al., 2008) 

Municipal solid 

waste 

Digestible organic 

fraction (kitchen 

waste, grass 

cuttings, etc.), or 

indigestible fraction 

(synthetics, plastics) 

and an inert fraction 

(stones, sand, glass 

etc.) 

Effective for energy 

production with 

waste treatment and 

environmental 

benefits 

(Braber, 1995) 

(Chen et al., 2008) 

(Cuetos et al., 2008) 

(Hartmann and 

Ahring, 2006) 

(Benabdallah El 

Hadj et al., 2009) 

(Tian et al., 2015) 

Manure Chicken litter, cow 

manure, swine and 

other dairy sources 

Up to 1.4 billion 

tonnes of livestock 

manure available in 

the EU. 

(Foged et al., 2012) 

(Makara and 

Kowalski, 2015) 

(Ward et al., 2008) 
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Virgin biomass include wood, plants, leaves (lignocellulose) and crops and vegetables 

(carbohydrates), algae etc. while waste biomass include solid and liquid wastes 

municipal, industrial, sewage and agricultural and animal wastes. Virgin or primary 

biomass is directly sourced from plants while waste biomass is derived from the 

different biomass derived products (Fantini, 2017). This coincides with the 

classification of first, second and third generation of biomass feedstock where first and 

third generation sources can be included as virgin sources while second generation 

sources are considered as waste biomass. Predominantly, anaerobic digestion 

processes have been used as a waste management technology. AD has been used 

for sewage sludge treatment in the UK since the mid-twentieth century and has now 

been used to treat a wide variety of wastes including food waste, farm waste and 

industrial wastes. In the UK there are approximately 266 AD operational sites, 214 AD 

plants (about 40%) treating organic waste (Evangelisti et al., 2014). The AD plants in 

operation range in scale and scope and include on-farm, industrial, demonstration, 

commercial or form part of integrated waste management facilities. The variety of 

feedstock treated via UK AD plants include crops and farmyard manures (e.g. chicken 

manure, agricultural slurries, chicken litter, dairy manure), pig slurry and food waste, 

Rye, maize silage, brewery waste, municipal and business food waste, fruit and 

vegetable wastes, grass, brewery effluent, distillery wastes, and energy crops (WRAP, 

2017). 

While there is an abundant supply of organic material generated as waste from a 

variety of sources its availability and suitability for AD is greatly influenced by a variety 

of factors including geographical location, seasonality, processing and contamination. 

All of these factors influence the consistency of the resource and as described 

previously this can evolve challenges for conversion using biological processes such 

as AD. As first and second generation feedstock are mostly derived from edible 

sources, and utilises potable water and arable land, current biomass utilisation focuses 

on the third generation feedstock such as algae, which require neither of the 

requirements of potable water and land and still can be attractive for bioenergy 

production. 

1.8 Algae biomass  

Algae biomass is considered as an integral part of the third generation biomass 

resource overcoming the drawbacks of the first and second generation biomass 

resources (Vassilev and Vassileva, 2016). Algae biomass represent the future 
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feedstock for third generation advanced biorefinery. This requires large investments in 

R&D to provide effective solutions for logistic, technological and economic issues 

associated with the biomass to become competitive (Sanna, 2014). Algae biomass 

includes both microalgae and macroalgae biomass that can be grown in either fresh 

or saline water for use as a feedstock for bioenergy (Sialve et al., 2009). The focus of 

this research is the utilisation of macroalgae biomass for bioenergy (namely biogas) 

production. Therefore, the literature review herein will focus on the characteristics, 

components and bioenergy production from macroalgae biomass. 

1.9 Macroalgae biomass 

Macroscopic algae or macroalgae (seaweed) are an important part of marine 

ecosystems.  These plants have provided a crucial ingredient for food for humans as 

well as animals and can be used as nutrient rich fertilisers for plants. They also contain 

compounds that can be processed into high value products such as phycocolloids 

(agars, alginates and carrageenans), cosmetic ingredients, food supplements or as a 

high value gourmet food ingredient in the Western world (Milledge et al., 2014b).  

Different uses of macroalgae are shown in Figure 4.  

 

 

Figure 4 Different uses of macroalgae 

Source (Milledge et al., 2014b). 
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Macroalgae is commercially valuable for their extracts, agar, alginates and 

carrageenans used for food flavours, colours and nutrients. They have been 

commercialised in the food industry, as texturing agents and stabilisers, however agar 

has long been used in microbiological and electrophoresis media simultaneously. In 

recent years, as a result of market changes and demands, macroalgae costs have 

escalated and so has the competition in the market for better biomass species and 

derivatives from the biomass (Bixler and Porse, 2011). 

Due to high demand, cultivation of macroalgae has become economically profitable for 

many countries. Globally, South East Asian countries are leading the market where a 

relatively low technological business model provides income, employment and foreign 

trade. The potential economic and ecological benefits have been widely acknowledged 

by governments, research institutions, and industry in recent years and this has led to 

increased investment and R&D. (Taelman et al., 2015).  

Macroalgae has been used to produce a variety of biofuels including biogas, bioethanol 

and pyrolysis oil etc. (Wei et al., 2013). The possible conversion pathways are 

illustrated in Figure 5.  

 

Figure 5 Conversion pathways for macroalgae biomass 

Source (Wei et al., 2013) 

Thermochemical conversion routes e.g. combustion, gasification, and liquefaction and 

pyrolysis are still being investigated for macroalgae biomass. However, the efficiency 

of these processes are limited by the high moisture content in macroalgae biomass 

(generally >70% and these processes require feedstock with water content <50%WW). 
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Therefore, thermal processing requires some degree of pre-treatment to remove the 

excess water from the biomass (Ross et al., 2008). Another interesting field of biofuel 

research is bioethanol production from macroalgae where the biomass showed 

significant potential for ethanol production with high carbohydrate content however 

would still require a pre-treatment stage to obtain higher yields (Borines et al., 2013). 

To date the majority of research has focused on anaerobic digestion as the preferred 

conversion route for macroalgae as it can utilise the wet biomass and because of high 

methane yields and conversion rates obtained from the different species of macroalgae 

biomass (Hughes et al., 2012, Allen et al., 2015, Allen et al., 2016). In order to optimise 

the biogas potential from macroalgae and explore the market opportunities for 

utilisation of this biomass as a biofuel feedstock it is important to understand the 

different species, fundamental structure, composition, and methods of cultivation.  

Macroalgae closely resemble land plants and, as with other plant species, the localised 

environmental conditions where macroalgae grow are believed to influence the growth 

and productivity of macroalgae and its subsequent composition. The key 

environmental conditions that can influence this include seawater temperature, 

irradiation, nutrients, salinity, and conditions of the seafloor i.e. benthic characteristics, 

waves and tidal flows. These factors can alter species interactions in a marine 

ecosystem. Hence, marine ecosystems are constantly monitored for observing any 

changes of adaptation or shifts in their habitats due to direct or indirect effects of 

environmental factors associated with it. In temperate regions seasonal variation (i.e. 

variation of the environmental factors over time in a year) is also a characteristic feature 

which has an influential role on the balance of the system (Werner et al., 2016). As 

with other biomass resources, for utilisation of bioenergy production, it is important to 

understand the characteristic properties and structure of macroalgae biomass. 

1.10 Structure, growth cycle and composition of macroalgae biomass 

1.10.1 Physical structure 

Macroalgae are composed of multiple cells which organise to form structures 

resembling the roots (holdfast), stems (stipe) and leaves (frond) of higher plants (John 

et al., 2011). The structure of the macroalgae is shown in Figure 6. 
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Figure 6 Structure of the macroalgae 

Source (Bell and Redpath Museum, 1997) 

The holdfast has a similar function to the roots in a terrestrial plant, the main use, 

however is to enable the biomass to attach to rocky surfaces. The stipe is very flexible 

in order to withstand the pressure from the waves and protect the biomass from 

breakage. The stipe connects the biomass with the blade or the upper part called frond. 

Similar to leaves in the terrestrial plant, the main function of the frond is photosynthesis 

and obtaining nutrients from the aquatic medium. The frond and stipe sometimes 

develop air bladders called floats which will help the stipe and the blades float near the 

surface. The whole macroalgae is sometimes referred to as thallus and the stipe with 

blades are also sometimes referred to as the frond in the literature (Arvanitis, 2016). 

1.10.2 Reproduction and growth cycle  

Growth and reproductive cycle of macroalgae biomass is given in Figure 7. They 

reproduce in vegetative cycle producing sporophytes and in sexual reproductive cycle 

forming gametophytes (Bell and Redpath Museum, 1997).    
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Figure 7 Growth and reproductive cycle of macroalgae biomass 

Source: (Bell and Redpath Museum, 1997)  

Macroalgae can reproduce via sexual reproductive methods through the joining of 

male and female gametes (Sexual cycle in Figure 7). The biomass begins their growth 

cycle as a spore released by the fertile sporophytes (diploid vegetative cycle) and 

develops into male and female plants called gametophytes (haploid vegetative cycle). 

When gametophytes become fertile, they release sperm and egg that fuse to form a 

germling. While growing, the biomass divides into many smaller pieces. The process 

of spore formation starts over again once the germling is a fully-grown, mature 

biomass. In cultivation systems, biomass is seeded from spores or through vegetative 

propagation where sections of seaweed are cut and attached to long strings where 

their growth is supported. The suspended plants are usually in their early growth stages 

in winter months, attaining full growth in six to eight months ready for harvest in 

summer. When fully grown, these are harvested by removing most of the biomass 

including the holdfast or by leaving a small amount of biomass that will grow again into 

another biomass plant. However, many macroalgae biomass cannot be grown from 

the cuttings as they have to undergo a complete reproductive cycle. To enable a full 

developmental cycle of the macroalgae biomass, the transitions from spore to 

gametophyte to sporophyte germling is usually carried out in land-based facilities 

called hatcheries with controlled conditions including, light, water temperature and 

nutrients (Schiener, 2014, Murphy et al., 2015). 

1.10.3 Organic composition  

Macroalgae are photosynthetically efficient plants that inhabit most seas and oceans 

and can contain large amounts of proteins and carbohydrates (van Hal et al., 2014). 

The different components of different macroalgae biomass are given in Table 3.  
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Table 3 Components of macroalgae biomass 

Macroalgae 

Species 

Division Fats 

(g/100g) 

Proteins 

(g/100g) 

Carbohydrates 

(g/100g)  

Fibre 

(g/100g) 

Alaria 
esculenta 
(Winged 
Kelp) 

Brown algae 3.6 18 40 39 

Saccharina 
japonica 
(Kombu) 

Brown algae 1.1 7 55 3 

Fucus 
vesiculosus 
(Bladder 
wrack) 

Brown algae 3.6 6 55 4 

Ascophyllum 
nodusum 
(Knotted 
wrack) 

Brown algae 1 10 52 6 

Palmaria 
palmata 
(Dulse) 

Red algae 1.7 22 45 33 

Ulva Sp. 
(Sea lettuce) 

Green algae 0.6 24 40 5 

 

As it can be noted from the table, the fats, proteins, carbohydrates and fibre content 

vary within species and across divisions. Hence the differences could be potentially 

because of the cellular composition of the biomass across division and also due to the 

environmental conditions where the species have grown. On a percentage basis, water 

is the main constituent of the biomass, and on a dry basis organic matter represents 

between 62 – 87% dry weight. Organic constituents of the biomass are dependent on 

the growth cycle of the seaweed (Hierholtzer, 2013). Carbohydrates are the main 

constituent of macroalgae biomass and the content of the green, red and brown 

macroalgae ranges between 25 – 50%, 30 – 60%, and 30 – 50% (dry weight) 

respectively. The main carbohydrate in red algae is Floridian starch, and in green algae 

it is amylase or amylopectin (starch) (da Silva Marinho, 2016). The main carbohydrates 

in red algae is Floridian starch, and in green algae it is amylase or amylopectin (starch) 

(Anastasakis, 2011). Brown macroalgae biomass also contain some unique 

carbohydrates in their biomass called laminarin, mannitol, and alginate. None of these 

components are found in lignocellulosic or microalgae biomass.  
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These compounds have commercial value across a variety of markets (Ghadiryanfar 

et al., 2016). Organic in nature, these carbohydrates are accumulated by the biomass 

in their earlier growth stages for structural aid in the waters and later growth stages as 

storage sugars.  

The other constituents of macroalgae biomass include proteins, lipids and fatty acids. 

The protein content of macroalgae biomass ranges between 3 – 21%, 10 – 26%, and 

8 – 47% of dry weight in brown, green and red macroalgae species respectively. Amino 

acids of glycine, alanine, arginine, proline, glutamic acid and aspartic acids are also 

found in macroalgae biomass. Macroalgae contain low concentrations of total lipids 

(approx. 0.61 – 6.48% dry weight) however, high proportions of polyunsaturated fatty 

acids. Macroalgae is valued as a highly nutritious dietary supplement due to the 

presence of these nutrients however in western countries, utilisation of macroalgae as 

food is still very less explored (da Silva Marinho, 2016). 

1.10.4 Inorganic composition  

Inorganic composition of the macroalgae biomass is diverse and can make up to 

around 55% of its dry weight. It comprises minerals and trace elements which the 

plants absorb during its growth cycle. Minerals are an integral part of the biomass their 

function being to assist the biomass in its developmental stages, i.e. for the growth of 

fronds, maintenance of stipes against tidal pressure (da Silva Marinho, 2016).  

These inorganic constituents are absorbed from the surrounding water medium and 

occur as light metal salts in the biomass. These salts are found in varying 

concentrations in different macroalgae species include sodium, calcium, potassium, 

magnesium, barium and strontium (Arvanitis, 2016). Besides the essential macro 

nutrients of 𝐶, 𝐻, 𝑂, 𝑁, and 𝑆 and the micro minerals (light metals), macroalgae 

biomass is also shown to assimilate heavy metals such as inorganic arsenic, lead, 

cadmium and mercury undesirable in the biomass if intended for human consumption. 

Other elements of Iodine, Iron, copper, chromium, selenium, zinc, manganese are also 

found in the biomass in trace quantities (da Silva Marinho, 2016).   

1.11 Variation in composition in macroalgae biomass 

Compared to microalgae, macroalgae biomass shows higher volumetric production 

rates and biomass densities. The diversity in the chemical composition of macroalgae 

biomass (carbohydrate based) also makes it a complementary biomass source to 

microalgae (lipids based) for a biorefinery (van Hal et al., 2014).  
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However, there are challenges in realising the fuller potential of macroalgae biomass. 

This is mainly due to the variation observed in their chemical composition (i.e. inorganic 

and organic) which is reported to vary with species population, season, and geographic 

distribution (Marinho et al., 2016). In addition, the carbon and nitrogen content of the 

macroalgae biomass have also been found to vary with carbon content increasing 

during spring and summer (with highest values at the end of summer and lowest in 

winter). Nitrogen concentrations have exhibited the opposite trend with the lowest 

values recorded in late spring and highest values observed in late winter. The high 

carbon values for summer may be attributed to the high photosynthetic activity during 

summer time leading to the accumulation of carbon in proportion to the carbon 

consumed for metabolic purposes. This increases the overall carbon to nitrogen ratio 

in the biomass. Similarly, during spring and winter, photosynthetic activity is lower as 

the carbon is being used for the production of new tissues. As new tissues are formed, 

the biomass is rich in nitrogen content leading to a lower carbon to nitrogen ratio in the 

biomass (Arvanitis, 2016).  

As the macroalgae biomass moves through different stages in its growth cycle, organic 

composition of the biomass is also found to be varying with lower carbohydrate 

(laminarin, alginic acid and mannitol) levels in winter and higher during summer and 

autumn (Hierholtzer, 2013). Maximum levels of protein occur during winter and early 

spring followed by a constant decrease till the end of summer with minimum values. 

On a dry weight basis cellulose content of the biomass also varies throughout the year 

with maximum values in spring and decreasing in summer with increased mannitol 

levels. In winter the macroalgae will exhibit higher concentrations of inorganic 

compounds e.g. micro elements and light metals compared with lower concentrations 

in summer. This is because during winter months the plants tend to accumulate these 

elements for the development of their rigid cellular structure to survive lower water 

temperatures as opposed to focusing their efficiency in photosynthetic activities 

producing carbohydrates which occur in summer (Arvanitis, 2016). Even though much 

of the variability in the composition of the biomass is correlated to seasonal change 

(and is often referred to as seasonable variability in the literature), changes in 

environmental factors, (such as water temperature, salinity, irradiance, depth at which 

the biomass grows throughout the year) are also shown to have significant impacts on 

the composition and therefore on quality of the biomass produced (Hierholtzer, 2013). 

Given that the composition of biomass can be influenced by a number of factors it is 

therefore important to carefully consider the sites chosen for macroalgae cultivation. 
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While there are limitations surrounding control over climatic changes localised factors 

such as wave exposure, benthic conditions (rocky, sandy sea bed), salinity, tides etc. 

can be measured and to some extent considered when adapting cultivation systems 

to grow suitable species for a given location (Hierholtzer, 2013, Schiener, 2014). 

Similarly, understanding the local environmental conditions enables operators to 

choose optimal sites for future cultivation. The cultivation techniques commonly 

adopted for macroalgae biomass are described in the next sections. 

1.12 Cultivation of macroalgae biomass 

Globally cultivated macroalgae biomass production is estimated at 23.8 million tonnes 

(wet weight) in comparison to 1.1 million tonnes harvested from wild stocks. Compared 

to the global production figures, macroalgae production in Europe is negligible, at 

around 1%. Norway and France are the main macroalgae producers in Europe with a 

combined annual production of 181,565 tonnes mostly harvested from wild stocks 

(Marinho et al., 2016).  

All three types of red, green and brown macroalgae biomass are found in the UK 

coastlines where environmental conditions are favourable for the respective species. 

In temperate seas, brown species dominate the biomass but the pattern of species 

distribution differs among geographical regions. Brown macroalgae biomass e.g. 

Laminaria species and Ascophyllum are common species found on the British 

coastline (Hierholtzer). The reported yield of brown biomass produced from rope 

cultivation globally is estimated at 80 – 400 tonnes (wet weight) per hectare per year, 

where highest values are found in Asia while Europe has a lack of yield values for up 

scaled sites (da Silva Marinho, 2016).  

Among the three varieties; red, brown and green algae, brown algae are the faster 

growing and is commonly termed kelp. These kelps commonly comprise up to 60% (as 

dry weight) carbohydrates. Studies have shown that brown macroalgae also 

demonstrates variability in its macromolecular compositions across various seasons 

and has the highest carbohydrate concentrations in autumn and lowest in winter. 

Similar trends are also reported for inorganic composition of the brown biomass with 

variations in minerals and salt content (Jiang et al., 2016). 

1.13 Cultivation types of macroalgae biomass 

Macroalgae cultivation can be carried out on shore, near shore or off shore determined 

by distance of the system from land. On shore cultivation methods include in shore 
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coastal farms, and ponds. Pond culture systems are the preferred method for specialty 

market products as there is greater control over the environmental conditions. Near-

shore is the most prevalent method in its near commercial phase while off shore is still 

considered to be in experimental phase. Near shore systems are simple to construct, 

easy to manage, low cost, and are easily accessible at low tide. Off shore farms are 

those that are constructed in deeper water, requiring growth structures that are 

anchored to the ocean floor, or floating lines requiring positioning devices. This method 

is favoured in weaker water currents or with too deep water in which fixation the bottom 

lines is too difficult. Near shore cultivation results in faster growth rates but farm 

managing is difficult and the seaweed is susceptible to damage and degradation to 

weather, waves and boats (Ghadiryanfar et al., 2016). On shore cultivation is proven 

to be costly as land-based cultivation requires additional nutrients for biomass growth. 

However, the capital cost, production cost, maintenance etc. of off-shore cultivation is 

also found to be higher than the market price for the biofuel from the macroalgae as 

the biomass contains considerable amount of water (Jiang et al., 2016). 

1.14 Cultivation processes of macroalgae biomass 

The cultivation process can be divided into two main phases. Phase 1, the hatchery 

phase and Phase 2, the grow-out phase. The initial cultivation is conducted in a 

controlled hatchery prior to seeding and grow out phase in open waters (Roesijadi et 

al., 2010). The process is cyclical because the cultivation procedures start straight after 

harvest and as the selection of fertile seaweed is complete, the hatchery cultivation 

processes can be initiated. The macroalgae biomass cultivation stages are shown in 

Figure 8.  
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Figure 8 Macroalgae biomass cultivation stages 

Source: (Roesijadi et al., 2010) 

Once the collection of fertile seaweed is complete, summary of the activities in the 

hatchery stage are as follows: - 

  Release of spores from fertile material 

  Development of culture under controlled lab conditions 

  Induction of reproduction under altered lab conditions 

  Spraying of fertile cultures on to suitable substrate (Culture string) 

  Development of culture on the string substrate under lab conditions. 

Summary of grow out phase include the activities such as: -  

  Deployment of culture on long line or other systems at sea 

  Development of seaweed in approximately 6 – 7 months 

  Harvest of seaweed.  

(Ghadiryanfar et al., 2016). 

1.14.1 Hatchery and seeding 

The hatchery phase consists of collecting the spores from the fertile macroalgae 

biomass, induction of reproduction with supplemented nutrients in the growth medium 
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and development of spore cultures into seedlings under laboratory conditions (Jiang et 

al., 2016). Hatchery seedlings of 1 – 2mm length are ideal for transfer out to sea 

(Schiener, 2014, Jiang et al., 2016). Hatchery seedlings of 1-2mm length are ideal for 

transfer out to sea ( Schiener, 2014). These seedlings of considerable length are then 

attached to longer lines (strings attached with buoys or air floats for support) which are 

then deployed at sea (Jiang et al., 2016).   

1.14.2 Planting out at sea  

Generally divided into two types, seaweed planting out (or deployment) is done either 

vertically or horizontally, depending on the way in which the ropes, containing the 

seedlings, are attached and suspended in the sea level air floats and anchor lines 

(Jiang et al., 2016). Techniques used for macroalgae cultivation are quite comparable 

to mussel farming techniques. The horizontal rope holds together a number of buoys 

floating on the sea surface level. From each buoy a vertical rope with the seedlings are 

then immersed to the sea (Hierholtzer, 2013). The depths of these ropes are then 

adjusted to a suitable length and then left untouched to allow for growth. Periodic 

measurements of lengths are carried out only after a few months (Jiang et al., 2016, 

Schiener, 2014). Techniques used for macroalgae cultivation are quite comparable to 

mussel farming techniques. The horizontal rope holds together a number of buoys 

floating on the sea surface level. From each buoy a vertical rope with the seedlings are 

then immersed to the sea (Hierholtzer, 2013). The depths of these ropes are then 

adjusted to a suitable length and then left untouched to allow for growth. Periodic 

measurements of lengths are carried out only after a few months (Schiener, 2014). 

1.14.3 Transport  

The transportation route is dependent on the distance of the farm from the land. 

Transport of biomass is mainly via boats which run on fossil fuels. Transportation is 

required at two intervals; one after the hatchery stage for the transport of seedlings to 

the farm and later during harvest stage carrying fully grown biomass from the farm to 

the land.  Transportation costs increases as farm distance increases from the coast as 

longer distances require increased use of fossil fuels and associated emissions. The 

greenhouse gases emissions attached to the macroalgae cultivation is mainly 

associated with the transportation costs. The transport of macroalgae by boats is also 

weather dependent and journeys are often postponed during bad weather conditions 

often postponing the harvest times of the macroalgae biomass. On the other hand, 
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land based cultivation does not require the same transportation and also are not 

influenced by physical conditions which affect offshore growth for example weather, 

waves, tidal changes etc. however they are associated with still higher installation and 

maintenance costs (Ghadiryanfar et al., 2016). 

1.14.4 Harvest 

Traditionally macroalgae have been harvested from natural/wild stocks, however, 

these resources are being depleted by overharvesting and non-scientific harvesting 

practices and are therefore considered unsustainable (Sanderson et al., 2008). In 

addition, harvesting from wild stock also affects the natural ecosystems causing 

detrimental effects on the organisms depending on these biomasses for their growth 

and survival (Hughes et al., 2012). Harvesting of the cultivated biomass is usually 

performed in spring or early summer months. Fishing boats aided with mechanical 

cutters will be driven out to the farm to harvest the fully grown biomass. The long lines 

are lifted up to the sea surface and stripped off the lines manually (Ghadiryanfar et al., 

2016). Summer biomass becomes infested with epiphytes, therefore food quality 

biomass is normally targeted for harvest in spring in months of April and May (Marinho 

et al., 2016a). As cultivation techniques are optimised, harvesting of the biomass can 

also be controlled by improving stocks with genetic strain collection, and by harvesting 

mono cultures instead of co harvesting unnecessary species. The harvesting times can 

also be modified to target the best chemical composition of the biomass required for 

either bioenergy production or high value products development (Hierholtzer, 2013).  

In comparison to other traditional biomass sources, macroalgae offer advantages of 

higher productivity and no competition for arable land and potable water compared to 

traditional land crops. However, based on current information surrounding the costs 

and benefits, offshore cultivation of the biomass in the North Sea remains economically 

unfeasible if biomass is targeted for the extraction of one particular high value product 

e.g. animal feed ingredient. Hence, a cascading bio-refinery approach should be 

adopted for better utilisation of the ingredients of the biomass for high value products 

and the residue for the production of biofuels (Bikker et al., 2016).  As brown 

macroalgae biomass is the most common and under exploited biomass in the UK, its 

suitability as an anaerobic digestion feedstock will be the focus in the literature review 

section to follow.
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2 Literature Review   

Macroalgae biomass has been the focus for bioenergy production as a third generation 

energy source in recent years. Macroalgae is a dominant plant group which are farmed 

in approximately 50 countries in the world. Globally, farmed aquatic plants contributed 

28 million tonnes to total world aquaculture production in 2015. Asia contributes the 

most and Indonesia is the major contributor in the sector where production in 2015 was 

10 million tonnes. In Asia the biomass is predominantly used for human consumption 

(Cochrane et al., 2009). However, in Europe, native species including brown 

(Phaeophyte) macroalgae commonly known as Kelp, have been cultivated at large 

scale and researched for their suitability as biofuel source.  

As Kelp or brown algae biomass is the native species in the UK, the literature review 

for this study is focused on this and in particular the species Saccharina latissima, S. 

Latissima. This study involved a comprehensive review of peer reviewed journals 

accessed via Google Scholar using key words such as anaerobic digestion, 

macroalgae biomass, Europe, Brown algae, co-digestion, Kelp, S. Latissima and 

techno-economics feasibility of anaerobic digestion. The number of papers used for 

this study, the categories and focus time period of research are given below.  

The initial research literature focused on the time period from 2000 until 2018. Google 

scholar results showed 161,000 research papers including patents and citations on 

anaerobic digestion while the term ‘brown algae’ search resulted in 300,000 results. 

The search on ‘anaerobic digestion of algae’ showed 18500 results while ‘anaerobic 

digestion of brown algae’ resulted in only 23 papers. ‘S. Latissima’ showed a result of 

3060 papers while semi continuous digestion of S. Latissima showed a total of 377 

results. Global experimental determination of ‘seasonal variation in Kelp’ showed a 

result of 18200 results while seasonal variation and chemical composition of Kelp in 

Europe for AD purposes resulted in only 1630 papers. The advanced search on Google 

Scholar allows for more focused research with the terms either anywhere in the article 

or with the title and also to differentiate between review and experimental papers. 

Therefore, the literature search was then focused in terms of the year of publication 

and species utilisation of S. Latissima for AD in particular.  

As the time period focused on the last 5 years from 2013-2018, interestingly it could 

be noticed that more papers on S. Latissima were published during these years than 

in the previous 12 years.  The advanced search on “Anaerobic Digestion” of “S. 

Latissima” only showed a result of 3 papers with these key words in the title, however 
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43 papers with “Semi continuous digestion” where the species is used for comparison 

with another species for AD purposes. Biochemical methane potential of S. Latissima 

in Europe with experimental results showed 115 papers while anaerobic co-digestion 

with the focus on co-digestion showed 98 papers. Interestingly 119 results were shown 

for the search of anaerobic digestion of S. Latissima in North West Europe with 93 

results for experimental studies. However, upon analysing the papers, more than 50% 

of the papers were review papers with very few experimental studies involved. Also, 

the search included any study where S. Latissima was included in the text of the papers 

to give such large numbers. In scrutiny, it could be seen that the important areas of 

study focused on S. Latissima in the last five years was their feasibility for AD, biogas 

potential, inhibition studies for sodium or potassium levels, nutritional value, life cycle 

assessment in comparison to first and second generation biomass sources and an 

additional species for comparison during semi continuous digestion. No studies have 

been found to be during this review that analysed the variation of the biochemical 

composition of the macroalgae biomass in North West Europe for AD purposes with 

supporting experimental data on the impact of environmental factors or harvest times. 

No papers/ studies were identified which evaluated semi continuous digestion of S. 

Latissima comparing thermophilic and mesophilic conditions for biomass grown in 

North West Europe. Similarly, there were no techno-economic nor LCA studies 

identified on the co-digestion potential of S. Latissima with experimental results. The 

review also found that there was a gap in the literature for studies comparing the 

characteristics, and growth conditions between the wild and cultivated biomass of S. 

Latissima.  

In summary, a total of 165 papers were reviewed as a part of this literature review 

search with particular focus on the recent papers on S. Latissima published from 2013 

to 2018 out of which only less than 30 papers covered areas of S. Latissima, anaerobic 

digestion, semi continuous digestion, co-digestion, and life cycle assessment with 

experimental results. Therefore, the focus is on the extent to which environmental 

conditions, growth cycles and cultivation type impact on biomass characteristics and 

on subsequent valorisation pathways for macroalgae. In addition, European project 

reports, governmental panel reports from e.g. IPCC (Intergovernmental panel on 

climate change) & DEFRA (Department for environment, food and rural affairs), IPCC 

& DEFRA, were also reviewed and referenced to gain a better understanding of the 

wider challenges and opportunities of utilising S. Latissima as a biofuel resource. 
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Recent theses published on S. Latissima between 2013-2018 were also referenced as 

a part of this study. 

2.1 Macroalgae biomass characteristics 

Climate change has a direct impact on the physical and chemical properties of water 

resources worldwide and oceans are no exception. The Food and Agricultural 

Organisation of the United Nations (FAO) published a report in 2016 identifying the 

complex challenges of climate change adaption which the aquaculture sector must 

address. This report identified a variety of physical (temperature anomalies, Sea 

surface temperature changes, precipitation anomalies, rising sea levels, floods, 

drought, cyclones), chemical hazards (salinity changes, pH changes, low oxygen 

levels), and biological hazards (eutrophication, pathogens and parasites, pollution) 

cause direct and indirect serious threats to the sector. These factors have to be 

addressed via short- and long-term studies to identify and understand how the impact 

upon macroalgae species, their habitats and communities in a cumulative way (Fao, 

2016).  

 Macroalgae have a variety of physiological adaptation techniques which are triggered 

as a result of changing environmental conditions. Kelps in particular are known to 

possess very high phenotypic plasticity allowing them to adapt to a wide range of fixed 

and varying environmental conditions. Kelp undergo physiological adjustments to 

preserve cellular growth and biochemical composition in response to seasonal and 

nutritional cues (Kerrison et al., 2015). This has a direct effect on the composition and 

characteristics of the biomass and the associated yield and quality of chemicals which 

can be extracted and converted to bioenergy. In addition, understanding the complex 

interrelationships between environmental conditions and macroalgae growth ensures 

that future deployment and utilisation of macroalgae are sustainable and commercially 

viable.  

The following sections will provide a review of the current knowledge surrounding 

macroalgae and the extent to which environmental conditions impact and its growth 

and physical, biological and chemical characteristics.  

Bioenergy production requires large quantities of biomass to be commercially viable. 

The transition towards wider utilisation of macroalgae for bioenergy purposes, 

therefore, requires a greater understanding of specific, ubiquitous species. In addition, 

the efficacy and efficiency of conversion processes are influenced, to some extent, by 

the consistency and security of biomass feedstock supplies. To this end it is important 
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to identify the key factors which impact on composition and characteristics, particularly 

those characteristics which are favourable for biogas production. From the literature 

review the following factors were determined to impact on biomass characteristics and 

composition: 

1) Local Environmental Conditions 

a) Sea water temp 

b) Benthic conditions 

c) Salinity, Irradiance and Depth 

d) Tides and currents 

e) Pollution and Fouling 

2) Growth Cycle (and therefore the point in this cycle when biomass is harvested) 

Growth / cultivation conditions (whether biomass is artificially cultivated or naturally 

occurring as kelp forests) 

Kelp is one of the most ubiquitous species found in the North Atlantic species and 

specifically in the British Isles. Of the Kelp, the most common species are Laminaria 

digitata, Saccharina Latissima, Alaria esculenta, and Laminaria hyperborea (Yesson 

et al., 2015). Most current studies focus on Laminaria digitata as countries such as the 

UK in North Western Europe have long stretches of coastlines surrounding their main 

lands where the species is cultivated for extracting high value products such as 

pigments, gourmet and nutritional products. S. Latissima is equally interesting but there 

are only a few cultivation sites in the UK and it is currently grown as a trial species in 

most cultivation farms. In addition, there are no industrial scale farms in the UK where 

currently S. Latissima has any reported yearly yield. There are only estimated yields 

based on studies carried out on similar species like Laminaria digitata. Hence this gives 

researchers a good opportunity to study the species requirements and thereby 

optimise the cultivation parameters, growth conditions, harvest practices for S. 

Latissima.  

2.1.1 Impact of local environmental conditions on the characteristics and composition 

of macroalgae  

As discussed previously many environmental parameters that control successful 

macroalgae growth are influenced by both natural and human factors. Natural factors 

such as water quality, photosynthetic active radiation, temperature, salinity, and 

concentrations of inorganic nutrients including𝐶𝑂2, absence of environmental toxins, 

seasons, wind, rainfalls, tides, and human activities such as aquaculture and 
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wastewater discharges are specific to each geographical location. Environmental 

conditions in proximity to the farm site location are therefore important to the success 

of the cultivation of kelp (Peteiro and Freire, 2013). The following table (Table 4) will 

now review literature on the environmental parameters recorded for macroalgae 

biomass. 

Table 4 Review of lieterature on environmental factors 

Environmental 

factor  

Main findings  Comments References 

Sea water 

temperature 

 

(Temperature of 

the surrounding 

waters where Kelp 

cultivation occurs) 

Conservation 

studies identified 

temperature as a 

key factor for Kelp 

growth. 

Preferred 

temperature is 

around -1.5°C and 

not surviving 

beyond 18°C. 

Increasing 

temperatures led 

to the shift of Kelp 

populations 

towards lower 

temperature 

regions. 

 

Kelp is vulnerable 

to climate change 

related 

temperature shifts 

in the seawaters. 

Further 

conservation 

studies required on 

Kelp forests in 

Europe. 

(White N. & 

Marshall, 2007) 

 

(Gao et al., 2013) 

(Merzouk and 

Johnson, 2011) 

(Philippart et al., 

2011) 

(Smale et al., 2013, 

Fernand et al., 

2017) 

Benthic 

Conditions 

Biotic and abiotic 

characteristics of 

the seafloor 

present at varying 

depths of marine 

ecosystem 

Characteristics 

gradually changes 

with time, and can 

impact on the 

marine ecosystem. 

 

 

None of these data 

available for 

macroalgal growth 

in Europe including 

spatial mapping for 

Kelp in the UK. 

(OSPAR, 2017) 

(Frid et al., 2009) 

(Araujo et al., 

2016) 

(Walls et al., 2017) 
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Variations as a 

result of external 

factors such as 

climate change. 

Requires more 

study in relation 

with IMTA systems 

Salinity 

Variety of 

inorganic 

concentrations in 

seawater 

Salts include Na, 

K, Ca, Mg, Ba, and 

Sr. 

Fluctuate during 

the year. 

Salts are important 

for macroalgal 

growth and 

development. 

(Ding et al., 2013) 

(Adams et al., 

2011, Gunaseelan, 

1997, Black, 1950, 

Carpentier et al., 

1988) 

Irradiance 

Light intensity from 

varying day length 

Higher in summer 

and lower in 

winter. 

Growth rate and 

irradiance found to 

have a liner 

relationship 

Saturation of Kelp 

growth occurred at 

photon flux density 

above 70 µE/m2/s. 

Fortes and Luning 

(1980) 

(Walls et al., 2017) 

Water Depth 

Different water 

levels in sea 

Kelp 

reported to grow in 

sublittoral zone a 

little above the 

tidal mark up to the 

depth of eighteen 

metres 

Cellulose content 

of Kelp found to 

vary with season 

and water depths. 

 

(White N. & 

Marshall, 2007) 

(Walls et al., 2017) 

Tides and 

Currents 

Hydrodynamics in 

the sea 

Higher 

densities of frond 

found in reduced 

current regions. 

Can be detrimental 

causing the Kelp 

lines to wash off 

the biomass, also 

limits the fouling 

agents on fronds. 

(Walls et al., 2017, 

Peteiro and Freire, 

2013). 

(Walls et al., 2018) 

Pollution and 

fouling 

Fouling 

agents including 

hydroids, snails, 

blue mussels, 

Pollution from 

anthropogenic 

activities. 

(Walls et al., 2018) 

(Ward et al., 2014) 

(Fernand et al., 

2017) 
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Presence of 

epiphytes and 

bryozoans 

bryozoans, 

epiphytes settle on 

the fronds during 

summer. 

No study 

conducted to 

assess the effect 

of pollution on Kelp 

cultivation farms, 

IMTA systems etc. 

 

In summary, environmental conditions such as seawater temperature, benthic 

conditions, salinity, irradiance, water depth, tides, currents, pollution, fouling can all 

directly and indirectly influence the growth and characteristics of macroalgae and are 

therefore important considerations when selecting the best geographical location for 

the cultivation of biomass. Understanding how these factors influence characteristics 

is also important when optimising cultivation conditions to achieve biomass with 

preferred characteristics.  However, this review has identified that macroalgae growth 

is complex and characteristics are not determined by one factor alone but by a 

combination of several environmental factors.   

The findings cited here were from individual, isolated studies evaluating growth and 

characteristics in relation to one particular environmental factor in a particular location. 

The focus of these studies has been ecological and environmental preservation rather 

than for bioenergy production. In addition, the studies were performed, in general, on 

brown algae biomass or Kelp rather than specifically S. Latissima.  

Therefore, there is an evident gap in the literature whereby further research is required 

to better understand the interrelationship between biomass growth conditions and 

subsequent characteristics in order to both select appropriate sites and conditions for 

cultivation as well as predict the impact of environmental change on future biomass 

quality. This is particularly relevant for species such as S. Latissima which grows in 

abundance in UK waters and therefore offers the greatest potential as a feedstock for 

AD.  

2.1.2 Impact of growth cycle on the characteristics and composition of macroalgae 

The literature on the biochemical profiling of macroalgae biomass is found to be 

broadly referred to under the generic term ‘seasonal variation’. This is attributed to the 

difference recorded in their biochemical constituents harvested throughout the year. 

However, the variation in the biochemical contents of biomass occurs seasonally owing 

to the growth stage of the biomass (Ghadiryanfar et al., 2016). Therefore, this review 
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maintains the view that the term seasonal variability does not reflect the seasons of 

spring, summer, autumn and winter, rather the biomass response to environmental 

conditions in their composition at different points of time throughout their growth cycle. 

Seasonal variation and corresponding variability in the in the characteristics of the 

biomass in its growth cycle becomes important when considering the best time to 

harvest the biomass for bioenergy purposes. S. Latissima, the brown kelp species has 

been studied in the literature for seasonal variation in its biochemical composition 

however not in relation with AD.  

Macroalgae biomass resembles plants and have distinct life stages during different 

times of the year. S. Latissima is reported to be a perennial species which includes a 

period of maximum growth in the first half of the year followed by a period of reduced 

growth during the summer months with sori (reproductive spores) formation from late 

autumn until early winter (Azevedo et al., 2016). As discussed in the introduction 

chapter on biomass, S. Latissima also exhibit complex and diverse lifecycles with 

combinations of sexual and asexual reproductive pathways which is very important to 

understand to develop appropriate cultivation techniques and also determine the best 

harvest times for the biomass intended for various purposes including bioenergy.  

Seasonal profiling of macroalgae biomass has been attractive to researchers in order 

to quantify their unique carbohydrate contents. Macroalgae biomass in general, 

consists of large amounts of carbohydrates (almost 60%) and the concentration of 

these storage products are reflected in the biomass biochemical composition and 

inorganic content (Roesijadi et al., 2010). For S. Latissima species (which belongs to 

the brown algae group) the major storage product is primarily laminarin and mannitol. 

Earlier studies in the literature have reported the concentration of laminarin range 

between 2 – 34% of the algal dry weight and mannitol exists around 2% in the cells 

(Davis et al., 2003, Bold and Wynne, 1978, Lewis and Smith, 1967). The cell wall of 

the species has cellulose, alginic acid (10 – 40% DW) and fucoidin (5 – 20% DW) 

(South and Whittick, 2009).  

Another aspect of biochemical profiling was to assess the concentration of these 

components in different parts of the biomass. The physiology of the macroalgae 

biomass is similar to plants, the bottom part called holdfast (similar to roots), and the 

part above named stipe (similar to stem), and leaf life structures are called frond 

(Arvanitis, 2016). Being physiologically similar to plants, it was assumed that different 

parts of the biomass will have different concentrations of these components. However, 

it was not quantified until research carried out by Black et al. in 1950s. The study 
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showed that each part of the seaweed contains different compositions of its 

constituents like laminarin, mannitol, alginic acid, and ash where the part of the blade 

of S. Latissima nearer the stipe had a higher mannitol and ash content and lower 

protein and laminarin content. Laminarin, protein and alginic acids were found higher 

in the upper parts of the blade. However cellulose levels were found steady in all parts 

of the blade (Black, 1948).  

There are studies in the literature which have equally explored the changes in the 

organic and inorganic constituents of the biomass termed seasonal variation. A study 

by Adams et al. (2011) found that the organic constituents in the form of alginic acid, 

mannitol and laminarin are usually lower in winter and spring, whereas the level are 

high in summer and autumn. In another study, ash and nitrogen levels were also found 

to fluctuate during the year, whereas sulphur concentrations were found stable with 

values typically four times lower for brown seaweed when compared to red seaweed 

(Hierholtzer, 2013, Rupérez et al., 2002, Adams et al., 2011).  

Despite these reported studies, the most cited study performed on European Kelp is 

still the seasonal chemical profiling done by Black (1950). However, a more recent 

study was carried out by Schiener et al. (2015) on Kelp species including Laminaria 

digitata, Laminaria hyperborea, Alaria esculenta and Saccharina Latissima for 14 

months. The study analysed the biomass to identify seasonal variations and thereby 

predict the best harvest times for these species. For the species, S. Latissima the 

carbohydrates (alginate, laminarin, mannitol and cellulose) represented up to 84% of 

the seaweed biomass. Alginate was found higher in winter months and lower summer 

(July). Laminarin (24 – 27%) and mannitol (12 – 19%) was found highest during the 

late summer to autumn months and lowest during the spring months. The same study 

concluded that as the total carbon content in the biomass was highest in autumn, the 

seasonal variation in the species should be targeted to harvest the best biomass for 

fermentation or other bioenergy derivation routes (Schiener et al., 2015).   

This can be explained by the growth cycle of the macroalgae biomass. S. Latissima is 

a perennial species which undergoes a period of maximum growth in the first half of 

the year followed by a period of reduced growth during the summer months with sori 

(reproductive spores) formation from late autumn until early winter (Azevedo et al., 

2016). In winter, the biomass is in its earlier growth stages and therefore contains more 

nitrogen or protein compounds for their cellular growth, and the carbon is utilised for 

producing the alginate content (structural carbohydrate) for better structural support of 

the biomass against the environmental conditions. Acquiring inorganic elements for 
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their growth also continue to increase from winter till spring. As spring approaches with 

increased irradiance, the rate of biomass photosynthesis also increases however 

concentration of alginate starts to decrease. The photosynthetic activity of the biomass 

continues through spring to summer where the biomass utilises the carbon to produce 

more storage carbohydrates i.e. laminarin and mannitol. This continues until late 

summer to autumn months where the biomass prepares for their reproductive stages 

and survival of winter months (White N. & Marshall, 2007). 

The seasonal variability of macroalgae biomass is reported to be an important factor 

however again these studies have their limitations. Even though the study by Black 

(1950) has been extensive, this study needs to be updated from a bio-refinery 

perspective. The work published by Schiener et al. (2015) had bioethanol production 

as its focus and this again is limiting if the biomass is intended for anaerobic digestion 

purposes. Also, from the studies reviewed it becomes clear that even though the 

terminology used for recording the biochemical profiling noticed in the Kelp species is 

‘seasonal variation’, it is not the ‘season’ that seems to cause the difference in 

composition of the biomass. The view was supported by Black’s research with 

observations made on the fucoidan and cellulose content. He reported that the 

concentration of fucoidan is not dependent on the seasonal variation rather on the tidal 

strength and is found higher in the species growing in intertidal regions. The cellulose 

content varies with the strength requirements of the biomass hence depends on the 

depth of immersion in the waters (Black, 1948). Hence this triggers the need for more 

studies to simultaneously observe the growth cycle of the biomass and their 

biochemical composition over a year at different sites.   

In most cases, the reported studies have focused on the holdfasts rather than the 

fronds. This is because they also function as a sediment trap accumulating the organic 

nutrients for the growth of the biomass and also for any organism inhabiting the 

structure (Walls et al., 2017). However, from an AD perspective, composition of the 

fronds is more important as they are more suitable as a biomass feedstock and 

holdfasts are usually discarded as they may be more difficult to digest due to the 

presence of cellulose and can cause potential for inhibition from heavy metals etc. 

Therefore, it is necessary to understand how the seasonal variation is observed in the 

fronds in comparison to the holdfasts as fronds are attractive parts of the biomass for 

high value products and bioenergy.  

In addition, this review has identified that, seasonal profiles for the macroalgae 

biomass are generally focussed only on wild populations of macroalgae. It is essential 
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to extend the profiling to cultivated biomass as this is a more sustainable and viable 

way of sourcing the macroalgae for bioenergy. Wild species can survive for an average 

of 10 years and plant age can vary significantly within a wild population, therefore in 

addition to growth phase, age of plant may be an important factor influencing the 

characteristics and therefore variability of biomass. (Walls et al., 2017). From this 

review, it can be concluded that there remains a significant gap in knowledge and 

information surrounding the impacts of growth phase on the characteristics and 

composition of S. Latissima particularly in relation to its suitability for bioenergy 

production. Harvesting of biomass can be a time consuming and costly part of the 

process and as described previously, a greater understanding of these 

interrelationships will help to inform economic and operational decisions.  

2.1.3 Impact of growth type on macroalgae biomass  

As described, the key factors that influence the characteristics and composition of 

macroalgae include environmental conditions and growth cycle. It is important to 

ensure a secure and sustainable supply of biomass for bioenergy and other high value 

markets. Therefore, we must consider the advantages and disadvantages of artificially 

cultivated biomass compared to wild grown biomass in terms of techno-economic 

feasibility, environmental sustainability and also biomass yield and quality.  

Sourcing wild biomass is not considered as a sustainable option (Hughes et al., 2012). 

Harvesting Kelp from the wild habitats is not encouraged as it might affect the 

ecological balance in the marine environment. Colonisation of Kelp stipes and 

holdfasts make Kelp forests a hive of highly diverse flora and fauna. This varies with 

spatial location and time of the year (Walls et al., 2017). Kelps have been mainly 

cultivated for iodine and alginate production in Europe (Guiry and Morrison, 2013, 

Nielsen et al., 2016 ). The kelp cultivated biomass has increased from about 2 million 

tonne in 1990 to more than 8 million tonne in 2012 (Nielsen et al., 2016). Cultivation 

ropes can also act as a habitat for a number of different organisms as both the long 

line structure and the kelp biomass can act as a platform for habitat and refuge for 

these species (Teagle et al., 2017). However, the percentage of inhabiting fauna on 

the cultivated biomass is lesser when compared to the naturally occurring Kelp forests.  

Cultivated and wild S. Latissima can potentially vary in their characteristics. Wild Kelp, 

even though they occur as annuals differ in their maturity stages and age (White N. & 

Marshall, 2007). Cultivated species on the other hand are comparatively younger as 

they are grown and harvested in one complete cycle. Even at the same geographical 
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location, growth pattern reflecting in the biomass composition of wild and cultivated 

species can be different owing to the varied environmental conditions they are 

subjected to. Wild Kelp are shown to grow a characteristic flattened or slightly conical 

holdfast attached to a rock while cultivated Kelp are seeded onto ropes for growth. This 

results in different morphology for the holdfasts for wild and cultivated species. The 

wild species will draw its characteristics from the surrounding oceans and benthic floors 

while cultivated species have suspended growth altering the environmental conditions 

in which the species grow (Walls et al., 2017). Cultivated species will be less subjected 

to deeper oceanic currents however tidal waves activities can be substantial. In terms 

of irradiance, cultivated species will have more access to light being closer to the 

surface in comparison to the wild counterparts which can also increase the fouling in 

summer months (Teagle et al., 2017). Pollution can also affect wild species 

considerably high in comparison to cultivated biomass as sedimentation can be high 

on benthic floors due to these activities (OSPAR, 2017). The coastal aquaculture is 

also shown to suffer from floods and heavy runoff of freshwater into cultivation sites 

which tends to lower the salinity levels which stimulate the growth of seaweed that 

suffocates the seaweed (Cochrane et al., 2009).  This poses a serious limitation to the 

harvesting time of the cultivated biomass to late spring or early summer, thus limiting 

the time for accumulation of storage carbohydrates in the biomass, leading to a lower 

quality and yield of macroalgae biomass (Fernand et al., 2017). Therefore, the greater 

the difference in environmental conditions are, the greater the difference in 

characteristics will be between wild and cultivated biomass. Difference in cultivation 

methods can also impact on the biomass characteristics.  Biomass grown in land based 

on shore cultivation systems will have highly controlled conditions however this method 

is not economically sustainable due to the high costs associated with the energy and 

nutrients required for sustaining biomass growth, hence not practiced widely 

(Ghadiryanfar et al., 2016).  

The choice of raw material is critical for the efficient production of biofuels, in the case 

of macroalgae the critical decision is the choice of suitable species. Different 

macroalgal species could be chosen for their production of low-cost fuel with the 

combination with high value components and/or bioremediation applications. 

Therefore, biomass quality obtained from cultivation of species like S. Latissima is 

essential if high value products are intended. However, in a recent review of 

macroalgae biomass for bioenergy production it is noted that even before the algal 

species and cultivation site are selected, a complex interaction of physical, chemical 



 

Literature Review  

  39 Roshni Paul 

and biological factors of a potential site have to be considered (Fernand et al., 2017). 

This can be informative to identify both the characteristics of natural Kelp forests and 

thereby estimate the quality of biomass that can be grown should the site be chosen 

for macroalgae biomass cultivation. In addition, even though numerous studies are 

available in the literature which evaluate the wild species for seasonal and locational 

impacts, they have focused on the holdfasts of the biomass and no studies have 

reported on the differences observed in the fronds of the wild and cultivated species. 

This is critical for energy conversion process or for high value products extraction as 

fronds are preferred over holdfasts and stipes.  

While there exists a number of studies exploring the impacts of environmental 

conditions on macroalgae there remains gaps in the literature pertaining to the 

utilisation of macroalgae (particularly S. latissima) as a feedstock for biogas 

production. Therefore, the following sections will review the existing literature 

surrounding biochemical methane potential reported for species S. Latissima.  

2.2 Biochemical methane potential of S. Latissima 

Macroalgae species have been studied since the 1970s and have frequently been 

shown to be a suitable feedstock for anaerobic digestion (Murphy et al., 2015). There 

has been studies in the literature focusing on the factors influencing the biogas 

potential of macroalgae biomass. Factors such as the species and composition of 

macroalgae that can impact on the efficacy and efficiency of biogas production using 

AD (Jung et al., 2013).  

Studies have also been performed to quantify the methane yields from different 

macroalgae species using theoretical and experimental methods. Theoretical methane 

yields from anaerobic digestion of macroalgae have been reported in the range of 

0.14 – 0.40 m3/kg VS however, the practical yields of the biogas from the macroalgae 

are experimentally found below their theoretical maximum (Milledge et al., 2014a).  

Reported studies in the literature include green species like Ulva and brown species 

of Laminaria digitata and Laminaria hyperborea. Methane yields of seaweed species 

have been found to strongly depend on the concentrations of storage carbohydrates 

and in the case of brown algae, among the storage sugars, laminarin and mannitol 

have been shown to have the highest biogas potential during digestion however alginic 

acid have a relatively lower methane yield. However, it is reported that many 

microorganisms are not able to digest the biomass completely under strict anaerobic 

conditions. Many microorganisms can hydrolyse laminarin easily and it can be easily 
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degraded during anaerobic digestion, however alginates found in seaweed are 

reported to be more difficult to digest (Black, 1948, Adams et al., 2011, Gunaseelan, 

1997, Briand and Morand, 1997). For the species S. Latissima, studies are still evolving 

with testing for anaerobic digestion potential among other macroalgae species. The 

theoretical biochemical yield of S. Latissima has been reported to be 422 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 

with a theoretical methane percentage of 50% (Allen et al., 2015). Some of the reported 

studies are shown in Table 5.  

Table 5 Review of Biochemical methane potential studies  

Species  Main findings Comments References 

Ulva (Green 

macroalgae) 

Suitable for AD due 

to its prolific growth, 

composition and 

degradation 

characteristics 

Disadvantageous 

due to high 

sulphur content 

(Briand and 

Morand, 1997) 

Laminaria 

hyperborea and 

Laminaria digitata 

(Brown 

macroalgae) 

Methane production 

of 80 L/Kg for L. 

digitata and 40 L.kg 

for L. hyperborea 

(batch test) 

Higher methane 

potential than 

green and red 

species 

(Hinks et al., 2013, 

McKennedy and 

Sherlock, 2015) 

Laminaria digitata Methane production 

of 336 𝑚𝑙/𝑔 𝑉𝑆 

obtained for batch 

tests 

Mesophilic 

digestion 

produced 30% 

higher methane 

than thermophilic 

conditions. 

(Vanegas and 

Bartlett, 2013) 

Saccharina 

latissima 

Methane production 

of 223 𝑚𝑙 𝐶𝐻4/ 𝑔𝑉𝑆 

was obtained in 

batch test. 

Thermal pre-

treatment was 

found effective 

for higher BMP. 

(Vivekanand et al., 

2012) 

 

Even though brown algae biomass has been a focus for AD, most of the reported 

studies are observed to be feasibility studies trying to determine the effect of 

operational parameters on the digestion of the biomass. Therefore, following sections 
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will discuss the studies specifically reported in the literature for S. Latissima with 

reference to their location of collection, harvest times, and utilising either wild or 

cultivated biomass for anaerobic digestion.   

2.2.1 Impact of location  

The studies in the literature reporting the use of S. Latissima indicate their reference 

of collection from a particular location. These are not studies intended to study any 

impact of location on the biomethane potential of the species rather these are mainly 

feasibility studies to select the best feasible species from a number of locally available 

species where the study has been carried out. A comparison of methane potential 

obtained for the species from various locations are given in Table 6.  

Nielsen and Heiske (2011) compared four macroalgae species harvested in Denmark 

for the suitability for anaerobic digestion and the study included S. Latissima. The study 

showed that S. Latissima was highly suitable for anaerobic digestion with a methane 

yield of 340𝑚𝑙 𝐶𝐻4/ 𝑔 𝑉𝑆 during thermophilic batch tests. However, as Ulva lactuca 

had a higher potential for cultivation under Nordic conditions, Ulva was selected for 

further studies by the authors (Nielsen et al., 2011). In another study where S. 

Latissima was collected from Norway, a biogas production of 223 𝐶𝐻4/ 𝑔𝑉𝑆 was 

observed (Vivekanand et al., 2012).  Study, by Jard et al. (2012) compared anaerobic 

digestion potential of Palmaria palmata and S. Latissima collected in Brittany, France. 

Contrary to the previous study, it was observed that P. Palmata offered better methane 

production both in batch (500 ml) and semi continuous digestion tests (3L) due to its 

high volatile solids content and low cations content. Both the tests were carried out at 

mesophilic temperatures (35°C). Palmaria palmata showed a methane production of 

257 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 and S. Latissima showed a methane production of 209 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 

(Jard et al., 2012). In Ireland, Vanegas and Bartlett compared the biogas potential of 

five Irish species and based on the results, S. Latissima and S. Polyschides offered 

the highest biogas production at mesophilic temperatures with 335 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 and 

255 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 respectively in batch assays (120 and 1000ml). In another study 

conducted in Ireland, Allen et al. (2015) collected ten varieties of seaweed species in 

Cork, Ireland and tested for their biomethane potential which included S. Latissima. 

The BMP of the species showed a methane production of 341 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 (Allen et 

al., 2015).  
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Table 6 Methane Potential of S. Latissima from different locations 

Location Method 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 Reference 

Denmark Thermophilic, Batch 340 (Nielsen and Heiske, 2011) 

Norway Mesophilic 223 (Vivekanand et al., 2012) 

France Mesophilic, Batch 209 (Jard et al., 2012) 

Ireland BMP 335 (Vanegas and Bartlett, 2013) 

Ireland BMP 341 (Allen et al., 2015) 

 

From briefly reviewing these studies, it can be seen that the species S. Latissima has 

demonstrated different methane potentials. This could be due to the fact that they were 

collected from different locations. The species has shown a BMP ranging from209 −

341 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆. The biomass utilised by Vivekanand et al. was grown for one season 

in Trondheim, Norway (63°N, 10°E) by Seaweed Energy solution and was collected in 

August, 2010. As for the biomass utilised by Jard et al., they were collected from 

Lézardrieux (Côtes d’Armor, Brittany, France) by Aleor seaweed farms. The biomass 

used in the Irish study by Vanegas and Bartlett was collected from a wild rocky outcrop 

of Streedagh beach, County Sligo, Ireland during low tide in September 2011. The 

biomass utilised by Allen et al., however was collected from collected from beaches in 

Cork, South of Ireland (51°N, -9°E). The seaweeds were beach cast and harvested 

from their wild natural environment. The environmental conditions where this biomass 

were grown is different as it ranges from Norwegian Sea (Seaweed energy farm), 

Western part of Atlantic Ocean (Brittany), to Northern part of Atlantic Ocean (Sligo) 

and Celtic Sea (Cork). No information as to the environmental conditions where they 

were grown is provided by the studies. Therefore, there is a need to ascertain whether 

location is a significant factor and which environmental factors are critical for increasing 

methane production utilising macroalgae biomass.  

2.2.2 Impact of season  

As described previously, Kelp species are noted for their seasonal variation in their 

biochemical composition. There are few studies in the literature which have evaluated 

the impact of seasonal variation in the biochemical methane potential of S. Latissima.  
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Adams et al. (2011) explored the AD potential of Laminaria digitata harvested from 

three beaches - Barnacarry beach, Argyll and Bute, in the UK during the period from 

December 2007 till October 2008 for their anaerobic digestion potential. Methane 

production was observed for batch assays of 36 days. All samples followed a similar 

trend where there was a linear production of methane until the first five days of 

digestion and after which the methane production decreases. Samples from summer 

months produced a higher cumulative methane with harvest from July producing the 

highest amount of methane. This was attributed to the high laminarin and mannitol 

concentrations. The samples from the first 5 months of the year had lower 

concentrations of these carbohydrates and therefore lower methane yields. In addition, 

these samples also had higher alginic acids concentrations which could also have 

decreased the rate of hydrolysation in the biomass resulting in lower methane yields 

(Adams et al., 2011).  

There are few studies in the literature that investigated the effect of seasonal variation 

on the biochemical methane potential of S. Latissima. However, more recently a study 

by Marinho et al. (2016) focussed on the seasonal variation of S. Latissima grown in 

Danish waters for its bioremediation, and bio-refining potential with succinic acid 

production with integrated multi-trophic aquaculture.  The study noted that November 

was the preferable harvest time for the species, due to high protein content. November 

harvest would increase the nutritional value of the seaweed to be used as a protein 

ingredient for fish feed. However the focus was fermentation based succinic acid 

production and not anaerobic digestion of the biomass (Marinho et al., 2016).  

From the above discussion it becomes clearer that, there is a gap in the literature to 

assess biomass harvested at different times of the year for their biochemical methane 

production characteristics owing to their varying biochemical composition at the time 

of their harvest. However, the generic rule that can be noted from the review is that if 

biomass is intended for AD, high carbohydrate content in the biomass should be 

targeted hence summer to early autumn could be the best times of harvest for S. 

Latissima.  

2.2.3 Impact of growth type 

In the literature, where studies have been performed on S. Latissima, there is a 

limitation to compare the results as the studies have utilised either wild sourced 

biomass, or long line cultivated biomass or simply beach cast biomass. However, no 

study was found to have compared the variation in the methane production of any 
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species obtained from the wild sources and cultivated sources from the same location. 

This could be because as wild and cultivated biomass is genetically identical, their 

biomethane potential are also considered to be identical. For the studies reviewed in 

the earlier sections, Allen et al. (2015) and Vanegas and Bartlett (2013) utilised wild 

biomass. In contrast, Jard et al. (2012), and Vivekanand et al. (2012) sourced their 

biomass from cultivated long lines. These researches did not emphasise on the growth 

conditions and their impact on the methane potential of the biomass rather they were 

more focused on testing the overall feasibility of the species for anaerobic digestion. 

However, they can be used as indicators of methane production from cultivated or wild 

biomass from that location. More importantly, as wild sources are unsustainable, these 

studies can inform cultivation practices to cultivate biomass with specific 

characteristics intended for anaerobic digestion.  

An initial review of the literature has highlighted the inherent variability of macroalgae 

biomass and the potential impact of location and environmental conditions on the 

biomass growth and characteristics. However, there remains little information on the 

species S. Latissima which will be the focus of this study. While there is some limited 

data in the literature on the utilisation of S. Latissima for AD there is very little relating 

this to biomass cultivation conditions. This gap in the knowledge needs to be explored 

in order to effectively manage the use of this biomass.  The species will be studied to 

explore the extent to which environmental conditions at a given location growth cycle 

and consequently harvest time and growth type (wild or cultivated) impacts on biomass 

characteristics and methane potential.  

Batch studies have their limitations, and are generally used as an indicator of suitability 

of a biomass for AD.  Continuous studies performed in literature would show the 

advantages and challenges of utilising the biomass in detail with a large array of AD 

parameters observed as part of such studies. Semi-continuous studies performed for 

macroalgae biomass and particularly for S. Latissima will be discussed in the next 

section.  

2.3 Semi-continuous digestion studies of S. Latissima 

Macroalgae species as noted earlier are studied for their methane potential (Murphy 

et al., 2015). The majority of the reported studies in the literature are batch systems. 

Continuous studies are limited in the literature for macroalgae biomass and especially 

for S. Latissima. This is predominantly because of the finite knowledge on the technical 

process efficiency, longer retention times for continuous studies, and also the limited 
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availability of the biomass.  The AD technology in itself is promising but the challenges 

include the need for developed knowledge about the microbial community and 

biochemical processes of the anaerobic degradation (Appels et al., 2011). High 

retention times required for the digestion also has serious impacts on the costs and 

hence on the economic sustainability of the large scale AD. In addition, technical 

viability of the algae biomass for AD depends on the selected algae strain indicating 

deeper research needs for the selection processes and production systems (Brennan 

and Owende, 2010). Macroalgae utilisation for bioenergy industry is still at its early 

developmental stages and is yet to overcome environmental and economic challenges 

before the industry is a sustainable option. 

For the semi continuous digestion studies for macroalgae biomass in the literature, 

studies are reported mainly for green macroalgae whereas studies for brown algae are 

only a recent development. The reported continuous digestion studies are shown in 

Table 7.  

Table 7 Review of semicontinous studies 

Species  Main findings Comments References 

Ulva (Biomass 

from Osaka Bay) 

Methane yield of 

0.10 𝐿 𝐶𝐻4/𝑑𝑎𝑦 

Mesophilic 

conditions. 

(Otsuka and 

Yoshino, 2004) 

Laminaria 

hyperborea and 

Macrocystis 

pyrifera 

(Northumberland, 

Spring 2007) 

Methane production 

of 0.23 −

0.26 𝐿 𝐶𝐻4/ 𝑔 𝑉𝑆 

6 L reactor, OLR 

of 1gTSS/L/d. 

179 days of 

operation. 

(Hinks et al., 2013) 

Macrocystis 

pyrifera and 

Dunaliella Antartica 

(1:1 w/w) 

Methane production 

of 180.4 ml/g/dry 

algae/day obtained. 

1L volume, 31 

days HRT and 

OLR of 3g/ dry 

algae/day. 

(Vergara-

FernÃ¡ndez et al., 

2008) 

Saccharina 

latissima 

Methane production 

in the range of 

0.243   to 

0.510 𝐿 𝐶𝐻4/ 𝑔 𝑉𝑆 

3 L volume, 

mesophilic, 9 

weeks HRT, 

OLR increasing 

from 0.8 to 2. 

(Jard et al., 2012) 
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Saccharina 

latissima 

Methane production 

of 0.131 𝐿 𝐶𝐻4/

𝑘𝑔 𝑉𝑆 was obtained. 

50 L reactor, 

91.3g fed/day, 

mesophilic 

condition 

(McKennedy and 

Sherlock, 2015) 

 

In the limited studies reported in the literature the species S. Latissima has showed an 

overall methane production which ranged between 0.150 − 0.400 𝐿 𝐶𝐻4/𝑔𝑉𝑆.  

However, as observed from the previous studies, the results are varied and reflect the 

fact that the seaweed was collected from different countries at different times of the 

year, with differing environmental conditions. The methodology of assessing the 

methane production with working volumes, inoculum, I/S ratio, etc. are also varied in 

different studies (Laurens, 2017). This requires a standard operating procedure for 

such continuous studies with detailed analysis to identify the potential of S. Latissima. 

However, the process can be challenging as biomass can vary accordingly with 

locations, seasons and growth type and therefore have its impact on the studies. The 

following sections will now discuss the various process parameters observed for 

continuous digestion studies utilising S. Latissima. This will provide a perspective of 

the biomass performance in such studies. The important parameters required for 

continuous studies will be discussed in Table 8. 

Table 8 Parameters recorded optimal of S.Latssima 

Factor Optimal conditions for S. 

Latissima 

Comments Reference 

pH  7.20 – 7.38 Optimal for pre-

treatment for 

BMP 

(Vivekanand et 

al., 2012) 

Alkalinity  10.6 ± 0.40 mg/l Range for 

continuous 

operations  

(Tedesco et al., 

2014) 

Temperature Mesophilic temperatures 

between 35 - 37°C 

No comparison 

performed 

between 

mesophilic and 

thermophilic 

temperatures -

(Vanegas and 

Bartlett, 2013, 

Vivekanand et 

al., 2012) 
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continuous 

studies 

Carbon to 

Nitrogen ratio 

10/1 – continuous studies 

7 – for spring and 

21 – summer biomass 

Important to 

identify the 

biomass with 

higher C/N ratio 

for higher BMP 

(Montingelli et 

al., 2015) 

(Handå et al., 

2013) 

(Schiener et al., 

2015) 

HRT  21 days, 22-24 days Longer HRT 

needs to be 

tested for S. 

Latissima 

(Jard et al., 

2012) 

(Montingelli et 

al., 2015, 

Hanssen et al., 

1987, Sarker et 

al., 2012) 

OLR  1.2 – 1.65 gVS/l/day 

0.5 – 3.0 gVS/l/day 

Higher OLR 

needs to be 

tested for S. 

Latissima 

(Jard et al., 

2012) 

 

Volatile fatty 

acids  

Level of acetate and 

butyrate higher when BMP 

was higher. Ratio of  

acetate:propionate:butyrate 

should be 6:1:3 or 7:1:2. 

No VFA profile 

has been 

provided yet for 

S. Latissima 

(Moen et al., 

1997) 

(Chang et al., 

2010) 

(McKennedy 

and Sherlock, 

2015) 

Nutrients in the 

biomass 

𝑁𝑎, 𝐾, 𝐶𝑎, 𝑀𝑔, 𝑃 

𝐹𝑒, 𝑍𝑛, 𝑀𝑛, 𝐴𝑙, and 𝐶𝑢 

Nutrients found 

in S. Latissima  

(Schiener et al., 

2015) 

Nutrients for 

digester 

𝐾, 𝐶𝑎, 𝑀𝑔, 𝐹𝑒, 𝑍𝑛  No studies 

reported for the 

effect of nutrient 

solution to S. 

Latissima 

(Angelidaki and 

Sanders, 2004) 

(Demirel and 

Scherer, 2008) 
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Toxicity  Possibly from Na ions or 

polyphenol content in the 

biomass 

No studies 

reported for 

toxicity factors in 

S. Latissima 

(Schiener et al., 

2015) 

 

In summary, this review shows that even though an array of parameters is studied 

during continuous trials, critical parameters affecting the digestion of S. Latissima are 

not yet fully understood i.e. optimum temperature, longer retention times, biomass 

degradability (VSdestruction), trace element addition etc. The feedstock characteristics 

have shown that the summer biomass of S. Latissima has higher potentials for 

methane production with optimum C/N ratio, and higher carbohydrate content. The 

micronutrients present in the biomass can also be suggested to be helpful for 

maintaining the balance (pH, alkalinity) of the digester without any further addition of 

trace elements for stability.  

Therefore, the scope of this study was to understand the methane production profile 

of S. Latissima in a semi-continuous digestion operation. This was performed by 

comparing the effect of mesophilic and thermophilic temperature on AD performance 

of S. Latissima. In addition, the study also investigated any effect on methane 

production by the addition of trace elements for enhanced digestion of the macroalgae 

biomass. pH, alkalinity, SCOD, were analysed on all of the reactors. The results from 

continuous studies also researched the effect of longer retention times of 105 days 

over three retention times. The effect of toxic elements and salt inhibition were not the 

objectives of this study. Further work in the digestion studies can explore the VFA 

profiling for the digestion of S. Latissima, effect of micro and macro elements in the 

macroalgae biomass on methane production during continuous studies.   

Although S. Latissima is shown to be promising for anaerobic digestion, the toxic 

metals in its biochemical composition can cause problems in further utilisation of the 

biomass in large scale applications. The presence and/or formation of recalcitrant 

materials such as polyphenols, cellulosic fibres, and lignin like components in the 

biomass can result in the reduction of biodegradability of the biomass during bacterial 

activities associated with anaerobic digestion producing lower biogas quantities. In 

addition, the seasonal variability also affects the growth of the biomass and hence the 

availability of the feedstock for biogas production (Jard et al., 2013). Therefore, even 

though anaerobic digestion has a mature platform for a newer biomass like algae, still 

further studies are required to optimise the reaction processes to increase the methane 
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yield using either pre-treatment techniques or co-digestion methods or using a 

combination on simpler pre-treatment methods and co-digestion feedstock (Jiang et 

al., 2016). 

2.4 Macroalgae as a co-digestion feedstock  

Due to some of the problems associated with mono digestion of macroalgae biomass 

such as high salinity, and the presence of compounds for e.g. polyphenols, cellulosic 

fibres, and sulphide concentrations in some species there are still barriers to achieve 

the full potential of AD utilising the biomass (Ward et al., 2014). In comparison to 

microalgae, macroalgae have been studied for co-digestion in the literature. Ulva and 

Gracilaria species are found to be the most reported in the literature for co-digestion 

studies (Cecchi et al., 1996, Costa et al., 2012, Nielsen et al., 2011, Sode et al., 2013). 

Reported studies on co-digestion is given in Table 9.   

Table 9 Review of co-digestion studies 

Species  Co-digestion 

feedstock 

Main findings References 

Ulva and 

Gracilaria 

(Venice lagoon) 

Sewage sludge Mesophilic, I:S – 

1:4, 11 days HRT 

Optimised waste 

management 

(Cecchi et al., 

1996) 

Ulva and 

Gracilaria 

Waste activated 

sludge 

15% algae: 85% 

sludge 

Optimised biogas 

production (26% 

higher) 

(Costa et al., 

2012) 

Ulva species 

(Denmark) 

Cattle manure No increase after 

50% concentration 

(Nielsen et al., 

2011) 

Laminaria digitata 

and S. Latissima 

Bovine slurry Decreased 

ammonia inhibition 

(Vanegas and 

Bartlett, 2013) 

Ulva Gracilaria Balances C/N ratio 

to between 20-30 

(McKennedy and 

Sherlock, 2015) 

Ulva Waste paper Balances C/N ratio 

for increased BMP 

(Yen and Brune, 

2007) 
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As discussed in the table, co-digestion has benefits in terms of improved waste 

management, enhancing methane yields, decreasing inhibition effects of particular 

feedstock and balancing of carbon to nitrogen ratios of the mixed feedstock.  

Co-digestion is a practical way of incorporating new feedstock such as macroalgae 

into AD processes. Technologically, anaerobic digestion is promising as a sustainable 

option for waste treatment and energy production given its capacity to treat a range of 

materials. The following section will discuss the co-digestion studies reported 

specifically for S. Latissima.  

2.4.1 Co-digestion of S. Latissima 

There have been a number of studies recently reviewing the scope on the co- digestion 

of algae (Montingelli et al., 2015, Jung et al., 2013, Mata-Alvarez et al., 2011, Nielsen 

et al., 2011) however only around six papers were identified specifically evaluating S 

latissima which indicates that further work is required (Vivekanand et al., 2012, Sarker 

et al., 2012, Vasilaki and Garcia, 2013, Gurung et al., 2012, Matsui and Koike, 2010). 

The main findings from the co-digestion studies are given in Table 10.  

Table 10 Review of S. latissias for co-digestion 

Feedstock digested with 

S. Latissima 

Main findings References 

Wheat straw Optimal blend was 75:25 

Increased BMP 275 𝑚𝐿/

 𝑔 𝑉𝑆 for co-digestion 

batch studies. 

Increased digestibility for 

straw. 

(Vivekanand et al., 2012) 

Bovine slurry (Ireland) BMP of 244 𝑚𝑙 𝐶𝐻4/𝑔 𝑉𝑆 

was observed for batch 

BMP 

(Vanegas and Bartlett, 

2013) 

Cattle manure Thermophilic digestion at 

50°C preferred for BMP 

with improved digester 

conditions 

(Sarker et al., 2012) 
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Shrimp residues and 

sewage sludge 

Higher BMP of 

0.261 𝑚3𝐶𝐻4/ 𝑘𝑔 𝑉𝑆 

obtained 

(Vasilaki and Garcia, 

2013) 

Fish viscera BMP of 0.166 𝐿 𝐶𝐻4/

 𝑘𝑔 𝑉𝑆 obtained with 

better COD conversion to 

methane, longer retention 

times needed for co-

digestion. Digestate 

produced is nutrient rich 

and complex 

(Gurung et al., 2012) 

 

This review has demonstrated that most of the existing studies are batch lab-scale 

experiments. There are very few pilot scale studies reported for co-digestion. Only one 

study reported the pilot scale co-digestion of Laminaria and Ulva mix with milk residues 

in Japan. The process was successfully demonstrated at pilot scale with a period of 11 

weeks of operation. The methane yield was found between 10-12 m3/day where steady 

production of gas was observed from week 6 (Matsui and Koike, 2010).   

In summary, there are isolated research studies reported in the literature utilising S. 

Latissima for co-digestion. There have been very few studies on co-digestion of 

organic feedstock with S. Latissima. In the reported studies, the maximum bio methane 

yields have ranged from 0.204 𝑡𝑜 0.380 𝑚3 / 𝑘𝑔 𝑉𝑆 indicating that co-digestion using S. 

Latissima could be favourable in existing AD plants because of the similarity of organic 

composition to other organic feedstock already being used. In relation to S. Latissima, 

there are few technical barriers reported yet for the process, however the presence of 

salts (𝑁𝑎, and 𝐾) and polyphenols and their impact on long term digestion is yet to be 

studied in detail before the large-scale implementation of the macroalgae biomass. 

Anaerobic co-digestion should be hence a feasible option to overcome the drawbacks 

of mono digestion of either the traditional organic feedstock or of S. Latissima and 

therefore improve an AD plant’s overall economic feasibility.  

2.5 Techno-economic feasibility of macroalgae for anaerobic digestion  

In addition to technical feasibility it is important that economic assessments are 

conducted to determine the commercial viability of projects and illustrate how to 
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harness the true potential of biomass to meet the energy production goals and 

emissions targets at a national level.  Macroalgae, which can be mass produced in 

temperate climates is also currently viewed as an interesting biomass at a national 

level in the UK. However, its viability for AD in full scale operation is still in question 

(Levidow and Papaioannou, 2013). That is precisely where economic feasibility studies 

would allow the potential users to identify the bottlenecks associated with the systems 

and potentially reduce the costs and energy input for their production and harvest, 

transportation, and develop overlap with the existing energy supply chains and 

conversion to fuels (Roesijadi et al., 2010). There are mainly two kinds of studies 

reported in the literature – life cycle analysis and techno-economic analysis.  

2.5.1 Life cycle analysis studies of S. Latissima  

Algae biomass (both macro and micro algae) have been studied for their overall 

potential to contribute towards sustainability. For AD using microalgae biomass, costs 

were strongly correlated to electricity consumption and suggestions were made to 

reduce the mixing costs to improve the efficiency of AD processes (Collet et al., 2011). 

On analysis about energy utilisation from AD coupled with microalgae production units 

were considered, research has suggested that if methane generated from AD is used 

in the facilities of microalgal biodiesel production, theoretically it can lead up to a 33% 

reduction in the production costs. The carbon emissions can also be reduced up to 

approximately 75% if biogas electricity is utilised instead of traditional grid electricity. 

Therefore, for microalgae, if biogas can be utilised for the energy required for 

microalgal cultivation, dewatering, extraction and trans-esterification process, then it 

has the potential to make production of biodiesel from algae more viable by reducing 

the overall cost of production per unit of biodiesel (Harun et al., 2011). 

Life cycle assessment of S. Latissima has not been reported in the literature so far. 

Life cycle assessments on macroalgae production systems were carried out by the 

EnAlgae project in Ireland and France for two different cultivation systems for the 

species S. Latissima. From their results it was observed that for Ireland, the long 

distance between the hatchery and the grow-out phase in the sea and the transport 

fossil fuel usage had the highest impact on the environmental footprint. While in France 

it was the complex use of different materials (material intensive, plastic tubes) for the 

infrastructure of the cultivation systems which had the largest environmental footprint. 

The impacts for freshwater, chemicals and nutrients were negligible at both sites. 

Therefore, the major recommendation from the study was to reduce the high use of 
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fossil based resources either for transport (by reducing the distance by locating the  

grow-out phase closer to hatchery) and for production systems (by using alternative 

materials or trying different production designs) for seaweed production in North West 

Europe (Sprujit, 2015, Parker et al., 2015).  

Life cycle analysis of pilot macroalgae growing facilities at Queen’s university Belfast 

was performed during 2012 – 2013 for the brown species S. Latissima and Laminaria 

digitata produced using long line cultivation systems in Strangford Lough. In this case, 

the hatchery phase had the highest share for environmental impact (𝑘𝑔 𝐶𝑂2 equivalent) 

and similar results for NW Europe were observed for the fossil fuel consumption and 

materials usage. However, this study identified the bottlenecks for seaweed production 

which were primarily energy savings and material reduction used for cultivation 

systems for seaweed. In addition, the study also suggested that bioenergy in terms of 

biomethane alone from seaweed may not fully satisfy environmental criteria therefore 

process optimisation and up scaled settings should be targeted for improved LCA 

results (Parker et al., 2015).  

Even though the focus of existing LCA studies has been optimisation of the cultivation 

systems, new and improved systems with lower impacts have been tested for e.g. 

Integrated Multi-Trophic Aquaculture (IMTA) systems. The IMTA system is considered 

more sustainable due to the reduced requirement for materials, and nutrients, equal 

space requirements for the growth of shellfish and seaweed and the by-products of 

one process being utilised as an input for the other’s growth. Also, grown commodities 

such as pigments, additives, are highly valued in the market so that the economics are 

more favourable. In the UK, Scottish Association for Marine Sciences, SAMS have 

conducted numerous IMTA studies quantifying the bioremediation potential of 

seaweed in the area. However, the majority of these deployments are only carried out 

for academic purposes and no assessment of the economic aspects of such systems 

in the UK are so far established (Murray et al., 2013). 

2.5.2 Techno economic studies of S. Latissima  

Techno-economic (TE) analysis of the overall AD process has been reported in the 

literature. Zammalloa et al. (2011) analysed the techno-economic potential of AD and 

stressed on the importance of governmental support mechanisms such as feed-in-

tariffs as it is shown as the major determinant of the net present value providing almost 

96% of the revenues. The other factors found important for a techno-economic view 

point were productivities of the biomass, loading rate, number of operational days of 
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the digester and associated operational costs (Zamalloa et al., 2011). Techno 

economic viability of the macroalgae cultivation systems are reported from a few 

studies which indicate that optimisation is still required for the long line cultivation 

techniques utilised in European countries (Roesijadi et al., 2008, Roesijadi et al., 2010, 

Kraan, 2013).  

Techno-economic assessment particularly focuses on improving the overall feasibility 

of the process utilising the biomass. An extensive TE analysis evaluating performance 

of the brown species Laminaria digitata in European market was conducted by Dave 

et al. (2013). The study performed the analysis on the ECLIPSE model assuming 8.64 

tonnes dry biomass per day (feed rate) for a community based (AD capacity of 1.6 

MW) CHP production unit. The findings of the study stressed that even though the 

current market is economically favourable for extracted high value compounds from 

the macroalgae biomass in Europe, a community-based CHP plant could be a 

favourable option in utilising green energy from the brown algae biomass. The study 

considered the annual variations of the biomass, with the line breeding near shore 

cultivation systems for utilising 8 tonnes of biomass per day (dry basis) for a moderately 

sized AD plant assuming an algal conversion rate of 64% within 15 days. The total 

macroalgae cost was assumed to be 50 euros/tonne. The plant generated 237 kWE 

(net) electricity and 367 kW heat. No government incentives were considered for this 

study, however the study recommended that support systems such as Feed in tariffs 

and Renewable Obligation Certificates could significantly improve the project viability. 

The economic viability of the plant was measured in terms of internal rate of return in 

connection with the different feedstock prices, total annual power generation and the 

capex expenditure. The study found that the major cost factors were associated with 

the feedstock cost, maintenance and operating costs, any additional treatment facilities 

cost for biomass utilisation (drying, pre-treatment etc.). Moreover, the study also 

stressed on the reliability of continuous supply of feedstock, hence suggesting co-

digestion with other biomass and wastes such as sewage sludge, food waste etc. as a 

potential solution (Dave et al., 2013).  

More recently Konda et al. (2015) performed a techno-economic assessment on S. 

Latissima to understand the cost drivers and identify the economic potential of the 

biomass at industrial scale. Despite the advantages over other biomass feedstock for 

reduced water usage, pollution control, etc., the actual success of the macroalgae 

based biorefinery was reliant on the economic performances of the processes which 

were converting the biomass into fuels or products. The study focused on ethanol 
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production from macroalgae biomass with an industrial scale facility of 2000 MT/day 

dry biomass processing capacity. The preliminary results showed that the maximum 

allowable price for the seaweed was 28$/MT (dry) in order to produce ethanol at 

2.2$/gal or less with a production cost ranging between 21-112$ /MT (depending on 

the species and the cultivation method employed). The same study found that S. 

Latissima to sugars platform is economically viable, easily scalable, and efficient, 

however downstream technologies i.e. purification and effective product recovery 

systems are still required to make the chemicals from the biomass cost competitive to 

the petroleum derived products. The other main critical factor identified through the 

study was the reduction in the macroalgae feedstock price and the need for the 

development of supply chain and logistics for the utilisation of such biomass (Konda et 

al., 2015). Therefore, there is definitely a need for more studies to evaluate the techno-

economic feasibility of species S. Latissima for its utilisation for AD.   

From this review it also becomes clear that a biorefinery based approach is essential 

for an economically viable, scaled up system for biogas production from macroalgae 

biomass. Regardless of economic impacts, from a sustainability point of view it is 

important to consider metrics such as carbon, nutrient, and water balances, recycle 

opportunities and delivery sources, which are all location specific. For a commercial 

level realisation and economic viability of microalgae biomass utilisation, the use of 

spent biomass beyond biogas generation is recommended alongside creating high 

value by-products with market sustainability of such co-products (Davis et al., 2011). 

For macroalgae biomass, the system should have a balance of high value products, 

and bioenergy from co-digestion with other available waste resources alongside 

production of biogas and digestate for the use as fertiliser (Ramírez, 2015). Bio-

methane from macroalgae is definitely shown to be one of the promising systems for 

bioenergy production for future. Research suggests that this can be achieved by 

integrating the seaweed cultivation similar to IMTA techniques, using innovative 

designs for cultivation systems, ensuring optimal species and composition, reusing 

digestate and utilising renewable electricity to power the plant operations (Czyrnek-

Deletre, 2017).   So from the discussion it is also clear that techno-economic studies 

for macroalgae biomass is a developing field where most of the studies have focused 

on the feasibility of the species in terms of cultivation, and producing high value 

compounds or its suitability for a particular energy derivation path way. Therefore, from 

an AD perspective, efforts should be focused on decreasing the feedstock cost, 

increasing the methane yield of the biomass and identifying low cost effective pre-
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treatment facilities and suitable co-digestion strategies for macroalgae utilisation for 

AD. Hence, in this study, techno-economics analysis is chosen as an approach to 

identify the effect of AD technology on the overall economics of the process – i.e. the 

benefits and adverse effects of AD, monodigestion and co-digestion on economics 

utilising S. Latissima. 
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3 Methods 

This chapter provides details of the general materials and methods used for the 

experimental aspects of this study.  This includes detailed description of experimental 

and reactor designs, analytical methods, and materials used for this research.  Details 

on the reliability, repeatability and precision of the analytical methods are also provided 

within each section.  

3.1 Materials - Feedstock and Inoculum 

3.1.1 Feedstock  

The feedstock utilised for this research study involved macroalgae (sourced from 

various locations and detailed below) and organic feedstock supplied by local partners 

including agricultural crop waste residues, pig manure and brewery spent grain. The 

macroalgae species was evaluated for its anaerobic digestion potential as a single and 

co-digestion feedstock with the traditional organic AD feedstock described above.  The 

details of procurement, processing and storage of each feedstock is detailed in the 

sections below. 

The macroalgae species used in this study is S. Latissima (S. Latissima and was, 

obtained from Northern Ireland (Belfast), Southern Ireland (Ventry Harbour) and 

Scotland (Figure 9). 
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Figure 9 Source of seaweed used in this study 

Source Google Maps 

The macroalgae (seaweed) utilised for seasonal studies was obtained from the wild 

(natural) harvest at Strangford shore and cultivated samples were received from the 

Queen’s Marine Laboratory long-line site in Strangford Lough, Queen’s University, 

Belfast, (QUB). The seaweed samples from QUB were obtained from November 2015 

to December 2016 including an early spring sample in April 2016 and summer sample 

in June 2016. The seaweed samples for comparative locational studies was received 

from Scottish Association of Marine Sciences (SAMS), Oban, Scotland and Dingle Bay 

(DB) seaweed cultivation farms, County Cork, Ireland. The wild samples and cultivated 

harvests from SAMS were received in June 2016 and December 2016. Cultivated 

samples from Dingle bay farms were obtained in June 2016. The frond (leaf like 

structure of macroalgae) view of seaweed S. Latissima is shown in Figure 10. 
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Figure 10 S. Latissima – frond view 

The samples collected from SAMS, DB and QUB are listed in the table below (Table.1). 

A schematic of the process pathways used during this study is shown in Figure 3. The 

samples were named as Strangford Lough (samples from QUB), Isle of Seil (samples 

from SAMS), and Ventry Harbour (samples from dingle bay).  

The schematic process pathway used for this study is shown in Figure 11.  



 

Methods  

  60 Roshni Paul 

 

Figure 11 Schematic of process pathway for this study 

The harvesting timetable for wild and cultivated samples used in this study is shown in 

Table 11.  

Table 11 Harvesting time table used for this study 

Supplier  Wild/Cultivated Year/Season Harvest 

 
 
Strangford Lough 

Wild Winter 2015 

Wild Spring 2016 

Wild Summer 2016 

Cultivated 
Wild 

Summer 2016 
Winter 2016 

Isle of Seil  
 
 
Ventry Harbour 
 

Cultivated 
Wild 

 
Cultivated 

Summer 2016 
Winter 2016 

 
Summer 2016 

 

The samples were harvested from the long lines, and transported immediately in 

sealed containers. On arrival at the BCU campus they were removed from the 

packaging, labelled and stored in the freezer at -20°C in zip lock bags for long term 

storage and for regular use for experiments. The storage method was followed as 

described in (Schiener, 2014, da Silva Marinho, 2016). The pre-treatment of the 

received seaweed prior to the experiments and storage are detailed under the section 

3.2.  

Location

•Strangford 
lough

• Isle of Seil

•Ventry 
Harbour

Harvest 
time

•Spring

•Summer

•Winter

Growth type

•Wild

•Cultivated

Preparation/

storage

•Cleaning

•Maceration

•Freezing

AD Evaluation

•BMP testing

•Semi 
continuous 
(CSTR)
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3.1.2 Organic feedstock  

The organic feedstock that were used in the experiments included agricultural waste 

residues, pig manure and brewery spent grain. The agriculture crop waste feedstock 

and brewery spent gain was collected in March 2015, separately stored in individually 

sealed and labelled zip lock bags and kept in a freezer (-20°C) for storage until the 

experiments. The pig manure obtained was in dry, pelletised form. It was packed in an 

air tight container and stored until used for experiments.  

3.1.2.1 Agricultural crop waste residues  

The agricultural crop waste residues included corn silage, wheat residues, grass 

silage, and sugar beet-vegetable mix (SBV mix). This feedstock was collected from 

Vale Green Energy plant in Worcestershire, UK. The samples were collected from the 

storage area in the energy plant. The cemented shelters which served as storage area 

had large piles of crop residues and vegetables mix. These were stocked on the 

outside to allow daily feeding into the on-farm digesters. The crop residue samples 

were collected from the storage area and vegetable mix collected from the pile of daily 

feed for the digesters. These wastes were from the farm’s latest harvest having stored 

there for a few days. All of the samples were collected, separated, prepared and stored 

on the same day.   

3.1.2.2 Pig manure  

Pig manure was received from European Bioenergy Research Institute, (EBRI), at 

Aston University, Birmingham, UK. The pig manure pellets were ground to fine powder 

and not soaked prior to the BMP tests for this study.   

3.1.2.3 Brewery spent grain  

Brewery Spent Grain (BSG) samples were collected from a local brewery (Froth 

Blowers Brewing Company, Erdington in Birmingham, UK). The samples were 

received after the initial extraction operations in the brewery and separated from the 

wort liquid. The organic feedstock used for this research is shown in Figure 12 . 
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Figure 12 Organic  feedstocks used in this study 

3.1.3 Inoculum  

The inoculum used for biochemical methane potential (BMP) tests and the semi 

continuous digestion experiments was collected from Severn Trent Waste Water 

Treatment Plant, (STWWTP), in Minworth, Sutton Coldfield, West Midlands, UK. The 

inoculum was collected from an active digester operating at 37°C. The inoculum was 

maintained at (37°C) in a temperature-controlled water bath until the start of 

experiments. The inoculum was tested for the pH, total and volatile solids content in 

triplicate on the same day of collection prior to further experiments. The processing 

and storage of inoculum for biochemical methane potential tests and semi-continuous 

tests are detailed separately in the following sections.  

For BMP testing, the collected inoculum was sieved using a stainless steel sieve (size 

5 mm) to separate any bulk impurities like glass or stones. The sieved inoculum was 

then degassed for two days in a temperature controlled water bath at 37°C (Suhartini, 

2014). While, for semi-continuous trial, the freshly collected inoculum was directly filled 

into all reactor at volume of 2 L. The variability observed for the methane potential of 

the inoculum collected at various intervals will be discussed in the results section.  

3.2 Pre-treatment of feedstock – Macroalgae biomass 

3.2.1 Sample preparation  

Following collection of seaweed, a number of steps were undertaken to produce a 

homogenised product suitable for long term storage.  
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3.2.1.1 Cleaning  

The collected seaweed (as sent) was visually inspected on arrival for cleaning and 

removing holdfasts and foreign materials such as stones, shells, other seaweeds and 

invertebrates. The fronds of the wild samples of seaweed, when sparsely or irregularly 

covered with epiphytes, were retained as this is considered to be an unavoidable and 

natural occurrence on wild harvests (Forbord et al., 2012).  

3.2.1.2 Maceration  

The second stage of sample preparation for samples was maceration. A household 

food blender (Bosch MCM 41, UK) was used to macerate the seaweed into smaller 

particles. The particle size of the shredded seaweed was approximately 1cm. The 

macerated seaweed was then mixed in a larger container to ensure a homogenous 

and representative sample could be taken. Samples were then divided into 0.5 to 1Kg 

portions for storage. 

3.2.1.3 Storage  

Each portion of the macerated seaweed was sealed in a plastic bag, labelled and 

stored in the freezer at -20°C. Prior to the analyses and experiments, the samples used 

for this study were taken from their storage and allowed to defrost to reach room 

temperature in the respective storage containers. Freezing the samples was not 

observed affecting the biodegradation of the biomass. The sample preparation steps 

were adopted from previous studies on S. Latissima published by (Schiener, 2014, 

Vivekanand et al., 2012).  

3.3 Experimental design  

The following section describes the details of the preliminary experiments conducted 

to measure methane production using biochemical methane potential (BMP) tests and 

the semi-continuous digestion experiments conducted using lab scale continuously 

stirred tank reactors (CSTRs).  

3.3.1 Biochemical methane potential tests  

Anaerobic batch tests were conducted using Automated Methane Potential Test 

System (APMTS II, Bio Process Control, Sweden) (Bioprocess Control, 2017). The 

AMPTS II system provided an automated analytical procedure, real time data display 

and logging of accumulated bio methane volume, gas flow rate and analysis review. 

Prior to the BMP tests, the feedstock and inoculum were characterised for their pH, 
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total and volatile solids content. The AMPTS II system consisted of 15 glass reactor 

bottles of 500ml volume, 15 x 100ml bottles respectively for each reactor bottle 

(containing 80ml of 3M 𝑁𝑎𝑂𝐻 +0.4% Thymolphthalein pH indicator for the removal of 

𝐶𝑂2 from the biogas), a thermostatic water bath and a gas volume measuring device. 

The gas measuring device was filled until the marked water level in the device (using 

deionised (DI) water). The tests were completed in triplicates for each combination of 

inoculum-substrate. Three reactors were used as blanks to ascertain the amount of 

biogas produced by the inoculum itself (blank) and three with the positive control 

cellulose to test the quality of the inoculum. The BMP tests were carried out for all the 

seaweed samples collected from QUB, SAMS, and DB as a single feedstock. The tests 

were also performed for all the co-digestion feedstock of agricultural crop waste 

residues, pig manure and brewery spent grain. A specific substrate to inoculum ratio 

(1:4) was used in each assay as per Angelidaki et al. (2009), and the working volume 

of the reactor was maintained at 400ml in order to ensure a sufficient headspace 

volume and therefore prevent any build-up of pressure. The AMPTSii system used for 

BMP tests is shown in Figure 13 .  

 

Figure 13 Automated Methane Potential System (AMPTS II) 

The reactors were connected with the stirrers and placed in the incubation unit 

attached to the indicator bottles which are in turn connected to the gas measuring 

sensors (Figure 5). The tests were run for 30 days under mesophilic conditions (37°C). 

During the experimental run, the water bath was constantly checked for its water level 

and the indicator solutions were checked for any colour change (indicating 𝐶𝑂2 

saturation). At the end of the experiments, data logging was stopped by pausing the 
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individual cell, disconnecting the tubing connections with the indicator solutions, and 

from the gas volume measuring device and stirrers. The samples post BMP tests were 

all tested for pH, temperature, total and volatile solids. 

3.3.2 Calculation of BMP  

Biochemical methane potential is defined as the volume of methane produced per 

quantity of organic material added to the reactor. Therefore, the accumulated volume 

of gas from an experiment has to be divided by the amount of the substrate added into 

the reactor. However, to compensate for the gas production by the inoculum alone, its 

volume fraction of biomethane has to be subtracted from the total accumulated volume 

to get the true gas production from the substrate. Thus, BMP is expressed according 

to the equation below. 

 𝑩𝑴𝑷 =
(𝑽𝒔−𝑽𝑰)

𝒎𝑽𝑺𝒔𝑺
  

Equation 1: Calculation of BMP for the inoculum 

 

Where 𝑉𝑠 is the accumulated volume of biomethane produced by the substrate in the 

sample reactor, 𝑉𝐼 is the volume of the biomethane produced by the inoculum in the 

sample reactor and 𝑚𝑉𝑆,𝑠𝑆  is the amount of the substrate contained in the sample 

reactor.  

The blank samples will generate only the amount of biomethane from the inoculum 

(𝑉𝐵) and can be further on normalised to the biomethane production per unit weight of 

dry organic material in the inoculum. So to calculate the biomethane production from 

the inoculum in the sample reactor is given in the following equation. 

 𝑩𝑴𝑷 =
𝑽𝒔−𝑽𝑰

𝒎𝑽𝑺,𝒔𝑺
=

𝑽𝒔−𝑽𝑩
𝒎𝑽𝑺,𝑰𝑺
𝒎𝑽𝑺,𝑰𝑩

𝒎𝑽𝑺,𝒔𝑺
=

𝑽𝒔−𝑽𝑩
𝒎𝑰𝑺
𝒎𝑰𝑩

𝒎𝑽𝑺,𝒔𝑺
   

Equation 2: Calculation of BMP for the feedstock sample 

As it can be seen from equation 9 the ratio between the amounts of organic material 

from the inoculum in the sample vs. the one in the blank is equal to the ratio between 

the total amount of inoculum in the sample (mIS) and the one in the blank (mIB). 𝑚𝑉𝑆,𝑠𝑆  

denote the VS amount of the substrate in the sample bottle, 𝑚𝑉𝑆,𝐼𝑆 denotes the VS 

amount of the inoculum in the substrate bottle and 𝑚𝑉𝑆,𝐼𝐵 denotes the VS amount of 

inoculum in the blank bottle.  
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The experiments are carried out in triplicate to ensure reproducibility and evaluate 

statistical significance: 3 reactors as blanks (inoculum alone), 3 reactors as positive 

control (cellulose) and the rest of the reactors containing samples (inoculum and 

substrate). The data generated from the report is also calculated for its standard 

deviation factor as it is commonly used to obtain the precision of the values obtained.   

3.3.3 Semi continuous digestion trials  

3.3.3.1 Design of the digester  

Laboratory scale semi continuous anaerobic digestion experiments were carried out in 

a continuously stirred tank reactor (CSTR) as shown in Figure 14.  

 

 

Figure 14 Continuously Stirred Tank Reactors – CSTR 

1. Tedlar bag  2. Stirrer 3. 𝑁𝑎𝑂𝐻 indicator 

 4. Reactor     5. Heating wire          6. Digestate port 
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The digester had a 3L total capacity with 2L working volume. Temperature was 

automatically controlled (via a PID temperature controller) and heating was achieved 

through an insulated electrical heating wire (Labelled 5) wrapped around the outside 

of the vessel. The internal temperatures of the digesters were monitored daily using a 

digital thermometer (Fisher scientific, UK). Continuous mixing was achieved through 

an automated mechanical stirrer (labelled 2) attached to a motor (RS, UK) controlled 

automatically. Feeding was done manually on a daily basis through the feeding port 

(labelled 4) located at the top of the digester. Similarly, the effluent (digestate) was 

withdrawn manually through the tap located at the bottom of the digester (labelled 6). 

Digestate was withdrawn until the level of the digesters were maintained to the working 

volume of 2L. Gas was collected using Tedlar bags (labelled 1) connected to each 

reactor with a capacity of 5L. Gas volumes were measured using the cylindrical 

gasometer based on the water displacement principle (Walker et al., 2009). Alternate 

digesters were connected with 𝑁𝑎𝑂𝐻 indicator bottles (3M 

𝑁𝑎𝑂𝐻+0.4%Thymolphthalein pH indicator) to monitor biogas production and methane 

production separately (labelled 3).   

3.3.3.2 Experimental set up  

Six reactors (duplicates of each), were used for the semi continuous digestion 

experiments. Three samples were evaluated for their performance during the 

experiments. An organic loading rate of 3gVS/l-d was used for the experiments. The 

organic loading rate was not increased to ensure digester stability. The experiments 

were run for 3 hydraulic retention times (a total of 106 days). The samples used were 

the cultivated summer harvest of S. Latissima from DB as a single feedstock. The 

digestate was tested for its pH, conductivity, alkalinity, COD, and dewaterability using 

CST measurements (all described in section 3.4 below). Gas volumes and digester 

temperatures were also monitored on a daily basis. Samples were stored for VFA 

analysis. Biogas produced from the reactors were collected in Tedlar bags (5L 

volume). The bags were measured daily for the biogas volume produced by the 

respective reactor. Gas composition analysis was conducted once a week to calculate 

biomethane percentage in the biogas produced. 

The experimental set up and parameters are shown in Table 12.  
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 Table 12 Semi continuous digestion experiments set up and parameters 

Parameters  Reactor 
1 

Reactor 
2 

Reactor 
3 

Reactor 
4 

Reactor 
5 

Reactor 
6 

Temperature M M M M T T 

Organic Loading 
Rate (OLR, g 
VS/l/day) 

3 3 3 3 3 3 

Daily Feed (g 
WW/day) 

56.6 56.6 56.6 56.6 56.6 56.6 

One Hydraulic 
retention times 
(HRT) 

35.3 35.3 35.3 35.3 35.3 35.3 

Total run of the 
digesters (days) 

106 106 106 106 106 106 

Trace element 
addition  

No No Yes Yes No No 

 Volume of the 
digesters (L) 

2 2 2 2 2 2 

*M – Mesophilic, T – Thermophilic 

 

3.4 Analytical methods  

The analytical methods introduced here were used for the sample analysis and 

characterisation. The methods were for the BMP tests and the semi continuous 

digestion experiments. 

3.4.1 pH 

The pH values were measured using a Mettler Toledo pH meter with a built in 

temperature sensor (Mettler Toledo AG Analytical, Switzerland). The method is based 

on the voltage changes induced by the different concentrations of the hydrogen cations 

(𝐻+) measured by the electrode made of silver in the electrolyte solution. In order to 

ensure accuracy, the pH meter is first calibrated using the standard buffer solutions 

(pH 4, 7, 9). The precision, repeatability and accuracy of the measurements are highly 

dependent on the pH probe. The manufacturer guarantees an achievable accuracy of 

± 0.05𝑝𝐻 units. 
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3.4.2 COD 

Chemical Oxygen Demand (COD) was measured using the barcoded cuvette tests – 

LCK 014 according to ISO 6060-1989 (Hach Lange, USA). Digestate samples were 

diluted to a dilution factor of 10. After mixing the diluted digestate solutions using a 

stirrer, 0.5 ml of the diluted samples were then added to the cuvettes to calculate the 

total COD. The diluted samples were then transferred to centrifuge tubes (2ml) and 

centrifuged for 10 minutes (14X1000 rpm). After centrifugation, the samples are then 

filtered for their supernatant. 0.5ml of the supernatant solution is then added to the 

cuvettes to calculate the SCOD of the tested samples. The cuvettes are then digested 

in a COD digester (Hanna Instruments, HI 839800 COD reactor) for 2 hours at 150°C. 

After the samples have cooled down to room temperature, the samples were evaluated 

for their optical densities using a spectrophotometer (DR2400 Hach) where the 

barcoded cuvettes were automatically detected for the tests and values are reported. 

The results obtained multiplying with the dilution factor were read as mg COD/l. The 

tests were performed in duplicates or triplicates for accuracy and precision of the 

obtained results. The preparation of the samples for dilution, and filtration thereafter 

were followed as per Suhartini et al., 2014.  

3.4.3 Total and Volatile solids  

The quantification of total and volatile solids present in a sample was conducted 

according to the standard methods (APHA, 1992). Total solids (TS) were measured 

from a representative sample weighed in a porcelain crucible and dried up to a constant 

weight for up to 24 hours in the oven (Thermo Scientific Heraeus Oven, UK). The 

amount of sample taken for measurement was carefully recorded and total solids were 

calculated using the equation below.  

𝑻𝒐𝒕𝒂𝒍 𝒔𝒐𝒍𝒊𝒅𝒔 =
{(𝑨−𝑩)∗𝟏𝟎𝟎𝟎}

𝑾 𝒔𝒂𝒎𝒑𝒍𝒆
   

Equation 3: Calculation of total solids 

Where A is the weight of the dried residue and the crucible at 105°C in gram (g), B is 

the weight of the crucible alone in g and W sample is the weight of the sample in g.  

The samples after TS determination were further heated to a temperature of 550°C for 

2 hours until a constant weight was reached. The concentration of volatile solids 

(Konda et al.) were calculated using the following equation. 
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𝑽𝒐𝒍𝒂𝒕𝒊𝒍𝒆 𝒔𝒐𝒍𝒊𝒅𝒔 =
{(𝑨 − 𝑪) ∗ 𝟏𝟎𝟎𝟎}

𝑾 𝒔𝒂𝒎𝒑𝒍𝒆
 

Equation 4: Calculation of volatile solids 

Where C is the weight of the sample and the crucibles at 550°C in gVS content can 

also be expressed as a percentage of TS.  

3.4.4 Alkalinity  

The measurement of alkalinity is based on the principle that the hydroxyl ions present 

in a sample formed as a result of dissociation or hydrolysis of solutes reacts with 

additions of the standard acid.  Thus, the alkalinity is the acid-neutralising capacity and 

reported as the calcium carbonate per litres (𝐶𝑎𝐶𝑂3/𝐿) (APHA, 1992). In this study 

alkalinity was measured using automatic titrator (Titroline 5000 potentiometric titrator, 

Germany). The titrator was calibrated before the tests using the three standard buffer 

solutions (Titroline Buffer solutions). The alkalinity measurements were calculated from 

the values obtained from the automatic titrator when the sample was titrated with the 

acid until pH reached 5.7 and 4.3 for partial alkalinity and total alkalinity respectively. 

Sulphuric acid (0.001 N) was used as the standard acid reagent. Alkalinity expressed 

as mg 𝐶𝑎𝐶𝑂3/𝐿 can be then calculated using the formula in the following equation.  

𝑨𝒍𝒌𝒂𝒍𝒊𝒏𝒊𝒕𝒚 =
𝑽𝒂𝒄𝒊𝒅∗𝑵∗𝟓𝟎𝟎𝟎𝟎

𝑽 𝒔𝒂𝒎𝒑𝒍𝒆
   

Equation 5: Calculation of alkalinity  

Where V acid is the volume of the standard acid used in ml, V sample is the volume of the 

sample in ml, and N is the normality of the standard acid used.  

3.4.5 Conductivity  

Electrical Conductivity (EC) was measured using a portable conductivity meter (HI-

99301, Hanna instruments, UK) at room temperature. The probe was immersed into 

the samples and left undisturbed until a constant reading is shown on the display. The 

probe had an accuracy of ±2% and working range of 0.00 to 20.00mS/cm. All readings 

were calculated for automatic temperature compensation with a built-in temperature 

sensor in the probe. The measured conductivity readings were shown in mS/cm. 

3.4.6 Elemental composition  

The seaweed samples and co-digestion samples were tested for their elemental 

composition including 𝐶, 𝐻, 𝑂,𝑁, 𝑆. The tests were carried out in ESG Specialist 
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laboratory (Burton-On-Trent, UK). The samples were air dried and ground prior to the 

analysis and analysed for the components using an elemental analyser and sulphur 

analyser. 

3.4.7 Calorific values  

Calorific values (CV) were measured for all the seaweed and co-digestion samples 

using a calorimeter (6100 Calorimeter, Parr Instrument Company, UK) using ISO 

1928:2009 method of determination of gross calorific values by the bomb calorimetric 

method and calculation of net calorific values. The energy in the samples tested were 

observed as the high heating values (HHV). All samples were air dried and ground to 

fine powder. About 1g of the samples were then used for the tests. The calorimeter 

was first standardised using benzoic acid. After standardisation, the samples to be 

tested were put on the bomb head, fuse fire attached, and screw cap tightened. Then 

the bomb is filled with oxygen and inserted into the calorimeter with the bucket 

containing approximately 2litres of water. The tests were run in triplicate. 

3.4.8 Biogas volume  

The biogas volumes were measured using an in-situ gasometer working on the water 

displacement method. Gas was introduced from the Tedlar bags into the water in the 

gasometer column using the three-way valve for controlling the flow of the gas. The 

volume of the gas introduced was simply calculated by measuring the change in liquid 

height in the column. For multiple gas bags, the heights of the water level were 

recorded each bag until the bags were completely devoid of gas. The time, temperature 

and the pressure at the time of gas measurement were also noted on a daily basis.  

The gas volume was measured in the height gasometer, where the gas was introduced 

into the closed column through the top valve while emptying the gas bag and it 

displaced the water into the container. The volume of the gas produced at standard 

temperature and pressure (STP) is then calculated using (Walker et al., 2009) formula 

in the equation below.  

𝑽𝑺𝑻𝑷 = (
𝑻𝑺𝑻𝑷

𝑻𝒂𝒕𝒎𝑷𝑺𝑻𝑷
⁄ ) ∗ ((𝑷𝒂𝒕𝒎 − 𝑷𝑯𝟐𝑶(𝑻𝒂𝒕𝒎) − 𝝆𝒃𝒈(𝒉𝟐 + 𝒉𝟎))(𝑨𝒉𝟐 + 𝑽𝒉) −

(𝑷𝒂𝒕𝒎 − 𝑷𝑯𝟐𝑶 (𝑻𝒂𝒕𝒎) + 𝝆𝒃𝒈(𝒉𝟏 + 𝒉𝟎)) (𝑨𝒉𝟏 + 𝑽𝒉))) − (𝑷𝒂𝒕𝒎 − 𝑷𝑯𝟐𝑶 (𝑻𝒂𝒕𝒎) +

𝝆𝒃𝒈(𝒉𝟏 + 𝒉𝟎)) (𝑨𝒉𝟏 + 𝑽𝒉))  

Equation 6: Calculation of biogas volume in continuous system 
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Where V is the volume (m3), P is the pressure (Pa), Vh is the headspace volume (m3), 

H is the total height of the column, A, section of the gasometer (m2), g is the 

gravitational constant (9.8m/s2), ρ is density (kg/m3), Tstp is temperature at standard 

temperature and pressure (K), Tatm is atmospheric temperature (K), h is the distance 

liquid surface form a datum (m) respectively.   

3.4.9 Biogas composition  

Biogas composition was analysed for the gas samples collected from the Tedlar bags 

connected to the respective reactor once a week. The gas was analysed for methane, 

carbon dioxide, oxygen and nitrogen percentages (%v/v). The gas analysis was 

performed at SOCOTEC specialist laboratory (Burton-On-Trent, UK). The tests were 

done using the bulk gas analytical method SMA 11a for analysing methane, carbon 

dioxide, oxygen and nitrogen using gas chromatography-thermal conductivity 

detection (GC-TCD) (SOCOTEC, UK, 2017). 

3.4.10 Dewaterability   

Dewaterability of the digestate samples were measured using the capillary suction time 

(CST) equipment (Type 304 M, Type 319 Multi CST, Triton Electronics, UK) as it has 

been established as a reliable method for sludge filterability and dewaterability. The 

digestate samples are stirred constantly for homogeneity and then pipetted into the 

test head assembly in the CST unit. The reset button is checked to be at zero reading. 

The volume required to complete the test is fixed by the reservoir volume at approx. 5 

ml. The time (seconds) is noted from the display at the end of the test for the various 

samples tested.   

3.5 Statistical analysis  

The impact of location, harvest time and growth type on the biochemical methane 

potential of macroalgae biomass S. Latissima was analysed for statistical significance. 

The effect of different location, harvest times, and growth type were the variables 

analysed for statistical verification. ANOVA tests are normally used where comparison 

of means is tested for any difference between means of the different variables. 

Statistical verifications of the results obtained in this study was verified using ANOVA 

analysis. IBM SPSS statistical software version 22 was used for the analyses.  

Statistical analyses were performed using the following steps.  

Step 1: Test for null hypothesis using homogeneity of variance tests.  

Step 2: Testing for equality of means using post hoc tests  
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Step 3: Bonferroni/Games Howell Test  

Step 4: Statistically significance level (0.05, 0.001, and 0.1).  

Homogeneity of variance test is an independent samples t-test stating that all 

comparison have the same variance. In our study, a Levene’s test was conducted as 

the homogeneity of variance test. The Levene’s test verifies the null hypothesis that 

variance is equal across groups. A p value less than 0.05 indicates the violation of the 

null hypothesis. Then the difference of the variance is statistically significant. When the 

Levene’s test turned significant, Welch test, another robust test was run to test the 

equality of means. The results will be then confirmed using post hoc tests to identify 

the significant pairs.  

Post hoc tests utilises multiple comparisons within the group to identify the significant 

pairs. Bonferroni tests is a preferred post hoc test when many independent or 

dependent statistical tests are run simultaneously. The Bonferroni is used also 

because it is highly flexible, very simple to calculate, and can be used with any type of 

statistical test (e.g., correlations)—not just post hoc tests with ANOVA. Bonferroni tests 

is ideal in this case where we have three variables to be tested for the different co-

digestion substrates. Games Howell is also another post hoc test which is used with 

unequal variances and suitable for smaller group comparisons. Our BMP experiments 

were run in triplicates making the group size smaller for statistical comparisons. The 

choice of Games Howell is run in combination with Welch test as this test is preferred 

for smaller group sizes.  

All results reported in the results chapters are reported following statistical verification. 

The significance level and the significant pairs of the results will be shown in the results 

chapters. 

3.6 Techno economic analysis  

A Techno economic analysis was conducted based on the biochemical methane 

potential of macroalgae co-digested with agricultural crop residues, manure and 

brewery spent grain. The methodology was adapted from a model provided by the 

EnAlgae (Interreg IVb, EU) project (Parker et al., 2015). This techno-economic model 

(WP2A7.07) identified the political, economic, social and technological opportunities to 

promote the adoption of algal biomass within North-Western Europe. This model was 

specifically designed for considering the methane production from algae biomass and 

was therefore deemed appropriate for use in this study. The model was developed as 

a calculator to show the feasibility of AD for using algae biomass, and based on the 
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findings from the EnAlgae report there existed a wide gap between a feasible business 

case and the AD of algae. Hence there was no verification study financed to verify the 

model as such.   

Rationale for the adaptation of the EnAlgae model for this study: 

  The economic model considered co-digestion with products of either electricity with 

a combined heat and power (CHP) or green gas.  

The investment parameters considered in the economic model included: -  

 Cost of the digester,  

 a CHP,  

 a biogas process unit,  

 A pre-treatment unit. (Can be included or excluded) 

The substrates included in the model were predominantly for AD using co-digestion. 

Dairy manure was chosen as the base material and a maximum of 4 substrates could 

be chosen as co-digestion substrates. The full list of substrates is: -  

Base material: 

 Dairy Cow manure  

Co-materials: 

 Glycerine 

 Silage maize 

 Wheat straw 

 Sugar beet 

 Beet leaves 

 Pig manure 

 Maize straw 

 Algae paste 

 

In the developed EnAlgae model, a maximum of 4 co-substrates for the model could 

be chosen where the quantity of the co-materials should not exceed that of cow manure 

(Base material). The model assumes a ratio of 50-50% of cow manure and co-material. 

The scale of the CHP is adjustable in the model for the desired CHP level. The price 

of the algae paste and the co material can also be adjusted according to the choice of 

the co material chosen.  

For this study, the model assumed a 52% (𝐶𝐻4 content) and 48% (𝐶𝑂2 content). A 

36% electric efficiency was assumed for the CHP unit. The operational hours of the 
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digester per year was assumed to be 8000 hours. The heating value of methane was 

approximated to be 36.5 MJ/m3.  An inflation rate of 2% per year was considered for 

the cost parameters in the model. The digester was given a life span of 25 years, 10 

years for CHP, and 10 years for green gas processor, and 15 years’ life span for the 

pre-treatment unit in the model. The scale of the digester at 1,000,000m3 of biogas for 

a digesting time of 30 days.  

The results from the economic model mainly focused on the return on investment 

percentage (ROI, %) and the payback time in years. The results also showed a 

comparison of the percentages of selling price and the cost price for the various 

substrates considered for co-digestion. The results would also give the comparison of 

total returns and total costs. A financial return for every 100 Euro in costs will also be 

shown on the results table.  

The economics for S. Latissima harvested from three different locations, 4 different 

harvest times and wild and cultivated growth types were analysed in this study.  The 

co-digestion feedstock of agricultural crop wastes, pig manure and brewery spent grain 

was analysed separately. The individual BMP of the co-digestion tests were inputted 

in to the model to estimate the effect of co-digestion on the biogas production unit of 

per gram of organic volatile solids digested.  

 

 

  



 

Results – Macroalgae Characteristics  

  76 Roshni Paul 

4 Results – Macroalgae Characteristics  

As discussed previously, the Kelp species, S. Latissima was chosen as the primary 

feedstock for this study. This chapter focuses on the impact of location (i.e. 

environmental factors of different sample locations), season (i.e. time of harvest) and 

growth type (wild sourced or cultivated) on the characteristics of the biomass.  

Understanding the characteristics of a new biomass source such as macroalgae is 

important in order to assess feasibility and optimise conversion processes. Macroalgae 

biomass have complex and variable properties and research into utilisation of the 

biomass demands critical knowledge of different factors affecting its growth and 

cultivation throughout the life cycle of the biomass. The growth of Kelp for example is 

influenced by the physical and chemical conditions of the seawater. Various factors 

such as seawater temperature, salinity, water flow, availability of nutrients, carbon 

dioxide and sunlight, should be optimal (Kerrison et al., 2015). Kelp biomass also 

exhibits seasonal variability as a result of its growth cycle and impacts of temperature 

and localised conditions (Schiener et al., 2015). Gaining a greater understanding these 

variables will inform the design and operation of biomass cultivation and harvest 

practices. The following sections discuss the three main factors that are critical for S. 

Latissima – i.e. location (geographical location where they are grown), the time of 

harvest (season when the biomass is collected), and also primary source (wild or 

cultivated)   

4.1 Sample collection  

The biomass samples collected for this study are shown in Table 13. This study 

focused on the variability in the characteristics of the Kelp species, S. Latissima for 

any impact of environmental gradients in the location it was grown, the time of harvest 

and growth type. 

Table 13 Samples collected for this study 

Location Winter 15 Spring 16 Summer 16 Winter 16 

Strangford W W W,C W 

Isle of Seil - - W,C W 

Ventry Harbour - - C - 

 

Samples were sourced from the three locations namely Strangford Lough, Isle of Seil 

and Ventry Harbour. Wild and cultivated samples were collected from Strangford 
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Lough and Isle of Seil while only cultivated samples were collected from Ventry 

harbour. The wild samples and cultivated samples collected from both these locations 

were growing closer to each other making sample collection manageable. The 

cultivated samples were only collected during their summer harvest while wild samples 

were collected to determine the impact of time of harvest on the sourced biomass. All 

samples were treated equally and systematically for the characterisation tests and any 

variability observed is confirmed using statistical analysis. 

The sample locations and the environmental factors for the specific location are 

detailed in the following sections.  

4.2 Sample Location   

The seaweed samples of S. Latissima were collected from three different locations.  

● Strangford Lough, Northern Ireland (Queen’s University Belfast) 

● Isle of Seil, Argyll - Oban, Scotland (SAMS)  

● Ventry Harbour - Dingle bay, Southern Ireland (Dingle Bay Seaweed Ltd) 

 

The details of the three locations are given below.  

4.2.1 Strangford Lough   

The samples obtained from Strangford Lough were supplied by the seaweed growing 

facilities at Queen’s University Belfast (QUB), Northern Ireland, the Lough is located 

west of Jackdaw Island. Queen’s University Belfast had a leading role in a recent 

project (EnAlgae) providing a pilot site for the production of Kelp species S. Latissima. 

The cultivated samples obtained for this study were first developed in the hatchery 

situated at Queen’s Marine Laboratory in Portaferry which were then transferred to 

long lines in Strangford Lough for onward growth. The gametes sprayed on to the string 

were grown in water baths in the hatchery for 4-6 weeks at a temperature of 10°C. 

When the plants are approximately 5mm in length, they are then transferred to the site 

in a boat. The long lines are normally a 100 m long line connected to 10 buoys which 

float on the water surface which will keep them at uniform growing depth. The 

deployment normally happens at the end of summer (September to October) and they 

are harvested after 6 months when the biomass is around 3-4 meters in length. The 

wild samples used in the study were also collected from the wild habitats closer to the 

long line cultivation farms in Strangford Lough (Queen’s University Website, 2017). 
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The cultivation site in Strangford Lough is north/south oriented with 4 x 100m long lines 

running parallel to each other and along the water flow suspended approximately 1-2 

m below the sea surface. The sea temperatures for Strangford Lough was recorded as 

low as 8°C in winter (January) and as high as 14°C in summer 2016 (World sea 

temperatures, 2016).  

4.2.2 Isle of Seil 

The samples obtained from Isle of Seil were supplied by the Scottish Association for 

Marine Science (SAMS), Scotland’s largest and oldest independent marine science 

organisation. The samples were collected by the specialist marine consultancy SAMS 

Research Services Limited (SRSL). Based in Oban, on the Scottish west coast, SAMS 

has two experimental seaweed farms namely the Kerrera farm and Port a’ bhultin farm. 

The main species tested in these farms were S. Latissima as a major Kelp species and 

Alaria esculenta, Laminaria hyperborea and other species like Palmaria palmata and 

Ulva. The farms vary in their size with Kerrera having 60m long lines set up similar to 

a mussel farm with a water depth of 5-25m. The Port a’ bultin farm is the largest 

seaweed farm in the UK and is 30 hectares currently with a single 100 x 100 m grid 

system for growing seaweed with a capacity of 24 x 100 m long lines. The depth is 

around 15 – 25 m. The samples obtained from this study were collected from Isle of 

Seil, Argyll with the similar cultivation site observed in Kerrera farm. The latitude and 

longitude for the collection site is 56.32N 5.58W. The wild samples were also sampled 

from the wild sources near to the long lines in the collection site (SAMS Website, 2017). 

The average sea temperatures in Oban is observed between 8.2°C in winter (January) 

to 13.7°C in summer in 2016 (World sea temperatures, 2016). The surface salinity in 

the region is observed to be 34-34.75% (DEFRA, 2011). SAMS has a history of 

seaweed cultivation and Isle of Argyll, Oban seems to be an interesting collection site 

for the selected species, S. Latissima. The characteristics of the seaweed samples 

collected would signify its potential to be a renewable energy feedstock.  

4.2.3 Ventry Harbour  

The third location where the biomass samples were collected in this study was a 

seaweed farm named Dingle Bay Seaweeds Ltd, County Kerry in Western Ireland. It 

is a Small to Medium-size Enterprise (SME) operating in Ireland. It is one of Europe’s 

largest commercial seaweed farms established since 2009. The farm is an active 

partner in many studies involved with Irish Sea fisheries board since its establishment. 
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Since 2011, the Kelp species, S. Latissima has been a trial species for aquaculture in 

the farm under the provision of a licensed sea trial site. In Northern Ireland, where the 

samples were collected from Strangford Lough the hatchery facilities were owned and 

operated by QUB, in the west of Ireland. Dingle Bay Ltd had access to Daithi O’ Murchu 

Marine Research station in the South west Ireland, County Cork. It provided the 

company with access to filtered seawater, air supply and an insulated, constant 

temperature unit to monitor and control over the life cycle of the species tested if 

required. The cultivation site in the sea was reached by boat and it took up to 45 

minutes to reach the cultivation site (Edwards and Watson, 2011). There are two 

dominant harbours in Dingle bay namely Ventry Harbour and Dingle Harbour. The 

cultivation site is based at Ventry harbour. This site also utilised longline cultivation 

with the typical float and rope plan similar to Strangford and SAMS cultivation longlines. 

The cultivation site operated by Dingle Bay has an area of 18 hectares in Ventry 

Harbour (Werner and Dring, 2011). The farm consists of 3 parallel units of 280 m linear 

longlines suspended approximately 1.5 m below the sea surface (Walls et al., 2017). 

The average sea temperatures for Dingle Bay (Ventry Harbour) was observed to be as 

low as 10.1°C in winter (January) and as high as 15.7°C in summer in 2016 (World 

Sea Temperatures, 2016). Only cultivated S. Latissima was sourced from Dingle Bay 

farm in the summer 2016.  

A summary of the different sample locations used for this study is given in Table 14 . 

Table 14 Summary of the location factors 

Location  Area (hectares) Long Line 
conditions 

Deployment – 
Harvest (Month) 

Strangford Lough  7.3 ha 4 x 100m September-June 

Isle of Seil 1 ha 60 m September-June 

Ventry Harbour 18 ha 3 x 280 m October-June 

 

As the seaweed industry in Europe is expanding, attempts are being made to diversify 

the aquaculture sector. As a result, new methods and techniques (which do not involve 

wild harvest of Kelp and other species) are becoming the focus of emerging research. 

The importance of habitat and environmental conditions on the characteristics of wild 

Kelp biomass is demonstrated in the literature, however the impact of these factors on 

cultivated biomass is still very limited.  
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The cultivation sites at Ventry Harbour, Strangford Lough and Isle of Seil will provide 

information on how Kelp habitats and the various environmental gradients at these 

cultivation sites impact on the characteristics of the biomass collected from these sites. 

Holdfasts have been researched as the appropriate part of Kelp species for variation 

due to habitats in wild and cultivated biomass. However, it remains unclear the extent 

to which variation is observed in the fronds of wild and cultivated Kelp species. This 

research attempts to highlight this gap in the literature.  

4.3 Environmental conditions 

As described previously the environmental conditions in which the macroalgae grows 

can influence its general characteristics. A number of key parameters were evaluated 

as part of this study and the results are presented below.  

4.3.1 Temperature  

Temperature is a key variable in controlling the distribution of kelps (Müller et al., 2009). 

The seawater temperature could be a controlling factor for the variation in physical and 

biochemical composition for the biomass from the three sites studied in this research. 

The average sea temperatures for the study regions were compared to observe any 

variations. The sea temperatures were collected from the online sea temperature 

resources (Sea temperature, 2017). The average sea temperatures (2016) are shown 

below in Figure 15. 

 

Figure 15 Average Sea Temperatures for three locations 
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It can be observed that Scottish water temperatures (Isle of Seil) were slightly colder 

than Irish waters (Strangford Loch and Ventry Harbour). For the samples from Ireland, 

august was the hottest month with a temperature of 14.2°C in Strangford Lough and 

15.7°C in Ventry Harbour site. March was the coldest month in Strangford Lough (8°C) 

and Ventry Harbour (10°C).  

For samples from Scotland, Isle of Seil had the highest temperature of 13.7°C in 

August and 7.4°C in March.  

It was also noted that the south of Ireland (Ventry Harbour) had a higher summer 

temperature than the north of the country. Ventry Harbour had the hottest and Isle of 

Seil the coldest seawater conditions among the three sites compared in this study.  

4.3.2 Benthic Conditions  

As discussed in the literature review (Section 2.1.1.1), benthic conditions are important 

for the growth of macroalgae biomass. Kelp forests in Europe have shown to follow 

migration pattern owing to complex pattern of dynamic between environmental factors 

including the benthic conditions, however still Kelp forests in the UK are understudied 

(Araujo et al., 2016). The benthic conditions of the three locations of this study are 

discussed below. 

4.3.2.1 Strangford Lough 

The Strangford Lough Ecological Change Investigation by Roberts et al., (2004) 

reported that the lough is almost landlocked with separation from the Irish Sea by the 

Ards Peninsula to the east, with a connection to the open sea via an eight-kilometre-

long channel called Strangford Narrows. The majority of the lough is less than 10 

meters in depth. The benthic conditions in the lough has developed during the Ice age 

and the sediment type traces back from the Narrows into the main body of the Lough 

influenced by geology, tides, currents, and exposure to wave action (Roberts et al., 

2004).  

4.3.2.2 Isle of Seil  

The Isle of Seil (10 miles from Oban) is set within the Firth of Lorn off the west coast 

of Scotland. It is bounded to the east by the Seil Sound, a designated shellfish water 

protected area, and to the South and west by the Firth of Lorn special area of 

conservation. There are more specific shellfish harvesting areas through Seil Sound 

and towards the northern part of the island. This island is part of the island group of 

scarba, Luing, Kerrera and the Gravellachs. The mainland cost of south west Scotland 
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is dissected by a series of sea lochs oriented along a south-west/north-east axis. Isle 

of Seil is a part of this highly dissected coast and therefore subject to wide range of 

physical conditions affecting the habitat diversity of the region. Since having a west 

facing coast, the island is almost fully exposed to the force of the Atlantic winds.  The 

area is recorded for its complex hydrography with a diverse range of wild habitats for 

rich and varied marine life in the west Scotland. The tidal patterns narrow at Clachan 

sound between the mainland and the Isle of Seil where earlier studies in the eighties 

by Smith and Nunn et al. (1985) have even reported dramatic changes in mollusc fauna 

species composition resulting from natural causes (Smith and Nunn, 1985). Unusual 

growth of algae species in the strong tidal streams are also reported in the same area. 

Another interesting study Smith (1984) observed that the rock formations leading to 

the formation of large number of crevices and high exchange of water movement in 

the area to be significant factors in increasing species diversity (Levin and Smith, 

1984). Therefore, it can be seen that the cultivation site in Isle of Seil is highly 

hydrodynamic in nature with high currents and tides and also rocky in nature when 

compared to cultivation site in Strangford Lough.  

4.3.2.3 Ventry Harbour 

Ventry Harbour is a large bay situated in the southwest corner of County Kerry. The 

harbour is a moderately sheltered and shallow depth waters facing the south east with 

the wide mouth opening to Dingle Bay. The licensed cultivation site is facing northwest 

to southeast and located to the westerly side of the Ventry Harbour. The depth 

underneath the farm is approximately 6m at the north-western end and then it gently 

slopes to 20m at the eastern edge of the farm at mean low water spring tide (Walls et 

al., 2017). Due to the constant movement of waters because of the harbouring of the 

ships and boats, the harbour and the adjoining areas are recorded to be moderately 

hydrodynamic in nature but lesser compared to the other two locations.  

In summary, among the three sites Isle of Seil was observed to be highly hydrodynamic 

with the greatest of depth and Ventry Harbour with the lowest depth and moderate 

hydrodynamic activities in their cultivation sites. The key factors to be noted from the 

environmental conditions around the cultivation sites are the water depth, benthic 

conditions and exposure to winds which will also influence the tides and currents 

among the three sites.  



 

Results – Macroalgae Characteristics  

  83 Roshni Paul 

4.3.3 Tides and Currents  

No measurements of the tides and currents were taken at the time of deployment or 

harvest for this research. However, the average of the tidal range and currents of the 

three different locations recorded in literature have shown that the Strangford Lough 

area is tidal in nature with a 4m tidal range, a low current of 40 cm/s, and exposed to 

wind throughout the year. The water depth varies between 3-7m at mid tide, 0.9-2 m 

wave heights in winter low tide (Sprujit, 2015). For Isle of Seil, higher tidal currents 

were observed with semi-diurnal tidal current of 77cm/s during spring tides (SAMS 

website, 2017). Even though higher currents are observed in the region the cultivation 

site is closer to shore and therefore is moderately sheltered from the south westerly 

winds from the Atlantic. Among the three, the tidal range of the Dingle Bay farm was 

reported to be largely variable with the range between 0.6 and 4.0m (Walls et al., 

2017). This could be attributed to the constant movement of waters due to the 

harbouring of the ships in Ventry Harbour.  

4.3.4 Pollution, Sedimentation and Fouling of the biomass  

Measurements for indicators for pollution, sedimentation or fouling were not taken 

during this study. However, a previous study conducted by Roberts et al. (2004) 

demonstrated that there was a well-defined seasonal maximum of nutrient 

concentration (indicated by nitrate concentration) in December and January. The major 

influents of nutrient into the Loch are primarily due to agricultural practices rather than 

industrial practices in the area, and also the sewerage treatment plants. The Irish Sea 

is the largest source of nitrogen and silicate loading to Strangford Lough.  Higher 

nitrogen and phosphorus concentrations were found in the north of the Lough during 

the winter and south of the Lough during the summer. However Strangford Lough is 

not classified as either a sensitive or polluted water body under the regulations  such 

as the EU water framework directive (2000) which has been recently adopted as the 

water framework directive in the UK (Roberts et al., 2004).  

The Scottish test site has in operation a wastewater treatment works on the east of the 

Island discharging to the shellfish water around Seil Sound since 2008-2009. Even 

though a proposal for a new and better planned sewerage systems for the Isle of Seil 

is under consideration, the Firth of the Lorn to the south and west of the Isle of Seil is 

already reported as good environmental status’ under the Marine Strategy framework 

directive (Olenin et al., 2010). This implies minimal pollution limits in the seaweed 

cultivation farms where the samples were collected. However, the main source of 
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industrial effluent to the region was reported from pulp mills effluents and the resulting 

organic gradient enrichment has also been observed in the Firth of Lorn but only in 

limited detail in terms of the levels of information. Ventry Harbour has been prone to 

different dumping activities and this has resulted in pollution from tourists, and 

travellers alike (E-oceanic site, 2016). These prolonged dumping activities can lead to 

alterations in the benthic floor leading to potential impact on macroalgae cultivation 

sites. Sedimentation is believed to be an active process in all three sites and pollution 

being an equally important issue in all the sites due to different anthropological 

activities. As pollution levels of neither of three sites were quantified, it can only be said 

that if polluting activities continue, either from sewage or tourism or agricultural 

activities it can have negative impact on the marine ecology and thereby on the 

cultivation sites.   

In addition, all biomass obtained from the three cultivation sites had bryozoans (fouling 

agents) attached to their fronds in summer. On personal communication with the 

cultivation site workers, it was confirmed that the fouling started to occur in the biomass 

late spring – early summer and reached its peak towards late summer.  

A summary of the different environmental conditions for three locations are given in 

Table 15.  

Table 15 Summary of different environmental conditions for three locations 

Location  Water 
depth (m) 

Tides and 
currents 

Sea temperature 
(°C) 

Pollution 
Cause 

Benthic 
conditions 

Strangford 
Lough  

3-7 m 4 m (tide) 
30-40 cm/S 

8-14 Agricultural Rocky 

Isle of Seil 5-25m 77cm/S 
(current) 

8.2-13.7 Sewage Rocky 

Ventry 
Harbour 

6-20m 0.6-4.0m 
(tide) 

10.1-15.7 Tourism Shallow 
embayment 

 

4.4 Biomass characterisation  

S. Latissima samples were characterised for their physical and chemical 

characteristics including solids (Total and Volatile), ash, and moisture content. Their 

compositional analysis observed through elemental analysis are also discussed. The 

seaweed samples were analysed separately as a single biomass feedstock from the 

specific sites at different time of harvests and under different growth conditions 

(including wild sourced biomass and long line cultivated biomass). Only the fronds of 
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the macro-algae were utilised for the study hence no comparison is made on the 

different parts of the macro-algae biomass (stipes and holdfasts). All biomass samples 

were macerated using a blender prior to the sample analyses.  

4.4.1 Impact of location on biomass characteristics  

4.4.1.1 Solids, Ash, Moisture and Calorific values  

The proximate characteristics for S. Latissima obtained from Strangford Lough, Isle of 

Seil and Ventry Harbour are shown in Table 16 . 

Table 16 Proximate characteristics of S.Latissima from three locations 

Seaweed ID  Total 
Solids 
(%WW) 

Volatile 
Solids 
(%WW) 

VS 
(%TS) 

Ash 
(%WW) 

Moisture 
(%WW) 

Calorific 
Values 
(MJ/kg) 

Strangford Lough  17.04 11.29 66.30 5.74 82.96 11.10 

Isle of Seil 32.74 18.84 57.55 13.90 67.26 11.30 

Ventry Harbour 15.08 10.60 70.30 4.48 84.92 07.30 

 

S. Latissima samples compared from different locations were harvested in summer 

2016. The calorific values of all three locations indicated high energy content with the 

sample from Ventry Harbour exhibiting the lowest among them. Macroalgae biomass 

is reported with high solids content. Studies documented for S. Latissima report a total 

solids content in the range 8.3 – 22% (%WW) and volatile solids in the range 44.6 – 

73.8 (%TS) (Allen et al., 2015). Similar trends were observed in this study as the total 

solids have been shown in the range 17% for Strangford Lough; 32% for Isle of Seil 

and 15% for sample collected from Ventry harbour as shown in Figure 16.  

 

Figure 16 Total solids, volatile solids and ash for samples from three locations 
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From the figure, it can be seen that the samples from Isle of Seil showed higher 

percentages of volatile solids, total solids and ash in comparison to the other samples. 

The percentage difference observed between the total and volatile solids for Isle of Seil 

was 14% whereas for Strangford Lough was 6% and 5% for Ventry Harbour samples. 

Statistical analyses were performed to check whether these results were significant. 

ANOVA tests confirmed that samples from Isle of Seil had significant difference in their 

characteristics to those from Ventry Harbour and Strangford Lough. However, the 

analysis also confirmed that there were no significant differences in the characteristics 

of samples obtained from Strangford Lough and Ventry Harbour.   

4.4.1.2 Elemental composition  

The main elements in the macroalgae biomass C, H, N and S were plotted as 

percentage of their total solids. All of the samples had high concentrations of carbon 

in the biomass (28-30%). As observed in figure 2, the highest percentage of Carbon 

(C%) was found for the biomass samples from Isle of Seil with 29.27%TS, followed by 

Ventry Harbour biomass with 29.23% and finally Strangford Lough biomass with 

28.53%. The elemental composition of S. Latissima from three locations is given in 

Figure 17 . 

 

 

Figure 17 Elemental composition of S. Latissima from three locations 

4.5 Impact of harvest time on biomass characteristics  

Time of harvest for S. Latissima is an important factor as the biochemical composition 

of the biomass can alter with the different growth stages at different times of the year 
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(Azevedo et al., 2016). In addition, for cultivated biomass, as they are grown in long 

lines they have a maximum growth of 1 year. However, for the wild biomass, as they 

are perennial the wild biomass can survive up to 5 years and harvesting biomass from 

the wild habitats can also affect the ecological balance in the marine environment 

(Teagle et al., 2017, Walls et al., 2017).  

The characteristics of wild sourced S. Latissima sampled at different times of the year 

from Strangford Lough is compared in Table 17. 

Table 17 Characteristics of wild S. Latissima harvested at different times of the 

year 

Time of 
harvest 

Total 
Solids 
(%WW) 

Volatile 
Solids 
(%WW) 

Ash 
(%WW) 

Moisture 
(%WW) 

Calorific 
Values 
(MJ/kg) 

Winter/2015 02.98 1.70 1.39 96.92 09.50 

Spring/2016 28.50 18.11 10.39 71.50 10.90 

Summer/2016 25.77 17.84 08.13 74.03 11.40 

Winter/2016 15.29 09.12 06.17 84.71 09.70 

 

Four biomass samples collected in winter 2015, spring 2016, summer 2016, and winter 

2016 were studied for their differences in characteristics. The highest energy content 

was observed in the summer biomass (11.4MJ/kg) and lowest in the winter biomass 

(9.7 MJ/kg).  

 

Figure 18 Total solids, Volatile solids and Ash for different harvest times 

From Figure 18, it can be seen that the spring biomass exhibited consistently higher 

volatile solids, total solids and ash percentages. In contrast, winter biomass exhibited 
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the lowest percentage of solids and ash concentration. ANOVA tests also confirmed 

that all four samples harvested at these four harvest time were significantly different 

from each other. This result shows that macroalgae biomass harvested at different 

points of the year will be significantly different in their characteristics. These findings 

are important when considering logistics of biomass utilisation as it can inform optimal 

harvest times for the macroalgae biomass based on the desired characteristics and 

valorisation routes.  The elemental composition of wild S. Latissima harvested at 

different times of the year is shown in Figure 19.  

 

Figure 19 Elemental composition of wild S. Latissima harvested at different 

time of the year 

It can be noted from the figure that for the wild biomass harvested at different times of 

the year, the percentage carbon (C) was highest in the summer 2016 biomass 

(30.09%) and lowest in the winter 2015 biomass (24%). 

4.6 Impact of growth type on biomass characteristics  

In order to better understand how growth conditions impact on the characteristics of 

macroalgae samples were taken of both wild sourced and artificially cultivated S. 

Latissima at the same time (Summer 2016). The characteristics of wild and cultivated 

biomass collected from Strangford Lough and Isle of Seil are given in Table 18.  The 

calorific values (energy content measured as heat released on combustion) showed 

that the samples were not significantly different in terms of energy content in both wild 

and cultivated biomass.  
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Table 18 Characteristics of wild and cultivated biomass from Strangford Lough 

and Isle of Seil 

Location Type Total 
Solids 
(%WW) 

Volatile 
Solids 
(%WW) 

Ash  
(%WW) 

Moisture  
(%WW) 

Calorific 
Values 
(MJ/kg) 

Strangford 
Lough 

Cultivated 17.04 11.29 05.74 82.96 11.1 

 Wild 25.97 17.84 08.13 74.03 11.4 

Isle of Seil Cultivated 32.74 18.84 13.90 67.26 11.3 

 Wild 54.97 39.25 15.72 45.03 10.8 

 

The total solids, volatile solids and ash of wild and cultivated biomass from Strangford 

Lough is given in Figure 20. From the figure it can be seen that the wild sourced and 

cultivated biomass have varying total solids, ash and volatile solids concentrations. For 

Strangford Lough, the wild sourced biomass had consistently higher values across all 

of the measured parameters compared to the cultivated biomass. The volatile solids 

for wild sourced biomass were 36.71% more than the cultivated biomass. Similarly, the 

total solids for wild sourced biomass was 34.38% more than the cultivated biomass for 

samples from Strangford Lough.  

 

Figure 20 Total solids, Volatile solids and Ash of wild and cultivated samples 

from Strangford Lough 
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The total solids, volatile solids and ash concentrations of wild and cultivated biomass 

from Isle of Seil is given in Figure 21.  

 

Figure 21 Total Solids, Volatile solids and ash of wild and cultivated samples 

from Isle of Seil 

From the figure it can be seen that the wild sourced and cultivated biomass from Isle 

of Seil also have varying total solids, ash and volatile solids concentrations. Again, it 

can be seen that the wild sourced biomass had higher concentrations of TS, VS and 

ash compared to the cultivated biomass. The volatile solids for wild sourced biomass 

was 52% more than the cultivated biomass. Similarly, the total solids for wild sourced 

biomass was 40.44% more than the cultivated biomass obtained from Isle of Seil.  

ANOVA tests indicated that there is significant variation between the wild and 

cultivated samples from each location. The characteristics were also significantly 

different between the wild sourced and cultivated samples from either location. 

The elemental composition of wild and cultivated S. Latissima from Strangford Lough 

and Isle of Seil is shown in the figures below.   
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Figure 22 Elemental composition of wild and cultivated samples from 

Strangford Lough 

 

 

Figure 23 Elemental composition of wild and cultivated samples from Isle of 

Seil 

As shown in the figures above, the % carbon for the two samples (wild and cultivated) 

was not significantly different (30% and 28% (C) respectively). A similar trend was 

observed for Isle of Seil, where wild samples exhibited 29.63 % carbon and cultivated 

exhibited 29.27 % respectively. The wild samples from Strangford Lough had 1.5 % 

more carbon than its cultivated counterparts whereas the wild Isle of Seil samples only 

had 0.36% more carbon than cultivated biomass. All results were reported for their 
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significance following statistical analysis using ANOVA and showed that they were 

significantly different from each other in their characteristics.   

In summary, it was observed that, environmental factors (such as sea water 

temperature, benthic conditions, tides and currents, pollution and fouling may have an 

impact on the characteristics of S. Latissima. samples obtained from the three different 

sites exhibiting significant differences in terms of TS, VS, Ash and elemental 

composition with samples from Isle of Seil having significant difference in their 

characteristics to those from Ventry Harbour and Strangford Lough.  

In terms of season, the macroalgae biomass harvested at different points of the year 

also exhibited significantly different characteristics with the highest percentage carbon 

recorded in summer months and lowest in winter months.  

For growth type, wild biomass from Isle of Seil and Strangford Lough had higher solids 

and carbon concentrations in comparison to the cultivated biomass. This indicates that 

growth type may (and particularly optimisation of growth conditions) needs to be 

carefully considered when choosing the best feedstock and cultivation techniques for 

bioenergy production.  

4.7 Discussion  

The observed characteristics of S. Latissima biomass in this study will be used to 

discuss the following research questions.  

  To what extent do environmental conditions vary with location and how does 

this influence macroalgae biomass characteristics? 

  To what extent do biomass characteristics vary with macroalgae growth cycle 

to inform optimum harvest times?  

  To what extent do macroalgae biomass characteristics vary with growth 

conditions informing optimal cultivation techniques? 

4.7.1 Impact of environmental conditions on biomass characteristics  

In this study, S. Latissima from three different cultivation sites of Strangford Lough, Isle 

of Seil and Ventry Harbour were compared for biomass characteristics including solids 

(total and volatile), moisture, inorganic content and elemental composition. It was 

observed that out of the three locations, Isle of Seil samples showed higher 

percentages of volatile solids, total solids and ash. On statistical analysis samples from 

Isle of Seil were significantly different to samples from Strangford Lough and Ventry 

harbour. However, there were no significant differences in the characteristics of 
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samples obtained from Strangford Lough and Ventry Harbour. The difference observed 

in biomass characteristics are analysed with respect to the environmental conditions 

where they were grown in each location.  

One of the environmental conditions considered in this study was the water 

temperatures at the three different locations. From the literature, S. Latissima is 

reported to grow well between the optimal range of 5 and 17°C. The study by Lee and 

Brinkhuis (1988) studied the effect of seasonal light and temperature interactions in 

the development of S. Latissima in Long Island Sound and showed that in general the 

growth of the biomass improved with increasing temperature between 4 and 17°C, and 

at any temperature above 20°C growth was inhibited with temperature for optimal 

growth depending on the time of the year (Ae Lee and Brinkhuis, 1988). The 

temperatures recorded at all three sites in this study favour growth of the species 

during winter and summer months. No site recorded any spike or abnormal changes 

in the sea surface temperatures during the study. Out of the three locations, Ventry 

Harbour had the highest of the temperatures while Isle of Seil had the lowest 

temperatures. The temperatures recorded had a gradual increase over summer and 

subsequent decrease during winter months reflecting throughout the biomass life 

cycle. Also, none of the three sites had higher or lower temperatures than the optimal 

range. This shows that all three sites were favourable for Kelp cultivation in terms of 

the temperature requirements.  

Previous research on S. Latissima from arctic and temperate ecotypes showed that 

their biochemical composition differs under changing temperature with higher content 

of total carbon, soluble carbohydrates, and lipids while lower nitrogen and protein 

content observed for the arctic samples (Olischläger et al., 2014). In this study no 

quantification of carbohydrates, lipids or proteins were done for the samples, however 

out of the three locations, higher solids and ash content were observed for the samples 

grown in Isle of Seil with the lowest of the temperatures among the three locations. In 

addition, elemental composition of the biomass from three locations also showed 

higher concentration of carbon for Isle of Seil samples and lower for the Ventry Harbour 

samples. One of the reasons favouring the higher accumulation of carbon in Isle of Seil 

samples could be because of the lower temperatures and the evolutionary nature of 

Kelp species to prefer lower temperatures and thereby accumulating the solids as a 

matter of surviving the colder winter months in comparison to the milder temperatures 

at Ventry harbour.  
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The other environmental conditions compared for three different locations in this study 

were the tides and currents observed in three sites respectively. The hydrodynamic 

activities at Isle of Seil and Strangford Lough are considered to be greater than in 

Ventry Harbour. This can be influential to the difference in biomass characteristics of 

Isle of Seil and Strangford Lough where in order to resist water flow rates Kelp can 

allow morphological adaptations. From the literature it is observed that S. Latissima is 

a perennial species which is naturally found growing attached to substrates such as 

rocks and boulders. However, the adaptation of a flexible stipe as a morphological 

feature reduces the species’ chance of being turned over by higher wave movement. 

A study by Gerard (1986) has found that plants subjected to higher flow rates can have 

significantly narrower blades and another study by Luning (1990) on S. Latissima from 

wave exposed sites showed short solid stipes, and short narrow thick fronds with 

closely wrinkled blades. On the other hand, plants from sheltered sites had thin blades 

with a smooth surface (Lüning, 1980). Therefore, it can be said that in order to allow 

morphological adaptations to balance external environmental conditions, the 

biochemical composition of the biomass would also be modified accordingly reflected 

in the overall solids, organic and inorganic content of the species.  

The biochemical composition of S. Latissima found in the literature is summarised 

below in Table 19 (Schiener et al., 2015). 

Table 19 Biochemical composition of S. Latissima from literature 

Macroalgae component Average Percentage (%) 

Laminarin 8.2% 

Mannitol 18.6% 

Alginate 28.5% 

Cellulose 11% 

Total carbohydrate content (all 4 above) 63% 

Polyphenol 0.41% 

Protein  7.1% 

Overall Organic Carbon  26.6% 

Total Nitrogen content 1.5% 

Overall inorganic content  30% 

Moisture 85% 
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Naturally, S. Latissima is found growing in littoral to sub littoral regions in the oceans 

where the area is characterised by continuous high and low tides and where the depths 

reach up to the continental shelf (Luning 1990). up to the continental shelf (Ltining). 

Out of the biomass components described above, alginate is a structural carbohydrate 

found in Kelps which helps the plant in adapting to survive the environmental 

conditions. Previous research by McHugh (2003) has found that alginate percentages 

varies between species and also between habitats with plants growing in more 

turbulent water containing more alginate than plants grown in calmer water (McHugh, 

2003). Similarly, in this study, samples from Isle of Seil and Strangford Lough could 

also have had higher percentage of structural carbohydrates than in comparison to 

samples from Ventry Harbour owing to the rocky and higher hydrodynamic regions 

where they were cultivated. Of the two samples from Isle of Seil and Strangford Lough, 

the former being a part of this highly dissected coast compared to Strangford Lough 

which is landlocked would have been therefore subject to wide range of environmental 

conditions resulting in the different biomass characteristics. Visual observation of the 

samples (as sent) also supported this as Isle of Seil samples had more thickness and 

plasticity in comparison to Ventry Harbour. 

The nutrients available for the biomass growth is dependent on the surrounding waters 

which in turn is dependent on the benthic conditions of the cultivation site. As benthic 

depth varies, the irradiation, salinity, nutrient availability etc. also varies affecting the 

composition in Kelps. Pollution activities can increase or decrease of the level of the 

mineral concentrations in the surrounding waters in addition to natural erosion of rocks 

in the marine benthos. In this study, we compared the cultivated biomass samples in 

contrast to wild stock samples. In the three different sites used for this study, level of 

pollution is recorded to be minimal except for Ventry Harbour where seasonal pollution 

could be a contributing factor. However, even though the depths at which the buoys of 

long lines deployed in the sea surface (1 – 2m) was similar in every location, the tides 

and currents at each location being different could have had an effect on the amount 

of sediments (nutrients) available throughout the Kelp’s life cycle. In addition, benthic 

conditions also were rockier in Isle of Seil in comparison to Ventry Harbour and 

Strangford Lough. This could mean that apart from any sedimentation available to the 

Kelp in three sites due to land- based activities or pollution, Isle of Seil samples could 

have had higher access to nutrients from the erosion of these rocks due to higher 

hydrodynamic activity in the region. This could also be a reason found reflecting on the 
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solids and ash concentrations recorded in the three samples with highest of ash 

content in the Isle of Seil samples.  

The main objective of this study was to characterise the biomass for its suitability for 

anaerobic digestion. As discussed in the literature review, anaerobic digestion can 

better utilise biomass with higher carbohydrates, and higher volatile solids for both 

easier disintegration during microbial reaction within the digester and also for higher 

gas production from the biomass. However, to minimise inhibition during AD, lower ash 

percentages i.e. lower inorganic content is also preferred (Chen et al., 2008). S. 

Latissima has already been researched as a suitable biomass for anaerobic digestion 

with its higher carbohydrate and volatile solids content (Milledge et al., 2014a). 

However, from the results observed in this study, it could be seen that to cultivate 

optimum S. Latissima biomass for AD, choice of cultivation site is important as 

localised environmental conditions in those sites are influential for the biomass 

characteristics. This study has only collated existing data on the environmental 

gradients in the three sites for the factors of temperature, tides and currents, benthic 

conditions, pollution and sedimentation. It is observed that environmental conditions 

are inter related and this has a combined effect on the biomass growth influencing its 

biochemical composition. From an anaerobic digestion perspective, the three sites 

evaluated in this study would be suitable in the site capacity and the adjoining factors 

of temperature, tides and currents, benthic conditions, pollution and sedimentation with 

Isle of Seil biomass showing the highest of solids content and ash content. Therefore, 

it is then possible to hypothesise that S. Latissima from Isle of Seil will provide the 

highest methane production during anaerobic digestion.  However, this research has 

been limited as the measurement of concentrations of sugars (mannitol and laminarin) 

accumulated by the Kelps was outside of the scope of this study. Also, it is essential 

to collect data on other environmental gradients such as irradiance, salinity, 𝐶𝑂2 

concentration, etc. into every stage of the cultivation process right from seeding to 

deployment until harvest. Therefore, more studies are required on kelp species based 

on their geographical location if we need to compare their energy potential and thereby 

for identifying the best sites for biomass utilisation for process like anaerobic digestion. 

This would also be a better way leading to the conservation of the species and prepare 

for any paradigm shift in the species characteristics affecting its production and 

processes.  
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4.7.2 Impact of harvest time on biomass characteristics  

In this study, the wild S. Latissima from Strangford Lough was harvested at different 

points of the year starting in winter 2015, followed by spring, summer and winter 2016 

to understand the characteristics of the biomass harvested at different times of the 

year. The wild harvest was collected from the same surroundings as the cultivation 

site. From the analysis of the proximate results, it was observed that the spring 

biomass consistently had higher volatile solids, total solids and ash percentages. In 

contrast, winter biomass had the lowest percentage of solids and ash concentration. 

The biomass in spring had 9% more than volatile solids in comparison to the winter 

biomass and 7% more total solids and 4% more ash concentration. Statistical tests 

also confirmed that all four samples harvested at these four different harvest times 

were significantly different to each other. In terms of elemental composition however 

summer harvest had the highest concentration of carbon. Summer biomass had 30% 

of carbon while winter biomass only had 24% of carbon. These results show that 

macroalgae biomass harvested at different points of the year will be significantly 

different in their characteristics. This result is also important for logistics as this can 

determine the best time of harvest for the macroalgae biomass intended for specific 

purposes including bioenergy and for the extraction of high value products. 

In the literature, macroalgae is studied to evaluate eutrophication due to the nutrient 

enrichment in coastal waters (Korpinen et al., 2007). In coastal waters two important 

elements in algal metabolism are nitrogen and phosphorus where nitrogen is more 

likely to be growth limiting for the biomass in open ocean conditions. The study by 

Sanders et al. (2008) showed that there will be seasonal variability in the nutrients (e.g. 

nitrogen limitation in the coastal waters of north-west coast of Scotland) available to 

support the growth of macroalgae species resulting in the variation in biochemical 

composition of the biomass (Sanderson et al., 2008). However, another research 

showed that on oceanic shores, nutrient enrichment increased the abundance of the 

green algae species with little impact on red or brown algae. In the case of perennial 

species and those occupying the littoral zones nutrient availability and utilisation of 

these nutrients for their growth were a result of complex interactions between the 

abiotic (environmental conditions) and biotic (fouling, epibionts) factors (Korpinen et 

al., 2007). Therefore, to utilise the maximum potential of perennial species such as S. 

Latissima, it will be important to target the growth phase of the biomass to identify the 

best harvest time with optimum biochemical composition.  
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S. Latissima is recorded to exhibit faster growth from late winter months till spring at a 

rate of 1.1 cm/day up to a higher rate of 4.8 cm/day. Growth phase starts to decline 

from June and may cease in late summer. The length to width ratio of the newly grown 

tissue of S. Latissima is also found highest during the periods from December to June 

(i.e. winter to summer). In summer however, the shift is found more towards increasing 

the width to possibly maximise the frond area for photosynthetic activity and thereby 

increasing the amount of storage carbohydrates for winter months (Sjøtun et al., 1993). 

This was also confirmed by a recent study performed on S. Latissima by Schiener et 

al. (2015) which found that the storage carbohydrates of laminarin and mannitol were 

higher in summer to late autumn and lowest in winter months. The structural 

carbohydrate of alginate and cellulose in S. Latissima however had lesser variations 

at different times of the year. Therefore, in terms of total organic carbon and nitrogen 

present in the biomass, summer months showed higher C percentages and lower 

nitrogen percentages. The inorganic content however was higher in winter till spring 

months and lower in summer and autumn (Schiener et al., 2015).  

Similarly, in this study, the biomass showing higher inorganic content were observed 

for the spring biomass in 2016 with its higher ash percentages. A similar trend is also 

observed for the carbon percentages for S. Latissima in this study as summer harvest 

has the highest carbon percentages while winter has the lowest accumulation of solids 

and carbon. As discussed above, the biomass reached its mature growth in summer 

to late autumn which makes the concentrations of the solids higher in those months 

while the plant is at its early growth stages in winter. Results observed in this study are 

also comparable to studies in the literature for other brown algae species like L. digitata 

and L. hyperborea. Both species showed positive correlation with summer temperature 

but negative correlation to warmer winter temperatures which are associated with the 

various temperature requirements for initiation and development of different life history 

stages of the macroalgae (Araujo et al., 2016).  

Several studies have discussed and suggested optimum time to harvest S. Latissima 

(da Silva Marinho, 2016, Taelman et al., 2015, Marinho et al., 2016). S. Latissima is 

suggested to be harvested in September for the phycocolloid industry in Europe 

however for human consumption, it is suggested to be harvested at the end of spring 

season when it is not affected by fouling (Taelman et al., 2015). The importance of 

harvest time (season) and cultivation period (age) was tested for S. Latissima for 

succinic acid production which found that both the factors has an impact on the 

concentration of fermentable sugars (glucose and mannitol). The biomass is 
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suggested to be harvested from May to September as the best suitable feedstock for 

biorefinery purposes including succinic acid production as the high value product 

(Marinho et al., 2016). Another study conducted by Marinho et al. (2015) studied the 

composition of cultivated biomass of S. Latissima in one site adjacent to integrated 

multitrophic aquaculture site (IMTA) in Danish waters. The samples were harvested 

bimonthly from different points of the cultivation site at different times of the year. The 

study highlighted that the lipid quantity and quality of S. Latissima was reliant on 

harvest time rather than on spatial location in agreement with the findings presented 

in this study (Marinho et al., 2016). 

In this study at three cultivation sites, the biomass seedlings were deployed on long 

lines in September 2015 and harvested in June 2016. The main intention to use the 

biomass was for bioenergy purposes, specifically for anaerobic digestion. As the 

results have shown higher concentrations of C and solids in summer it could be 

suggested that summer will be an ideal time to harvest S. Latissima biomass if intended 

for AD processes. However, this study was performed on wild samples and research 

should be extended to cultivated biomass to identify the optimum time of harvest in 

long line cultivation sites. An anomaly found in this study was that even though a higher 

ash and solids content are observed for the winter 2015 biomass the pattern is not 

repeated in the 2016 biomass where the biomass has shown least solids and ash 

concentration. This could be attributed to the age and maturity of the samples collected 

over the course of this study. S. Latissima being a perennial species having a lifespan 

up to 4 years although plants may occur as annuals. The species normally take 8 to 

15 months to reach fertility or mature stage to produce spores and in British Isles, 

months of October till April was the most frequent period for spore production. 

Therefore, the wild samples obtained could have been from differently aged wild 

samples exhibiting different characteristics owing to their maturity as well as 

reproductive stages (White N. & Marshall, 2007).  

From an anaerobic digestion perspective, harvest time is an important factor for the 

optimum concentration of the desirable characteristics for AD. Even when the 

components of interest in the biomass is higher in summer months, harvesting the 

biomass has to be planned carefully for logistics purposes. In most regions, where kelp 

is cultivated, the biomass is harvested in the late spring or early summer due to high 

water temperatures or biofouling problems during the summer. Hence landing of 

several tons of wet seaweed over a number of weeks requires careful planning for 
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logistics regarding transportation, stabilisation, and storage of biomass, also for the 

scalability of use in continuous processes (Fernand et al., 2017).  

Another important factor to be considered for optimised AD processes is the carbon to 

nitrogen ratio of the intended biomass feedstock. From the literature, it is seen that the 

C/N ratio for optimal anaerobic digestion is in the range 20/1 to 30/1. These values 

show that biomass with higher C/N ratios are best suited for anaerobic digestion as 

feedstock with higher nitrogen values can cause inhibition during digestion from excess 

levels of ammonia (Allen et al., 2015). If the ratios are less than 15:1, excess levels of 

ammonia can lead to unstable digestion. Kelps are lower in protein concentrations, but 

higher in carbohydrate levels in the form of polysaccharides (laminarin, mannitol and 

alginate) (Allen et al., 2015). Hence they are expected to be with higher carbon and 

lower nitrogen concentrations. In this study the C/N ratio overall for the summer 

biomass was higher with a value of 25.2 whereas the winter biomass has a lower ratio 

in the range 10-11. On the contrary, nitrogen values were also found highest in spring 

biomass (2.5%) followed by winter (2.3%) and lowest in summer biomass (1.2%). 

Percentage of sulphur is in the range of 0.35-0.9%, lower in summer and higher in 

winter biomass. Hence on the basis of C:N ratio, summer months will be the ideal 

harvest time for S. Latissima for optimal anaerobic digestion performance with least 

inhibition from ammonia and higher concentrations of easily degradable carbon.  

4.7.3 Impact of growth type on biomass characteristics  

In this study, wild and cultivated biomass of S. Latissima from two different locations 

were compared for the differences in their characteristics. In this study it was observed 

that the wild and cultivated biomass obtained from both Isle of Seil and Strangford 

Lough sites have significant variations in their composition. In their proximate 

composition, it was observed that wild and cultivated biomass from both sites are highly 

variable. For the biomass, the wild growth showed higher solids, and ash values than 

the cultivated biomass for both sites. The volatile solids of Strangford Lough wild 

samples were 36% more than its cultivated samples and total solids of wild samples 

34% more than the cultivated biomass. However, for Isle of Seil samples the variations 

were higher, total solids of the wild samples were 22% more than cultivated samples 

and volatile solids were 52% more for the wild samples. From the statistical analyses 

it was found that the differences in the wild and cultivated biomass were significant. 

The wild samples and cultivated samples were significantly different from each other 

from all locations.  
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The elemental composition data also showed variations within the wild and cultivated 

biomass from both sites.  However, the carbon concentrations in the biomass were 

similar in all four samples. Samples from Strangford Lough (wild and cultivated 

samples) had 30% and 28% (C) respectively. As for the samples from Isle of Seil, the 

wild samples had 29.63 % carbon and cultivated had 29.27 % respectively. The wild 

samples from Strangford Lough had 1.5 % more carbon than its cultivated counterparts 

whereas the wild Isle of Seil samples only had 0.36% more carbon than cultivated 

biomass. The C/N ratios were higher for the wild biomass (25) and lower in cultivated 

biomass (22) for samples from Strangford Lough. On the contrary C/N ratio for 

cultivated biomass was higher (23) than the wild (22) biomass for samples from Isle of 

Seil. The results observed in this study is in agreement with research performed on S. 

Latissima by Manns et al. (2007) where cultivated biomass from different sites in 

Denmark and wild biomass in North Sea (Danish waters) were monitored for 1 year 

and 3 years respectively. Wild biomass showed higher solids content (22.6% DW) than 

its cultivated counterparts (Manns et al., 2017).  

For Isle of Seil and Strangford Lough, the cultivated biomass is produced from the sori 

obtained from wild sources in the same region. Therefore, genetically the wild and 

cultivated samples have similar characteristics. The wild biomass is also growing 

around 25m to 1km of the cultivation site. As reviewed in the literature, wild and 

cultivated biomass have varying morphological features owing to the environmental 

conditions in which they are grown. This is observed in the varying solids, ash 

concentrations and elemental composition. In addition, age of the wild and cultivated 

biomass samples also vary resulting in significant variations in the characteristics of 

the biomass. In this study no characterisation of the holdfasts was made and the 

characterisation was only performed on the fronds of the wild and cultivated biomass 

from both the sites. The biomass was harvested in summer which had fouling 

infestations on the samples obtained. However, the characterisation of the fouling 

agents was beyond the scope of the study.  

From the perspective of AD, quality of the biomass i.e. biomass with higher volatiles is 

desirable as this impacts the methane production potential of the biomass. In this 

study, higher volatile solids and ash are observed for the wild biomass with similar 

carbon percentages in both wild and cultivated biomass at both sites. Thus, it can be 

seen that such comparisons are informative as to show how much cultivated species 

resemble their wild counterparts. This indicates that there is significant variation in the 

samples and growth type do play an important role in determining the characteristics 
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of the seaweed collected in a particular month from the same location is important as 

to decide which biomass to be focused on and when to be harvested and also for any 

modification to be introduced into the cultivation techniques. In addition, the results in 

this study are based on the characteristics (volatile solids and C %) of fronds of wild 

and cultivated biomass. In the previous studies in the literature, where the whole parts 

of Kelp plant including holdfasts and stipe were used for AD, biogas production was 

limited due to the higher percentage of inorganic minerals found in the holdfasts and 

stipe. However, fouling on the fronds of the biomass was found to have little effect on 

methane production (Marinho et al., 2015). However fouling on the fronds of the 

biomass was found to have little effect on methane production (da Silva Marinho, 

2016). Therefore, for the purpose of AD, fronds of the Kelp can be more suitable than 

the other parts of the biomass.  

For the practical purposes of AD, having a constant biomass supply is also equally 

important. Harvesting wild biomass is not considered sustainable as Kelp forests are 

one of the most ecologically dynamic and biologically diverse habitats in marine 

environment. The holdfast, stipe and fronds of the Kelp plants act as substrates for 

colonisation my marine flora and other invertebrates. It is a strong link in the marine 

food chain in its growing environment and even Kelp derived detritus on the coastal 

shores are consumed by invertebrates and bird species (Kelly, 2005). Therefore, it is 

self-evident that harvesting of wild biomass will have significant negative impacts on 

the natural ecological balance of the region. In Europe, Norway has a well regulated 

and sustainable method of harvesting wild biomass however experiments carried to 

study the reestablishment of macro-faunal community in these areas showed that they 

were not re-established fully and restoration of both kelp and kelp community was 

slower (Christie et al., 1998). If licenses are issued for regular harvesting of wild 

biomass in Irish waters, utilising fronds for bioenergy production can also aid in 

maintaining wild Kelp forests in a more sustainable manner where holdfasts can still 

continue to survive maintaining ecological balance in their marine environments (Kelly, 

2005). Sourcing cultivated biomass for bioenergy purposes also have to be planned 

carefully as over production of the macroalgae biomass will also affect the ecosystem 

negatively with ‘macroalgal blooms’ where macroalgae compete with other species for 

living space in an aquatic ecosystem thereby causing a sea grass decline (van Hal et 

al., 2014).  
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4.7.4 Suitability of macroalgae for anaerobic digestion  

In summary, from analysing the biomass characteristics of S. Latissima in this study it 

has been observed that geographical location had little effect on biomass 

characteristics however localised environmental conditions determined the 

biochemical composition of the biomass. Results also showed that macroalgae 

biomass harvested at different points of the year will be significantly different in their 

characteristics. Wild biomass from both studied sites had higher volatile solids in 

comparison to their cultivated counterparts. Economically brown algae are of interest 

as they are cultivated in large quantities for human nutrition and the species S. 

Latissima are biogeographically widespread occurring from the high Arctic to the cold 

temperate region of North Atlantic (Olischläger et al., 2014). In recent years S. 

Latissima has received greater scientific interest as an AD feedstock due to its higher 

carbohydrate content and lower inhibitions from ammonia and sulphur (Allen et al., 

2016, Allen et al., 2015). Biomethane potential of macroalgae biomass is dependent 

on its chemical composition, which varies with type, habitat, cultivation method and 

time of harvest. S. Latissima is one among the highest biomethane yielding species in 

the brown macroalgae biomass (Tabassum et al., 2017). S. Latissima has a reported 

methane yield of 34.5 m3 𝐶𝐻4 per tonne wet weight. A yield of 30 tonne VS/ha/year for 

S. Latissima was reported. With the biochemical yields combined, the species has a 

potential methane yield of 10,250 m3/ha/year which is in the upper range of the existing 

energy crops (Allen et al., 2016). However, most of the current studies in the literature 

have focused only on the feasibility of the species for anaerobic digestion. Knowledge 

gaps still exist regarding the influence of physicochemical conditions of the cultivation 

site on the properties of the biomass which can induce the type of bioenergy 

conversion process (Kerrison et al., 2015). Therefore, the next phase of this study will 

evaluate the biomethane potential of S. Latissima from different cultivation sites, 

harvested at different times of the year and different growth type of wild and cultivated 

biomass. The results will focus on the biomass characteristics favouring AD process 

with higher rates and yields of methane production from S. Latissima biomass. Results 

of biochemical methane potential tests of S. Latissima will be discussed in the next 

chapter.  
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5 Results – Biochemical Methane potential of S. Latissima  

The AD process is fairly well understood and the suitability of a biomass for AD is 

determined according to its physical and biochemical characteristics. As an organic 

feedstock, macroalgae is not dissimilar to other biomass currently utilised for AD. 

However, in order to ensure the process of growing, harvesting and valorising 

macroalgae is technically and economically viable and environmentally sustainable it 

is important to gain a better understanding of how factors such as location, harvest 

time and growth conditions impact on biogas yield and rate.  From the previous chapter 

it is suggested that localised geographical conditions, growth phase at the time of 

harvest and the growth conditions (i.e. artificial cultivation or wild harvest) of biomass 

can impact upon the characteristics and composition of the macroalgae. Therefore, the 

following phase of research involved an evaluation of how these factors influence 

biomethane potential. As described previously (Chapter 1) Biomethane Potential 

(BMP) provides an indication of a biomass suitability for AD under optimised 

conditions.  

5.1 Sample collection  

Samples were collected as described in (Methods section 3.1) and analysed according 

to (Methods section 3.4). Samples were prepared in triplicate and tests were performed 

over a 30-day period. No buffers, trace elements or nutrients were added to the 

samples for any of the BMP tests conducted. A total of 8 BMP tests were performed to 

assess the biomethane potential of macroalgae biomass as a mono-digestion 

feedstock. A substrate to inoculum ratio of 1/4 (I/S) was used for all the BMP tests. The 

inoculum was sourced from Severn Trent Wastewater Treatment Plant treating 

sewage sludge operating at mesophilic temperature (see Methods section 3.1.3).   

5.2 Inoculum Characteristics  

Inoculum essentially contains the microbiological consortium from a stable/ acclimated 

operational AD plant. The quality of the inoculum can have a significant impact on the 

analysis of BMP. If the inoculum is of poor quality (i.e. insufficient active microbial 

population different for AD stages) then this can have an adverse effect on the analysis 

and lead to inaccurate results. The general characteristics of the inoculum (in terms of 

solids content and ash) used in this study are given in Table 20 . 
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Table 20 General characteristics of inoculum used in this study 

Total Solids (%WW) 3.31±0.03 

Volatile Solids (%WW) 2.12±0.03 

Ash (%WW) 1.18±0.01 

VS (%TS) 63.94 

 

It can be seen that the inoculum in isolation has a lower solids content (3%WW) which 

is typical of any wastewater sludge reported in the literature (Wang et al., 2014). The 

VS (%TS) is higher (63%) indicating an active inoculum with enough bacterial 

population required for hydrolysis and production of methane showing suitability for 

biochemical methane potential assays. Lower ash yields also indicated potential lower 

inhibition from inorganic content in the inoculum. This means that digestate obtained 

from active digesters at a wastewater treatment plant can be a suitable inoculum for 

use in BMP trials.  

As described previously in (Chapter 1) the BMP test provides data on both the methane 

production rate and on potential yield. The BMP results for the inoculum (in isolation) 

were evaluated. Again, this is to ensure the quality of the inoculum (and therefore the 

reliability of the tests) and also to determine the indigenous methane potential of the 

sample.  To deplete the residual biodegradable organic material present in the 

inoculum, the inoculum was degassed for up to 48hrs prior to the start of the test. This 

is in accordance with the method developed by Raposo et al. (2011). For the BMP 

tests on the biomass samples a substrate to inoculum ratio of 1/4 (1 part substrate to 

4 parts inoculum) was chosen for this study as this ratio is reported to provide the 

optimal rate for methane production (Angelidaki et al., 2009).  

The trends for biomethane production for cellulose and inoculum over the course of 

the experiments are illustrated in Figure 24.  
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Figure 24 Trend of methane production for inoculum and cellulose 

It can be seen that BMP curve represents an degradation curve where methane 

production from both the inoculum (blank) and cellulose have started within the first 

two days of the BMP test, i.e. there’s no lag period in gas production. This shows that 

the methane forming bacteria in the inoculum were active right from Day 0. As it can 

be observed in the figure, the majority of methane production occurred during the first 

5 days of the digestion. Both for cellulose and inoculum the pattern of methane 

production is similar. The flow rate of cellulose also spiked during the initial days 

(around 360 ml) and declined (to less than 2ml) towards the end of the test (Day 24). 

As expected, the inoculum has a lower methane production in comparison to the 

cellulose used for the trials. In a standard BMP test, the methane production from the 

inoculum is important as maximum methane production rates can be influenced by the 

viability and activity of the inoculum used (Elbeshbishy et al., 2012). To ascertain this, 

the inoculum was used as the blank in accordance with the literature (Gunaseelan, 

1997, Angelidaki et al., 2009).  

The average SMP for the inoculum used in this trial are given in Table 21. 
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Table 21 Average SMP from inoculum and cellulose used in this study 

Average Specific Methane Production 
Inoculum (𝑳 𝑪𝑯𝟒/𝒌𝒈 𝑽𝑺 𝒂𝒅𝒅𝒆𝒅 ) 

0.054 ± 0.005 

Average Specific Methane Production 
Cellulose (𝑳 𝑪𝑯𝟒/𝒌𝒈 𝑽𝑺 𝒂𝒅𝒅𝒆𝒅) 

0.367 ± 0.015 

pH (Average) 7 

 
From the table it can be seen that the average methane production from the inoculum 

was found to be 0.054 ±  0.005 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. The average was calculated from 

a total of 11 BMP tests performed as a part of this research. The pH of the inoculum 

was observed to be in the neutral range of 7 which is within the acceptable range for 

AD. Cellulose was used as a positive standard in this study. Cellulose is used as a 

positive control because it is an accepted standard to measure the inoculum activity or 

response towards standard substrates such as lignocellulosic materials (Angelidaki et 

al., 2009) and the average specific methane production observed for cellulose was 

approximately 0.367 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 (see Figure 39). The average specific methane 

production observed for cellulose was approximately 0.367 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. The 

biodegradability of cellulose, 88 % (with the theoretical value of cellulose at 

0.415 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑) obtained in this study are in agreement with other reported 

values in the literature (Wang et al., 2014).  Methane production obtained in this study 

were also compared for significant variation using ANOVA tests. All the results were 

significant to the significant level 0.05.  

The gas production from the blank from the inoculum only was subtracted from the gas 

production of the substrates prior to the determination of the methane yields. All 

methane yields are expressed as 𝐿 𝐶𝐻4 at standard temperature and pressure 

conditions per kg VS of the organic substrate added (𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑).  

5.3 Impact of location  

The impact of geographical location on the biomethane potential of macroalgae was 

assessed. The samples were taken from Strangford lough, Isle of Seil, and Ventry 

harbour.  To ensure there was minimal influence from other external factors the 

samples were taken during summer 2016 season and from an artificial long line 

cultivation system. 

 Figure 25 shown below illustrates the specific methane production for the three 

chosen sites. 
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Figure 25 Specific methane production of S. Latissima from three locations 

It can be seen that all three samples have degradation curves where samples from 

Strangford Lough and Ventry Harbour had very similar methane production pattern. 

The methane production for both these samples reached their maximum methane 

production values around day 10. Of particular note is the lower methane production 

for Isle of Seil which tends to attain maximum methane production later around day 13 

in comparison to the other two samples.  

To observe the rate of methane production, the initial methane production during the 

first 10 days of the BMP test were plotted for the three samples. The rate of methane 

production observed for the three samples are given in Figure 26.  

 

Figure 26 Rate of methane production from S. Latissima from three locations 
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It can be observed that the three samples have different rates of methane production. 

S. Latissima from Strangford Lough and Ventry Harbour have a similar methane 

production of 459 and 461Nml/day respectively while Isle of Seil sample only had a 

methane production of 315 Nml/day during the initial methane production. So the order 

of decreasing rate of methane production can be given as Ventry Harbour > Strangford 

Lough > Isle of Seil.  

From the methane production observed during the 30 days of the BMP test, the SMP 

for the biomass from the three sites was calculated. The results are given in Table 22. 

Table 22 Specific methane production of S. Latissima from three locations  

Location Strangford 
Lough 

Isle of Seil Ventry Harbour 

SMP  
(L CH4/kg VS added) 

0.393 ± 0.126 0.265 ± 0.012 0.391 ± 0.078 

Initial VS (%WW) 11.29 18.84 10.60 

Final VS (%WW) 1.65 1.68   1.74 

pH (End of BMP) 7.51 7.41 7.63 

Ash (%WW) 5.74 13.90 4.48 

 

The specific methane production of biomass from Strangford Lough was found to be 

0.393 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑, while biomass from Ventry Harbour had a methane 

production of 0.391 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. The lowest of the specific methane production 

was shown for the biomass from Isle of Seil with a value of 0.265 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 

(See Figure 40).  

Interestingly, the methane production could be correlated to the characteristics 

observed for the biomass samples in terms of their volatile solids and ash percentages. 

The samples from Strangford Lough and Ventry Harbour is observed to have lower 

initial volatile percentages of 11.29% and 10.60% respectively in comparison to Isle of 

Seil. In addition, they also exhibit lower ash percentages in comparison to the sample 

from Isle of Seil.  

The Volatile solids destruction was calculated for the samples from the initial and the 

final VS percentages recorded prior to the start and end of the BMP tests. The formula 

for calculating the VS destruction is given below. 
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𝑽𝒐𝒍𝒂𝒕𝒊𝒍𝒆 𝒔𝒐𝒍𝒊𝒅𝒔 𝒅𝒆𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 % =  
(𝑭𝒊𝒏𝒂𝒍 𝑽𝑺 − 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑽𝑺)

(𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑽𝑺)
∗ 𝟏𝟎𝟎%   

Equation 7: Calculation for volatile solids destruction  

For the sample from Strangford Lough and Ventry Harbour, VS destruction 

percentages were 85 and 83% respectively. The sample from Isle of Seil had a VS 

destruction percentage of 81%.  

The SMP values observed in this study are higher than other studies reported in the 

literature such as Gurung et al. (2012) who observed a SMP for brown algae 0.166 ±

0.026 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑, for Irish S. Latissima by Allen et al. (2015) 0.342 𝐿 𝐶𝐻4/

𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑, and another study by Jard et al. (2013) which observed a value of 

0.246 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 (Jard et al., 2013, Allen et al., 2015, Gurung et al., 2012).  

5.4 Impact of harvest time  

From Chapter 4 it was found that harvest time (or potentially growth phase/ plant age) 

has an impact on the characteristics of the macroalgae with spring harvested samples 

exhibiting higher TS, VS and Ash concentrations.  In addition, the C content of samples 

were found to be highest in Summer 16 followed by Winter 16> Winter 15> Spring 16. 

The BMP’s for the samples are provided in Table 22. These samples were taken from 

Strangford Loch and from wild harvests.   

Firstly, the biomethane production curves for the 4 harvest times were compared. The 

results are provided in Figure 27 below.  

 

Figure 27 Specific Methane production for S. Latissima from 4 different harvest 

times 
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It can be seen that all four samples have shown degradation curves where highest 

methane production is exhibited by the summer 2016 samples. The lowest methane 

production among the four tested samples is observed for winter 2015 samples. To 

observe the rate of methane production, the initial methane production for the four 

samples are plotted as shown in Figure 28 below.   

 

Figure 28 Rate of methane production of S. Latissima from 4 different harvest 

times 

As observed summer samples has the highest methane production of 363 Nml/day 

followed by winter 2016 samples with 307 Nml/day. Winter 2015 samples had the 

lowest methane production of 242 Nml/day while spring samples had a relatively higher 

methane production of 257 Nml/day. The maximum methane production of all four 

samples is observed to occur within the first five days of the test  

From this data the SMP values were calculated and the results are presented in Table 

23. 

Table 23 Specifc methane production characteristics of S. Latissima from 4 

different harvest times  

Season Winter 2015 Spring 2016 Summer 2016 Winter 2016 

SMP 
(L CH4/kg VS added) 

0.198 ± 0.016 0.219 ± 
0.018 

0.249 ± 0.012 0.313± 0.015 

Initial VS (%WW) 33.67 18.11 17.83 09.12 

Final VS (%WW) 1.65 1.67 1.74 1.80 

pH (End of BMP) 7.51 7.41 7.63 7.51 

Ash (%WW) 19.28 10.39 08.13 06.17 
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The specific methane production from the four samples can be given in the decreasing 

order as winter 2016 > summer 2016 > spring 2016 > winter 2015.  

Relating the methane production to the characteristics for the biomass samples, it can 

be seen that ash and volatile solids are the important factors that can be related to the 

methane production potential of the samples harvested at different times of the year. 

The trend in the VS percentages can be shown as winter 2016 > summer 2016 > spring 

2016 > winter 2015. On the other hand, the trend in the ash percentages is observed 

as winter 2015 > spring 2016> summer 2016 > winter 2016.  

The pH at the end of the four BMP tests were observed in the neutral range of 7 

indicating favourable conditions for methane production in all of the digesters.  

VS destruction is also calculated for the samples tested which showed 95% destruction 

for winter 2015, 90.7% for spring 2016, 90.2% for summer 2016, however only 80% 

for winter 2016 samples.  

The SMP yields obtained in our study are similar to those found in the literature for S. 

Latissima (Jard et al., 2013). The study found that the SMP yields increased from their 

harvest periods in May till August. In their study Jard et al. (2013) found the SMP values 

increasing from 0.204 − 256 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 from May to August. In our study as 

well, where the seasonality was studied in marked intervals of winter, spring, summer 

and winter, the SMP values also increased from 0.219 to 0.313 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑.  

5.5 Impact of growth type  

From chapter 4 it was found that growth conditions (i.e. whether macroalgae was 

artificially cultivated or harvested from wild sources) may also have an impact on the 

characteristics of the macroalgae. It was found that wild samples exhibited higher TS, 

VS, Ash and C content. The same wild and cultivated samples from Strangford Lough 

and Isle of Seil (summer 2016) were analysed for their biomethane potential.  

The results for specific biomethane production are presented in Figure 29.   
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Figure 29 SMP of wild and cultivated samples from Strangford Lough and Isle 

of Seil 

From the specific methane production curves it could be seen that the wild and 

cultivated samples from different locations showed different patterns.  The methane 

degradation curve is without any lag phase in any of the four samples. To understand 

the methane production better, the initial methane production curves were plotted.  

The rate of methane production for wild and cultivated samples from Strangford Lough 

and Isle of Seil are shown in Figure 30. 

 

Figure 30 Rate of methane production of wild and cultivated samples from 

Strangford Lough and Isle 
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It can be seen that the maximum methane production for all four samples occurred 

within the first five days of the BMP test. The wild sample had consistently lower 

methane production when compared to the cultivated sample in Strangford Lough 

while it showed the opposite trend among the samples obtained from Isle of Seil.  

Table 24 presents the overall results for SMP for the samples tested. 

Table 24 Overall results for SMP of wild and cultivated samples from 

Strangford Lough and Isle of Seil 

Location Season 
(2016) 

Growth 
type 

SMP 
 (L CH4/kgVSadded) 

VS 
%WW  
(%ww) 

Ash 
(%WW) 

Strangford Lough Summer  Wild 0.249±0.012 11.29 5.74 

  Cultivated  0.393±0.126 17.84 8.13 

Isle of Seil Summer  Wild  0.304±0.015 18.84 13.90 

  Cultivated  0.265±0.012 39.25 15.72 

 

Firstly, it was noted that the trends for the two sites are different. For Strangford Lough 

the highest specific methane production was observed for the cultivated biomass 

(0.393 ± 0.126 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑) and the lowest for the wild biomass with a specific 

methane production of 0.249 ± 0.0.012 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒d).  In the case of Isle of Seil 

biomass, the highest specific methane production is observed for wild harvest in 

summer (0.304 ±  0.015 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑) and the lowest specific methane 

production is observed for the cultivated biomass (0.265 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑).  

Comparing the biomass characteristics however showed that the cultivated samples 

from Strangford Lough and Isle of Seil had higher volatile solids percentages as well 

as higher ash percentages in comparison to their wild counterparts.  

5.6 Discussion  

The following sections will discuss the biochemical methane potential of S. Latissima 

based on the following research question.  

 To what extent are the differences in the biomethane potential of S. Latissima 

related to its characteristics varying with environmental conditions, harvest 

times and growth type 
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5.6.1 Methane production of inoculum and cellulose  

As reviewed in Section 1.12, BMP tests are batch tests used to study the methane 

production potential of organic feedstock. The inoculum source and characteristics are 

important for the BMP studies as different inoculum would result in different 

performance during operation. The performance of the inoculum is controlled by the 

overall microbial community structures formed in the reactors over time (Wang et al., 

2014). However, the amount of gas produced per kg of material varies with the type of 

material used. The quality of biogas is also dependent on the C/N ratio of the material 

digested (Okonkwo et al., 2016).  

As BMP tests were performed in the AMPTS ii system, it is assumed that there would 

be limited oxygen in the reactors as they were purged with N2 before the digestion. 

The acid forming bacteria in the inoculum will become active after all the oxygen in the 

reactors is used up, and then methane production begins. This is reflected in the 

specific methane production curve for inoculum and cellulose as methane production 

is exponential without any lag phase. Gas production is observed to be stable around 

the period of peak production until it started declining gradually. During the initial days 

when gas production begins to rise the bacteria acts on the substrate and starts biogas 

production, however the gas concentration will contain more carbon dioxide. As the 

days progress, the organic material is acted upon by the increasing number of 

anaerobic bacteria. When the gas production rises and reaches its peak, bacteria will 

be acting on the maximum substrate possible. As the gas production declines, it could 

be as a result of decreased availability of the substrate as a decrease in either C or N 

available for use. This decline continues however the anaerobic environment leads to 

a higher concentration of methane in the gas produced. When the substrate becomes 

exhausted the gas production stops (Okonkwo et al., 2016). 

Previous studies on AD of macroalgae biomass have reported that the use of sewage 

sludge as an inoculum for digestion is beneficial as it can actively contribute to the 

digestion stability and control the reduction of pH by VFAs accumulation (Tedesco and 

Stokes, 2017). This is also favourable for reducing the requirement for pH buffers 

during the digestion process. No pH buffers were added to the reactors during this 

study. The pH during the end of the BMP studies were also observed in the neutral 

range of 7 after every digestion trial which also showed an indication of balanced 

chemical reactions within the digesters.  

AMPTSii is the second-generation automatic methane potential tests system 

specifically designed for BMP analysis and it has been cited by an increasing number 
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of publications (Wang et al., 2014, Xu et al., 2016, Lüdtke et al., 2017). All the BMP 

tests were performed in triplicates including the blanks and the cellulose. The methane 

yields achieved in the AMPTSii process showed a low standard deviation which 

demonstrates higher precision and lower random error for the automated apparatus. 

Therefore, the trends in overall methane production from inoculum and cellulose 

showed that the BMP tests were reliable and reproducible and a good indicator for 

measuring the methane production of the macroalgae biomass.  

5.6.2 Biochemical methane potential of S. Latissima  

The biomethane potential of S. Latissima was evaluated according to three criteria of 

location, harvest times and growth type according to the samples collected in this 

study.  

5.6.2.1 Impact of location and environmental conditions 

Three samples of S. Latissima collected from Strangford Loch, Isle of Seil and Ventry 

Harbour long line cultivation sites in summer 2016 were analysed for their methane 

production potential in this study.  The decreasing order of specific methane production 

observed in the study can be given as Strangford Lough > Ventry Harbour > Isle of 

Seil. The samples from Isle of Seil also showed the lowest rate of methane production 

in comparison to samples from Strangford Lough and Ventry Harbour.  From the 

statistical analysis performed, location is found to be a significant factor influencing the 

biochemical methane potential of S. Latissima. There was significant difference 

between the SMP values for Isle of Seil and the other two sites however there was no 

significant difference between Ventry Harbour and Strangford Lough. This could 

suggest that environmental conditions affecting the biomass characteristics also 

influence the biochemical potential of the biomass harvested from that geographical 

location.  

In this study, significant differences were observed in the characteristics of the biomass 

derived from the three different locations. For the selection of optimum site for biomass 

production, environmental factors such as pH, sea water temperature, benthic 

conditions etc. were evaluated for the three locations and were found to be contributing 

to the variation observed in the characteristics of the biomass. This was reflected in 

the concentration of total and volatile solids, ash, and elemental composition of the 

biomass. Out of the three biomass samples, the biomass from Isle of Seil showed 

highest concentrations of ash (13.90%WW), total solids (32.74%WW), and volatile 
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solids (18.84%WW). Even though the biomass from Isle of Seil had the highest 

concentration of volatile solids, the SMP was the lowest with a value of 

0.265 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑. This suggests that there is an inverse relationship between 

the volatile solids concentration and biomethane produced from the biomass.  

Locational or spatial variation in the biochemical composition of Kelp is less 

investigated in the literature as biomass can vary considerably across environmental 

gradients (Nielsen et al., 2016). The spatial variation affecting the biochemical 

methane potential of Kelp has also been limited in the literature. However, this is of 

great importance from a bio-refinery perspective for selecting the optimum site location 

for the species selected for bioenergy production. As environmental conditions are 

significant factors for macroalgal growth, it becomes quite clear that the concentrations 

of the constituents such as laminarin, mannitol and alginate will also be governed by 

the conditions under which the biomass grows over time. In this study, on analysis of 

the S. Latissima characteristics, Isle of Seil samples were found with higher volatile 

solids content hence expecting the highest methane potential from the same biomass. 

However, in contrast S. Latissima with higher methane potentials were from Southern 

Ireland Dingle Bay (Ventry Harbour samples) with warmer temperatures than other 

locations. This could be because Isle of Seil samples will have produced more alginate 

(structural carbohydrate) in its composition than storage carbohydrates of laminarin 

and mannitol to survive higher hydrodynamic activities in the region. Higher 

concentrations of alginate will not increase methane production as alginate has is 

reported to be more difficult to digest by microorganisms in anaerobic digestion 

(Adams et al., 2011, Gunaseelan, 1997, Black, 1950, Briand and Morand, 1997).  

The findings of this study are also in agreement with research conducted on S. 

Latissima analysed for their spatial variability in Danish waters by Nielsen et al., (2016). 

The authors of that study found that areas suitable for high biomass production are not 

necessarily optimal for producing a specific biomass quality such as high carbohydrate 

concentration for bioenergy production. The same study also showed that spatial 

differences in composition happen to reflect phenotypic plasticity and/or genotypic 

adaptations to local conditions and thus are relevant when selecting a particular 

species for cultivation and/or when selecting a site for cultivation (Nielsen et al., 2016). 

This is a challenge not only for cultivation practices, but also for choosing the cultivation 

sites specifically for bioenergy purposes. This also confirms that the large variability 

shown by the species needs to be investigated further in relation to their environmental 

gradients to specifically analyse the effect on biomass and their constituents sampled 
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at specific locations across macroalgae cultivation farms in different regions on kelp 

species for energy production.  

5.6.2.2 Impact of growth cycle and harvest times 

In this study wild samples of S. Latissima from Strangford Lough were studied for any 

seasonal significance on methane production. From an AD perspective, different 

harvest times is an important consideration to obtain the most suitable biomass for 

easier disintegration and higher biogas production. In this study, the highest specific 

methane potential is shown by the winter harvest (2016) and the lowest by winter 

harvest (2015). In the SMP graphs, there is no lag observed for methane production in 

all four biomass and they reach the maximum methane production within the first five 

days of digestion. However, the rates of methane production for the samples from 

different harvest times showed highest for the summer biomass, followed by the winter 

16, spring 16 and the least by winter 15 biomass. On statistical analysis, the 

biomethane production of the samples from different harvest times were found to be 

statistically different from each other. On pairwise comparison, high significance was 

observed between summer and winter samples and spring harvest was found 

insignificant with the other samples. Therefore, in the order of decreasing SMP values, 

the specific methane production observed can be represented as Winter 16 > Summer 

16 > Spring 16 > Winter 15. The volatile solids of these samples are found to be in the 

increasing order as Winter 15 > Spring 16 > Summer 16 > Winter 16. In addition, the 

ash percentages of these samples are also found to be increasing in the order of winter 

15 > spring 16 > summer 16 > winter 16. This could suggest that as volatile solids 

increased there is a trend for increased specific methane production, however, after a 

certain point the inorganic content in the biomass becomes inhibitive for any further 

methane production from the biomass. 

In the literature, seasonal variability in kelp species has been investigated since Black 

(1950) for the seasonal variation in the chemical composition of European macroalgae 

biomass. Research has continued to study for seasonal impact on anaerobic digestion 

of brown species including recent researches by Tabassum et al. (2016) on 

Ascophyllum nodusum, and another study on Laminaria digitata (Tabassum et al., 

2017). Seasonal variability of S. Latissima in North West Europe was first studied by 

(Black, 1950), and more recently by (Vilg et al., 2015, Schiener, 2014, Schiener et al., 

2015, Marinho et al., 2016, Manns et al., 2017).  
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The implications of these studies has had great significance on utilisation of S. 

Latissima either as a feedstock for bio-refinery purposes serving high value compound 

extraction or for bioenergy production like anaerobic digestion and bioethanol 

production. All these reported studies were also performed on the wild sourced 

biomass of the respective species.  

Methane yield is related to the level of storage sugars in macroalgae biomass (Hughes 

et al., 2012). Therefore, from an AD perspective it is important to harvest the biomass 

with higher storage sugars. The higher SMP yields obtained in the winter months can 

be explained because of the increased level of storage sugars in the winter months for 

S. Latissima (Østgaard et al., 1993). Ostgaard et al. (1993) observed that the batch 

experiments of S. Latissima produced a methane production in the range of 0.22 −

0.271 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑 with increasing methane yield obtained from the species 

harvested in autumn/winter (Østgaard et al., 1993). A similar pattern with increasing 

methane production is observed in this study from winter harvest 2015 with SMP yields 

from 0.198 𝑡𝑜 0.313 𝑙𝐶/𝑘𝑔  in winter 2016. However, the winter SMP yields are not 

replicated over the yearly samples. This could be related to the age of the wild biomass 

plant which was beyond the scope of this study. As the samples were obtained from 

the wild samples, samples would have been obtained from plants of different ages 

having different maturity and reproductive stages which could have resulted in the 

difference in methane yields.   

From the literature, furthermore differences are found to occur between macroalgae 

harvested at different periods of the year than between different species. Also, the 

structure of the storage products in the macroalgae depends on the phase of life cycle 

when harvested and on environmental conditions (Jard et al., 2013). From a 

biochemical composition point of view, S. Latissima seems to show good digestibility 

with high SMP yields. One of the limitations of this study is that the seasonal variation 

is only monitored in the wild biomass. In future studies, seasonal profiling should be 

extended to the cultivated macroalgae biomass. Hence biomass intended for 

bioenergy production through anaerobic digestion should be given longer harvest time 

for allowing maximum carbohydrates concentration and higher biomass growth for 

higher gas yields provided similar pattern is observed for the cultivated biomass.  



 

Results – Biochemical Methane potential of S. Latissima  

  120 Roshni Paul 

5.6.2.3 Impact of growth type on biochemical methane potential of macroalgae 

biomass  

In this study, the impact of growth type was observed on the BMP yields of the wild 

and cultivated biomass. The specific methane production from Strangford Lough 

showed the highest specific methane production for the cultivated biomass and the 

lowest for the wild biomass. In the case of Isle of Seil biomass, highest specific 

methane production is observed for wild harvest and the lowest specific methane 

production is observed for the cultivated biomass. The rate of the methane production 

between wild and cultivated biomass from Strangford Lough and Isle of Seil were 

compared for observing variation in methane production. For Strangford Lough 

biomass, cultivated biomass showed higher flow rate in comparison to the wild 

biomass. For Isle of Seil biomass, wild biomass has shown a higher methane 

production rate than cultivated biomass.  

Statistical analyses were also performed to analyse any significant difference in the 

biochemical methane production of the S. Latissima obtained from the wild and 

cultivated samples collected from Strangford Lough and Isle of Seil sites during 

summer 2016. Based on statistical analysis, comparing the wild and cultivated samples 

used in the study, significant difference was only found between the wild samples from 

both the locations. Interestingly no significant difference was found in the methane 

potential of cultivated biomass from either of the locations. This could be explained by 

the age of the plant i.e. biomass harvested. The wild populations will be older when 

compared to the cultivated biomass as for the wilder biomass new growths are 

produced from the already existing holdfasts of the biomass. While for the cultivated 

biomass, as the biomass is cultivated using long lines, the maximum age of the plant 

is only up to a year. This would have greatly contributed to the significant difference 

between the wild samples. Also, the environmental gradients would contribute to the 

growth of wild samples in different locations which again is shown significant to the 

variation of biomass characteristics in this study. Therefore, it is not advised to harvest 

wild sources as it is both unsustainable and highly variable.  

In addition, based on statistical analyses, pairwise comparison of the wild and the 

cultivated biomass obtained from both the locations was found insignificant. This could 

be because they are genetically similar as the gametes for the long line cultivation are 

obtained from the wild sources. Therefore, when sourcing for anaerobic digestion, the 

biomethane yields from wild and cultivated samples are insignificant. The finding is 

quite relevant for bioenergy production cultivated biomass from Ireland and Scotland 
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have been found suitable for anaerobic digestion with high SMP yields. However, wild 

biomass can have significant variation depending on the location of the wild population. 

This result is also important as it shows the potential for cultivated macroalgae biomass 

to contribute towards sustainable bioenergy production in the UK.  

5.6.3 Factors influencing methane production of macroalgae biomass 

As BMP tests can be used as good indicators for AD, the implications observed in this 

study are discussed in terms of factors influencing the methane potential of 

macroalgae biomass.  

From an AD perspective methane yields are important as biomass with higher methane 

yields are preferred for bioenergy production. Research into the characteristics of 

macroalgae biomass in the literature have shown that brown algae biomass has higher 

productivity. Brown algae biomass is reported to be more easily biodegradable in 

comparison to other macroalgae species as the major constituents are carbohydrates 

and sugars (laminarin, mannitol and alginate) and therefore has the potential for higher 

methane production (Jung et al., 2013). The specific methane production values 

observed in this study were found to be comparable to other studies conducted on S. 

Latissima biomass, for example, the study by Vanegas and Bartlett (2013) who 

observed a SMP of 0.335 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 on the biomass obtained from Irish 

Coast. The results observed in this study were also higher than yields observed when 

biomass was treated with steam explosion pre-treatment (0.22, 0.26 𝐿 𝐶𝐻4/

𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑) (Vivekanand et al., 2012, Vanegas and Bartlett, 2013). The main factors 

influencing methane production from macroalgae biomass were volatile solids, 

inorganic content (ash percentages) and carbon to nitrogen ratio.  

5.6.3.1 Ash and volatile solids  

In this study, the SMP values for the biomass from Strangford Lough and Ventry 

Harbour were found to be similar with the value 0.393 and 0.391 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. 

The lowest SMP was found for the Isle of Seil sample with the value of 

0.265 𝐿 𝐶𝐻4/𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. Analysing the characteristics of S. Latissima from the 

perspective of AD, volatile solids and ash percentages were found to be the important 

factors for higher methane potential from macroalgae biomass. However, an inverse 

relationship was found for ash and volatile solids with biomethane production from S. 

Latissima in this study. This is in agreement with the study that reviewed the biogas 

potential from macroalgae by Hughes et al., (2012) where the authors reported that 



 

Results – Biochemical Methane potential of S. Latissima  

  122 Roshni Paul 

gas yield from macroalgae biomass is related to both ash content and inversely related 

to volatile solids (Hughes et al., 2012). Regression analysis was performed to analyse 

the relationship between the SMP yields, ash and volatile solids. The relationship was 

found to be curvilinear with a best fit of polynomial curve of order 2 (R2 value = 0.7). 

This showed that both volatile solids and inorganic concentrations influenced the 

biomethane production in macroalgae biomass to a certain extent after which it 

becomes prohibitive to any further increase in methane yields.  

From an AD perspective, concentration of ash could also be an indicator for the 

presence of any inhibitor for the observed difference in the methane production from 

S. Latissima. Common inhibitors reported in the literature for S. Latissima include the 

presence of salts, 𝑁𝑎 and 𝐾 ions (Jard et al., 2012). Isle of Seil had the highest ash 

concentration of 13.90 (%WW) while biomass from Ventry Harbour only had 4.48 

(%WW) and Strangford Lough samples had 5.74 (%WW). In seasonal profiling of S. 

Latissima obtained from Isle of Seil, Schiener et al. (2015) confirmed that metal 

concentrations in the biomass were strongly related to the ash content of the biomass. 

Ash content consisted of micro as well as macro nutrients including 𝑁𝑎, 𝐾, 𝐶𝑎, 𝑀𝑔, 𝑆𝑟, 

𝐴𝑙, 𝐴𝑠, 𝑍𝑛, 𝑇𝑖 and 𝐹𝑒. However, 𝐾 and 𝐴𝑙 were the only significant ions which were 

again found was significantly lower in months of June and July. The concentration of 

𝐾 was found to be around 4000 mg/kg while 𝐴𝑙 was found to be around 200 mg/kg 

(Schiener et al., 2015). On the other hand, polyphenol content in S. Latissima reached 

its maximum during the summer months (around 0.4%WW). In the study by Jard et al., 

(2012), the polyphenol content concentration was not quantified and the concentration 

of K was found higher than the inhibiting range of 0.25-12g/l (Jard et al., 2012).  

For the biomass obtained from Isle of Seil similar concentrations described by Schiener 

et al. can be assumed. Therefore, the higher concentration of K+ ion of 0.4 g/l could 

be the inhibitor yielding the lowest SMP of all three locations. Similarly, for wild samples 

used in this study, highest SMP yielding biomass of the winter16 has lowest ash yields 

(6%) whereas the lowest SMP yield biomass WD15 has the highest ash yield (19%). 

Again, this could be related to the presence of K+ ions in the ash content of S. 

Latissima as discussed earlier. The summer16 harvest is found with an ash content of 

6%. 

Our study has been limited to assess and quantify the environmental conditions for the 

biomass. In addition, the concentration of the constituents of the biomass was also not 

quantified including the concentration of carbohydrates (storage and structural), 

inorganic components and lignin. These factors can be quantified in future researches 
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to specifically understand which factor contributes the most towards biomethane 

production from S. Latissima. 

5.6.3.2 Carbon to nitrogen ratio  

Carbon to nitrogen ratios are another indicator for better choice of biomass to be used 

in AD.  The carbon to nitrogen for S. Latissima is reported to be lower around 7 during 

spring and high during summer at around 21 in cultivated biomass (Handå et al., 2013). 

In agreement with literature, in this study, the C/N ratios for cultivated biomass was 

found to be higher with values of 23 (Isle of Seil), 17 (Ventry Harbour) and 22 

(Strangford Lough). For wild biomass harvested at different harvest times C/N ratio 

was higher for summer biomass with a value of 25.2 while lower for winter biomass 

with a value of around 10 (winter 15), 11 (winter 16) and 8.5 (spring 16). Hence on the 

basis of C/N ratio, summer months would be ideal harvest time for S. Latissima for 

optimal AD performance with least inhibition from factors such as ammonia.  

5.6.4 Suitability of macroalgae biomass for continuous digestion operations  

In summary, S. Latissima is found to be feasible for anaerobic digestion with highest 

specific methane potential obtained from Ventry Harbour samples and lowest from Isle 

of Seil samples. Environmental conditions are found significant for selecting cultivation 

sites for anaerobic digestion. Methane potential of S. Latissima harvested from 

different harvest times were found significantly different from each other. Comparing 

the methane production from the wild and cultivated samples used in the study, 

significant difference was only found between the wild samples from both the locations. 

Interestingly no significant difference was found in the methane potential of cultivated 

biomass from either of the locations. In addition, pairwise comparison within the wild 

and the cultivated biomass obtained from both the locations was found insignificant. 

Therefore, when sourcing for anaerobic digestion, the biomethane yields from wild and 

cultivated samples are insignificant.  

BMP tests being performed as batch studies can only function as indicators for 

methane production from macroalgae biomass whereas semi continuous digestion 

trials can offer more insight into suitability of S. Latissima for large scale AD operations. 

S. Latissima from Ventry Harbour samples showed higher specific methane 

production, and was obtained from a seaweed cultivation farm. Therefore, to analyse 

the influence of different parameters on continuous operations of AD it was chosen for 

the next phase of the study.   
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6 Results – Semi Continuous digestion of S. Latissima  

Continuously Stirred Tank Reactors are a preferred method for the evaluation of biogas 

production from biomass as they offer a more dynamic and long-term assessment of 

performance. They help in developing real time profiles for AD process variables. They 

also provide a greater understanding of the process and particularly issues relating to 

scalability. A review of different continuous studies reported for S. Latissima has shown 

that there are very few continuous studies performed on the species. Therefore, this 

study explores the effect of process parameters of temperature, pH, alkalinity, gas 

production, volatile solids destruction, chemical oxygen demand, and trace element 

addition on AD of macroalgae biomass. The evaluation is divided into three main areas 

as follows: 

  Mesophilic semi-continuous digestion of S. Latissima 

  Process optimisation using trace element addition  

  Process optimisation using thermophilic temperature 

The digesters used in this study and their operating conditions are given in Table 25. 

Table 25 Experimental conditions for semi continuous study 

Digesters Operating conditions Optimisation 

R1, R2 Mesophilic None 

R3, R4 Mesophilic Trace element addition 

R5, R6 Thermophilic Higher temperatures 

 

The biochemical methane potential (BMP) tests were conducted in the previous 

chapter (Bell and Redpath Museum) for S. Latissima harvested during varying season, 

location and for wild and cultivated biomass. The summer harvest from Dingle Bay 

Seaweed Ltd., Ventry harbour location exhibited the highest methane yield. This 

feedstock was therefore used for the ongoing semi continuous digestion trials. The 

substrate characteristics and inoculum characteristics are shown below. 

6.1 Feedstock characteristics  

The characteristics of S. Latissima used for semi continuous digestion sourced from 

Dingle Bay seaweed Ltd. is given in Table 26. The biomass had total solids content of 

15(%WW) and an ash content of 4(%WW). The elemental composition analysis 

highlighted that the sample was comprised 29% carbon, 1.7% nitrogen and 0.4% 
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sulphur (as a %TS). The C/N ratio of the biomass was found to be 17.1. The BMP of 

the biomass was found to be 0.391 𝐿 𝐶𝐻4 𝑘𝑔/𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. 

Table 26 Characterisitics of S. Latissima used for semi continuous digestion 

Seaweed 
ID  

Total 
Solids 
(%WW) 

Volatile 
Solids 
(%WW) 

VS 
(%TS) 

Ash 
(%WW) 

Moisture 
(%WW) 

Calorific 
Values 
(MJ/kg) 

SMP 
(L CH4/ kg 

VS added) 

Ventry 
Harbour 

15.08 10.60 70.30 4.48 84.92 07.30 0.391 

 

6.2 Inoculum characteristics  

The inoculum was sourced from Severn Trent Wastewater sewage treatment as 

described previously (Section 3.1.3). This inoculum was used for both mesophilic and 

thermophilic experiments. No buffers were added to the inoculum to maintain the pH. 

The inoculum characteristics and the standard deviations are given in Table 27. The 

experiments were performed in duplicates for the semi-continuous digestion run. 

Table 27 Characteristics of inoculum used for semi continous digestion 

Inoculum source Severn Trent Wastewater Treatment Plant 

Inoculum source temperature Mesophilic (37°C) 

Total Solids, TS (% WW) 3.10 ± 0.01 

Volatile Solids, VS (%WW) 2.01 ± 0.01 

Ash (%WW) 1.07 ± 0.01 

Moisture (%WW) 96.94 ± 0.24 

VS (%TS) 64.84 

pH 7.4 ± 0.04 

BMP (L CH4 /kg VS added) 0.056 

6.3 Experimental conditions 

Semi continuous digestion experiments were performed on S. Latissima for three 

hydraulic retention times (HRT), a total of 105 days. The digestion was performed 

under mesophilic conditions of 37°C. The mesophilic digesters were for labelled 

reactors R1, and R2. The digesters had a working volume of 2L and fed with an organic 

loading rate of 3gVS/L/day with a daily feed of 56.6g for 3 HRT. The biomass was 

macerated (<1cm) before it was fed to the digesters. The effluent from the digesters 

were analysed for pH, conductivity, dewaterability- (via capillary suction time or CST), 
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chemical oxygen demand (COD) (total and soluble), alkalinity, and %VS destruction. 

The gas produced was collected using Tedlar bags and gas composition was 

performed on a weekly basis for all the digesters. The temperature and gas volumes 

were measured daily for mesophilic digesters.  

The results are discussed in the sections below. 

6.4 Mesophilic digestion  

6.4.1 Temperature  

The daily temperature for the mesophilic digesters is shown in Figure 31. Variations in 

the temperature recorded for the mesophilic digesters was considered acceptable with 

no extreme deviation in temperature over the period of the trials. Mild fluctuation in the 

temperature was noted during the first hydraulic retention time (SD±0.8). On day 24, a 

temperature of 40.9°C was noticed due to a functional complication of the PID system 

and it was rectified from Day 25. However, temperatures were stable for the second 

(SD ± 0.5) and third retention times (SD±0.5). The average temperature recorded for 

the mesophilic digesters were 36.35 ± 0.50. 

 

Figure 31 Temperature for mesophilic digesters 

6.4.2 pH  

pH in the mesophilic digesters ranged between 7.48 – 6.36. The pH was similar in both 

the digesters. The initial pH for the mesophilic digesters was 7.48, however an increase 

in the pH was observed in the second HRT to 7.85. pH was considerably stable for the 

mesophilic digesters and had been ideal for the methanogenesis for gas production for 

the mesophilic digestion.  During the third HRT, a decrease in the pH was observed in 

the digesters to 6.36. The pH changes observed in mesophilic digesters is shown in 

Figure 32.  

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105

T
e

m
p

e
ra

tu
re

 (
T

 °
C

)

Days

Mesophilic R1 Mesophilic R2

2HRT 3HRT1HRT



 

Results – Semi Continuous digestion of S. Latissima  

  127 Roshni Paul 

 

 

Figure 32 pH for mesophilic digesters 

6.4.3 Conductivity  

Conductivity measurements observed for R1, R2, mesophilic digesters were in the 

average range of 2.8 – 4.85 m S/cm. As expected, the conductivity measurements 

increased from 2.63 to 4.88 m S/cm in digester R1 and from 2.98 to 4.82 m S/cm in 

digester R2. The increase in conductivity is expected because of the variation in the 

ionic content in the digester such as Hydrogen H+, hydroxide OH- and nutrients such 

as nitrate, phosphate and other inorganic metallic ions (Levlin, 2010). Therefore, as 

digestion of macroalgae biomass occurs, the presence of these ions also increase with 

the dissociation of the biomass increasing the conductivity inside the digesters.   

6.4.4 Alkalinity  

Alkalinity measurements were taken and intermediate, partial and total alkalinity was 

calculated for the mesophilic digesters. The alkalinity observed for the mesophilic 

digesters is shown in Table 28. In general alkalinity measurements show the ability of 

the solution to neutralise acids and in AD processes it is strongly influenced by the 

presence of carbonate and bicarbonate, ammonia, phosphate, and volatile fatty acids. 

As noticed in the table below, the values are observed high for anaerobic digestion. 

Total alkalinity can be divided into partial and intermediate where partial alkalinity is 

caused particularly by the presence of OH-, NH3, CO3- and HCO3-. However the 

intermediate alkalinity is related to VFA presence (Bolzonella, 2011). Therefore, it can 

be said that VFA production was occurring highly in mesophilic digesters resulting in 

higher intermediate alkalinity values.  

 

5

5.5

6

6.5

7

7.5

8

8.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105

p
H

 

Days

Mesophilic R1 Mesophilic R2

1HRT 2HRT 3HRT



 

Results – Semi Continuous digestion of S. Latissima  

  128 Roshni Paul 

Table 28 Alkalinity for mesophilic digesters 

Mesophilic digesters  Alkalinity (mg/LCaCO3) 

Retention Time Partial Intermediate Total 

First            895 1243.5 2117.9 

Second            1213.0             1636.4            2863.0 

Third             428.0             1463.3            1866.6 

6.4.5 CST  

Capillary suction time (CST) is used as a simple technique to measure the sludge 

disintegration or dewaterability for the digestate from anaerobic digesters. CST can 

also act as a supportive indicator for the soluble COD release within the digesters (Apul 

et al., 2009). Dewaterability of the digestate (effluent) was measured using capillary 

suction time (CST) measurements (Section 3.4.10). The CST observed for the 

mesophilic digesters increased from 624.2s to1632.9 in the 1st HRT and was still found 

increasing during the 2nd HRT to 1813.1s. However, by the third HRT, the CST values 

were lowered and were recorded in the range 858.9 – 347.0s. The increase in CST 

values during first and second HRT indicate the requirement of longer time duration for 

the settling of solids in the digestate however the decrease in the values in the third 

HRT indicate that with longer retention times, digestate from mesophilic digestion 

would require lesser time to separate between the solid and liquid fractions. 

6.4.6 Chemical Oxygen Demand (COD)  

Total and Soluble COD can be indicators of organic degradation within the digesters 

(Abbasi et al., 2012). Samples from the digesters were taken weekly and analysed for 

Total and soluble Chemical oxygen demand. Total COD was in the range of 35000-

40000mg/l to values of 35133mg/l in R1 and 35161 mg/l in R2 digesters respectively. 

However, soluble COD values were found to gradually increase in both the digesters 

over the period of the trial (from 2000mg/l during 1st HRT to approx16000mg/l during 

the 2nd HRT). During the transition from second to third HRT, the values increased to 

30000 mg/l. The changes in total and soluble COD for the mesophilic digesters is given 

in Figure 33.  
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Figure 33 Total and Soluble COD for mesophilic digesters over three HRT 

6.4.7 Volatile Solids degradation  

The degradation of organic matter in the digesters is measured using volatile solids 

analysis. In principle, as organic material is broken down the organic material is 

converted into VS. The trend for volatile solids is shown in Figure 34.  

 

Figure 34 Final volatile solids concentration for mesophilic digesters over three 

HRT 

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

C
O

D
 (

m
g/

l)

Days

Mesophilic R1 TCOD

Mesophilic R2 TCOD

Mesophilic R1 SCOD

Mesophilic R2 SCOD

1 HRT 2 HRT 3 HRT

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105

V
S

 D
e
s
tr

u
c
ti
o
n

 C
o
n

c
e

n
tr

a
ti
o

n
 (

%
W

W
)

Days

Mesophilic R1 Mesophilic R2

1 HRT 3 HRT

2 HRT 



 

Results – Semi Continuous digestion of S. Latissima  

  130 Roshni Paul 

The volatile solids concentration increased from 2%WW to 4%WW over the three 

HRTs. The ash percentage also was found to increase from 1.5% to around 5% wet 

weight. The digestate was found to get progressively thicker over the course of the trial 

(from the watery consistency in the first HRT with a moisture content of 96% to 

approximately 90%WW by the end of the trial). The initial and final solids, ash and 

moisture concentrations of the mesophilic digesters are given in Table 29. 

Table 29 Initial and final solids, ash and moisture for mesophilic digesters 

Digester Total solids 
(%WW) 

Volatile solids 
(%WW) 

Ash 
(%WW) 

Moisture 
(%WW) 

Initial  Final  Initial  Final  Initial  Final  Initial  Final  

R1 3.91  9.57 2.32  4.50 1.59 5.07 96.09 90.43 

R2 4.04 8.52  2.34 3.85  1.71 4.68 95.96 91.48 

6.4.8 Gas production  

The biogas and methane production of mesophilic digesters is shown in Figure 35. 

Gas produced within the digesters was collected in Tedlar bags and measured using 

a standard displacement method. The gas production for digester R1 was measured 

directly and the gas produced in the digester R2 was passed through 3M 𝑁𝑎𝑂𝐻 

solution to obtain the biomethane production. The biogas production ranged from 2.75 

l/day (at STP) in the first HRT to 2l/day in the second HRT. The gas production started 

to decrease in the 2nd HRT to almost 0.50l/day. The lowest gas production values 

were observed in the third HRT. The gas production in the 3rd HRT was typically in the 

range 0.15-0.2 l/day. 

 

Figure 35 Gas production for mesophilic digesters 
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For digesters R1 and R2, it can be seen from Figure 22 that methane concentrations 

were notably higher in the first and second HRT, however lower in the 3rd HRT. 

Methane concentrations varied between (50-60%) in the first and second HRT, 

however from week 8, methane concentration decreased to between 10-30% lower 

than the values obtained in the second HRT.   

6.5 Impact of trace element addition  

From the gas production observed in mesophilic digesters, the gas volumes are found 

to decrease from the second HRT to lower values in the third HRT. This could be cause 

of the digester instability caused by variation in the C/N ratios. As discussed in literature 

review, during semi continuous digestion of brown macroalgae species, the digester 

balance was found to be unstable due to the decrease in C/N/P ratios and a trace 

element addition was found to aid digestion of the biomass with higher methane 

production (Hinks et al., 2013). Therefore, in this study optimisation of mesophilic 

digestion was performed by the addition of trace element solution to the digesters. 

Trace element solution was prepared according to (Suhartini, 2014). The composition 

of the trace element solution used for this study where trace elements as ‘compounds 

used’, ‘element concentration’ and ‘compound concentration in stock solution’ is given 

in Table 30.  

Table 30 Composition of trace element solution used in this tudy 

Trace element  Compound used Element 
concentration 
after diluted by 
1000 times (mg/l) 

Compound 
concentration in 
stock solution 
(g/l) 

Aluminium (𝐴𝑙) AlCl3.6H2O 0.1 0.895 

Boron (𝐵) H3BO3 0.1 0.572 

Cobalt (𝐶𝑜) CoCl2.6H2O 1.0 4.038 

Copper (𝐶𝑢) CuCl2.2H2O 0.1 0.268 

Iron (𝐹𝑒) FeCl2.4H2O 10.0 35.597 

Manganese (𝑀𝑛) MnCl2.4H2O 1.0 3.602 

Nickel (𝑁𝑖) NiCl2.6H2O 1.0 4.050 

Zinc (𝑍𝑛) ZnCl2 1.0 2.084 

Molybdenum (𝑀𝑜) (NH4)6Mo7O24.4H2O 0.1 0.184 

Selenium (𝑆𝑒) Na2SeO3 0.1 0.219 

Tungsten (𝑊) Na2WO4.2H2O 0.1 0.179 
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The solution was added on a daily basis at a rate of 1 ml of for every 1L of digestate 

removed to maintain the initial concentration (Yirong et al., 2015). R3 and R4 were the 

trace element added digesters. The performance of the mesophilic digesters was 

optimised by the addition of trace element solution for three hydraulic retention times 

for 105 days. The performance of trace element added digesters were compared 

against the previous results obtained from the mesophilic digesters R1 and R2.  

This optimisation experiment was designed to answer the following research questions 

specifically: - 

 To what extend does process optimisation (in the form of trace element addition) 

impact on overall gas yields from the digesters? 

 Was there any significant difference in methane concentrations between those 

digesters with and without trace element addition? 

 Was there any significant increase in volatile solids destruction between those 

digesters with and without trace element addition? 

Source: (Suhartini, 2014) 
The various process parameters such as temperature, pH, CST, COD, solids, volatile 

solids degradation, and gas production was observed for the trace element added 

reactors R3 and R4.   

6.5.1 Temperature  

The temperature of trace element added digesters (R3 and R4) are shown in Figure 
36. 

 

Figure 36 Temperature for trace element added digesters 
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The temperature variation in R3 was higher in comparison to R4. This could be 

attributed to the heating coils used for heating the digesters. In addition, it could also 

be possibly associated with the defect in the PID system used to record the 

temperatures in the study. However, the changes in the temperature for trace element 

added digesters were within standard deviation limits. The average temperature 

recorded for the trace element added digesters were 36.0 ± 0.4 

6.5.2 pH, Alkalinity, VFA 

The pH of the digesters were recorded and results are presented in Figure 37. In the 

first HRT it can be observed that the pH was similar for the four digesters until the end 

of second HRT. However, it was noted that from day 55, variation in pH was observed 

between the digesters with trace element addition compared to those without. In the 

digesters which had trace element added (digesters R3 and R4) an increase in pH 

towards alkaline values were observed. The pH increased from 7.75 to 8.06 in these 

digesters compared to R1 and R2 digesters where no trace elements were added. 

 

Figure 37 pH for trace element added digesters 

Table 31 Alkalinity for trace element added digesters 

Digesters R3, R4 Alkalinity (mg/LCaCO3) 

Retention Time Partial Intermediate Total 

First            816.6 1116.8 1933.3 

Second            1134.2             1470.8            2605.0 
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The alkalinity for digesters with trace element addition is given in Table 31. In the case 

of partial and intermediate alkalinity, the trace element added digesters had the values 

continuously increasing throughout the digestion. The total alkalinity for the trace 

element added digesters, total alkalinity ranged between 1900 – 2900 mg/l. In 

comparison to digesters R1 and R2, total alkalinity continuously increased from first to 

third HRT in R3 and R4. However, the partial alkalinity values are noticeably higher in 

R3 and R4 indicating the formation of bicarbonates and carbonates equally with VFA 

production in these digesters maintaining the balance within the digesters.  

6.5.3 Conductivity, CST and COD 

The trend for soluble COD for mesophilic digesters with trace element addition is 

shown in Figure 38.  

 

Figure 38 Soluble COD for trace element added digesters 
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Table 32 Conductivity, CST and COD for trace element added digesters 

Mesophilic Mesophilic + Trace element 

Total COD (Average 
R1, R2) mg/l 

37000 Total COD (Average, 
R3, R4) mg/l 

37000 

Soluble COD (Initial – 
Final) mg/l 

2200 32000 Soluble COD (Initial – 
Final) mg/l 

2700 3800 

CST(Initial-Final) s 624 347 CST(Initial-Final) s 576 640 

Conductivity m S/cm 2.8 4.8 Conductivity m S/cm 3.3 6.8 

 

Trace element added digesters R3 and R4 were observed to have higher conductivity 

values and CST values. However, the soluble COD values were considerably lower 

when compared to the R1 and R2 mesophilic digesters. Increased CST values 

indicated that the dewaterability of the sludge was poorer in trace element added 

digesters. This showed that the disintegration of biomass in the trace element digesters 

was slower and increased conductivity values were due to the presence of the ions in 

the trace elements added to the digesters rather than from the dissociation of biomass. 

This could also be the reason of very low soluble COD values in the digesters R3 and 

R4.  

6.5.4 Gas Production  

The gas production trends for the digesters with and without trace element addition 

were compared in Figure 39. All four digesters had higher variability in gas production 

during the first HRT. This could be attributed to the acclimation period of the inoculum 

with the macroalgae biomass. In comparison, the digesters with trace element addition 

showed a comparatively higher biogas production than the digesters that had none. 

The gas production rate was relatively consistent for the digesters with no trace 

element addition, however digesters with trace element addition exhibited a variations 

of ±5 l/day. For these digesters gas production started decreasing from day 70 until 

the end of the trial. 
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Figure 39 Gas production for trace element added digesters 

The gas compositions for the digesters are shown in Table 33. 

Table 33 Gas composition for mesophilic and trace element added digesters 

Mode of 
operation  

Mesophilic Mesophilic + Trace element 
Addition 

Digester R1 R2 R3 R4 

𝑵𝒂𝑶𝑯 
Scrubber 
(3M) 

No Yes No Yes 

HRT  1 2 3 1 2 3 1 2 3 1 2 3 

Avg. gas 
per HRT 
vol (L) 

2.12 0.68 0.34 1.53 0.58 0.32 2.16 1.75 0.51 1.25 1.22 0.28 

𝑪𝑯𝟒 (%) 48 31 <10 54 68 11 41 45 25 47 51 20 

𝑪𝑶𝟐 (%) 34 28 22 <1 <1 <1 33 24 25 <1 <1 <1 

 

The 𝑁𝑎𝑂𝐻 scrubber has lowered the percentage of carbon dioxide to less than 1% in 

the trace element added digester R4 as well. Observing the gas composition data, 

methane percentages were higher in all 4 digesters but comparatively higher in R3 and 

R4. This was expected with trace element addition, however the percentage of 

methane concentration has remained within 40 – 50% in the first and second HRT 

however lower in the third HRT. The methane percentages are comparable to results 
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observed in other studies involving S. Latissima where methane production is not 

found to be stable in semi continuous operations where a higher organic loading rate 

is used similar to this study (Jard et al., 2012).   

6.5.5 Volatile Solids disintegration 

In comparison to R1 and R2, the trend for volatile solids disintegration was lower with 

trace element addition in R3 and R4 digesters. It appears that the solids content was 

higher in R3 and R4. This could be due to the trace elements added to the digester for 

stability of the digesters forming a deposition on the inside of the digesters increasing 

the total solids of the digesters. At the start of third HRT however the volatile solids 

disintegration seems to increase but further decrease until the end of the 3rd HRT.  

The volatile solids destruction were compared for the digesters with and without trace 

element addition Figure 40. 

 

Figure 40 Final volatile solids concentration for trace element added digesters 
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adopted and the digestion was monitored for 3 HRTs (for 105 days). Process variables 

such as pH, temperature, CST, COD, solids, VS degradation and gas production were 

recorded on a weekly basis. The results for thermophilic digestion were compared to 

mesophilic digestion. For the purpose of this trial the reactors were numbered R5 and 

R6. 

6.6.1 Temperature  

Thermophilic digestion is generally considered to take place at a temperature range 

between 50 and 60°C. The daily temperature for the thermophilic digesters is shown 

in Figure 41.  

 

Figure 41 Temperature for thermophilic digesters 
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Figure 42 pH for thermophilic digesters 

The average pH in the thermophilic digesters ranged between 5.89 – 7.07. The initial 

pH for digester R5 was 7.1 and for R6 was 7.07. It can be seen for both digesters there 

was a decline in pH up to day 20 in the first HRT. In the second HRT, in both digesters 

there was an increase and peak in maximum pH at day 42 and then a general decrease 

in pH from day 45 to day 105 is observed. It is also observed that despite similar 

starting pHs there is a difference between the pH of the duplicate digesters over the 

course of the experiment. The final pH within the reactors at day 105 was 5.5 in R5 

and 5.9 in R6. 

6.6.3 Conductivity  
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over the three hydraulic retention times. In comparison to the mesophilic digesters, 

conductivity was higher in thermophilic digesters.  

6.6.4 Alkalinity  

The alkalinity for thermophilic digesters is given in Table 34.  
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Table 34 Alkalinity for thermophilic digesters 

Thermophilic digesters 

Hydraulic 
Retention Time 
(Average mg/l) 

Partial Intermediate Total 

First             309            1025 1252 

Second             332             1301              1269 

Third             155             1159               956 

 

The average alkalinity concentrations for the thermophilic digesters in the first, second 

and third HRT are given in the table below. Intermediate alkalinity was found to 

increase over the first and second retention times. In comparison to the mesophilic 

digesters alkalinity values were lower in thermophilic digesters. Of particular note is 

the lower partial alkalinity values which was the lowest observed in this study. The 

lower partial and intermediate values could indicate lower disintegration of biomass in 

thermophilic temperature in comparison to mesophilic temperatures. 

6.6.5 CST  

Dewaterability of the digestate (effluent) for the thermophilic digesters was also 

measured using capillary suction time (CST) The CST observed for the thermophilic 

digesters decreased from 889.3s to 614.6s in the 1st HRT and was found to decrease 

during the 2nd HRT to 1813.1s. However, by the third HRT, the CST values were 

lowered and were recorded as 174.5s. The lowest CST values were observed for the 

thermophilic digesters indicating better separation of solid and liquid fractions in the 

digestate at higher temperature.  

6.6.6 COD  

Samples were taken weekly from the digesters and analysed for total and soluble COD. 

The changes in SCOD concentrations within the digesters over the course of the trial 

are shown in Figure 43. 
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Figure 43 Soluble COD for thermophilic digesters 
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Figure 44 Volatile solids destruction for thermophilic digesters 

As observed in the figure R5 and R6 digesters showed different trends in volatile 

destruction. Volatile solids concentrations were found to be lower in the thermophilic 

digesters than in mesophilic digesters.  

In comparison to mesophilic digesters, the total solids, volatile solids and ash 

percentages were lower for thermophilic digesters. This could indicate that 

thermophilic digestion was not effective for macroalgae biomass with lower VS 

destruction resulting in lower gas production.   

The initial and final values observed for the total, volatile and ash percentages are 

given in Table 35.  

Table 35 Initial and final solids, ash, and moisture for thermophilic digesters 
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Volatile solids 
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(%WW) 

Moisture 
(%WW) 

Initial  Final  Initial  Final  Initial  Final  Initial  Final  

R5 4.63 7.63 2.66 3.36 1.98 4.27 95.37 92.37 

R6 4.72 7.46 2.64 3.09 2.04 4.36 95.28 92.54 
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6.6.8 Gas production 

Gas production observed for thermophilic digesters is shown in Figure 45.  

 

 

Figure 45 Gas production from thermophilic digesters 

Biogas production was observed in digester R6 and bio-methane production in digester 

R5 by passing the gas produced through sodium hydroxide solution before it was 

collected in Tedlar bags. Biogas volumes were 0.51 – 2.22l/day in the first HRT. 

However, biogas production continuously decreased in the second and third HRT. The 

biogas volumes decreased to less than 0.35l/day in the third HRT. Methane 

concentrations in the analysed samples were noted very low in thermophilic digesters. 

The concentrations ranged from higher concentrations of 5.2% in the 1st HRT to 

continue decrease to less than <1% in the 3rd HRT. This could indicate the possibility 

of inhibition of methanogenesis at higher thermophilic digesters that resulted in the 

lower production of biogas production in both the digesters. 

6.7 Discussion 

As previously discussed in Section 2.3, there have been a few studies in the literature 

for the semi continuous digestion of macroalgae. Experimentation times are longer 

than the batch experiments to allow the system to acclimatise to the conditions and 

provide a more accurate indication of scaled AD processes under dynamic conditions. 
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The experiments included investigations on a high loading rate, for a longer retention 

time, and corresponding changes in gas yield, total solids, and volatile solids.  

In this study, semi continuous digestions were performed for S. Latissima from Ventry 

Harbour based on the findings from batch BMP tests. The following sections will 

discuss the semi-continuous digestion performance of S. Latissima based on the 

following research question.  

 To what extent are the differences in digestion performance of S. Latissima 

reflected in gas production, volatile solids destruction, and sludge 

characteristics?  

Impact of higher temperatures and trace elements in macroalgae digestion was also 

investigated in this study in two ways by: - 

 The addition of trace element solution under mesophilic conditions, and 

 Using thermophilic temperatures  

The following sections will discuss the findings of these semi-continuous digestion 

studies in. In terms of overall digester stability and performance, gas production and 

biodegradability.  

6.7.1 Semi continuous digestion of S. Latissima  

In this study, continuously stirred tank reactors (CSTRs) were used for the semi 

continuous digestion experiments. A higher organic loading rate of 56.6 gVS/l/d was 

applied to the digester daily for a total of 105 days this is a reduced experimental time 

compared to Troiano et al. (1976) at 330 days but higher than Hanssen et al. (1987) 

at 56 days. Hydraulic retention times (HRTs) are indicative of the time required by the 

bacterial community to break down the biomass and it cannot be too short or too long 

as the digester can wash out of the nutrients and the bacterial community could starve 

(McKennedy and Sherlock, 2015). This study recorded the digestion performance over 

3 HRT which is considered sufficient to ensure acclimation and stable digestion 

conditions. Reactors R1 and R2 were the mesophilic digesters in this study.  

6.7.1.1 Temperature  

In our semi-continuous digestion trials, the mesophilic temperatures for both the 

digesters (R1 and R2) were found to be 36.35 ± 0.50°C. This is considered acceptable 

for mesophilic digestions which occurs between 35-42°C. Moderate fluctuations in 

temperature were observed in the mesophilic digesters during the first retention time. 

However, the fluctuations were not higher or lower than ±3°C. Mesophilic bacteria are 
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reported to tolerate temperature differences of ±3°C without any significant reductions 

in methane production (Weiland, 2010). In addition, no operational issues were 

observed for the mesophilic digesters. The inoculum used in the study was sourced 

from a mesophilic source. Therefore, acclimation of the inoculum and the micro-

organisms for the mesophilic digestion would have been faster and more favourable 

for higher methane production in these digesters.  

6.7.1.2 pH, Alkalinity and VS destruction 

In this study, the pH of the mesophilic systems was recorded in the range 7.1 – 7.4 

and were continuously found stable throughout the 3HRT’s. However, a lower value of 

6.8-6.3 was observed in the 3rd HRT towards the end of the digestion. Methane 

formation as a result of methanogenesis proceeds in the pH range of 6.5 to 8.5, and in 

an optimum range between 7.0 to 8.0. The process will be severely inhibited if the pH 

decreases below 6.0 or rises above 8.5 (Weiland, 2010). In this study, in the early 

stages of digestion there is only a slight reduction of the pH, however none of the 

digesters exhibited pH below 5 which indicated that the digesters were stable 

throughout the longer retention time. The lower pH values towards the end of the 3rd 

HRT could have been due to the lowering of the buffering capacity of inoculum.    

In terms of alkalinity, total, partial and intermediate alkalinity were calculated for 

mesophilic digesters. Total alkalinity concentrations were lower in the initial days of 

digestion in mesophilic digesters but increased as the digestion progressed. Alkalinity 

measures refers to the buffering capacity of the inoculum and it could be strongly 

influenced by the presence of the carbonate and bicarbonate salts, ammonia, 

phosphate, and volatile fatty acids. Total alkalinity measures the whole range of pH 

from higher values 8 to lower values of 4.3. However, partial alkalinity specifically 

corresponds to the pH of 5.7 which can be due to the presence of OH-, free ammonia, 

or carbonates and bicarbonates. The difference between the total and the partial 

alkalinity, known as intermediate alkalinity could be a better indicator for the presence 

of VFA in the digesters (Bolzonella, 2011). Alkalinity concentrations observed for the 

mesophilic digesters evaluated in this study consistently over three HRTs exhibited 

lower total alkalinity values than reported for S. Latissima in semi continuous studies. 

In a study by Ramirez (2015) who observed alkalinity values of 68-72 mg/l initially and 

increased concentrations of 12,570 mg/l towards the end of digestion for S. Latissima  

in semi continuous digestion and 𝑁𝑎𝑂𝐻 was added to balance the alkalinity levels for 

digestion of the biomass (Ramírez, 2015).  Intermediate alkalinity values were also 
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observed higher in comparison to partial alkalinity in mesophilic digesters which could 

suggest that there was active VFA production in the mesophilic digesters aiding biogas 

production in the digesters.  

In this study, for mesophilic digesters, pH values have been found in the neutral range 

in the first HRT and a slight increase over the second HRT followed by a decrease in 

the third HRT. The same pattern was observed for the alkalinity levels for the 

mesophilic digesters evaluated in this study. Usually, a drop in the pH is observed in 

the first retention time due to hydrolysis of organic material and the production of higher 

concentrations of volatile fatty acids. Volatile Fatty Acids is a key intermediate in the 

digestion process and are capable of inhibiting methanogenesis if produced in high 

concentrations. Acetic acid, propionic and butyric acid are the key VFAs that are 

formed during the acidogenesis stage. Propionic and butyric acid, even though present 

in smaller amounts can inhibit the methanogenesis in digesters and are associated 

with their un-dissociated form (Weiland, 2010). A concentration higher than 13mM of 

acetate and a concentration of 0.06mM – 0.17mM of iso butyrate and iso valeric have 

been found to indicate imbalance in AD systems (Horan et al., 2011). However, in this 

study, the pH begins to rise in the digester as VFAs are consumed by methanogens 

and easily converted to methane. This is also evident in the gas productions for 

mesophilic digesters, as gas production was found higher in 1st HRT at 2.75 l/day to 

2l/day in the 2nd HRT and gradually decreasing to around 0.2 – 0.15 l/day (3 HRT).  

As organic material is degraded VS concentrations increases and which is utilised by 

the methanogens to produce methane. Volatile solids destruction is used to determine 

the extent of hydrolysis and solubilisation of biodegradable material available during 

AD (Ramírez, 2015). However, comparing the initial and final volatile solids 

concentration for mesophilic digesters it was found to increase from 2%WW in the first 

HRT to 4%WW in the third HRT indicating degradability of the biomass in the first HRT 

and gradually accumulating in the digesters towards the 3rd HRT. This could also 

mean that higher organic loading rates (3g/L used in the study) would have initially 

resulted in higher methane production in the first HRT however lead to accumulation 

in the digesters with lowered methane production towards the end of digestion.  

6.7.1.3 COD, CST and Conductivity 

Digesters were fed with the macroalgae biomass on a daily basis. Total COD values 

is an indication of the amount of organic matter available for methane production in the 

digesters. Total COD values were in the range of 35000 mg/l and soluble COD was in 
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the range 16000 mg/l. Biodegradability is affected by the nature of the COD fractions 

and the COD availability within the biomass. COD can vary with the variations in the 

biochemical composition of S. Latissima. As discussed in the BMP of S. Latissima, the 

easily degradable carbohydrate fraction would have been easily converted to methane, 

however the inorganic content, and the other recalcitrant fractions such as phenolic 

content could have reduced the metabolic activity hence reducing the conversion of all 

available organic matter into methane but possibly into other gases. This is in 

agreement with other studies utilising S. Latissima for semi continuous studies 

inhibition due to ash, lipid and mineral content of the species resulted in accumulation 

and lower methane production and inhibition from H2S (Ramírez, 2015).  

In our study, CST values were recorded for the mesophilic digesters. CST for 

mesophilic digesters were found higher (624s) during the initial HRT, however values 

were found lower during the end of digestion (347s). CST values provided an indication 

of the dewaterability of digestate digested in mesophilic methods. Generally, with 

relation to digestate, dewatering is required as it can reduce the subsequent treatment 

and therefore disposal costs of the overall operations. In addition, dewatered sludge is 

much easier to handle, however sludge dewatering remains most expensive and 

poorly understood wastewater treatment process. The lower CST values obtained in 

this study for the digestate can be an indicator for good dewaterability of the 

macroalgae digestate produced in mesophilic digestion which can offer better handling 

opportunities for either nutrient recovery options or storage and transport for 

macroalgae digestate having a positive impact on the overall economics of the 

digestion process.  

Conductivity measurements were also recorded for mesophilic digesters. In this case, 

conductivity measurements were reported to be increasing from 2.4 to 4.8 mS/cm from 

1st HRT to 3rd HRT. Conductivity values indicate the presence of metal ions in the 

digesters as electrical conductivity is the ability of a solution to conduct electrical 

current and it is directly proportional to the ion concentration. Studies in the literature 

have shown that conductivity measurements are affected by both VFA and bicarbonate 

concentrations. Conductivity measures the dissociated ions in the digesters occurring 

due to the degradation of the biomass alongside metallic ions in the biomass which 

are not digested however present in the digester increasing the measured values 

(Levlin, 2010). A strong correlation has been reported in the literature between 

electrical conductivity and bicarbonate measurements and methane concentrations in 

the start-up of the AD processes (Jimenez et al., 2015). Therefore, increasing 
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conductivity measurements together with increased alkalinity measurements indicate 

that dissociation of ions i.e. biodegradation of organic material was occurring in the 

mesophilic digesters. However, as no quantification of the VFAs or the metals in the 

digester was performed in the study, electrical conductivity measurements alone were 

not a good indicator for higher biodegradability in the digesters.  

6.7.1.4 Gas production  

Gas production over the 3 HRTs was measured in R1 and R2 respectively for 

mesophilic digestion. A solution of 𝑁𝑎𝑂𝐻 (3M) was used as a gas scrubber for removal 

of carbon dioxide from the biogas. The digesters with the NaOH scrubbers were used 

to evaluate methane production. 𝑁𝑎𝑂𝐻 scrubbing of the produced gas was only 

performed with R2. Therefore, R1 showed the total biogas production from the 

digestion while R2 demonstrated the methane production from the digestion of S. 

Latissima.  

It was observed that there was a steady gas production during the first towards second 

HRT in mesophilic digesters. The maximum methane production occurred in the first 

HRT with a volume of 2.75l/day. Gas production has been higher during the first and 

second HRTs, however lower towards the third HRT. Gas production was reduced by 

50% by Day 45, and continued to decrease until cessation towards the end of digestion 

(day 105). Methane production had started in the first week of digestion and continued 

till the end of digestion for both the digesters.  

Methane percentages were found higher in the first HRT (50%) and lowering towards 

the end of digestion (10%). This could be due to the rapid conversion of the 

components of S. Latissima (Laminarin and mannitol) during the first days of digestion. 

As discussed in the characteristics of the biomass, methane yield is related to the level 

of storage sugars, ash and volatile solids in the macroalgae biomass (Hughes et al., 

2012). Easily degradable components in the biochemical composition of macroalgae 

such as laminarin, mannitol would have been easily converted to methane however 

the alginate, polyphenol and cellulose would have been recalcitrant towards digestion 

and become inhibitors for higher methane production as they are reported to be difficult 

to be digested by microorganisms (Jard et al., 2012, Adams et al., 2011, Gunaseelan, 

1997, Black, 1950, Briand and Morand et al., 1997). Inorganic content of various 

elements especially the K and Al concentrations in the biomass also could have 

resulted in the inhibition during semi continuous digestion of S. Latissima (Schiener et 

al., 2015). In this study, higher methane percentages were observed in R2 which had 
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𝑁𝑎𝑂𝐻 scrubber, where the percentage of carbon dioxide is less than 1% continuously 

in all three HRTs. This showed that 3M 𝑁𝑎𝑂𝐻 is effective as a scrubber to remove 

carbon dioxide from biogas.  

6.7.2 Impact of trace element addition on digestion of S. Latissima  

Brown algae biomass was found to be balanced for their C/N ratio aiding higher 

methane production during semi continuous digestion studies performed by Hinks et 

al. (2013). In this study, a trace element solution comprising of aluminium, boron, 

cobalt, copper, iron, manganese, nickel, zinc, molybdenum, selenium and tungsten 

prepared according to Suhartini (2014) was added to digesters R3 and R4 to study the 

impacts on digester performance. The digester characteristics in terms of pH, alkalinity, 

stability, gas production, and biodegradability are compared to mesophilic digestion 

within R1 and R2 discussed previously.  

6.7.2.1 Temperature, pH, Alkalinity and VS destruction  

In terms of temperature, similar to the mesophilic digesters, (R1 and R2) the 

temperature in the trace element added digesters were not found to fluctuate ± 3°C 

during the 3 hydraulic retention times confirming the functional stability of the digesters. 

In addition, no operational issues (gas or liquid leaks, failures) were reported during 

this trial. With respect to pH digesters R3 and R4 did exhibit an increase in pH towards 

alkaline values towards the end of second HRT till end of digestion in contrast to 

previous mesophilic trials (R1 and R2) which exhibited a decrease in pH.  

In terms of volatile solids destruction, VS degradation was similar for the four digesters 

in the 1st HRT, however VS degradation started decreasing in the 2nd HRT whereas 

for the mesophilic digesters had higher VS degradation until the end of digestion. For 

digester R3 the total solids content increased from 3.99-5.81%WW and for digester R4 

total solids increased from 4.50 – 7.34%WW. In comparison to R1 and R2, it appears 

that the total solids content was higher in R3 and R4. For the decrease in percentage 

of volatile solids disintegration observed for trace element added digesters, this could 

mean that the metal content in the trace element solution was forming sediments in 

the digesters which increased the total solids content in the digesters but not the 

volatile solids content to increase gas production as they are inorganic in nature. The 

presence of metals in the biomass such as higher arsenic content in the seaweed could 

also be increasing the solids content in the digesters. When sludge wastewaters have 

been used for digestion, it was found that arsenic, even after microbial transformation 



 

Results – Semi Continuous digestion of S. Latissima  

  150 Roshni Paul 

(i.e. methylation of arsenic) a fraction of arsenic still remained in the sludge as a stable 

fraction (Wang et al., 2005). As brown algae is high in arsenic concentrations, even 

after microbial transformation a fraction of arsenic would have still remained in the 

sludge inside the digester increasing the solids content in the digesters. Also, in our 

study, we had not identified the trace elements in the inoculum which could have also 

had an interaction with the trace element added reactors.  

6.7.2.2 CST, COD and conductivity  

Digesters with trace element addition consistently had increasing conductivity values 

from 1st HRT to third HRT. This was expected as conductivity measures the ionic 

concentrations in the digester and due to the presence of various metals in the added 

trace element solution, it could be assumed that the added elements were also forming 

their carbonates increasing the conductivity measurements.  

In terms of CST, in contrast to R1 and R2 values increased from 1st HRT to 3rd HRT. 

This could also be due to the presence of the metals in the trace element solution 

requiring more time to settle and separate from the liquid fraction of the digestate.  

With respect to COD, values recorded for the digesters with trace element addition 

were very low in comparison to R1 and R2. The SCOD values were similar for all 4 

digesters in the first HRT, however continuously decreasing for the digesters in the 

second and third HRT. This could suggest that trace element addition was causing 

nutrient overload in the digesters preventing the degradation of the organic matter by 

microorganisms. It could also be suspected that some of the elements added were 

toxic for the stability of the digesters.  

6.7.2.3 Gas production   

In terms of gas production, the gas production has been consistent for mesophilic 

digesters however biogas production for the digesters R3 and R4 had variations of ±5 

l/day. Gas production started decreasing from day 70 until the end of digestion. 

Observing the gas composition data, methane percentages were higher in all 4 

digesters but comparatively higher in R3 and R4. The gas volumes were significantly 

higher for R3 and R4 during the second HRT when compared to R1 and R2. 𝑁𝑎𝑂𝐻 

scrubber has also lowered the percentage of carbon dioxide to less than 1% in the 

trace element added digester R4 as well. Overall, the percentage of increase in the 

gas production is not enhanced by the addition of trace elements. However, 

percentage of methane was higher in the trace element added digesters. This could 
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mean that trace element addition can improve the quality of the biogas produced from 

S. Latissima. Therefore, it could be summarised that contrary to the enhancement of 

digestion with higher gas yields and better biodegradability, in the case of S. Latissima 

macroalgae biomass, addition of trace element solution only enhanced the methane 

concentrations in the biogas production.  

Depending on the substrate digested and digester type and digestion procedure, trace 

elements requirements also are varied (Demirel and Scherer, 2011). In the case of 

micro nutrients, a balanced composition of metal ions are also essential for optimising 

the digester performance (Alaswad et al., 2015). However, macroalgae biomass also 

contains high concentrations of alkali and alkaline earth metals. S. Latissima is rich in 

nutrients such as 𝑁𝑎, 𝐾, 𝐶𝑎, 𝑀𝑔, 𝑃 and 𝑆𝑖 along with trace elements such as 𝐹𝑒, 𝑍𝑛, 

𝑀𝑛, 𝐴𝑙, and 𝐶𝑢.  When the biomass is digested these elements in the biomass present 

in the aqueous digestate act as a nutrient medium for the microorganisms for the 

digesters (Anastasakis and Ross, 2011). Since macroalgae biomass already has 

higher metal concentrations, it is important to understand which trace element can 

enhance the gas production as presence of one metal can be toxic for another as it 

can allow formations of inhibitory compounds.   

Trace element solution addition has shown to enhance anaerobic digestion of different 

substrates including food waste (Banks et al., 2012), agricultural feedstock such as 

maize silage (Pobeheim et al., 2010) and microalgae (Yen and Brune, 2007). The trace 

element solution used in our study was made as per Suhartini, (2014). The trace 

element solution has been used for studies with food waste, sugar beet residues etc.  

Structurally, macroalgae biomass has polysaccharides proteins on their cell walls 

(carboxyl, sulphate and phosphate groups) which are excellent binding sites for metal 

retention, hence they are used as biosorbents for removal of excessive heavy metals 

from wastewaters or the environment they grow. Elements such as arsenic, cadmium 

and lead can be present in macroalgae due to contamination and elements such as 

copper, chromium, molybdenum, nickel and selenium are retained by the cell walls. 

Hence trace element addition should enhance digestion of the biomass and the 

undigested cell walls retaining the nutrients can increase the nutrient value of the 

digestate as fertiliser (De La Rocha et al., 2009). However, in this study, we haven’t 

analysed the inhibitory effect of individual trace elements on gas production. Therefore, 

use of advanced molecular biology techniques would be required to understand the 

response of methanogenic archaea to trace element concentrations in the digester to 
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actually determine the demand of methanogens classes for these micro-nutrients 

(Demirel and Scherer, 2011).  

This study has used combinations of cobalt, nickel, and iron, with molybdenum, 

tungsten and selenium. Combinations of several trace elements can have either 

synergistic or antagonistic effects. Combination of Ni and Co have shown to produce 

more acetate when compared to being added separately. Molybdenum has been 

shown to enhance digester performance only in combination with cobalt and nickel. 

Furthermore, metals such as iron, cobalt and nickel are the most widely studied trace 

elements whereas research on selenium and tungsten are scarce (Feng et al., 2010).  

In summary, this study, while providing a useful insight into the impacts of specific trace 

elements on digester performance and biogas production from macroalgae, has also 

highlighted that further work is required to ascertain the interrelationship between 

specific elements and their impact on the microorganisms aiding AD processes. Given 

the findings here, together with the review of literature it would be recommended that 

𝑁𝑖, 𝐶𝑜, 𝐶𝑢, 𝑀𝑜, 𝑆𝑒, 𝑊 and heavy metals may be of interest to explore due to both their 

biosorbent potential in the macroalgae biomass and added benefits to the nutritional 

value for the digestate as fertiliser.  

6.7.3 Impact of thermophilic temperatures on digestion of S. Latissima  

In this study, thermophilic temperatures were applied to evaluate the impact of higher 

temperature on digester performance and biogas production. As observed in the 

results, digester R5 and R6 were different in their digester characteristics. The digester 

performance and biogas production were compared to those observed for mesophilic 

digesters.  

6.7.3.1 Temperature, pH, Alkalinity and VS destruction  

In terms of temperature variability, the mesophilic digesters were relatively stable 

around ±3°C. Variability was much greater for the thermophilic digesters where 

temperatures recorded in R5 were >±5°C and for R6 were stable around < ±3°C. The 

fluctuations were more prevalent in the first HRT however more stable in the second 

HRT for both the digesters. The temperature fluctuations were not observed in the 

second HRT and some fluctuations (lower than ±3°C) were observed in the third HRT 

for thermophilic digesters. This may be attributed to operational defect associated with 

maintenance of thermophilic temperatures. The heating coils used for maintaining the 
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temperature may have been effective for mesophilic range but not very effective for 

higher temperature ranges.  

In terms of pH, variations were observed in both the digesters. The digesters started 

off in a neutral pH of 7.01 (R5) and 7.07 (R6) respectively. As digestion progressed, a 

reduction in pH was observed in both the digesters from day 5 till day 25, around 6. A 

change in pH was observed in R6 towards the end of 1st HRT. From day 35, digester 

R6 showed an increase in pH values to 7.5 and continued until the 80 days. A reduction 

in pH was again noted from day 87 until the end of digestion. In the case of digester 

R5, a reduction in pH continued until the end of digestion with a final reduced pH value 

of 5.55. In terms of alkalinity, thermophilic digesters had lower alkalinity values than 

mesophilic digesters. This was noticed for partial, intermediate and total alkalinity 

concentrations in both the thermophilic digesters. However similar to mesophilic 

digesters, intermediate alkalinity was higher than partial alkalinity indicating VFA 

production in the digesters.  

Accumulation of VFAs in the digester is characterised by lower pH values. The drop in 

pH for thermophilic digestion was also noticed by Vanegas and Bartlett (2013) for 

Laminaria digitata species. The pH imbalance was attributed to the accumulation of 

VFAs due to the high hydrolysis rates during the initial rates of AD. The pH imbalance 

is shown to affect the activity of methane producing bacteria and ultimately the collapse 

of the digester (Vanegas and Bartlett, 2013). In this study, digester R5 started off with 

neutral pH however reduction of pH which continued from the end of the first HRT till 

the end of digestion indicate higher hydrolysis rate in the digester leading to VFA 

accumulation and finally failure of the system. Digester R6 seem to regain the buffering 

capacity by converting the accumulated VFAs to methane towards the end of first HRT 

to improve the digestion performance of the system. This could be linked to the 

buffering capacity of the inoculum stabilised by the buffering capacity of the feedstock 

(Weiland, 2010). 

In terms of volatile solids degradation, concentrations for thermophilic digesters were 

higher than mesophilic digesters. This shows that for macroalgae feedstock, 

thermophilic digestion aided in a greater degree of solids destruction compared to its 

mesophilic counterpart. This is in agreement with literature as temperature increases, 

the microbial growth rate also increases, leading to higher solids destruction by 

microorganisms during the AD processes (Huang et al., 2011).  
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6.7.3.2 COD, CST and conductivity  

In terms of digestate dewaterability, CST values were found lower than the mesophilic 

digesters indicating a higher dewaterability of digestate produced in the thermophilic 

digesters. S. Latissima fed daily into the digester had almost 70-80% moisture (water 

content) in the biomass.  At higher temperatures, the water of hydration and vicinal 

water attached to the biomass could potentially be reduced faster than at lower 

temperatures hence decreasing the floc formation by the degraded biomass in the 

digester. Thus, digestate can separate into liquid and solid fractions faster reflected in 

lower CST values (Yin et al., 2004). Thus, digestate can separate into liquid and solid 

fractions quicker reflecting in lower CST values. The viscosity of thermophilic digestate 

was also found lower in comparison to mesophilic conditions. This is in agreement with 

literature where digestate formed from S. Latissima digestion under thermophilic 

conditions had decreasing viscosities with higher loading rates which enhanced mixing 

properties in conventional AD systems (Ometto et al., 2017). Conductivity 

measurements were also recorded for thermophilic digesters. In comparison to 

mesophilic digesters, conductivity was higher in thermophilic digesters. As indicated 

by the drops in pH, higher conductivity could also be an indication of high 

concentrations of VFAs in the thermophilic digesters.  

6.7.3.3 Gas production   

Gas production obtained in this study were compared for thermophilic and mesophilic 

digesters respectively. The cumulative volumes of biogas and methane percentages 

are compared for both mesophilic and thermophilic digesters. Digester R5 had a 𝑁𝑎𝑂𝐻 

scrubber thus recording methane production and R6 recording biogas production. Gas 

productions were higher in the first HRT however decreased sharply from the second 

HRT till the end of digestion. From the overall gas production results, it could be seen 

that thermophilic digesters produced lower volumes (almost one third volume) of 

biogas than produced by the mesophilic digesters for S. Latissima. The methane 

concentrations were also very low in thermophilic digesters (almost one tenth) 

compared to methane concentrations observed for mesophilic digesters. The higher 

biogas production for thermophilic digesters, observed during the first HRT could be 

attributed to the high hydrolysis rates at the start of the digestion with neutral pH 

however as VFA’s accumulate (indicated by a lowering of pH) in second and third 

HRTs, gas volumes also decreased simultaneously. This is also in agreement with 

other studies in literature by Hansson et al. (1983) for green macroalgae Ulva and 
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Vanegas and Bartlett (2013) for brown algae Laminaria digitata. These studies 

suggested that different microbial communities were developed in the mesophilic and 

thermophilic reactors as these microorganisms being complex in their characteristics 

exhibited diversity and different levels of activity under different temperatures 

(Hansson, 1983, Vanegas and Bartlett, 2013).  Hence, it is clear that the choice of 

temperature for AD operation is very important and from the results observed in this 

study, thermophilic temperatures would not be recommended for scaled up digestion 

operations for S. Latissima.  For the digester R5, that included 𝑁𝑎𝑂𝐻 scrubbers, the 

percentage of carbon dioxide was found to be less than 1%. This showed that 3M 

NaOH is effective as a scrubber to remove carbon dioxide from biogas in both 

mesophilic and thermophilic digesters.  

In summary, thermophilic digesters in this study have shown less stability than 

mesophilic digesters with lower overall gas production. In general, thermophilic 

digestion is preferred over mesophilic digestion as it is reported to result in higher gas 

production and improved solids destruction. This is because growth of methanogenic 

bacteria is higher at thermophilic temperatures and thus increases rate and efficiency 

(Ge et al., 2011). This is because growth of methanogenic bacteria is higher at 

thermophilic temperatures and thus making the process faster and more efficient. In 

addition, the effect of temperature on the hydrolysis step is very important as 

thermophilic digesters provide five or six times higher efficiency in hydrolysing the 

biomass when compared to mesophilic systems (Bouallagui et al., 2005). However, 

the duration of the start-up phase or the acclimation stage in the first HRT is influenced, 

to some extent, by the seed inoculum which also plays an important role in biogas 

production rate during hydrolysis. In this study, the inoculum was obtained from a 

mesophilic source and no incubation at thermophilic temperatures was performed prior 

to inoculating the thermophilic digesters. This could have been one of the factors 

impacting the activity of the microbial community at higher temperatures resulting lower 

biogas production. VFA accumulation as indicated by lowered pH values in this study 

could have been because of the higher loading rate of 3gVS/l/day. This also could have 

resulted in lower gas production because at thermophilic temperatures VFA 

degradation tendency is to firstly convert acetate and butyrate and later convert 

propionate to methane. Literature regarding the kinetics of semi continuous studies 

have observed that if the concentrations were concentrations of propionate were 

higher than 400mg/l, inhibitions occurred and when levels were 800 mg/l, gas 

production completely stopped (Kim and H. Hyun, 2004). With lower gas production, 
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instability and higher energy requirements thermophilic digestion, cannot be 

recommended for large scale AD applications utilising S. Latissima. Therefore, further 

work is required to ascertain the optimal balance of nutrients in the digester for stable 

AD processes such as addition of buffering agents like𝑁𝑎𝑂𝐻, or trace elements or co-

digesting macroalgae biomass with other organic feedstock. Results for co-digestion 

of S. Latissima with different organic feedstock will be discussed in the next chapter.  
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7 Results – S. Latissima as a co-digestion feedstock 

While co-digestion using macroalgae biomass is a developing area of research there 

remains limited studies on the Kelp species, S. Latissima. Co-digestion has been 

suggested as an approach to optimise the C/N ratio and thereby enhance methane 

production and digestibility of the composite feedstock. Therefore, in this study, the 

feasibility of utilising traditional AD feedstock of agricultural feedstock and animal 

manure and brewery spent grain were assessed in combination with macroalgae S. 

Latissima. This chapter will describe the results for the digestion of organic feedstock 

selected for this study – i.e. agricultural crop residues, pig manure and brewery spent 

grain and the effect of co-digesting these organic feedstock with macroalgae biomass.  

Previously in this study, S. Latissima was assessed for its methane potential and the 

impact of location, harvest times and growth type on methane production. It was 

observed that methane potential varied with location, season and growth type. 

Therefore, in this chapter the sample with the highest methane potential from the BMP 

tests (Chapter 4 Section 4.1) was chosen for this co-digestion feasibility assessment. 

This was the biomass from Ventry Harbour obtained in summer 2016. The co-digestion 

feasibility study was carried out using biochemical methane potential batch tests 

(reference methods). The specific methane production and C/N ratio of the feedstock 

selected was used to justify the choice of feedstock for subsequent co-digestion with 

S. Latissima. The study will evaluate the performance of S. Latissima as a co-digestion 

feedstock and can inform the best way of utilising seasonal feedstock of macroalgae 

biomass. The results would also better inform waste management practices for 

feedstock such as crop wastes, manures, and brewery wastes like spent grain. The 

results observed from the characterisation of the feedstock, and their biochemical 

methane potential tests will be discussed in the following sections.  

The samples were characterised for solids (Total and Volatile), ash, and moisture 

content. Samples were also analysed for their elemental composition.  

7.1 Sample collection and location  

The organic feedstock selected for this study were from three main sources.  

 Agricultural crop waste residues -wheat, maize, grass, sugar beet – vegetable 

mix (SBV mix)  

  Manure -pelletised pig manure 

  Brewery waste - brewery spent grain (BSG) 

This is described more fully in the methodology chapter 3 section 3.1.2.  



 

Results – S. Latissima as a co-digestion feedstock  

  158 Roshni Paul 

S. Latissima obtained from Ventry Harbour was selected for the assessment of co-

digestion potential of macroalgae biomass as this biomass showed the highest 

biochemical methane potential during the BMP tests.  

7.2 Organic Feedstock characterisation  

The organic feedstock was tested on arrival at BCU prior to sample preservation. 

Samples were analysed for total and volatile solids, ash and moisture content. The 

feedstock was characterised using standard methods (as described in Methods 

Chapter Section 5) and all the results were tested for their significance using ANOVA 

tests.   

7.2.1 Total, volatile solids and ash 

As described previously these parameters are important when considering a feedstock 

for AD. With TS providing an indication of the overall solids and moisture content and 

VS providing an indication of the readily biodegradable fraction of the material. Ash 

content is an indication of the inorganic content of the feedstock.  

The organic feedstock characteristics are presented in Table 36 and Figure 46.  

Table 36 Characteristics of organic feedstock used in this study 

Feedstock  Moisture 
(%WW) 

Total 
solids 
(%WW) 

Volatile 
Solids 
(%WW) 

Volatile 
solids 
(%TS) 

Ash 
(%WW) 

Wheat  13.6 86.4 84.6 98.0 1.8 

Maize 65.9 34.7 32.9 94.9 1.8 

Grass 62.0 38.1 34.1 89.5 4.0 

SBV Mix 74.1 25.9 22.5 87.0 3.4 

Pig manure 10.0 90.0 58.8 65.3 31.3 

BSG 74.1 25.9 25.1 96.9 0.8 

S. Latissima 84.9 15.1 10.6 70.3 4.5 

 

As shown the table above and figure below, of the feedstock tested, pig manure 

demonstrated the highest total solids content at 90%WW followed by wheat at 86%. 

Sugar beet - vegetable mix exhibited the lowest total solids content at 22%. However, 

the highest volatile solids concentration was found in the sample of wheat at 84%, 

followed by pig manure, grass, maize, BSG and finally SBV mix at 

(58%<34%<32%<25%<22% respectively). Pig manure exhibited the highest ash 
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content at 31% and BSG exhibited the lowest ash content at 0.8%. Ash content is an 

important factor to be considered for AD as it can potentially impose inhibitions on the 

biochemical processes limiting biogas production. It can be seen that the organic 

feedstock selected generally exhibited lower moisture contents than S. Latissima and 

significantly higher VS content. 

 

Figure 46 Characteristics of organic feedstock used in this study 

7.2.2 Elemental composition 

The elemental composition of the organic feedstock was also analysed and the results 

are given in Table 37. 

Table 37 Elemental composition of organic feedstock used in this study 

Feedstock C H O N S Other 

Wheat  40 5 45 2 0.14 7.86 

Maize 43 5 40 2 0.07 9.93 

Grass 42 5 38 1 0.13 13.87 

SBV mix 35 4 40 1 0.07 19.93 

BSG 35 4 39 1 0.2 20.80 

Pig manure 29 2 27 3 1 38.00 

 

From the table it can be seen that, as expected the carbon and oxygen were the 

predominant elements present in all feedstock followed by hydrogen, nitrogen, sulphur 

and then trace elements. In terms of their suitability as a feedstock for AD carbon and 
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nitrogen content are important elements as they are the main or macro nutrients 

present in the biomass forming the plant tissues, cells and cell membranes. It can be 

seen that, the crop residues (wheat, maize and grass) had relatively higher carbon 

content in the order maize, grass, wheat (43%>42%>40% respectively).  

The carbon content of the sugar beet-veg mix and brewery spent grain were similar (at 

35%). Of the samples tested, pig manure had the lowest carbon content at 29%. With 

regards to nitrogen content there was little difference between the samples tested with 

the percentages in the overall biomass ranging between 1 and 2%. It was noted that 

pig manure had a slightly higher N content than the other samples tested. With regards 

to Sulphur content, pig manure had the highest percentage among all of the feedstock 

while the others having less than 1%. If we take the sum % of the major elements and 

assume that the remaining elements are ‘trace’ and/or ‘other’ (these were not 

analysed) it can be seen that wheat had the lowest % trace elements. For SBV, BSG 

and Pig manure it can be seen that there remains a high % of other/ trace elements 

making up the overall composition of the feedstock.  

As described previously (Section 1.8.9) the C/N ratio of a feedstock is an important 

consideration for AD as it ensures balance within the digester and prevents over 

accumulation of volatile compounds or inhibition from ammonia. The C/N ratio of the 

feedstock used in this trial are shown in Figure 47. 

 

Figure 47 Carbon to nitrogen ratio of organic feedstock used in this study 

The carbon to nitrogen ratio was found to be higher in the agricultural crop based 

residues than in pig manure. Grass exhibited the highest C/N ratio of 42 followed by 

the SBV mix, BSG, maize, and wheat (35, 35, 22, 20, 10 respectively).        
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It is important to have a good understanding of the nature and composition of different 

feedstock to ensure the correct balance of TS/VS, C/N and trace elements is achieved 

through co-digestion The characteristics of the feedstock will influence the rate and 

yield of methane production. 

7.2.3 Bio Methane Potential (BMP) of organic feedstock in Isolation.  

 
As described previously (Chapter 1, Section 1.10) this test provides a range of data 

which can be used to evaluate the biomethane production potential of a feedstock 

under carefully controlled and optimised conditions. The test can provide an insight 

into the dynamics of biogas production over time (in this case 30 days of the test or 

until methane production has plateaued). The specific methane potentials for the 

organic feedstock tested can be seen in Figure 48 below.  

 

Figure 48 Specific methane production of organic feedstock  

Firstly, it can be seen that all of the samples tested exhibited a typical trend in terms 

of biogas production with exponential methane production during the first 3-5 days of 

the BMP test and all samples reached plateau by the end of the test. 

However, it is interesting to note that there are some differences in the trends between 

the feedstock tested. For example, it can be seen that SBV mix and BSG demonstrated 

a sharp increase in the first 1-2 days. Thereafter SBV mix plateaus quickly at day 3 

while BSG plateaus at day 5. In contrast pig manure exhibited a much slower rate of 
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production and overall had the lowest methane production among the tested feedstock. 

This trend is demonstrated more clearly in the daily methane production for the first 10 

days of the trial. The rate of methane production for the organic feedstock is shown in 

Figure 49.  

 

 

Figure 49 Rate of methane production from organic feedstock  

From the figure it is clear that all feedstock tested reach maximum methane production 

in the first 3-5 days. However, it was noted that SBVmix and BSG exhibit the maximum 

methane production in day 1 of the test.  Wheat and Maize appear to reach maximum 

production later at day 2-3. It can also be seen that Pig Manure has the lowest methane 

production within the first 3 days.  

As described previously the SMP is a measure of the cumulative methane production 

of a feedstock based on optimised conditions.  

The specific methane production for the organic feedstock tested and corresponding 

C/N ratios is given in Table 38.  
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Table 38 Specific methane production and C/N ratio for organic feedstock 

Feedstock Specific methane 
production 

(L CH4/ kgVS added) 

Std dev C/N 

Wheat 0.393 ± 0.037 20 

Maize 0.391 ± 0.013 22 

Grass 0.395 ± 0.011 42 

SBV mix 0.292 ± 0.037 35 

Pig Manure 0.130 ± 0.007 10 

BSG 0.456 ± 0.004 35 

 

It can be seen from the table above that the SMP for Wheat, Maize and Grass were 

very similar (0.391 − 0.396𝑙 𝐶𝐻4 /𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑). Of the Feedstock tested BSG exhibited 

the highest overall SMP at 0.456 𝐶𝐻4 /𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑. Pig Manure had the lowest SMP 

of all the feedstock tested at 0.130 𝐶𝐻4 /𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑. It is clear that the rate of and 

yield of methane production within the first 5 days has a significant impact on the 

overall methane yield. It can be seen that for Wheat, Maize and Grass while they have 

a similar SMP their C/N is significantly different. For pig manure it can be seen it had 

the lowest SMP and also lowest C/N. It can be seen that SBV mix and BSG have the 

same C/N ratios however demonstrate significantly different SMPs.  

Having gained a clear picture of the characteristics and BMP of a variety of organic 

feedstock the next phase of investigation involved an assessment of the impact of S. 

Latissima addition (as a co-digestion feedstock) on biogas production (yield and rate). 

7.2.4 BMP of macroalgae biomass as a co-digestion feedstock 

For this trial the organic feedstock was mixed in a 70:30 (wet weight) ratio (whereby 

the organic feedstock made up 70%WW and the macroalgae biomass made up 

30%WW). All of the feedstock were milled (to <1mm) and fed into the digester bottles. 

The inoculum for the BMP tests was sourced from Severn Trent WWTP, Minworth. 

The method was in accordance with that described in the methodology chapter section 

3.1.3. For this trial the inoculum had a volatile solids concentration of 20.283 g VS/kg 

WW. Cellulose was used as the positive standard.  

The rate of methane production for the organic feedstock co-digested with S. Latissima 

is given in the figure below.  
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Figure 50 Rate of methane production in co-digestion 

As shown in the figure above, it was found that the trends in biomethane production 

were similar during co-digestion as for mono digestion. In terms of the rate of 

production across the first 5 days it can be seen that all feedstock tested reach 

maximum methane production in the first 3-5 days. However, it was noted that for 

SBVmix+S. Latissima biogas production rate increased from 477ml/day to 591ml/day. 

For BSG+S. Latissima it was observed that biogas production rate at day 1 remained 

relatively similar to mono digestion at 440ml/day while in co-digestion production was 

observed at 448 ml/day. Wheat and Maize co-digested with S. Latissima appear to 

reach maximum production later at day 2 – 3 as in mono-digestion conditions although 

it can be observed that the production rate declines faster for Maize under co-digestion 

conditions. It can also be seen that Pig Manure + S. Latissima has the lowest methane 

production within the first 3 days.  

The rate of methane production for the feedstock in isolation and in co-digestion with 

S. Latissima are compared in Table 39. 
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Table 39 Comparison of rate of methane production for monodigestion and co-

digestion 

Feedstock Monodigestion Co-digestion 

 Day1 Day2 Day3 Day4 Day5 Day1 Day2 Day3 Day4 Day5 

S. Latissima 459.6 192.5 145.4 90.5 65.7 - - - - - 

Wheat 217.8 436.4 152.4 68.4 48.3 302.1 462.8 181.0 86.7 56.5 

Maize 274.8 288.3 120.6 72.8 56.8 372.2 249.4 109.8 74.5 54.1 

Grass 332.1 117.2 101.0 76.7 65.1 415.9 152.1 105.1 81.1 65.1 

SBV mix 477.3 123.3 71.8 50.4 41.2 591.0 169.0 91.4 63.8 46.4 

BSG 440.6 201.4 131.6 95.3 70.5 448.2 200.7 128.5 90.0 65.3 

Pig Manure 135.3 73.8 67.7 56.0 52.5 183.8 92.5 75.8 66.0 57.4 

 

From the table above, results showed that addition of macroalgae resulted in both 

increased as well as decreased methane production over the period of 30 days. 

Therefore, it becomes essential to calculate the percentage of increase or decrease in 

specific methane production of each feedstock.  

The percentage increase or decrease in measured specific methane production is 

calculated as per the equation below.  

(𝑺𝑴𝑷 𝒊𝒏 𝒄𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏 − 𝑺𝑴𝑷 𝒊𝒏 𝒎𝒐𝒏𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏)

(𝑺𝑴𝑷 𝒊𝒏 𝒎𝒐𝒏𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏)
∗ 𝟏𝟎𝟎 

Equation 8: Calculation for percentage increase or decrease in SMP 

The specific methane production of various organic feedstock co-digested with S. 

Latissima and the percentage increase for the measured SMP values are given in 

Table 40. 

Table 40 Percentage increase for specific methane production in co-digestion 

  Specific Methane Production (SMP) as L CH4/kgVS 

Feedstock Wheat Maize Grass SBV mix Pig Manure BSG 

Mono- Digestion 0.393 0.391 0.395 0.292 0.130 0.421 

Co-Digestion 0.472 0.397 0.395 0.373 0.172 0.404 

% difference 21.9 1.01 0 27.7 32.3 -4.03 

*SMP of S. Latissima in isolation 0.391 𝐿 𝐶𝐻4/ 𝑘𝑔𝑉𝑆 𝑎𝑑𝑑𝑒𝑑 

It can be seen from the table above that with the exception of BSG and Grass the SMP 

increased as a result of co-digesting S. Latissima with the organic feedstock. The 
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highest % increase was observed for pig manure where a 32.3% increase was 

observed. 

Although the results of co-digestion suggest an increase in measured biogas yield the 

feedstock were mixed at a ratio of 70:30. According to Labatut et al. (2011) the increase 

or decrease in methane production as a result of co-digestion can be calculated by 

determining the difference between the measured SMP of the co-digested feedstock 

and the estimated SMP for co-digestion based on the ratios of mixed feedstock 

(Labatut et al., 2011). In this study, this calculation will only consider the specific 

methane production in co-digestion and will not be considering the biodegradability of 

the co-digested feedstock as to observe whether the co-digestion improved the 

digestion of either of the feedstock.  

The estimated SMP for the co-digestion is calculated using the formula below. 

(𝟎. 𝟕 ∗ 𝑺𝑴𝑷 𝒐𝒓𝒈𝒂𝒏𝒊𝒄 𝒇𝒆𝒆𝒅𝒔𝒕𝒐𝒄𝒌 𝒊𝒏 𝒎𝒐𝒏𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏 + 𝟎. 𝟑

∗ 𝑺𝑴𝑷 𝒎𝒂𝒄𝒓𝒐𝒂𝒍𝒈𝒂𝒆 𝒃𝒊𝒐𝒎𝒂𝒔𝒔 𝒊𝒏 𝒎𝒐𝒏𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏) 

Equation 9: Calculation of the estimated SMP for co-digestion 

From this calculation, the net percentage increase and decrease was calculated as 

follows.  

(𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝑺𝑴𝑷 𝒊𝒏 𝒄𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏 − 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑺𝑴𝑷 𝒊𝒏 𝒄𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏)

(𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑺𝑴𝑷 𝒊𝒏 𝒄𝒐𝒅𝒊𝒈𝒆𝒔𝒕𝒊𝒐𝒏)
∗ 𝟏𝟎𝟎  

Equation 10: Calculation of net percentage increase or decrease in SMP 

These calculation was applied to the data and the results for net percentage increase 

or decrease in co-digestion are presented in Table 41.  

Table 41 Net percentage increase or decrease for codigestion 

Feedstock  Measured 
SMP on co-
digestion 

(𝑳 𝑪𝑯𝟒/𝒌𝒈𝑽𝑺) 

Estimated 
SMP (based on 

30:70 ratio) 
(𝑳 𝑪𝑯𝟒/𝒌𝒈𝑽𝑺) 

Net Percentage 
increase or 
decrease 

(%) 

S. Latissima - - - 

Wheat  0.472 0.388 21.59 

Maize  0.397 0.392 1.17 

Grass 0.395 0.394 0.30 

SBV mix 0.373 0.322 15.95 

Pig Manure 0.172 0.208 -17.43 

Brewery spent grain  0.404 0.412 -1.94 
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From the table, it can be seen that S. Latissima when added as a co-digestion 

feedstock to Wheat resulted in the greatest percentage increase in methane yield 

21.59% based on estimated yields. In contrast the co digestion of S. Latissima with pig 

manure resulted in a decrease of 17% in methane based on estimated yields. 

7.2.5 Carbon to nitrogen ratio optimisation.  

As described previously, co-digestion is commonly adopted by operators to optimise 

the C/N ratio within an AD plant. This is particularly important when considering 

feedstock such as agricultural crop wastes as they can have high carbon content in 

their structure leading to an imbalance in the digester with accumulation of volatile 

solids or in manures with a high nitrogen content where ammonia inhibition can lead 

to digester imbalance.  

The carbon to nitrogen ratio of a feedstock in monodigestion can be calculated as the 

equation below: 

𝑪

𝑵
=

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑪𝒂𝒓𝒃𝒐𝒏

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑵𝒊𝒕𝒓𝒐𝒈𝒆𝒏
   

Equation 11: Calculation of C/N ratio for monodigestion  

Where C is the Carbon and N is the Nitrogen.  

If there are more than one feedstock involved such as in co-digestion, then the carbon 

to nitrogen ratio can be calculated by the formula below: 

𝑪

𝑵
=  

𝑸𝟏 (𝑪𝟏 ∗ (𝟏𝟎𝟎 − 𝑴𝟏) + 𝑸𝟐 (𝑪𝟐 ∗ (𝟏𝟎𝟎 − 𝑴𝟐)

𝑸𝟏(𝑵𝟏 ∗ (𝟏𝟎𝟎 − 𝑴𝟏) + 𝑸𝟐 (𝑵𝟐 ∗ (𝟏𝟎𝟎 − 𝑴𝟐)
  

Equation 12: Calculation of C/N ratio for co-digestion  

Where, Q1 is the quantity of the macroalgae feedstock (30% or 0.3), Q2 is the quantity 

of the organic feedstock (70% or 0.7), C1 is the carbon percentage of macroalgae 

biomass, C2 is the carbon percentage of organic feedstock, M1 and M2 are the 

moisture content (%) of the macroalgae and organic feedstock respectively and finally 

N1 and N2 are the nitrogen percentages of the macroalgae and organic feedstock.  

The carbon to nitrogen ratios observed in isolation and estimated carbon to nitrogen 

ratio for the 30:70 co-digestion ratio used in this study are compared in Table 42. 
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Table 42 Comparison of C/N ratios in isolation and estimated for codigestion 

Feedstock  C/N 
(Single feedstock) 

Estimated C/N 
(Based on 70:30 ratio) 

S. Latissima 17.19 - 

Wheat  20.00 19.83 

Maize 21.50 20.91 

Grass 42.00 36.44 

SBV mix 35.00 29.69 

Pig Manure 9.67 9.96 

Brewery spent grain  35.00 29.70 

 

When carbon to nitrogen ratios were estimated for the co-digestion trials based on the 

measured carbon and nitrogen percentages for individual feedstock, it was found that 

wheat was estimated to have a C/N of 19.83 while for maize, grass, SBV mix, and BSG 

the C/N ratio was reduced as a result of S. Latissima addition. For pig manure the C/N 

ratio increased slightly from 9.67 to 9.96 as a result of S. Latissima addition. 

The data was plotted so as to observe the relationship between the SMPs derived from 

co-digestion trials and the estimated C/N ratio of the mixes used in this study in Figure 

51. The obtained trend line is a polynomial trend line with an R2 value of 0.7741. The 

relationship of C/N and measured SMP is not observed to be linear. 

 

 

Figure 51 Relationship between specific methane prodcution and C/N ratio 
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When measured methane production is plotted against the C/N ratios, the trend shows 

that higher methane production is found to be occurring between the C/N ratios of 20 

and 30 and tends to decrease after 35. SMP also tend to decrease below C/N ratio of 

20. However, wheat is an outlier with the highest SMP and a border line C/N of 19.83. 

From the literature it is seen that macroalgae biomass is rich in different kinds of metals 

and micronutrients (Schiener et al., 2015). Therefore, it could also be suggested that 

the micronutrients in the macroalgae also balances the feedstock in co-digestion. 

However, in this study no finite analysis was performed on the co-digested samples 

hence it cannot be said for certainty which element in the macroalgae aided for high 

methane production.  

7.3 Discussion  

The following sections will discuss the co-digestion potential of S. Latissima based on 

the following research question.  

 To what extent does the characteristics of S. Latissima favour co-digestion with 

other organic feedstock? 

 To what extent does carbon to nitrogen ratio influence the methane yields of the 

co-digestion mix? 

7.3.1 Organic feedstock characteristics  

Co-digestion, as an approach, is commonly used more frequently to overcome 

challenges surrounding biomass consistency and supply. The following sections will 

discuss the nature of the organic feedstock chosen and the impact of macroalgae (S. 

Latissima) addition on biomethane production.  

7.3.1.1 Solids and Ash  

Of the organic feedstock chosen for this study, pig manure demonstrated highest total 

solids content while sugar beet vegetable mix had the lowest solids content. In terms 

of volatile solids, wheat had the highest concentration while sugar beet-vegetable mix 

had the lowest concentration. With ash content, pig manure exhibited the highest and 

brewery spent grain had the lowest concentration. In comparison to macroalgae 

biomass, all feedstock had higher solids and ash content however lower moisture 

content.  

As discussed previously in Section 1.20.1, agricultural crop waste residues are 

included in the renewable biomass sources of second generation bioenergy producers. 
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Utilising the residues for anaerobic digestion offers benefits such as extraction of 

methane releases from the degradation of these wastes for energy purposes and 

prevention of their release into the atmosphere (Kim and Dale, 2004) (Chandra et al., 

2012). In terms of availability, in the EU, 1500 million tonnes of biomass could be used 

for AD from agricultural sector each year (Scarlat et al., 2010). Pig manure is another 

feedstock readily available as a result of in the EU due to intensified animal production 

activities in Europe, with increased size of the animal production units. This also 

increases the amount of animal manure and its disposal   can have detrimental impacts 

on causing considerable pollution threat for the environment in these areas. For 

Therefore for optimised nutrient capture and recycle and manure management, AD is 

generally the preferred sustainable route (Holm-Nielsen et al., 2009). Brewer’s spent 

grain (BSG) represents around 85% of the by-products produced from brewing 

industry. BSG has received little attention as a marketable product and its disposal is 

an environmental problem. Currently the main market for BSG is dairy cattle feed but 

as it provides fibre, protein and energy, its consumption has also been trialled tried for 

poultry, pigs and fish.  Biogas production from BSG has been evaluated and 

recommended as way to energy sustainability for breweries. However more studies 

are required to fully evaluate the potential of BSG for anaerobic digestion (Mussatto et 

al., 2006). 

The characteristics observed for these organic feedstock applied in this study is 

comparable to those observed in the literature. The characteristics from the literature 

for these organic feedstock is given in the table below.  

Table 43 Characteristics of organic feedstock from literature 

Feedstock 
Composit

ion 
TS 
(%) 

VS 
(%TS) 

C:
N  

Biogas 
yield 

(m3/kgV
S) 

CH4 
(%) 

Inhibiting 
substance 

Reference 

Wheat 

Carbohydr
ates 

Sugars, 
Starch, 

Cellulose 

- 80-90 115 0.290 
60-
78 Fibre 

content, 
pesticides  

(Chandra et 
al., 2012, 

Wang et al., 
2012, Amon 
et al., 2007) 

Maize - 75-90 73 0.338 
55-
62 

Sugar beet 
24.
2 

93.2 24 0.5-0.6 80 Pesticides 
(Suhartini et 

al., 2014) 

Grass 
silage 

15-
25 

90 
10-
25 

0.56 
34-
53 

Pesticides 

(Steffen et 
al., 1998, 
Lehtomäki 

et al., 2008) 
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Pig slurry 
 

Trace 
organic 

compound
s 

Proteins 

3-8 70-80 
3-
10 

0.25-
0.50 

70-
80 

Antibiotics 
and 

disinfectant 

(Steffen et 
al., 1998) 

S. 
Latissima 

(fresh) 

Carbohydr
ates 

Cellulose 
Hemi 

cellulose 
Lignin 

10 54 8.8 0.279 
31-
52 

Salinity 

(Jard et al., 
2012, 

Vivekanand 
et al., 2012) 

Brewery 
Waste 
(Spent 
grain ) 

Sugars 
Proteins  
Fibres  

24 - 25 0.35 
60-
70 

High 
nutrient 
content, 
moisture 

(Thomas 
and 

Rahman, 
2006, 

Mussatto et 
al., 2006) 

 

As observed in the table, the selected organic feedstock does represent higher solids 

content than S. Latissima and high potential to methane production with their high 

volatile solids (%TS) concentration. The potential inhibiting substances for AD process 

present in the ash content of the biomass include pesticides, antibiotics and 

disinfectant which can be either in the form of inorganic minerals or other recalcitrant 

chemicals.  It can also be noted that the composition of the feedstock also varies due 

to varied elemental composition of the feedstock.  

7.3.1.2 Elemental composition  

In this study, crop waste residues showed a relatively high carbon content in the order 

maize > grass > wheat. The carbon content of the sugar beet mix and brewery spent 

grain were found similar. Of the organic feedstock selected in this study, pig manure 

had the lowest carbon content. In terms of nitrogen content, pig manure showed a 

slightly higher nitrogen concentration. With regards to sulphur content, pig manure had 

the highest percentage while others were observed to have less than 1% 

concentration. With regard to the trace/other elements concentration, wheat showed 

the lowest concentration however for SBV mix, BSG and pig manure showed a high 

percentage of trace/other elements in the composition of the feedstock.  

The elemental composition observed in this study is comparable to other studies found 

in the literature. Chandra et al. (2012) observed that agricultural crop residues are 

mostly ligno-cellulosic in nature. They constitute about 40-45% oxygen, and 30-35% 

carbon on a dry weight, around 5% hydrogen, 0.5% of nitrogen and very small amounts 
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of sulphur (0.1%) of which 30-40% forms cellulose, 25-30% hemicellulose and 15-20% 

constitutes lignin (Chandra et al., 2012). Brewery spent grain has their major 

components of cellulose, non- cellulosic polysaccharides, and lignin and it may also 

contain some protein and lipid. The chemical composition of BSG varies with barley 

variety, harvest time, malting and mashing conditions, and the quality and type of 

additives added in the brewing process. In general, BSG is considered as a 

lignocellulosic material rich in protein and fibre which account for 20 and 70% of its 

composition respectively. Minerals, vitamins, and amino acids are also found in BSG. 

They include calcium, cobalt, copper, iron, magnesium, manganese, phosphorus, 

potassium, selenium, sodium and sulphur all in concentrations lower than 0.5% 

(Mussatto et al., 2006). Pig manure slurry on the other hand is shown to be a feedstock 

with lower carbon content however with high nitrogen content (Steffen et al., 1998). 

Dewatering the slurry and pelletising the manure changes the elemental composition 

of the pig manure to be a low moisture and high carbon content feedstock (Campos et 

al., 2008).  

The feedstock composition in terms of solids, ash and moisture are critical for 

anaerobic digestion. Feedstock with high solids and ash content can lead to process 

failure in AD as a result of solids sedimentation, clogging and inhibition due to the toxic 

materials present in the feedstock. Feedstock with high moisture content can also 

result in higher requirement of the feedstock for higher organic loading rates and 

therefore potentially causing unfavourable process economics. The distribution of 

organic molecules such as carbohydrates, cellulose, proteins, fats and lipids formed 

from the various combination of elements in the feedstock are also of great importance 

as their availability to the microorganisms during the AD process will lead to the 

formation of either volatile fatty acids or ammonia. Feedstock with high carbon content 

upon degradation will lead to the formation of volatile fatty acids while feedstock with 

high nitrogen or protein content may lead to the formation of ammonia upon 

degradation (Steffen et al., 1998). Higher volatile fatty acids are reported to cause 

accumulation of solids in the digester while ammonia concentration is shown to cause 

foaming in the digesters. Therefore, it is important to have an optimum carbon to 

nitrogen ratio for balanced AD process in the digester.  

7.3.1.3 Carbon to nitrogen ratio 

Carbon to nitrogen ratio in the selected feedstock in this study was found to be high in 

the agricultural crop- based residues and lowest in pig manure. Grass exhibited the 
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highest C/N ratio of 42 followed by the SBV mix, BSG, maize, and wheat (35, 35, 22, 

20, 10 respectively). As shown in the table above, the values found in this study is 

similar to those reported in the literature for grass, sugar beet, pig manure, and BSG 

however higher values are reported for wheat and maize (Chandra et al., 2012, Amon 

et al., 2007, Suhartini et al., 2014, Steffen et al., 1998, Thomas and Rahman, 2006, 

Mussatto et al., 2006). As reviewed in literature, nutrient ratio in the feedstock is 

important for optimal degradation process with the optimum range of C/N ratio for 

effective AD shown to be between 20 – 30. From the values observed in this study for 

the selected feedstock high methane production was expected from the agricultural 

crop waste residues, sugar beet vegetable mix and BSG however lower methane 

production from pig manure.  

7.3.2 Biochemical methane production of organic feedstock  

A. Specific methane yield 

In this study, of the feedstock tested, BSG exhibited the highest overall SMP at 

0.456 𝑙𝐶𝐻4/𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑. Pig Manure had the lowest SMP of 0.130 𝑙𝐶𝐻4 /𝑘𝑔 𝑉𝑆𝑎𝑑𝑑𝑒𝑑. 

The specific methane yield of agricultural crop waste residues (wheat, maize, grass) 

were observed to be similar. The yields obtained for BSG is higher than those reported 

by Thomas and Rahman (2006), while the yields for pig manure is lower than the 

reported values in the literature (Steffen et al., 1998). The difference in the yields 

obtained for BSG in this study could be attributed because of the variation in the 

brewing process adopted in the brewery from where it was sourced. In addition, 

depending on the beer produced, BSG may also contain residues from malted barley, 

or non-malt sources of fermentable sugars such as wheat, rice or maize added during 

mashing hence increasing the methane yield from easily digestible fraction of sugars 

present in the feedstock (Mussatto et al., 2006). In the case of pig manure, the 

decrease in the yield could be attributed to the use of pig manure pellets instead of pig 

slurry with higher solids content resulting in poorer digestion. Higher solids content in 

pig manure is previously reported in the literature to be difficult to be digested during 

methane potential tests (Campos et al., 2008). For SBV mix, the yield is lower than 

reported by Suhartini et al. (2014) and (Lehtomäki et al., 2008) while for wheat, grass, 

and maize, SMP yields are similar to those reported in the literature (Chandra et al., 

2012, Lehtomäki et al., 2008, Cirne et al., 2007).  
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7.3.2.1 Rate of methane production  

For all of the feedstock except for pig manure, exponential methane production was 

observed during the biochemical methane potential test. However, rate of methane 

production for each feedstock was observed to be different. All feedstock reached their 

maximum methane production within the first 3 – 5 days of the test. The rate of 

methane production was faster for SBV mix and BSG where maximum methane 

production occurred within the first day of the test. Wheat and maize reached their 

maximum production at day 2 – 3 while pig manure was shown to have a small lag 

phase and lowest methane production among all of the feedstock tested.  

This can be attributed to the improved degradation by the microorganisms in the 

digester. As discussed previously, the ease of degradation in the digester is, to some 

extent, dependent on the biochemical composition of the feedstock. The presence of 

higher amounts of fermentable sugars and moisture in BSG makes it more readily 

accessible by the microorganisms in the digester hence a better feedstock for 

anaerobic digestion with higher SMP yields and faster rate of methane production 

(Xiros and Christakopoulos, 2012). Sugar beet – vegetable mix is also very similar with 

sugars, starch and carbohydrates increasing the rate of methane production while for 

agricultural crop waste residues, even though they have shown faster rates of methane 

production in this study their ligno-cellulosic nature often pose a problem in AD 

processes utilising such biomass feedstock (Scarlat et al., 2010). For pig manure, as 

it has shown higher nitrogen and sulphur content in this study, inhibition of methane 

formation could be due to ammonia formation or from the toxicity of other solids in the 

feedstock because of ammonia formation or from the toxicity of other solids in the 

feedstock (Cuetos et al., 2008).  

It is clear from the discussion that crop waste residues have a high potential for 

methane production in mono digestion. However, because of their ligno-cellulosic 

nature, they often require pre-treatment to optimise performances which can add to 

overall cost of processing be an expensive route (Steffen et al., 1998). These materials 

also have a high solids content of 10-50% and in order to optimise their digestion, the 

material needs to be homogenised with other materials with higher water content 

(Lehtomäki et al., 2008). This could be an important benefit for use of S. Latissima 

which has a relatively high moisture content could enhance AD performance under co-

digestion conditions. In the case of pig manure, it is recommended that it should be co-

digested with waste that has a higher carbon content  improve the C:N ratio (Cuetos 

et al., 2008). The relatively high nitrogen and fibre content of the BSG can also be 
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optimised using co-digestion resulting in higher methane production rates and yields 

than observed for digestion of the individual feedstock alone.  

From the results and discussion presented here, it is clear that the organic feedstock 

requires further optimisation for methane production through either pre-treatment or 

co-digestion routes. Reviewing the co-digestion practices in the last 5 years, Mata 

Alvarez et al. (2014) notes that the topic of co-digestion has been dominating the 

literature since 2010 with the majority of publications focusing not only traditional 

feedstock such as agricultural wastes, sewage sludge etc. but also newer feedstock 

such as fats and oils, greases, complex mixtures and micro and macro algae biomass. 

However, there are limited studies reported for brown algae biomass species S. 

Latissima. In addition, from a practical perspective, if biomass is to contribute to the 

EU target of two thirds of the renewable energy share by 2020 then it should consider 

the use of all available resources in a sustainable way without causing negative 

impacts (Scarlat et al., 2010).  

7.3.3 Biochemical methane production on co-digestion with S. Latissima  

As discussed in literature, macroalgae biomass have high percentages of 

carbohydrates, storage sugars and special compounds like phenolic compounds and 

cellulose based compounds called alginates for structural support. The carbohydrate 

content in the macroalgae biomass is easily degradable and the percentage of lignin 

is lower compared to land-based biomass (Xia et al., 2016).  This unique characteristic 

of higher C% and its accessible form in the biomass make it increasingly favourable 

for co-digestion practices. In this study, S. Latissima is observed to have a methane 

yield of 0.391 𝐿 𝐶𝐻4 /𝑘𝑔 𝑉𝑆 𝑎𝑑𝑑𝑒𝑑. In agreement with literature, it was observed that 

harvest time, localised environmental conditions and growth type has an impact on the 

characteristics of the macroalgae biomass which in turn determines the variation in the 

biomethane potential of the feedstock. It was also observed that volatile solids and ash 

has an inverse relationship with the methane production potential of macroalgae 

biomass. Therefore, summer harvest from Ventry Harbour location, with lowest volatile 

solids and ash content was chosen for co-digestion.  For the co-digestion experiments, 

the organic feedstock and macroalgae was mixed in a 70:30 ratio where 70% was the 

organic feedstock and 30% was made up of S. Latissima.  

The following sections will discuss the rate of methane production and specific 

methane production yields obtained during co-digestion of feedstock with S. Latissima.  
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7.3.3.1 Rate of methane production  

The rate of methane production for organic feedstock co-digested with S. Latissima 

was observed to be similar to rates of methane production of feedstock in isolation. 

However, when comparing the volume of methane produced during the first five days 

of digestion it could be observed that all feedstock produced more methane when co- 

digested than in isolation. All of the feedstock reached maximum methane production 

during the first five days of digestion. The rate of methane production for S. Latissima 

with sugar beet-vegetable mix is faster and diminishes more quickly to plateau around 

day 3 while the rate of methane production of S. Latissima with wheat takes longer to 

plateau around day 4. S. Latissima with pig manure consistently has a slower rate of 

methane production in comparison to other organic feedstock even while in co-

digestion. This shows that co-digestion has been mostly favourable for the tested 

organic feedstock and the methane production pattern is dominated by the major 

component in the mix. This is in agreement with literature where degradation rates are 

suggested to be specific to each substrate and dependent on the inherent properties 

and composition of the co-substrates (Kouas et al., 2017, Xie et al., 2017). Apart from 

the easily accessible sugars and carbohydrates already present in the main organic 

feedstock, the composition of macroalgae biomass would have contributed to the 

increased methane production observed for co-digestion. As already suggested in the 

characteristics results, S. Latissima is also formed of easily degradable carbohydrates 

and as the co-digestion utilised summer harvest, there is also reduced inhibition from 

inorganic components within the biomass, however the micronutrients in the biomass 

can potentially balance the digester stability. This is also in agreement with other co-

digestion studies utilising macroalgae biomass which suggest that, as macroalgae 

contain relatively high fractions of sugars and hemicellulose, this also favours the 

enzymes activity to the feedstock resulting in improved hydrolysis yield in co-digestion 

(Jard et al., 2012, Costa et al., 2012). The rapid degradation of feedstock demonstrated 

in the faster rates of methane production is a very useful indicator to as it can also 

provide a rough estimate of retention times required for complete digestion of a given 

feedstock (Costa et al., 2012a). In this study all of the methane production of all of the 

feedstock in co-digestion reached their complete digestion by around day 20 where 

methane volumes were less than 10 ml/day. The increase or decrease in methane 

production to ascertain synergistic or antagonistic effects of co-digestion was 

evaluated using the specific methane yields.   
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7.3.3.2 Specific methane yield 

Percentage increase or decrease in specific methane yields for the organic feedstock 

in isolation were compared to those in co-digestion. A percentage increase was 

observed for wheat, maize, SBV mix and pig manure, however there was no difference 

observed for grass and a decrease in yield was observed for BSG. The highest 

percentage increase was observed for co-digestion with pig manure. Even though the 

percentage difference is calculated for specific methane yields, the factor of mixing 

ratio in co-digestion is not fully considered to understand the effect of addition of S. 

Latissima to an organic feedstock. Therefore, expected specific methane yields from 

co-digestion is calculated by incorporating the mixing ratios to the specific methane 

yields of feedstock in isolation. From those estimated values, net percentage increase 

or decrease for co-digestion was measured. This was found to be in agreement with 

the calculation suggested in the study by Labatut et al., 2011. Interestingly the highest 

net percentage increase was observed for wheat followed by SBV mix. The decreasing 

order of net percentage increase in co-digestion can be given as Wheat > SBV mix > 

Maize > Grass > BSG > Pig manure. Pig manure was now observed to show a 

decrease of 17% in the methane production while in co-digestion.  

Co-digestion is reported to enhance the degradation of individual substrates in the mix, 

i.e. as a result of synergistic effects, or decrease the degradation of the substrates 

resulting from antagonistic effects (Mata-Alvarez et al., 2011). Synergism could be 

observed as an additional methane yield for co-digestion samples over the weighted 

average of the specific methane yield of the individual substrates and antagonism will 

be translated in to lower methane yields in co-digestion compared to the weighted 

averages (Nielfa et al., 2015). For co-digestion of wheat with S. Latissima the increase 

of methane yield has been synergistic as the percentage of increase (21%) is greater 

than standard deviation of 0.033 (7%) and the weighted averages of the individual 

yields of the substrates. The specific methane yield obtained for wheat in this study of 

0.472 𝑙𝐶𝐻4 /𝑘𝑔𝑉𝑆𝑎𝑑𝑑𝑒𝑑 is higher than reported for S. Latissima co-digested with wheat 

straw in the literature where a value of 0.275 𝑙𝐶𝐻4 𝑘𝑔/ 𝑉𝑆𝑎𝑑𝑑𝑒𝑑 is obtained for a blend 

of 75:25 (Vivekanand et al., 2012). Synergism is also observed for sugar beet – 

vegetable mix where percentage of increase observed was 15% higher than the SMP 

observed for monodigestion of the feedstock. As for grass and maize, the calculated 

values were within the standard deviation limits; hence no conclusions could be made 

for the co-digestion combination. Co-digestion of pig manure with S. Latissima had 

been clearly antagonistic in nature with a decrease of 17%. Brewery spent grain also 
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showed a decrease of 1% from the mono digestion specific methane production 

values. As there are no reported studies on co-digestion of S. Latissima with these 

feedstock these values could be very informative to future co-digestion research 

involving such feedstock.  

Literature suggests that synergistic effects can be influenced by the different 

components in the co-digested mixture as they are biodegraded in the digesters. In a 

mixture of co-digestion, the degradation of the feedstock can occur in three routes: i) 

the feedstock influence each other for enhanced methane production or 

biodegradation, or  ii) the individual feedstock degrade independently in the mixture 

with no significant increase in methane production or biodegradability or finally where 

the feedstock has a competitive effect in the degradation during co-digestion and 

results in either no increase or even decrease in methane production and degradability 

(Nielfa et al., 2015). In the case of macroalgae, literature has suggested that co-

digestion with a complementary feedstock can induce synergetic effect on the 

biodegradability of both the feedstock with an increase in methane yield and production 

rate owing to their enhanced carbon and nitrogen concentrations as a result of mixing 

(Oliveira et al., 2014).  

7.3.4 Impact of carbon to nitrogen on the methane production on co-digestion  

As described in the literature, one of the important parameters for characterising the 

suitability of a feedstock for AD is carbon to ratio. Wastes with higher C/N ratios are 

reported to produce methane more rapidly (Shanmugam and Horan, 2009). In the case 

of macroalgae, the literature generally recommends co-digestion with a feedstock with 

higher carbon concentration and lower nitrogen concentrations (Oliveira et al., 2014). 

An optimum C/N ratio is still debated but a range of 20-30 is found to be accepted and 

a ratio close to the optimum range is potentially considered highly suitable for AD 

(Nielsen et al., 2012).  

As a mono-digestion feedstock S. Latissima has a C/N ratio of 17. Wheat and maize 

had a C/N ratio closer to 20 while BSG and SBV mix closer to 35. Grass is an outlier 

with the highest C/N ratio of 42 (higher than from the values reported in the literature) 

while the lowest noted for pig manure with a value of 10. In co-digestion with S. 

Latissima the C/N ratios for wheat and maize almost remain the same however for 

SBV mix, grass and BSG the values become closer to the optimum range. The value 

for pig manure still remained low at 10. This could suggest that the higher methane 

production observed for SBV mix could also have been due to the optimised C/N ratios.  
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To explore this further a selection of feedstock for AD were chosen to evaluate  their 

C/N ratio as a single feedstock and then theoretically estimated for their C/N ratios to 

assess suitability for co-digestion with S. Latissima Figure 52.  

 

Figure 52 Estimation of C/N ratio for various feedstock with S. Latissima from 

literature 

It can be seen that addition of S. Latissima reduces the combined C/N ratio for a 

number of feedstock. For feedstock such as cow urine, it seems to increase the ratio 

while for grass Lucerne and pig manure the values are identical. The majority of the 

agricultural feedstock exhibits a theoretical C/N ratio between 20 – 30 upon co-

digestion with S. Latissima such as wheat, maize, grass, rice, and beet pulp sludge. 

This co-digestion of S. Latissima with agricultural wastes could therefore be beneficial 

in terms of enhanced methane production. These are estimated or theoretical values, 

and only the experimental values can show the true impact of co-digesting the 

feedstock with macroalgae biomass such as S. Latissima. Even though the biomass 

has a C/N ratio nearer to the optimum range, summer biomass of S. Latissima also 

has lower protein content which makes it feasible to use in combination with other 

feedstock. However, macroalgae is in its early developmental stage during winter with 

higher concentration of proteins for its cellular growth which can result in higher N% 

during those seasons.  The seasonal supply of macroalgae could be an issue for 

continuous digestion operations not only because of the reduced-availability but also 

on the basis of their optimal biochemical composition. In addition, the presence of high 

concentrations of inorganic elements (e.g. sodium, potassium, calcium ions and 
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chloride and sulphate as counter ions) in winter months, could also be detrimental to 

anaerobic digestion (Schiener et al., 2015, Alaswad et al., 2015).  

7.3.5 Seasonal supply of S. Latissima for co-digestion practice 

Co-digestion is favoured for technical reasons as it can overcome inherent problems 

related to feedstock such as lack of micronutrients, imbalanced C/N ratio and 

unfavourable (high/low) organic loading rates. In addition, it can also aid in utilising the 

spare capacity of AD infrastructure at wastewater treatment plants etc. to treat a variety 

of feedstock through co-digestion and generate supplementary revenue via gate fees 

or service charges, whilst producing electricity and heat. Equally, co-digestion can help 

lower capital investment for any additional waste management facilities (Xie et al., 

2017).  

This research investigated the anaerobic co-digestion potential of macroalgae biomass 

for the species of S. Latissima harvested in summer. Synergetic effects observed for 

the enhanced methane production and rates could be attributed to optimisation of C/N 

ratios and the inherent composition of the mixed feedstock. The BMP tests 

demonstrated S. Latissima enhanced methane production while co-digested with SBV 

mix and wheat. Feedstock such as wheat, maize, grass, sugar beet etc. are already 

identified as potential biomass feedstock for increasing the energy yield from 

agricultural residues in the EU for meeting the renewable energy targets for 2020 

(Scarlat et al., 2010). In this study, localised environmental conditions are found 

significant in defining the macroalgae characteristics and thereby its methane potential. 

Therefore, specific wastes available in a particular location can be targeted for co 

digestion with macroalgae biomass and it being a seasonal feedstock, with its high 

availability during summer, co-digestion can be a favoured practice in summer but it 

can be less effective in winter months where biomass will be less available due to its 

growth cycle. 

This is very promising as recent research on the environmental life cycle assessment 

of macroalgae AD (which also considered co-digestion as an approach) recommended 

that energy production from macroalgae via AD is sustainable if it is regionally 

accessible and it can also be used as substitutes for energy crops in conventional AD 

plant (Ertem et al., 2017).  

The main limitation of this study was that the results were based on the batch BMP 

studies. BMP tests are a useful tool for determining the best feedstock configuration 

for co-digestion. However, over estimation of the methane yields are reported due to 
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methodical errors  such as instrumental or human errors (Kreuger et al., 2011), or due 

to lack of capability to include biodegradability or kinetics factors for predicting the 

methane productions from the configured co-digestion mixtures. BMP assays are good 

indicators of methane potential of a feedstock, however results are not easily 

transferable to full scale processes where operation is generally continuous and 

dynamics of loading, gas production and the biochemical environment are completely 

variable (Nielfa et al., 2015). In addition, the substrate to inoculum ratio are also to be 

chosen carefully to utilise these assays to replicate information for adaptation into large 

scale AD applications (Holliger et al., 2016). In this study, a substrate to inoculum ratio 

of 1/4 was used as per recommendations found in the literature by Angelidaki et al., 

2009 for batch BMP tests. To evaluate the dynamics of the process and provide greater 

understanding of the performance of individual feedstock under co-digestion 

conditions, continuous studies are required. For the purposes of this study organic 

feedstock were collected over a fixed season. Therefore, to assess the percentage of 

variability within the tested organic feedstock, co-digestion needs to be conducted with 

samples collected over time or season to show realistic variability of performance. In 

short, further studies are required to understand the extent of variability within co-

digestion of macroalgae biomass.  

Anaerobic digestion has been reported to be a low cost renewable energy technology. 

Wider utilisation of new feedstock like macroalgae biomass at full, however, is highly 

dependent on the overall economic viability of the process. This study also evaluated 

the techno-economic factors to be considered when utilising S. Latissima as a 

feedstock for anaerobic digestion. The economic model developed by EnAlgae was 

used as a template for the techno-economic analysis in this study. The results of the 

techno-economic analyses carried out as a part of this study will be discussed in the 

next chapter.  
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8 Results – Techno-economic feasibility of S. Latissima 

There are few techno-economic assessments performed on macroalgae biomass to 

date in the literature. Production of biofuels and chemicals from macroalgae biomass 

is definitely shown to be one of the promising systems for future. However, without an 

integrated bio-refinery approach the process is not shown to be feasible as costs and 

investments are higher for a macroalgae based system (Konda et al., 2015). The 

technical feasibility of macroalgae biomass for biogas production is recognised in the 

literature, however fewer studies are available on the economic feasibility of the AD 

technology for biomass utilisation (Montingelli et al., 2016). Therefore, in this study, 

techno-economic analysis of AD of S. Latissima was performed to identify the effect of 

AD technology on the overall economics of the process – i.e. the benefits and 

challenges on the economics of the process utilising S. Latissima. 

The different steps performed for the techno-economic analysis in this study are shown 

below (and described in Methodology Section 3.6): -  

 Stakeholder identification  

 System boundary and process flow  

 Results for macroalgae biomass as a mono-digestion feedstock for AD 

  Results for macroalgae biomass as a co-digestion feedstock for AD 

8.1 Stakeholder identification 

 
Stakeholder identification is a key step in a techno-economic assessment or LCA 

study. New perceptions and views on the sustainability of macroalgae biomass can be 

aided through discussions with stakeholders with varying interests. The EnAlgae 

project (2015) carried out a workshop with existing and potential stakeholders to gain 

a better understanding of experiences, attitudes, and to gain insight into the 

sustainability of macroalgae cultivation and uses of the biomass.  

The stakeholder assessment carried out by EnAlgae is given in Figure 53.  
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Figure 53 Stakeholder assessment by EnAlgae 

 

The main stakeholders identified in the project were the research and funders, NGO’s, 

public and media, regulators and planners, and policy makers. A dynamic discussion 

was based on 5 main questions: -  

  Could ecosystem services provided by the cultivation of macroalgae biomass 

compensate the unfavourable energy balance? 

  Sustainability around biomass - Wild harvest or cultivated? 

  Is macroalgae biomass cultivation in competition to other users of the marine 

ecosystem? 

  Would macroalgae biomass cultivation bring jobs only to the rural areas - low 

income jobs? 

  Perceptions around non-native species of macroalgae biomass (Sprujit, 2015)  

These questions were identified as the main discussion questions because the critical 

parameters to consider for the techno-economic feasibility of the processes involving 

macroalgae biomass were the selected species; native or non-native, methods of 

cultivation implemented for bioenergy production, and harvesting techniques as 

harvesting of wild stocks is still the main source of biomass in Europe. Developing 

sustainable harvesting of wild resources would also prevent any negative impact on 

the other living organisms in the ecosystem.  
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The questions were also important to understand the scope of employability that 

macroalgae biomass cultivation and related processes for bioenergy production would 

help develop in the region (Parker et al., 2015).  

The return on investment (ROI) from macroalgae biomass is shown not to be 

favourable and hence it is challenging to improve the small-scale production of 

biomass in near future. However, a two-step harvesting process was suggested by the 

EnAlgae project to compensate the energy balance, where first harvest will be for the 

high value compound extraction, while second harvest will be purely for bioenergy 

production. As the biomass are in the long lines, the growing seedlings will be of the 

same growth stage and hence the same age when harvested. Still negative economic 

impacts due to reduced amount of harvested biomass in the first harvest in April as the 

biomass is still in its growth phase is regarded as a main obstacle to implement the 

two step harvest process. There were concerns raised over the competition for space 

by other users of the marine ecosystem if used for extensive macroalgae biomass 

cultivation. With regards to harvest, less than 1% is produced through cultivation 

systems and in North West Europe, the majority of macroalgae biomass is produced 

from wild harvest. At present, macroalgae biomass cultivation is seasonal, and has 

similarities with mussel cultivation. Therefore, it is also assumed that there is not a 

requirement for highly skilled or qualified personnel for macroalgae biomass harvesting 

thus the development of the industry involving biomass would be creating jobs. The 

EnAlgae study also highlighted that there was uncertainty whether wages for this type 

of specific employment would be equal to those gained in the fishery business. 

However, the project proposed that if large scale cultivation farms are deployed this 

can lead to higher paid employment e.g. via biomass processing specialists, jobs in 

logistics aiding the transport of biomass, and also jobs in industries utilising the 

biomass for the production of high value products. Lastly in the findings of the report, 

the use of non-native species was not at all encouraged amongst stakeholder’s 

discussions as there was consensus about non-native species weakening the genetic 

integrity of local species and this affecting the wider ecosystem biodiversity (Sprujit, 

2015).  

Based on the findings from the EnAlgae project, the stakeholder analysis for this study 

was carried out. For this research, a stakeholder template developed by Prof. Mark 

Reed was utilised (Reed, 2016). Discussion with the research organisers, AD 

operators, and the macroalgae biomass farmers was facilitated while on site visits, 

through formal and informal emails and telephone conversations. The general 
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interests, expectations and concerns regarding the utilisation of macroalgae production 

for energy were ascertained. The key findings from the research discussions are 

shown in the following sections. The stakeholders and participants of this research 

study are shown in Figure 54 and the details are discussed in the sections below.  

 

 

Figure 54 Stakeholder assessment in this study 

As shown in the figure above, the participants of this study were mainly research 

organisations (QUB, SAMS), macroalgae biomass farmers (Dingle bay Macroalgae 

biomass ltd.) and on farm (Vale Green Energy) and large scale AD (Minworth) 

SAMS 

On farm 

AD 
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operators. Therefore, the techno-economic discussions were mainly around the 

sustainability of macroalgae biomass in terms of cost of the biomass, utilisation of the 

biomass for bioenergy production (mainly AD), and generation of energy through co-

digestion of wastes.  

The main questions for the techno-economic discussion of this study were:  

  How does the cost of macroalgae biomass affect the biomass utilisation for AD? 

  Will co-digestion make the bioenergy production from macroalgae biomass 

sustainable? 

  Will the digestate sale as fertiliser be beneficial for the overall economics of the 

system? 

Sensitivity analyses were performed for determining the variation in cost of the 

macroalgae biomass, with the market price for the macroalgae biomass and other 

feedstock, and scenarios with no digestate for comparing results. The system 

boundary and assumptions for this study are discussed in the sections below. 

8.2 System boundary and process flow   

The process flow sheet for the techno economic assessment carried out in this study 

is given in the figure below. Most of the reported T-E studies on macroalgae have 

focused on the cultivation processes of the biomass (Czyrnek-Deletre, 2017, Murray 

et al., 2013) . Therefore, our study has only focused on the utilisation of the biomass 

for bioenergy production using AD processes.  

Our study has utilised the Techno economic model (WP2A7.07 model methane V2.3) 

developed by Chris de visier et al. as a part of the EnAlgae Project. The basis of the 

new model including parameters, constants and the investments for the development 

of the model were derived from the work by Sinnott et al., 2005. The model was initially 

developed as an economic model developed for analysing the co-digestion potential 

of algae with other 4 co-substrates to either produce electricity with a CHP (Combined 

Heat and Power) or green gas. The model assumed a 50-50% ratio of the co-

substrates with the main feedstock.  

The model was modified for our study to incorporate macroalgae biomass and 6 other 

co-substrates including maize, grass, wheat, sugar beet-vegetable mix and pig manure 

and brewery spent grain. The ratio assumed was 30% (macroalgae biomass) and 70% 

(co-substrate). There was no pre-treatment considered and the generated biomethane 

was utilised for CHP purposes. The capacity of biogas was assumed at 1000,000 (m3 

per year) with a CHP production of 2400 MWh/year. The life span of the digester was 
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assumed at 25 years with a life span of CHP engine at 10 years. The investments of 

the model include the cost of a co-digester, a CHP unit, and a biogas process unit.  

 

Figure 55 System boundary and process flow for this study 

The boundary for the system Figure 55 (shown by dotted lines) is assumed to start at 

the AD Plant (anaerobic digestion unit) where the wet biomass would be transported 

to the sites from the seaweed cultivation and processing units for digestion. The 

agricultural farm based unit will be producing the other organic waste feedstock such 

as the crop waste residues, brewery spent grain and pig manure which also will be 

transported to the AD unit for co-digestion. The digesting time for the feedstock is 

assumed to be 30 days. 

The two main products of an AD process; methane is utilised for CHP purposes and 

digestate is utilised as a fertiliser for CHP respectively. The different scenarios 

assumed for the techno-economic analysis are broadly divided into two.  

 Macroalgae biomass as a mono-digestion feedstock 

 Macroalgae biomass as a co-digestion feedstock  
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This techno-economic assessment is specifically on species S. Latissima. The digester 

characteristics for the macroalgae biomass and the other organic feedstock were taken 

from the experimental data (BMP experiments chapter 7 section 7.2.4) In northwest 

Europe the species is cultivated in long lines with a yield of 10 kg/m long line with a 

growing period of 20 weeks at sea. The price of electricity is assumed at 0.11 €/kWh 

which is the lowest of the electricity prices in a European member state in 2017 

(Eurostat, 2017). The efficiency of the assessment is mainly reported in terms of the 

return on investment (ROI, %) and payback time (year).  

Return on investment was cacluated using the below formula  

Return on investment = 

 
(𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠−𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠)−(𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡−𝑅𝑒𝑛𝑡 𝑜𝑛 𝑑𝑒𝑏𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 

Equation 13 Calculation for return on investment 

Payback time = 
𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

(𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠−𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠)+(𝑅𝑒𝑛𝑡 𝑜𝑛 𝑑𝑒𝑏𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙+𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛)
 

Equation 14 Calculation for payback time 

The cost considerations included raw materials (organic feedstock costs), investment, 

depreciation, insurance, rent on capital, land costs, maintenance costs, land cost and 

labour cost. The total returns mainly involved the selling of the green gas into the grid 

unless the sale of digestate was considered as a route of income.   

The digestate from the co-digestion is assumed to be sold at 5 Euros per tonne 

(WRAP, 2015). All the co-substrates are assumed to be organic wastes that can be 

either utilised in an on farm AD plant or be treated as organic waste with an applied 

gate fees of 29 euros per tonne. All quantities are reported in tonnes and prices in 

euros.  

The results for the analysis is discussed in the following sections. 

8.3 Results - Techno-economic assessment  

The techno-economic assessment is performed on the macroalgae biomass with the 

highest methane potential from the BMP tests and the substrate on which semi 

continuous digestion trials were performed for this study. This was S. Latissima 

obtained from Ventry Harbour. The results for macroalgae biomass, as a mono-

digestion and co-digestion feedstock, will be presented separately. The sensitivity 

analyses results are also presented in the following sections.  

The digester details are given in Table 44.  
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Table 44 Digester details 

Digester 

inflation 2.00% per year  
 
 
 
Sinott et al., 
2005 

life span digester 25 years 

life span CHP 10 years 

rent on debt capital 5.50%  

Capacity biogas 1,000,000 m3/year 

CHP electricity production 2520 MWh/year 

Digesting time  30 days 

Green Gas price 0.22 Euros/Nm3 

 

Green gas price is taken from the techno economic model from EnAlgae. The price of 

green gas was validated by comparing the price of the natural gas and the quality of 

green gas. The price of green gas fluctuates every year and the price used for 

calculation takes into account the gas quality grid in comparison to natural gas (Lems, 

2010, Eurostat, 2018). Digesting time was informed by the methane potential tests 

carried out as a part of this research.  

 
The assumptions for the assessment are given in Table 45.  
 

Table 45 Assumptions and parameters for the techno economic analysis  

Parameter 

Methane 0.668 kg/m3  
 
 
 
 
 

Sinott et al., 2005 

CO2 1.842 kg/m3 

Biogas 1.138 kg/m3 

electric efficiency CHP 36.00%  

heat efficiency CHP 60.00%  

𝐶𝐻4 content 60%  

𝐶𝑂2 content 40%  

electric efficiency CHP 36.00%  

number of operational hours per 
year 

8400 per year 

heating value methane 36.5 MJ/m3 
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Based on the digester capacity of 1000,000 m3/year used in this study, for the selected 

feedstock of maize, grass, wheat, sugar beet-vegetable mix, BSG and pig manure,  the 

quantity of feedstock, the macroalgae biomass required for each co-digestion, and the 

amount of digestate generated for each co-digestion scenario is shown in Figure 56. 

 

Figure 56 Quantity of feedstock and digestate for each codigestion scenario 

The biomethane production potential for the feedstock is calculated on the basis of 

volatile solids. As shown in the figure above, the highest amount of bulk feedstock 

required to maintain the digester output of 1million m3 biogas per year is observed for 

the sugar beet – vegetable mix (64461 tons) and the lowest for wheat residues (5330 

tons).  This can be related to their VS concentrations (as observed in co-digestion 

results chapter) where the VS concentration of SBV mix is observed to be 22.5%WW 

and for wheat it is observed to be 84.6%WW. In addition, the highest methane 

production per tonne feedstock is observed for wheat residues with macroalgae 

biomass. 

In terms of the digestate production from the feedstock used for digestion, it is also 

possible to estimate the digestate residual from the model. The model estimates the 

amount of digestate produced as a result of co-digestion from the amount of feedstock 

utilised in the input (as dry matter (dm %)) left after the quantity of feedstock converted 

into biogas. Clearly the volume of digestate produced is correlated to the overall 

quantity of feedstock used. Therefore, it can be observed from the figure that sugar 
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beet vegetable mix evolved the greatest quantity of digestate (13527 tons) and the 

lowest for wheat residues (3775 tons).  

8.4 S. Latissima as a mono digestion feedstock  

For S. Latissima as a mono digestion feedstock, the economics were calculated with 

varying macroalgae biomass prices. The prices assumed were 0, 50, 250 and 1000 

Euros per tonne respectively. The prices represented the scenarios where macroalgae 

biomass was free (0 euros), 50 Euros (Cost of brown algae biomass dry basis per 

tonne in the literature (Dave et al., 2013), 250 Euros, (Price suggested by Crown 

Report if intended for bioenergy production, Kelly et al., 2008) and 1000 Euros (current 

price of biomass for high value products extraction, Vandendaele, 2013). 

Results in this study showed that the only positive return on investment (2%) for 

macroalgae biomass as a mono digestion feedstock was achieved when the feedstock 

was free (0 Euros per tonne). The values for ROI became increasingly negative as the 

prices were increased from 50 to 1000 Euros per tonne. The graph for macroalgae 

biomass as a mono-digestion feedstock is shown in Figure 57.  

 

Figure 57 Assessment of S. Latissima as a monodigestion feedstock 

The economic benefits as discussed in (Section 1.15) are analysed using internal rate 

of return (IRR), return on investment (ROI) and payback period which vary with 

different AD plants. From the literature it is seen that choice of feedstock is critical for 

the positive returns on any AD plant. In this study, we have analysed ROI and payback 

period for S. Latissima as a mono digestion and co-digestion feedstock. These 
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parameters were chosen as this study focuses only on the selectivity of the best 

feedstock combination from the range of feedstock tested to produce the highest ROI 

in the shortest payback period. For a typical AD plant, an IRR higher than of 8% was 

suggested to provide profits with a payback period of 17 years using the North Atlantic 

species of Laminaria digitata (Dave et al., 2013). The price of seaweed has a limited 

effect on the payback time in consideration with the other cost factors and hence 

payback time is very small as shown in Figure 57.  

In this study, the graph shows negative ROI, which can mean lower profits or negative 

returns during the initial years of the investment which is common at the start of any 

project. This also shows that for macroalgae biomass based mono-digestion, the 

process is not economically viable and a positive rate of return on investment of 2% 

with payback time of less than a year is only possible when the macroalgae biomass 

is free of any cost. However, this can only be made possible if macroalgae is available 

in bulk and is cheaper to harvest, which at present is not practical. 

8.5 Base case scenario for co-digestion  

The base case scenario for co-digestion was considered in order to better understand 

the impact of macroalgae biomass co-digestion on the overall economics of the AD 

process. The assumptions made were as follows: -  

 Macroalgae biomass price is 50 Euros per tonne  

 The other feedstock digested with macroalgae biomass are cost free (0 Euros 

per tonne) 

 No gate fee for the main feedstock  

  Digestate priced at 5 Euros per tonne 

The results obtained for the base case scenario are given in Figure 58 . 
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Figure 58 Base case scenario 

It can be observed from the results above that such a scenario was not economically 

favourable even when macroalgae biomass is co-digested with other organic 

feedstock. The only feasible co-digestion scenario was observed for wheat residues 

with a ROI of 2% and a payback time of 2 years. The highest quantity of digestate was 

observed for sugar beet mix of 13527 tonnes. Assuming a 5 Euros per tonne digestate 

value this would result in a contribution of 11k Euros to the process economics (which 

was 17% of the total returns for sugar beet mix).  

8.6 Co-digestion with gate fees for the organic wastes  

As the base case scenario for co-digestion was considered to be not economically 

viable, modifications were made to the original assumptions. The main feedstock 

(70%) in co-digestion including the crop waste residues, brewery spent grain and pig 

manure are all organic wastes in nature. Typically, in an AD plant, where these wastes 

are admitted for digestion they are to be paid a price of (29 Euros per tonne, WRAP 

2015) as gate fees unless they are being used in an on farm AD where the feedstock 

is in surplus. This was included in the model to analyse any improvements to the 

economics of the whole system. The macroalgae biomass was priced at 50 Euros per 

tonne and the digestate was priced at 5 Euros per tonne. The results are shown in 

Figure 59. 
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Figure 59 Scenario for macroalgae biomass priced at 50 Euros per tonne 

It can be seen that the gate fees for the organic wastes provided a positive variation in 

the ROI, generating the highest returns for the sugar beet-vegetable mix (105%), and 

the lowest for the pig manure (35%). The payback time was lowest for the sugar beet-

vegetable mix (0.7 years) and the highest for wheat (1.7 years). In this scenario, 

digestate sale at 5 Euros per tonne did not have any impact on the process economics. 

8.7 Sensitivity analysis – Price of the macroalgae biomass 

The sensitivity analyses were done in two parts.  

 Difference in price of macroalgae biomass without gate fees for the main 

feedstock 

 Difference in price of macroalgae biomass with gate fees for the main feedstock  

The first analysis involved changing the price of the macroalgae biomass from 0, 50, 

250 and 1000 Euros per tonne with no gate fees for the organic waste main feedstock.  

The values obtained for ROI (%) with varying macroalgae prices are given in Table 46.  
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Table 46 Sensitivity analysis of varying macroalgae prices with no gate fees 

Return on investment, ROI (%) Gate fees 0€/tonne 

Price of 
macroalgae 
biomass 

Maize Grass Wheat SBV mix BSG Pig 
Manure 

0  €/tonne 2 2 2 1 2 2 

50  €/tonne -2 -2 2 -5 -3 0 

250  €/tonne -16 -14 0 -30 -22 -8 

1000 €/tonne -70 -63 -8 -125 -96 -39 

 

When the values were plotted in a graph the following figure is obtained (Figure 60).  

 

 

Figure 60 ROI for varying macroalgae prices with no gate fees 

 

As observed in the figure, except for co-digestion with wheat, no other feedstock had 

a positive ROI for the increased macroalgae biomass prices. As the prices for the 

macroalgae biomass increases, the returns are observed to be negative as expected. 

Wheat residues has the lowest sensitivity (2% to -8%) observed as the price of the 

macroalgae biomass increased however for sugar beet-vegetable mix the sensitivity is 

higher as the ROI is observed to decrease from 1% to -135%. 
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8.7.1 Sensitivity analyses – Return on investment with gate fees for the organic 

feedstock 

This sensitivity analysis involved varying the price of the macroalgae biomass with gate 

fees attached for the main feedstock and observing the return on investment for each 

co-digestion scenario (Table 47). The gate fees were fixed at 29 Euros per tonne for 

all of the feedstock and the price of the macroalgae biomass was varied from 0, 50, 

250 and 1000 euros per tonne. 

Table 47 ROI for varying macroalgae prices with gate fees at 29 Euros per 

tonne 

Return on investment, ROI (%) Gate fees 29€/tonne 

Price of 
macroalgae 
biomass 

Maize Grass Wheat SBV mix BSG Pig 
Manure 

0  €/tonne 64 58 11 111 88 38 

50  €/tonne 61 55 11 105 83 35 

250  €/tonne 46 42 9 80 63 27 

1000 €/tonne -8 -7 1 -15 -10 -3 

 

The obtained results are shown in the figure below (Figure 61). 

 

Figure 61 ROI for varying macroalgae prices with gate fees at 29 Euros per 

tonne 
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As observed in the graph above, even with the gate fees for the organic feedstock, 

high feedstock costs associated with the price of macroalgae biomass is prohibitive for 

the overall economic feasibility of the AD plant AD with co-digestion practices. Ideally, 

it could be recommended that the price of the macroalgae biomass should be between 

50 and 250 Euros for a positive ROI if intended to perform co-digestion with 

macroalgae biomass for these main feedstock.  

Sugar beet – vegetable mix (105%) demonstrated the highest methane production 

yield while wheat residues demonstrated the lowest with the ROI percentages (11%). 

All of the feedstock had positive ROI when cost of the macroalgae biomass is free (as 

expected) however only wheat had a positive ROI for the highest macroalgae biomass 

price (1000 Euros/Tonne). 

8.7.2 Sensitivity analyses – Payback time with gate fees for the organic feedstock  

This sensitivity analyses produced the pattern of payback time (years) for each co-

digestion with gate fees fixed for the main organic feedstock at 29Euros/tonne (Table 

48).  

Table 48 Pay back time for varying macroalgae prices with gate fees at 29 

Euros per tonne 

Pay Back time (years) With gate fees at 29€/tonne 

Price of 
macroalgae 
biomass 

Maize Grass Wheat SBV mix BSG Pig 
Manure 

0  €/tonne 0.9 1 1.7 0.6 0.7 1.2 

50  €/tonne 0.9 1 1.7 0.7 0.8 1.2 

250  €/tonne 1.1 1.1 1.8 0.8 0.9 1.4 

1000 €/tonne 2.6 2.5 2.1 3.2 2.8 2.3 

 
The result is shown in the graph below (Figure 62).  
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Figure 62 Pay back time for varying macroalgae prices with gate fees at 29 

Euros per tonne 

As expected, as the macroalgae biomass price increased, the payback time also 

increased for each substrate in co-digestion. Among the substrates, wheat residue 

exhibited the least variability in payback time 1.7 and 2.1 years across the various 

macroalgae biomass prices. Sugar beet-vegetable mixture was found to have the 

lowest payback time for the price of 0, 50 and 250 Euros (macroalgae biomass) 

however the highest payback time of 3.2 years if the macroalgae biomass is priced at 

1000 Euros per tonne. 

8.8 Discussion  

Anaerobic digestion has been used in the UK for sewage sludge management in the 

UK since the mid twentieth century however in the recent decades it has been more 

prevalent in treating all kinds of wastes including food waste, farm waste, green garden 

waste and other organic wastes such as industrial processing wastes and municipal 

solid wastes. Regulations such as Landfill directive (1999), Waste Directive (European 

Commission, 2008), Renewable energy Directive (EU Commission, 2009) and Waste 

framework directive (European Commission, 2009) has attributed to the progress in 

waste treatment sector including wide scale adoption of AD in to small and medium 

scale in the UK. In the International Energy Agency report (IEA Task 37) UK was 

identified with around 214 AD plants with 40% treating organic wastes. The UK 

Department of Environment, Food and Rural Affairs (DEFRA) included increased 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 250 1000

P
a

y
 b

a
c
k
 t
im

e
 (

Y
e

a
r)

Price of the macroalgae biomass ( €/Tonne)

Sensitivity analysis

Maize Grass Wheat SBV Mix BSG Pig Manure

Gate fees (29  €/Tonne)



 

Results – Techno-economic feasibility of S. Latissima  

  199 Roshni Paul 

energy generation from waste through AD in the UK government’s structural reform 

plan in 2010 (Anaerobic digestion strategy and action plan, DEFRA 2011) and it was 

estimated that the potential for AD in the heat and electricity in the UK is between 3 

and 5 TWh by 2020. Moreover to further increase the development of AD in the UK, 

the Government’s waste and resources action program (WRAP) also set up a loan of 

£10 m over 4 years to help stimulate the investment in AD infrastructure (Evangelisti 

et al., 2014). Waste management is the main benefit and motivation of AD, and 

electricity and heat generation, digestate sale are considered as extra options for 

income generation through AD. For larger deployment of AD, on farm AD and 

centralised AD farms have been more frequently proposed in the recent years in 

Europe and in the UK (Cave, 2013). Currently UK AD industry has sufficient capacity 

to power 1.2 million homes, and reducing emissions by 1% per year, however it has 

the potential to reduce emissions by 5% if it reaches its full potential whilst improving 

energy and food security and improving air quality by converting organic wastes into 

renewable heat, and power, cleaner transport fuel and a nutrient rich biofertiliser 

(ADBA, 2018b). According to ADBA (2018) AD map, there are 357 agricultural, 45 

industrial, 109 municipal/ commercial, and 162 sewage sludge AD plants in the UK out 

of which 563 focus on renewable electricity production, 97 on biomethane production 

and only 38 on renewable heat production. These are figures based on operational 

plants and do not include the plants given licenses or under construction (ADBA, 

2018a).   

Agricultural AD has been adopted widely in the UK treating a variety of feedstock 

including energy crops and crop waste residues in on farm AD plants. An example is 

Vale Green Energy, with 2 AD plants at Spring Hill and Rotherdale. The feedstock used 

for biogas production is from energy crops including grass, maize, sugar beet and 

wheat. The input to the digesters is around 140 tonnes per day, generating biomethane 

of 7800 m3/day at Springhill and up to 22000 m3/day at Rotherdale digester plant into 

the national gas grid (Vale green Energy website, 2018).  

Utilisation of distillery waste and brewery waste for AD has also been exhibited at small 

and medium scale for biomethane and electricity generation. For example, Adnams 

Brewery (96m3 biomethane/hour), Dailuaine Distillery (0.5 MWe), Girvan distillery (5.5 

MWe, 2500 m3 biomethane/hour), Glenfiddich distillery (3.5 MWe, 1500m3 

biomethane/hour), Heineken Royal Brewery (0.4 MWe), Lancaster Brewery (0.1 

MWe), Sharps Brewery (0.2 MWe) etc.  



 

Results – Techno-economic feasibility of S. Latissima  

  200 Roshni Paul 

JJ Power Ltd based in Gloucestershire in the UK utilises dilute slurry from 400 sow pig 

unit in addition to 100 beef cows and chicken litter for electricity generation of 350kW 

on a daily basis. The additional feedstock used include forage maize, and hybrid rye 

as well as a small amount of pasteurised food waste from neighbouring areas. The 

farm has been successful in utilising dilute liquid slurry and even though energy 

generation is not comparatively higher but is a typical example of small scale on farm 

AD digester utilising pig slurry. The digestate generated is used as an effective 

fertiliser. Another case study is of Geotech AD plant at Harper Adams Energy in 

Edgmont, Newport, Shropshire where renewable electricity is produced from a mix of 

feedstock including 8500 tonnes of municipal food waste from households, 

restaurants, and 17000 tonnes of cow and pig slurry from campus on farm’s 400 cow 

dairy unit and 2500 pigs (ADBA, 2017).  

Defra’s ‘Anaerobic Digestion Shared Goals’ aspires a target of 1000 farm based AD 

plants in the UK by 2020. Even though the numbers have increased in the last few 

years, achieving the target still seems unachievable unless it is adopted at small scale 

i.e. farm based AD plant. European AD knowledge especially the Danish and German 

case studies will be invaluable which has had solid governmental support for decades. 

However, the case is different in the UK owing to the difference in average type and 

size of farms, farming practices and environmental incentives. Therefore to achieve 

the targets and for sustainable energy generation through AD it is essential to highlight 

the benefits of AD to the farming community, where AD will have the greatest effect, 

reducing the environmental impact of farm pollution and also in a cost effective way for 

the farmer (Bywater, 2011). In this context, it is self-explanatory that there is a 

requirement for more analysis on the efficiency of the technical aspect of AD process 

hand in hand with the economic feasibility of the technology in a UK environment 

especially for a newer feedstock such as macroalgae biomass.  

Therefore, in this study, stakeholder analyses focused on three main questions:   

 How does the cost of macroalgae biomass affect the biomass utilisation for AD? 

  Will co-digestion make the bioenergy production from macroalgae biomass 

sustainable? 

  Will the digestate sale as fertiliser be beneficial for the overall economics of the 

system? 

These questions were viewed from different perspectives with the stakeholders 

involved in this study. The stakeholders who participated in this study were Queen’s 

University Belfast (Research Organisation - macroalgae biomass cultivation team), 
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SAMS (Laboratory and analyses organisation - macroalgae biomass cultivation 

farmers and analysts team), Dingle Bay macroalgae biomass ltd (macroalgae biomass 

farmer in Ireland), Severn Trent WTTP – Minworth (wastewater treatment utility and 

operators of large scale AD plant) and Vale Green Energy (On farm AD operators).  

Scottish association of marine sciences (SAMS), based in Oban, Scotland, is an 

independent non-profit Scottish charity organisation undertaking research into all 

aspects of marine systems, with specialist interest in ocean processes, climate 

change, marine conservation, blue economy of aquaculture, marine biotechnology, 

ocean energy and fisheries (SAMS website, 2018). Queen’s University Belfast, based 

in Belfast, Northern Ireland, has had a long history of macroalgae research based at 

Queen’s Marine Laboratory with expertise in local species, hatchery cultivation and 

extending long line cultivation of macroalgae biomass in Strangford Lough. They have 

been involved with interesting projects such as EnAlgae (Interreg IVB funded project) 

and currently running Sea gas project (BBSRC/EPSRC funded) of growing of Kelp 

species for AD and for a wide range of human nutritive and pharmaceutical products 

(Queen’s University website, 2018).  

Vale Green Energy as discussed above is an energy plant based in Worcestershire, 

UK, utilising AD and solar power for sustainable energy production (Vale Green Energy 

website, 2018). Severn Trent Wastewater treatment plant based in Minworth, West 

Midlands UK, is the second largest sewage treatment works in the country. The plant 

has sludge digestion, combined heat and power generation to produce a stabilised 

sludge product and biogas. The digestate or the sludge product is used for spreading 

in agriculture and biogas is exported to the gas grid via a gas to grid plant and 

combusted to generate heat for installation purposes or power in the wider use in the 

wastewater treatment works (Water, 2017).  

Stakeholder analysis in this study did not involve any formal interview rather a much 

more informal approach was used to understand their knowledge and understanding 

of AD, its implementation, benefits and challenges. A lot of information was collected 

during the site visits for sample collection, and through email conversations. The 

responses obtained from the stakeholders are described according to their area of 

expertise and valued as practitioner’s perspectives on AD and its adoption in the UK.  

Cost was a predominant factor for macroalgae biomass cultivators (QUB, SAMS, and 

Dingle Bay farm) as it determined the route to market and overall economics generated 

from the biomass. According to the macroalgae biomass farmers, the biomass that is 

currently intended for human consumption or nutrition products provides a higher 
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economic yield. However, if the biomass is intended for bioenergy generation, the 

stakeholders held the opinion that the market price would need to be lowered (to 

approximately less than 50 Euros per tonne) from currently around 100 euros per kilo. 

At both QUB and SAMS, macroalgae biomass is grown only for research purposes, 

therefore commercial level information on the economics could not be retrieved for the 

purpose of this study.  

Vale green Energy supported the concept of co-digestion of macroalgae biomass with 

agricultural crop wastes as they currently practice co-digestion of various different 

crops and wastes generated from the farm. The energy generated on site is currently 

utilised for various purposes and the site operators were keen to test the probability of 

using a seasonal feedstock such as macroalgae biomass. However, large scale AD 

users such as Minworth were more cautious of the proposed approach to co-digestion 

predominantly because of the scale of its application. They recommended pilot scale 

adoptions of the technology prior to large scale AD.  

With regards to the digestate, vale green energy was supportive as they currently used 

AD digestate as fertiliser on their site. However, currently the price of digestate is 

considered low in the market therefore the stakeholders agreed that specific high value 

𝑁, 𝑃, 𝐾 (Nitrogen, Phosphorus and Potassium respectively) should be extracted from 

the digestate first to enhance the overall process economics. Macroalgae biomass 

cultivators also held the opinion that if macroalgae biomass waste was utilised as a 

fertiliser in IMTA (integrated multi trophic aquaculture) systems, it could generate more 

income for the macroalgae biomass cultivators and fish and oyster farmers equally. 

SAMS have previously published a number of studies for the ideal IMTA system with 

combined macroalgae biomass cultivation.  

The following sections will discuss the variability found among the feedstock in terms 

of the economics and the sensitivity analyses performed on the price of macroalgae 

biomass and its impact on the digester economics.  
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8.9 Impact of feedstock variability on process economics 

The process economics of macroalgae biomass utilisation (as the single feedstock for 

AD) was found to be economically unviable. Even when macroalgae biomass was 

priced at 0 Euros per tonne, an ROI of only 2% could be generated. As the price of 

macroalgae biomass increased, the ROI demonstrated increasingly negative values 

(up to -9000%). This is in agreement with the literature where macroalgae with lesser 

solids content is shown to require more quantities in wet weight to feed the digester 

which will be reflected in higher feedstock costs resulting in negative rates on 

investment if used for biogas production. In addition, there is little established data on 

long term anaerobic digestion of macroalgae biomass and little agreement on the 

yields of macroalgae biomass per hectare per annum which differs by geographical 

location, and related environmental conditions, nutrient levels, methods of cultivation 

and harvest type (Murphy et al., 2015).  

To improve the digester economics, co-digestion of different feedstock was considered 

in this study. The agricultural crop waste residues analysed included wheat, maize, 

sugar beet – vegetable mix, and grass. Pig manure pellets and brewery spent grain 

was also analysed in this techno-economic study. A base case scenario where 

macroalgae biomass was priced at 50 Euros per tonne (Dave et al., 2013) was chosen 

for all the scenarios considered and compared in this study. 

8.9.1 Agricultural crop waste feedstock and Macroalgae biomass 

When the feedstock was compared assuming macroalgae biomass price is 0 Euros 

per tonne, wheat residues, sugar beet mix, maize and grass demonstrated a2% on 

ROI with a payback time of 2 years. In the base case scenario where macroalgae 

biomass is priced at 50 Euros per tonne, among the agricultural crop wastes, only 

wheat was observed to have a positive ROI (2%) with a payback time of 2 years. This 

can be linked to the characteristics of wheat biomass with its higher volatile solids 

content (84%WW) and lower ash content of 1.4%WW. All the other feedstock had 

negative ROI values with a payback time between 2-3 years. In addition, as 

macroalgae biomass price increased from 50 to 250 and 1000 Euros, the scenarios 

became less economically viable with negative returns and longer payback times. 

Agricultural crop wastes include the non-food based portion including the leaves, 

stalks, cobs trimmings, husk and straw, grasses and animal waste. A large quantity of 

crop waste is produced annually around the world and is disposed of in the open 

environment. The disposal of the crop waste residues is not considered a sustainable 
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practice and direct combustion of biomass results in emission of 1599kg 𝐶𝑂2 per tonne 

of dry biomass (Chandra et al., 2012). Therefore, with the aid of co-digestion practices 

these wastes can be utilised to extract their energy potential with a potential of 

application in on farm AD facilities.  

8.9.2 Pig Manure and Macroalgae biomass 

For pig manure, when the organic feedstock is free, a ROI of 2% with a payback time 

of 2.1 years was observed When the base case scenario is considered, pig manure 

has a 0% ROI with a payback time of 2.2 years, and as price of macroalgae biomass 

increased, (for 250 euros - -8%, 2.2 years; for 1000 euros - -39% and 13.4 years) 

negative returns are observed with longer payback times. In our study, the co-digestion 

of S. Latissima and pig manure is shown to have a lower C/N ratio of 10. Co-digestion 

is a complex process and literature suggest that the performance efficiency of co-

digestion is dependent on a variety of factors including the physical and chemical 

characteristics of the wastes chosen, design and configuration of the AD process, 

inoculum quality, C/N ratio, organic loading rates, volatile solids and volatile fatty acids 

content, total ammonia content, pH, temperature of the reactors and mixing (Nalo et 

al., 2014). Pig slurry pellets used in this study are very different to the traditional animal 

slurry used for digestion. The total solids content in a slurry is 0.9%WW where as in 

pellets used in this study is observed to be 90%WW. Even though separation of solid 

and liquid fraction in a pig slurry is recommended for slurry management, anaerobic 

digestion of solid fraction is found to be inhibited due to its high solids content (Campos 

et al., 2008). Therefore, it could be suggested that pig manure pellets are not an 

appropriate substrate to be mixed with macroalgae biomass and if intended for co-

digestion, C/N ratio should be balanced for the optimum process efficiency. This will 

reflect on the overall methane production from the mix and thereby making the process 

economically viable. 

8.9.3 Brewery spent grain and Macroalgae biomass 

Brewery spent grain is an emerging potential feedstock for AD, and therefore 

considered for co-digestion with macroalgae biomass. For Brewery Spent Grain, 2% 

ROI with 2 years’ payback time is observed when the macroalgae biomass is free. For 

the base case scenario, -3% ROI with a payback time of 2.2 years is observed. The 

pattern observed for other feedstock is repeated for BSG as -22% ROI and 4 years’ 

payback time is observed when macroalgae biomass is 250 Euros per tonne and -96% 
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ROI when macroalgae biomass is 1000 euros per tonne. This could suggest that, for 

effective co-digestion of feedstock such as BSG, more research is required to optimise 

effective digestion of the biomass. BSG is currently perceived as a waste that brewers 

want to dispose due to their environmental challenges of odours with disintegration 

and increase in rodents in their premises however biovalerisation of BSG is found to 

hold a strategic economic position in the EU due to its availability and various potential 

uses in food industry (Vitanza et al., 2016). Currently it is used as an animal feed which 

most of the breweries sell to the farmers with no cost. However the farmers will be 

responsible for transporting the wet BSG to the farms which upon analysis can cost up 

to £38/ton in the UK market (Ben-Hamed et al., 2011). So utilising for AD can be a 

better option for economic as well as environmental benefits however BSG is 

predominantly a ligno-cellulosic biomass which could potentially be a limiting factor for 

full utilisation of the biomass for AD and pre-treatment may be required to enhance the 

digestibility of the biomass. However, from an economical point of view, addition of a 

pre-treatment technology can only lead to an increase in the investments which can 

challenge the economic viability of the process.  

The key observations at this stage are as follows: -  

 Wheat was the only organic feedstock found to be economically viable for co-

digestion with macroalgae biomass at a 70 (organic feedstock):30 (S. Latissima) 

ratio used in this study with higher percentages of macroalgae biomass further 

reducing the economic viability of co-digestion  

  The current market price of macroalgae biomass is the predominant factor 

determining the economic viability of the whole process.  

  As the price of macroalgae biomass increased, the process becomes less 

economically viable for co-digestion with increasingly negative returns and 

longer payback times. 

8.10 Sensitivity analysis 

Even though a variety of techno-economic studies have focused on the co-digestion 

of traditional feedstock, fewer studies have focused on the techno-economics of co-

digestion with newer feedstock such as macroalgae biomass. There are, therefore, 

limited studies to compare against the results obtained in this study. Sensitivity 

analyses were performed on the variability of the market price for macroalgae biomass, 

income from sale of digestate (as a fertiliser) and also variability in gate fees for the 

organic feedstock chosen for this study. 
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8.10.1 Impact of market price on the economics of macroalgae biomass co-digestion.  

The prices adopted in this study were 0, 50, 250, and 1000 Euros per tonne as 

described previously in Section 8.4. For mono-digestion of macroalgae, the process 

was not found economically viable if the biomass itself is costed into the model due to 

negative return percentages and longer payback times. A positive return was observed 

when macroalgae biomass is free, however this is not currently achievable where 

macroalgae biomass is specifically cultivated for energy due to the high capital and 

operational cost of the cultivation/harvest techniques. Therefore, in our study the most 

economically viable and realistic price range for the macroalgae biomass was found to 

be between 50 and 250 Euros for positive returns. Macroalgae biomass for high value 

products can achieve a market price of approximately 1000 Euros per tonne. This is 

the case for biomass which is utilised for human consumption or pharma/nutraceutical 

grade products. However, literature (The Crown Estate Report) suggests that if 

macroalgae biomass is to be used for bioenergy generation the price of the biomass 

should be less than 250 Euros per tonne (Kelly and Dworjanyn, 2008). This is also in 

agreement with other studies conducted on brown algae biomass for species 

Laminaria digitata by Dave et al. (2013). Since S. Latissima is also a brown algae 

biomass, economic feasibility with positive return on investment using AD can be 

possible only if the price is below 250 Euros. Other techno economic feasibility studies 

on the biofuel production from macroalgae biomass has reported that adopting a 

biorefinery approach with understanding in the growth factors of the biomass and 

better management of aquaculture systems are essential for efficient biofuel 

production utilising the biomass (Roesijadi et al., 2008). Therefore by lowering 

production costs and increasing area under cultivation biofuel production from 

macroalgae biomass can be made economically feasible (Soleymani and Rosentrater, 

2017). The price of macroalgae biomass for bioenergy purposes can be reduced by 

having two harvests one in early spring for the biomass where high quality biomass 

can be sold for high value products manufacture and use the later summer harvests 

with epiphytic growth for bioenergy production (Sprujit, 2015). Utilising summer 

harvests can be very advantageous for AD due to the higher percentage of storage 

carbohydrates in the biomass which would result in higher methane production in AD 

(Manns et al., 2017). In addition, studies on S. Latissima have also shown that biomass 

which are fouled with epiphytes can still be used for methane production, therefore 

there may be an opportunity to capture this poorer quality/ wasted biomass for AD. 

Even though properties of macroalgae biomass residues after transesterification were 
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found to be a suitable material as fuel pellets, cost effective utilisation of these residues 

using AD are still needed and yet to be explored after other biofuel processes such as 

fermentation and extraction of chemicals from the biomass (Maceiras et al., 2011, Wei 

et al., 2013).  

8.10.2 Cost of digestate variation and the impact on the process economics 

Digestate is mostly perceived as a burden to be disposed in an AD operation plant 

although often AD plant operators need to have clear pathways for reutilisation of 

digestate. However, the market for digestate is not optimised for untreated digestate 

leading to upgrading and nutrient recovery practices. Primarily because of its low 

economic value and high volumes, digestate is suggested to play an important role in 

the process economics. There have been studies in the literature to show that digestate 

of agricultural origin can be used for growing microalgae biomass with good levels of 

bioremediation levels thus providing a better way of digestate treatment and avoiding 

problems by direct land applications (Gerardo et al., 2015). Recycling nutrients from 

digestate with algal technology is still at its early stage however development of this 

new technology can support continual growth in AD deployment, new markets and 

novel uses for digestate without causing a negative environmental impact (Stiles et al., 

2018).   

Research studies into utilising the digestate from macroalgae AD has often 

recommended its usage as a soil conditioner or fertiliser (Vanegas and Bartlett, 2015). 

The study by Ramirez (2015) investigated the effect of the digestate generated from 

the AD of brown algae Laminaria digitata on seed germination and plant growth of 

sunflower and found that higher concentrations of (20%, 50% and 100%) digestate 

improved the growth rate of plants. This was attributed to the effect of micro and macro 

nutrients present in the digestate that stimulated plant development. However, in the 

latter stage higher dosage of digestate reflected a reduction of growth in plants where 

it was attributed to either the accumulation of inhibitory compounds from the digestate 

or nutrient overloading. Overall the use of macroalgae digestate use as a fertiliser was 

found feasible offering potential for an additional income of revenue owing to the 

nutrients embedded in the digestate (Ramírez, 2015).  

This study explored the impact of market price variability for digestate on the overall 

economics of co-digestion. It was found that for biomass priced at 50 Euros and 

digestate sale at 5 Euros per tonne produced little impact on the return on investments. 

Clearly any increased income from the sale of the digestate will positively impact on 
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the overall profit however the market price for this product is still too low. The other 

benefit the AD plant can have is possibly use the digestate as a biofertiliser and have 

reduction in costs related to buying synthetic fertiliser for agricultural purposes.  

Scenarios which included the processing of digestate for nutrient recovery were 

outside of the scope of this study. However, it can be postulated that if products such 

as nitrates, phosphates and potassium were efficiently and economically recovered 

from the digestate, then higher profits could potentially be achieved. Food based 

digestate can have high nutrient content such as readily available N (202kg/ha), 

Phosphate (16.3kg/ha) and potash (61.5 kg/ha).  Nitrates and phosphates are valued 

higher from the digestate at around 0.95£/kg nutrient for ammonium nitrate (35%N), 

0.89 £/kg nutrient for phosphate (46% P2O5) and 0.55£/kg nutrient for potash (60% 

K2O). However contributions from other inorganic nutrients such as sulphur, 

magnesium etc. are reported harder to value (Wallace et al., 2011). Even though 

nitrates are valued the most and are present in the readily available form for plants in 

digestate under the European Commission nitrates directive, in a nitrate vulnerable 

zone the amount of N that can be returned to land is restricted limiting application of 

nitrogen rich digestate in such risk prone regions. In addition, digestate may also 

contain potentially toxic elements or compounds such as lead, zinc and copper which 

will vary depending on the feedstock used and process stabilisation nutrients used in 

AD plants (Stiles et al., 2018).  

8.10.3 Gate fees for the organic waste feedstock and the impact on the process 

economics 

A gate fees of 29 Euros was used for studying the effect of gate fees on the process 

economics. According to the literature, gate fees have decreased in the last few years 

from 40 Euros per tonne to 29 Euros per tonne (Dick et al., 2016). This techno-

economic study only considered a fixed rate for gate fees of 29 Euros and the variation 

of gate fees was not studied. This was found to be the best feasible scenario for co-

digestion with S. Latissima in our study. The sensitivity analyses were showed that co-

digestion was highly favourable with high rates of returns when the price of macroalgae 

biomass was 50 Euros per tonne. The most favourable combination for of co-digestion 

identified in this study was S. Latissima plus sugar beet-vegetable mix with a ROI of 

105% and a payback time of 0.7 years. The second most favourable combination was 

BSG with 83% ROI and 0.8 years of payback time. The lowest ROI (11%) and highest 

payback time (1.7 years) was observed for wheat residues. The results are promising 
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illustrating that given optimised gate fees (50E/ton) a profitable scenario can be 

achieved for co-digestion of S. Latissima with sugar beet-vegetable mix (a traditional 

AD feedstock) as well as newly emerging biomass sources such as Brewery spent 

grain. In the UK, BSG has shown an availability of 250 million tonnes per year (Thomas 

& Rahman, 2006, Kerby and Vriesekoop, 2017) and already Sugar beet is used for AD 

as a whole crop or from residues after sugar processing. A total volume of 500,000 

tonnes are currently produced in the UK alone from the sugar processing waste 

(Suhartini, 2014). Sugar beet is a root crop very similar to parsnip and is grown widely 

in the temperate climates of Europe and North America (Sugar). This also suggests 

that seasonal feedstock such as macroalgae biomass if intended for bioenergy 

production can produce high rates of methane using the co-digestion mechanisms. 

Currently majority of the macroalgae biomass is used for human consumption or high 

value products extraction. For full utilisation of the biomass for bioenergy production 

has challenges to overcome before becoming a fully functional reality. For commercial 

realisation of macroalgae industry in the UK, there are technical challenges as well as 

legislative challenges to overcome. The magnitude of the environmental impacts 

associated with macroalgae cultivation or harvest, the transport of the biomass, 

upstream and downstream processing for bio-products and bioenergy production also 

need to be considered (Roberts and Upham, 2012). Macroalgae is shown in the 

literature to have high potential as a feedstock for biorefinery to produce bio materials 

and bioenergy. In the era of biorefinery, flexibility of process design is also important 

as the desired product can change depending upon location and market. The main 

bottle neck is the processing economics and with the current low oil prices it is even 

more difficult to make algal fuel cost competitive to fossil fuels. Gradually the 

expenditure has to be lowered with increased outcomes and thereby narrowing the 

economic gap (Jiang et al., 2016).  

AD of S. Latissima is shown to have comparable methane potentials to energy crops 

in this study and is found to be feasible as a co-digestion feedstock (Bauer et al., 2010). 

For the techno-economic analysis, this study only considered the economic feasibility 

of an AD process utilising S. Latissima as a mono-digestion feedstock and as co-

digestion feedstock. The results were represented as a percentage of return and 

payback time. The study boundary did not consider transportation or cultivation costs 

into the system boundary. Transportation is a key factor for the development of a 

macroalgae supply chain as transportation between cultivation sites, processing sites 

and post processing sites can have potential environmental and economic impact on 
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the utilisation of biomass. Therefore for future environmental and economic 

assessment of bioenergy production from macroalgae biomass, it is important to 

consider the transportation to further develop the macroalgae industry in a sustainable 

fashion (Gegg and Wells, 2017).  
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9 Conclusions 

Reflecting on the experience of doing PhD, I have come to the realisation that I have 

had a thorough learning process for the researcher in me, whether it had been with the 

procurement of the samples, planning and performing the experiments, data analysis 

and finally writing the thesis. Though the learning process has been challenging at 

times, I had to motivate myself more to get the work completed and now I can truly say 

that on the whole I have enjoyed the journey. The skills that I have attained through 

this PhD such as presentation and communication skills, research skills, scientific lab 

skills are invaluable to both the student and professional in me. In addition, working 

under my supervisory team for the last few years has given me the opportunity to 

develop as an independent researcher. Therefore, in conclusion, I would like to say 

that for me, doing a PhD has been a gratifying experience. 

To summarise, this research investigated the potential of third generation biomass 

feedstock, Saccharina latissima for methane production by anaerobic digestion 

technology. The literature review identified gaps where environmental conditions of the 

macroalgae biomass cultivation systems were not researched previously in relation to 

the methane production potential of the biomass. In addition, no previous work had 

compared wild and cultivated biomass of the macroalgae species for either their 

characteristics and methane production. In continuous digestion, the parameters 

controlling the digestion of the S. Latissima was also understood to a limited extend. 

The co-digestion potential of S. Latissima also is an under researched area with no 

techno-economic feasibility advising the practical application of AD in the UK. 

Therefore, the key findings of this research are given below.  

 S. Latissima can be considered as a biomass feedstock for AD. The choice of 

cultivation site is perhaps the most important consideration as environmental 

conditions are shown to be influential on biomass characteristics. The 

environmental conditions in a specific location are complex and inter-related 

and have a combined effect on biomass growth and subsequent biochemical 

composition.  S. Latissima, harvested at different points of the year, exhibit 

significant differences in their characteristics. From an AD perspective, it is 

better to target the biomass with highest carbon percentages. Wild macroalgae 

biomass was found variable in their biomass characteristics owing to their age 

and maturity in comparison to cultivated biomass [Results – Chapter 4]. 
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 Biochemical methane potential of S. Latissima has been found to vary with 

localised environmental conditions, harvest times and growth type. Methane 

yields were found to have an inverse relationship with the volatile solids and ash 

percentages of the biomass. Results showed that environmental conditions 

favouring production of higher volatile solids, and inorganic content in the 

biomass may not necessarily produce biomass with higher methane potentials. 

Methane production of S. Latissima harvested from different times were also 

found significantly different from each other. When sourcing biomass for 

anaerobic digestion, the biomethane yields from wild and cultivated samples are 

found not significantly different to each other. However, due to their variable 

characteristics and negative impact on the ecological balance of marine 

ecosystem, wild biomass is not advised for anaerobic digestion [Results – 

Chapter 5].  

 Semi continuous digestion of S. Latissima was performed for three hydraulic 

retention times for a total of 105 days. Higher organic loading rate is feasible in 

the first HRT however leads to accumulation and lowered methane production 

towards the third HRT. Alkalinity values were found to be lower than desirable 

which suggests buffer addition (𝑁𝑎𝑂𝐻,𝐾𝑂𝐻) might be necessary for full scale 

applications. Trace elements addition was found to enhance digestion reflected 

as relatively higher methane yields. Increasing the temperature of digestion to 

thermophilic conditions was not found to be favourable in this study. Both 

methane production (as biogas volume) and methane concentrations were 

significantly lower than mesophilic digesters. This could be also because the 

bacteria could acclimatise to mesophilic temperatures easily than thermophilic 

temperatures. However thermophilic digesters exhibited higher volatile solids 

reduction and dewaterability rates than mesophilic digesters [Results – Chapter 

6].  

 Co-digestion with S. Latissima at a ratio of 70:30 (macroalgae: feedstock) ratios 

was shown to increase the rate of methane production and methane yields for 

all feedstock except pig manure and brewery spent grain. The highest net 

percentage increase in methane yield was obtained for the co-digestion of 

macroalgae biomass with wheat and the lowest net percentage reduction for pig 

manure. This was attributed to the biochemical composition of the feedstock, 

where easily accessible carbohydrates in macroalgae and wheat resulted in 

higher methane yields. The carbon to nitrogen ratio of the combined feedstock 
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is found to be important for effective co-digestion with S. Latissima and the 

optimal range is found to be between 20 and 30. A synergistic effect was 

observed when co-digesting S. Latissima with wheat and sugar beet – 

vegetable mix, however antagonistic effects were observed during co-digestion 

with pig manure. Even though co-digestion is technically favourable, the 

seasonal supply of macroalgae biomass might affect wider applications 

especially in winter where the biomass will be scarce [Results – Chapter 7].  

 According to the techno-economic assessment, mono digestion of S. Latissima 

was not found to be economically viable. This was primarily due to the high 

costs associated with the procurement of macroalgae biomass. However, co-

digestion with sugar beet – vegetable mix was found to be the most 

economically viable scenario when the gate fees of the organic feedstock were 

set at 29 Euros per tonne and macroalgae biomass priced at 50 Euros per 

tonne. Sale of unprocessed digestate (which currently has a low market value 

of 5 Euros per tonne) was also not found to improve the process economics in 

any of the scenarios [Results – Chapter 8]. 

To conclude, this study showed that the species S. Latissima is feasible for anaerobic 

digestion in North West Europe region however there needs to be significant research 

efforts in exploring other suitable species for AD to enhance macroalgae biomass 

utilisation in full scale AD operations. Further advancements in biorefinery approach 

will also increase the overall economic viability of AD processes using macroalgae 

biomass.   
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10 Recommendations 

Macroalgae biomass species, Saccharina latissima is shown to be feasible for 

methane production via anaerobic digestion however the adoption of technology is still 

at its nascent stages here in the UK and north western Europe due to lack of 

commercial level cultivation farms for the biomass which limits the amount of biomass 

that can be harvested year around for renewable energy production. So ideally, such 

a technology will work efficiently in places around the world such as South East Asia., 

where there is already a large amount of macroalgae biomass available through 

competent cultivation farms for different macroalgae species. Even then the 

technology needs to be tailored to suit their needs for human consumption and energy 

production simultaneously. The easiest way to encourage new feedstock utilisation 

such as macroalgae biomass into the existing AD plants could be through co-digestion 

mechanisms. A continuous and supportive policy framework is also essential for such 

technologies to be able to contribute to the national and international energy targets.  

 

Therefore, recommendations from this research study are as follows: - 

 Technical recommendations  

1. Further research is required to fully understand the impact of inter related 

environmental conditions on macroalgae biomass characteristics which are 

important when identifying the optimal cultivation site for bioenergy production.  

2. Significant research is needed to identify the impact of S. Latissima growth cycle 

on biochemical composition of S. Latissima especially on the carbohydrates, 

lipids and fats profiles to be evaluated over longer periods of time to ascertain 

long term variability in the biomass and therefore optimise harvesting practices.  

3. For continuous applications involving S. Latissima monitoring of volatile fatty 

acids profile would be recommended to identify optimal organic loading rates 

and corresponding retention times. Costs permitting, trace elements customised 

according to macroalgal biochemical composition should be added to avoid 

combined inhibitive effects from the different elements in the biomass and the 

prepared solution.  

 Implementation recommendations 

1. To achieve favourable process economics for anaerobic digestion of S. Latissima 

it is recommended that further research efforts should identify ways of lowering 

the costs of cultivation and thereby reducing the cost of macroalgae biomass.  
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2. In order to optimise co-digestion practices using macroalgae biomass, further 

studies should determine suitable feedstock other than those used in this study 

to be digested with macroalgae biomass and/or utilising nutrient rich macroalgae 

biomass as a supplement addition for balancing C/N ratios for digestion involving 

multiple feedstock.  

 Policy recommendations 

1. Finally, if intended for bioenergy production in future, a recommendation would 

be to develop policies to incentivise cultivation of macroalgae biomass and 

thereby making biomass an attractive feedstock for wider applications.  
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