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Abstract: Somatic alterations to the genomes of solid tumours, which in some cases represent
actionable drivers, provide diagnostic and prognostic insight into these complex diseases. Spatial
and longitudinal tracking of somatic genomic alterations (SGAs) in patient tumours has emerged as
a new avenue of investigation, not only as a disease monitoring strategy, but also to improve our
understanding of heterogeneity and clonal evolution from diagnosis through disease progression.
Furthermore, analysis of circulating-free DNA (cfDNA) in the so-called “liquid biopsy” has emerged
as a non-invasive method to identify genomic information to inform targeted therapy and may
also capture the heterogeneity of the primary and metastatic tumours. Considering the potential of
cfDNA analysis as a translational laboratory tool in clinical practice, establishing the extent to which
cfDNA represents the SGAs of tumours, particularly actionable driver alterations, becomes a matter
of importance, warranting standardisation of methods and practices. Here, we assess the utilisation
of cfDNA for molecular profiling of SGAs in tumour tissue across a broad range of solid tumours.
Moreover, we examine the underlying factors contributing to discordance of detected SGAs between
cfDNA and tumour tissue.

Keywords: solid tumours; circulating-free DNA (cfDNA); somatic genomic alteration (SGA); copy
number alterations (CNAs)

1. Introduction

Cancer genomes display a plethora of somatic genomic alterations (SGAs), including single
nucleotide variations (SNVs), insertions and deletions (indels), focal amplifications, gene fusions,
copy number alterations (CNAs) and numerical and segmental chromosomal alterations (NCAs and
SCAs). Chromosome aberrations, including gene fusions and translocations are associated with many
tumour types and the vast majority of metastatic cancers harbour chromosome arm level CNAs [1,2].
The current gold standard for molecular profiling in clinical practice is the identification of SGAs,
specifically actionable driver alterations in tumour tissue, enabling stratification of patients into precise
treatment regimens. In a classical view, driver and passenger alterations differ in actionability and
a key task is distinguishing these [3]. A challenge of this task is the heterogeneity among somatic
alterations, defined as the emergence of distinct subclones with divergent genetic profiles within the
tumour, between the primary tumour and its metastases or between sequential tumour samples [4–6].
A potential solution to circumvent this issue, though impractical, is to capture a larger spectrum of the
genomic landscape by obtaining multiple biopsies of a primary tumour and its metastases throughout
the course of the disease. Alternatively, the use of circulating-free DNA (cfDNA), acquired through
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the so-called ‘liquid biopsy’, represents a rapid and non-invasive method for genomic profiling. The
presence of cfDNA in the plasma or serum of cancer patients and the use of this tool for the analysis
of SGAs, including actionable alterations, in cancers of tissues such as lung, breast, gastrointestinal
tract, nervous system and prostate has been well documented [7–18]. These studies bring into focus
the emergence of cfDNA as a potential translational tool for clinical practice, particularly in relation
to the analysis of primary and metastatic tumour profiles. Furthermore, cfDNA has emerged as a
useful surveillance tool for the early detection and prediction of prognosis in several cancers and has
displayed correlations with disease burden and treatment response [19–29].

Regarding the potential for the use of cfDNA in routine clinical practice, establishing the extent to
which cfDNA reflects the genomic landscape of tumours is significant. However, this task is hampered
by numerous technical and biological challenges. Recent studies, though diverse in cohort size and
design, have evaluated the feasibility of using cfDNA by measuring the degree of concordance between
paired cfDNA and tumour samples and have attempted to dissect the underlying biological or technical
factors contributing to discordance. Here we review these studies in the broader context of SGAs in
solid tumours.

2. The Concordance Rate of SGAs between cfDNA and Tumour Tissue across Solid Tumours

Mutations in specific oncogenes are frequent signatures in solid and liquid tumours and the
presence of these in cfDNA is concordant in variable degrees with that in the tumours. In this section,
some studies leveraging the use of cfDNA for detecting SGA in breast, prostate, NSCLC, colorectal,
neuroblastoma and oligodendroglioma cancers will be reviewed.

KRAS mutations arise in 50% of metastatic colorectal cancer (mCRC) cases, which can affect
the response to EGFR pathway-targeted therapeutics [30]. In multiple studies of mCRC, cohorts of
patients were tested for RAS status using standard-of-care PCR and ddPCR (BEAMing) or similar
technologies for tissue and cfDNA, yielding 86.4–92% concordance rates [31–33]. In excess of 85% of
lung cancers are classified as NSCLC, with several actionable alterations of EGFR and ALK contributing
to its pathogenesis [34,35]. In a study conducted by Sung et al., 126 cases of NSCLC patient samples
were analysed for concordance of cfDNA and tumour tissue using ultra-deep sequencing and tissue
genotyping, respectively. Very high overall concordance rates for EGFR mutations (ex19del and L858R)
were observed [15,36–41].

In the field of breast cancer, circulating tumour cells and cfDNA are promising analytes for
prediction of survival and response to therapy [17,20,42,43]. An important cfDNA biomarker of breast
cancer, hotspot mutations in ESR1, predicts resistance to endocrine therapy [32]. Takeshita et al.,
compare ESR1 mutation status of 35 cfDNA and matched tumour tissue in patients with metastatic
breast cancer using ddPCR and find an overall concordance rate of 74.3% (26/35) [44]. Further, PIK3CA
mutations, frequently detected in cfDNA in breast cancer and an indicator of tumour burden and
treatment efficacy have been a subject of interest [45–48] since they also show high concordance
between cfDNA and metastatic tumours [49].

In a recent study on metastatic prostate cancer, the concordance rate of 45 cfDNA and matched
tissue biopsies for clinically-relevant genes was determined by targeted sequencing and whole exome
sequencing (WES). This group found copy numbers of clinically actionable genes (i.e., AR, BRCA2,
PIK3CA) to be 88.9% concordant between cfDNA and tumour DNA. While rearrangements detected in
PTEN, APC, BRCA2 displayed 48% concordance [10].

In the field of neuroblastoma, MYCN amplification status, the strongest indicator of poor prognosis
and aggressive behaviour [50,51], has been analysed using cfDNA [16]. In addition to MYCN, ALK
activating alterations occurring in 10% of NB cases have been assayed in cfDNA using PCR-based
methods [52]. Combaret et al., used ddPCR to evaluate the mutational status of ALK hotspots (F1174L
exon 23:3520 and 3522, R1275Q exon 25:3824) using cfDNA in a cohort of 114 neuroblastoma patients.
Their analysis revealed perfect agreement between cfDNA and tumour tissue for the F1174L ALK
mutation (exon 23:3520), while discordance was observed for the other two mutations [52].
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A range of SGAs including numerical chromosome alterations (NCAs), segmental chromosome
alterations (SCAs) and large SCAs have been investigated in cfDNA in neuroblastoma patients [53–55].
Chicard et al., inferred CNAs (including large SCAs, SCAs and NCAs) in cfDNA and matched tumour
tissue of neuroblastoma patients. The overall concordance of 97% for dynamic (non-silent) cfDNA and
tumour profiles was reported while large SCAs also showed high levels of concordance [53]. In a later
publication, this group utilised WES for both cfDNA and tumour tissue and found high concordance
of CNAs between cfDNA and primary tumours at diagnosis (151/162) (93%) and with 11/162 (7%)
cases of discordance (i.e., 2p gain in tumour only, in case 17) [54]. Good agreement between large
structural alterations was also observed by Leary et al., in colorectal and breast cancers. In this study,
entire chromosome-level and chromosome arm-level alterations were detected by whole genome
sequencing (WGS). Tumour-derived chromosomal copy number changes (1p, 4q loss and 13q gain)
and copy number changes of driver alterations including ERBB2 and CDK6 were detected in cfDNA of
colorectal and breast cancer patients with good concordance rates when tumour tissue was available
for analysis [56]. In a study conducted by Lavon et al., statistically significant concordance rates were
detected for loss of heterozygosity (LOH) of 10q and 1p (79% and 62%, respectively) between cfDNA
and tumour tissue of oligodendroglioma patients [57].

Standing in contrast to the four former studies, Molparia et al., in a cohort of 24 colorectal cancer
patients, detect a lack of concordance between CNAs including deletions of 8p,18 and 9p of cfDNA
and tumour tissue, highlighting the subclonal nature of CNAs in colorectal cancer [58]. In conclusion,
these studies attest to the feasibility of using cfDNA as a tool for detecting a range of SGAs including
structural alterations present in most cancers [2,59].

3. The Underlying Factors Contributing to Perceived Discordance between SGAs Detected in
Solid Tumours and cfDNA

The inter-related technical and biological factors that may contribute to discordance between
cfDNA and primary and metastatic tumours will be discussed in detail in this section. Figure 1
shows processing of cfDNA and primary and metastatic tumour tissue from sampling to analysis
and the summary of contributing factors to discordance rates observed between SGAs in cfDNA and
tumour tissue.
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cfDNA and primary and metastatic tumours can be evaluated (B) A summary of factors affecting
concordance rates between cfDNA and tumour tissue, 1o: primary tumour, 2o: secondary
(metastatic) tumour.

3.1. Tumour Fraction and Mutation Allele Frequency (MAF)

The tumour fraction is the proportion of tumour DNA in total cfDNA. Rapidly proliferating
subpopulations of the tumour that outgrow their blood supply prior to apoptosis or necrosis would
be expected to release DNA of different sizes into the peripheral blood [60,61]. The location, size
and vascularity of the tumour can affect the accessibility of tumour DNA to the circulation, and
hence impact tumour fraction [62–64]. Therefore, these biological factors can affect the release of
tumour DNA in the blood, impacting their representation and detectability in cfDNA [31,32]. For
instance, García-Foncillas et al., in a study of metastatic colorectal cancer, report that when SGAs
(such as RAS mutations) of cfDNA and liver metastasis were compared, a higher concordance rate
was obtained than that of cfDNA and lung metastasis [65]. This observation was explained by the
higher vascularisation of liver tissue and the greater likelihood of DNA release into the circulation [66].
Furthermore, establishment of the tumour fraction can inform the most appropriate analysis method,
especially in the case of alterations presenting at lower MAFs. In a study conducted in a cohort of
520 patients with metastatic prostate or breast cancer, the blood samples of 30% and 40% of breast
and prostate cancer patients, respectively, had sufficient tumour fractions for standard depths of WES
(i.e., ≥10%) [67]. Regarding MAFs, methods such as ddPCR and NGS with commercial panel designs
for molecular profiling, a MAF cut-off value is often introduced [31]. For instance, some ddPCR
and NGS platforms have cut-offs in the region of 0.040–.1% and 0.25–%, respectively [68,69], and the
commercially-available Guardant360 liquid biopsy assays have almost perfect specificity for SNVs
with MAFs of >2% [70]. Therefore, lower concordance is plausible when MAFs fall below the detection
cut-off of the method used.

Tumour fraction can be impacted by technical practices used to extract cfDNA from plasma or
serum. Guo et al., evaluate the effect of blood sample processing on cfDNA concentration and found
that delaying processing beyond four hours significantly decreased detection rate of somatic mutations
in cfDNA [71,72]. Release of genomic DNA from white blood cells, resulting in contamination of
cfDNA, can be a consequence of delayed processing. The presence of contamination in cfDNA can,
however, be accounted for by sequencing white blood cells and filtering somatic mutations attributable
to clonal haematopoiesis [73], although this approach will not neutralise the diluting effect of such
contamination on the tumour fraction of cfDNA. The necessity of extracting cfDNA from plasma was
challenged by a study conducted by Sefrioui et al., The group compared concordance rates in a cohort
of 17 mCRC patients and established 93% and 88% mutation detection rates for cfDNA isolated from
plasma and crude plasma samples, respectively, suggesting that extraction of cfDNA from plasma
may enhance detection by increasing tumour purity [74]. Similarly, increasing cfDNA concentration
may also enhance concordance rates, by increasing the tumour fraction [75,76]. For instance, KRAS
mutation status across 121 patients with NSCLC, melanoma, breast, uterine, pancreatic cancers was
compared between cfDNA and matching tumours [77]. In this study, the initial concordance of 85%
was improved to 95% by increasing cfDNA concentration in some discordant cases. Finally, tumour
fraction can be impacted by cancer type and stage [10]. In a study of multiple cancers, the cfDNA
samples of neuroblastoma patients displayed the highest tumour fraction, including two patients in
which it was almost 100% [78,79].

Regarding cancer stage, Bettegwada et al., found that circulating tumour DNA, defined as the
fraction of tumour DNA in total circulatory free DNA, was detectable in more than 75% of the patients
with advanced stage cancers including pancreatic, ovarian, colorectal, melanoma, hepatocellular and
head and neck as opposed to 50% of primary brain, renal, prostate or thyroid cancers [19]. In another
study conducted by Namløs et al., on gastrointestinal stromal tumours (GIST), patients with metastatic
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disease displayed significantly higher frequencies of mutation detection in plasma compared to patients
with localised disease which correlated with tumour burden. Specifically, all patients (n = 10) with
metastatic disease had detectable mutations, while this rate was lower for patients in less advanced
stages of the disease [80]. Consequently, higher tumour fraction in metastatic diseases may contribute
to higher concordance rates observed between cfDNA and metastatic tumour compared to cfDNA
and primary tumour [72,81], in addition to indicating poor prognosis [82]. Xie et al., tested 35 pairs of
NSCLC primary tumour tissues or metastatic tumours and plasma from treatment-naïve patients using
targeted sequencing for a custom panel of 56 lung cancer genes. They interrogated similarities between
primary and metastatic tumours and matching cfDNA and observed 62% concordance between the
trio (67/108 mutations identified). They also found that the concordance rate improved to 77.3% when
they limited their analysis to driver alterations. Interestingly, they observed a higher concordance of
cfDNA and metastatic profile (73.2 %) compared to cfDNA and primary tumour profiles (68.4%) [83].
Examples of higher concordance rates in metastatic and cfDNA compared to primary tumour and
cfDNA, though not statistically significant, has been reported in Table 1.

Table 1. Example summary data of trends for high concordance rates between somatic GAs of cfDNA
and metastatic tumours compared to cfDNA and primary tumour.

Author/Cohort
Size Cancer Type

Concordance with
Primary or Metastatic

Tumour

Driver and Actionable
Driver Alterations

Method for
Tumour/cfDNA

Thompson/102
[15] NSCLC

cfDNA and primary
tumour (51%) compared to

cfDNA and metastatic
tumour (79%) for all

alterations

50 drivers and 12
resistance alterations Targeted sequencing

Liu/72 [81] NSCLC

cfDNA and primary (50%)
compared to cfDNA and

metastatic (65%) in 19
patients

lung cancer panel
including EGFR L858R,
L861Q, e19 del, e20INS,

KRAS G12X, EML4-ALK,
RET-KIF5B, BRAF V600E

ARMS-PCR and
targeted

sequencing/Sequencing
and ddPCR

Xie/35 [83] NSCLC

cfDNA and metastatic
tumour (73.2 %), cfDNA

and primary tumour
(68.4%)

56 lung cancer genes Targeted sequencing

Guo/56 [72] NSCLC 54.6% of patients in early
stage and 80% in late stage

lung & colon cancer
panel (LV103) and lung

cancer panel (L82)

Targeted sequencing
for both, ddPCR for

some cfDNA samples

Garcia-
Saenz/49 [47]

6 metastatic and 43
localised breast

cancer

59.1% (overall)
79.8% (for metastatic

patients)
PIK3CA mutations

COBAS PIK3CA
Mutation Test/ddPCR

using (rare PIK3CA
Mutation Assays)

Tzanikou/56
[84]

Early and
metastatic breast

cancer

48.2% (27/56) in early
breast cancer, 66.6% (18/27)
in metastatic breast cancer

PIK3CA mutations Custom method and
ddPCR

Chae/12 [70] mCRC

For sequencing
approaches, 39% for
primary and 55% for

metastasis in all panel

21 gene panel including
TP53, PIK3CA and KRAS

Targeted
sequencing/targeted

sequencing, OnTarget
assay and ddPCR

Kato/55 [85]

Esophageal,
gastroesophageal

junction, and
gastric

adenocarcinoma

concordance between
ctDNA and primary site

vs. cfDNA and metastatic
site for TP53: 52.2% vs.
87.5% and for ERBB2:

78.3% vs. 100%

54-73 gene panel
including KRAS, TP53

and PTEN
Sequencing

NSCLC: non-small cell lung cancer; mCRC: metastatic colorectal cancer. Studies using cfDNA that investigated
(1) the mechanism of resistance to drug therapy and (2) the comparison of methods and (3) efficacy of drug therapy
have not been included, but studies that compare the extent of which cfDNA and reflect driver and actionable driver
alterations of the tumours, primary and metastatic have been included.
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3.2. Gene Type and the Effect of Drug Therapy

In a classical perspective, driver alterations, which are usually truncal and present from early
stages of the disease, are SGAs that provide a selective growth advantage. Passenger alterations,
which might be neutral or deleterious, are genetically linked to driver alterations [86]. Current views
suggest that environmental and treatment variables lead to a more dynamic status of driver versus
passenger alterations; for instance, a passenger alteration can transform into a driver alteration [87].
Driver alterations can be deemed “clinically actionable” if an FDA-approved drug or drug under
investigation in a clinical trial could target the protein of interest or its downstream effectors [88].
Discordance observed between cfDNA and tumour tissue may be due to the subclonal presentation
of drivers in the tumour in later stages of the disease, which can affect the detectability of these
drivers in cfDNA and impact concordance rates [86]. A multitude of studies across the field of solid
tumours (i.e., prostate, NSCLC, breast, neuroblastoma, renal, gastrointestinal, pancreatic, thyroid and
melanoma) focus on individual (Table 2) or multiple malignancies (Table 3) and report a trend for high
agreement between cfDNA and tumour tissue with respect to actionable driver alterations, but with
notable exceptions [70,89–94]. In Tables 2 and 3, we have included studies that compare the extent to
which cfDNA reflects driver and actionable driver alterations of the primary or metastatic tumours.
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Table 2. Comprehensive summary data for driver and actionable driver alterations concordance rates between cfDNA and tumours in individual cancer types.

Author/Cohort
Size Cancer Type Concordance

Information

Positive Concordance
(MUT/MUT)|Negative Concordance

(WT/WT)|Discordance

Driver and Actionable
Driver Alterations Method for Tumour/cfDNA

Wyatt/45 [10] MPC 88.9% in clinically
actionable genes

72 genes including AR,
BRCA2, PTEN, PIK3CA and

TP53
WES/targeted sequencing

Vandekerkhove/53
[95] MPC 80% in matched samples Panel of genes including TP53

and DNA repair genes Targeted sequencing

Grasselli/146 [31] mCRC 89.7% 10.3% (15 cases) concordance RAS mutations SoC PCR/ddPCR (BEAMing)

Bando/280 [32] mCRC 86.4% (242/280) 82.1% (110/134)|90.4% (132/146)|11%
(38/280) RAS mutations ddPCR (BEAMing)

Garcia-Foncillas/236
[65] mCRC 89% (210/236) improved

to 92% by re-analysis
86.30%|92.40%|In lung metastasis

cases (tissue only) RAS mutations SoC PCR/OncoBEAM

Schmiegel/98
[33] mCRC 91.8% (90/98) 90.4% (47/52)|93.5% (43/46)|- RAS mutations Sequencing, SOC, ddPCR

(BEAMing)/ddPCR (BEAMing)

Demuth/28 [75] mCRC 79% for Ion Torrent seq.-
89% for ddPCR KRAS mutations Genotyping/Sequencing and ddPCR

Spindler/229 [96] mCRC 85% KRAS Standard methods/ARMS-qPCR

Bachet/425 [97] mCRC 71%- 89% RAS Standard methods/sequencing

Vidal/115 [98] mCRC 93% RAS Standard methods/OncoBEAM

Buim/26 [99] mCRC 71% KRAS Standard methods/pyrosequencing

Thierry/140 [66] mCRC

72%, 74% and 87% for
KRAS exon 2, KRAS exon

3–4 and BRAF V600E,
respectively

28 mutations including KRAS,
BRAF, NRAS

Standard
methods/Q-PCR-based-method

(IntPlex V)

Wang/184 [100] mCRC 93.33% in pre-treatment
cohort KRAS, NRAS, BRAF, PIK3CA ARMS-based PCR

/Firefly

Osumi/101 [101] mCRC 77.2% (78/101) for RAS 23 cases for RAS (discordance)
14 CRC- related genes

including, APC, TP53 and
RAS

Standard methods/Sequencing

Germano/20
[102] mCRC 84.6% (11/13 cases) RAS, BRAF, ERBB2 Standard methods/ddPCR
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Table 2. Cont.

Author/Cohort
Size Cancer Type Concordance

Information

Positive Concordance
(MUT/MUT)|Negative Concordance

(WT/WT)|Discordance

Driver and Actionable
Driver Alterations Method for Tumour/cfDNA

Beije/12 [103] mCRC
KRAS, PIK3CA and TP53
for OnTarget assay (80%),

digital PCR (93%)

21 CRC gene panel including
TP53, PIK3CA and KRAS

Sequencing/Sequencing, OnTarget
assay and ddPCR

Kato/94 [104] CRC ranging from 63.2% APC
to 85.5% BRAF

panel including KRAS, TP53
and APC Sequencing

Mohamed
Suhaimi/44 [105] CRC 84.1% for KRAS and 90.9%

BRAF KRAS and BRAF Genotyping/sanger sequencing, HRM
and ASPCR and pyroseqeuncing

Takeshita/35 [44] MBC 74.3% (26/35) 1/35|25/35|9/35 ESR1 mutations ddPCR

Beaver/29 [48] Early BC 14/15 mutations PIK3CA mutations Sanger sequencing, ddPCR/ddPCR

Higgins/49 and
60 [45]

MBC (49
retrospective

and 60
prospective)

100% in 41 matched
retrospectives, 72.5% in 51

prospectives

27.5% in 51 prospective samples
(discordance) PIK3CA mutations Sequencing or BEAMing/ddPCR

(BEAMing)

Chae/45 [70] BC 91.0%–94.2% for all genes 10.8%–15.1% (3.5% for CNAs)
positive concordance Foundation 1/Guardant360

Board/76 [46] 46 metastatic, 30
localised BC

95% in 41 matched
samples 80%|(47%) discordance PIK3CA mutations Standard methods/ARMS PCR*

Garcia- Saenz/49
[47]

6 Metastatic and
43 localised BC

59.1% (overall)
79.8% (for metastatic

patients)
PIK3CA mutations COBAS PIK3CA Mutation Test/ddPCR

using (rare PIK3CA Mutation Assays)

Kodahl/66 [49] PIK3CA-
mutated MBC 83% (20/24 cases) PIK3CA mutations ddPCR

Combaret/114
[52] NB 100% 1/1|1/1|0 ALK; F1174L (e23: 3520, T>C) ddPCR and targeted sequencing

55 cases 6 cases|49 cases|4 (cfDNA only), 1
(tumour only) ALK, F1174L (e23:3522, C>A)

58 cases 12 cases|46 cases|1 (cfDNA only), 1
(tumour only) ALK; R1275Q (e25:3824, G>A)

Kurihara/10
[106] NB 100% 2/2|8/8|0 MYCN FISH/ddPCR
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Table 2. Cont.

Author/Cohort
Size Cancer Type Concordance

Information

Positive Concordance
(MUT/MUT)|Negative Concordance

(WT/WT)|Discordance

Driver and Actionable
Driver Alterations Method for Tumour/cfDNA

Chen/58 [107] Stage IA, IB, and
IIA NSCLC 50.4%

Panel of 50 driver alterations
including EGFR, KRAS,

PIK3CA and TP53
Targeted sequencing

Sung/126 [36] NSCLC 90% (ex19del), and 88.33%
(L858R) EGFR (ex19del and L858R) Genotyping/Targeted sequencing and

ddPCR

Li/164 [108] NSCLC 73.6% EGFR mutations ARMS

Lee/81 [37] NSCLC 86.2% (ex19del) and 87.9%
(L858R) EGFR (ex19del and L858R) Genotyping/ddPCR

Thompson/102
[15] NSCLC

79% (19/24) for actionable
EGFR mutations

97.5% across all variants
60% across all variants 50 drivers, 12 resistance

alterations Sequencing

Jin/69 [109] NSCLC 88.2% for EGFR mutations

EGFR Ex19del, L858R,
G719S/C, and L861Q,

TP53 mutations, amp. of RB1,
PIK3CA and MYC

Targeted Sequencing

Yang/73 [68] NSCLC 74% (54/73) 26% (19/73) (discordance) EGFR mutations Sequencing/Sequencing and ddPCR

Guo/41 [110] NSCLC 78.1% 50 cancer genes including
EGFR, KRAS, and TP53 Targeted sequencing

Villaflor/68 [111] NSCLC
High concordance for

truncal oncogenic drivers,
71% for EGFR

Driver alterations including
EGFR

targeted multiplex testing or tissue-
based sequencing/Guardant360

Liu/72 [81] NSCLC

54.2% for all clinically
actionable alterations,
EGFR L858R (93.1%),
EGFR e19 del (90.3%),
KRAS G12X (96.9%),

ALK rearrang. (96.9%)

MET or HER2 CNA in cfDNA but
not tumour (discordance)

EGFR L858R,L861Q,e19 del,
e20 INS, KRAS G12X,

EML4-ALK, RET-KIF5B and
BRAF V600E

ARMS-PCR and
sequencing/Sequencing (cfDNA also

validated by ddPCR)

Schwaederle/88
[112] NSCLC

76.5- 80.8 % for EGFR
mutations depending on

sampling time

7/26 (EGFR mutations)
53% for all alterations|14/26 (EGFR
mutations)|5/26 (EGFR mutations)

2 cfDNA only, 3 tumour only

Mutations in TP53, EGFR,
MET, KRAS and ALK

Sequencing or genotyping or no
test/Guardant360

Yang/107 [113] NSCLC 74.8% (80/107) EGFR
88.8% (95/107) BRAF EGFR and BRAF mutations Standard methods/competitive

Allele-Specific TaqMan PCR (CastPCR)
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Table 2. Cont.

Author/Cohort
Size Cancer Type Concordance

Information

Positive Concordance
(MUT/MUT)|Negative Concordance

(WT/WT)|Discordance

Driver and Actionable
Driver Alterations Method for Tumour/cfDNA

Soria-
Comes/102 [114] NSCLC 87.4% EGFR mutations Cobas EGFR assay

Yu/22 [115] Advanced
NSCLC

For 19DEL and L858R
(90% and 95%,
respectively)

EGFR mutations (19DEL and
L858R) ARMS/ddPCR

Mok/241 [116] Advanced
NSCLC 88% (209/238) EGFR mutations Cobas 4800 FFPET test/Cobas 4800

blood test

Zhu/51 [117] Advanced
NSCLC 86.73% EGFR mutations Standard methods/ddPCR

Yao/39 [118] Advanced
NSCLC

78.21% (30.5/39) for all
genes 47.43%|30.77%|21.8%

Panel of 40 genes including
EGFR, KRAS, PIK3CA, ALK

and RET
Targeted sequencing

Cui/180 [119] Advanced
NSCLC 87.8% 97.3%|85.3% EGFR mutations Standard methods/SuperARMS

Leighl/282 [120] Advanced
NSCLC

98.2% for EGFR, ALK,
ROS1, BRAF SoC PCR/Guardant360

Wu/50 [121] Advanced
NSCLC 86% (43/50 cases) Driver alterations including

EGFR, TP53, RB1 Sequencing

Sim/50 [122] Advanced
NSCLC 81% for EGFR BRAF, EGFR, ERBB2, KRAS,

NRAS, PIK3CA Sequencing

Xu/42 [123] Advanced
NSCLC Overall 76% EGFR, KRAS, PIK3CA, and

TP53 Targeted sequencing

Reck/1311 [124] Advanced
NSCLC

89% (in 1162 matched
samples) EGFR mutations Standard methods of local centres

Jia/150 [125] Advanced
NSCLC 94.7% for EGFR and RAS EGFR and KRAS mutations Standard methods/ddPCR

Veldore/132 [126] Advanced
NSCLC 96.96% EGFR mutations Standard methods/sequencing

Ma/219 [127] Advanced
NSCLC 82% EGFR mutations ARMS

Denis/1311 [128] Advanced
NSCLC

96% in 126 matched
samples EGFR mutations Standard methods
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Table 2. Cont.

Author/Cohort
Size Cancer Type Concordance

Information

Positive Concordance
(MUT/MUT)|Negative Concordance

(WT/WT)|Discordance

Driver and Actionable
Driver Alterations Method for Tumour/cfDNA

Guibert/46 [129] Advanced
NSCLC

ROS1/ALK (8/9), EGFR
(9/9), BRAF/MET/HER2

(4/6)

EGFR mutations, ROS1, ALK,
BRAF/MET/HER2

Standard methods/Sequencing and
ddPCR

Hahn/19 [90] mRCC 8.6% concordance DNA repair genes (discordance) Foundation 1/Guardant360

Howell/51 [130] HCC moderate ARID1A AXIN1, ATM,
CTNNB1, HNF1A and TP53 Targeted sequencing

Bernard/194
[131]

PDAC (localised
or metastatic)

>95% for KRAS in
surgically resected tissue KRAS ddPCR

Cohen/221 [93] PDAC 100% KRAS mutations Sequencing

Pishvaian/34 [94] Pancreatic
cancer Low concordance Panels including KRAS and

TP53 Foundation 1/Guardant360

Kinugasa/75
[132]

Pancreatic
cancer 77.3% (58/75) KRAS PCR-PHFA/ddPCR

Gangadhar/25
[133]

Advanced
melanoma 81.8% (9/11) 61 gene panel including BRAF,

NRAS and KIT Standard methods/Sequencing

Haselmann/634
[134] Melanoma BRAFV600 (92.3%–94.5%) BRAF SoC PCR/BEAMing

Tang/58 [135] Melanoma 70.2% BRAF Standard methods/3D ddPCR

Pinzani/55 [136] Melanoma 80% BRAF Allele-specific RT-PCR

Calapre/24 [137] Advanced
melanoma

80% (in a subgroup of 7
matching tissue and

cfDNA)

30 melanoma genes including
BRAF, NRAS, NF1 and TERT

Targeted sequencing (ddPCR for some
cfDNA cases)

Sandulache/23
[138]

Anaplastic
thyroid

carcinoma

high for BRAF, PIK3CA,
NRAS, and PTEN and

moderate for TP53

Highest discordance in
post-treatment patients

50 gene panel for tissue, 70
gene panel for cfDNA,

including BRAF, NRAS, TP53
and PIK3CA

Sequencing

MPC: metastatic prostate cancer; mCRC: metastatic colorectal cancer; MBC: metastatic breast cancer; NB: neuroblastoma; NSCLC: non- small cell lung cancer; mRCC: metastatic renal cell
carcinoma; HCC: hepatocellular carcinoma; PDAC: pancreatic ductal adenocarcinoma. ARMS: amplification refractory mutation system with scorpion probes. Positive concordance refers
to mutant cfDNA/mutant tumour tissue, whereas negative concordance refers to WT cfDNA/WT tumour tissue. Overall concordance includes positive and negative concordance.
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Table 3. Comprehensive summary data for driver and actionable driver alterations concordance rates between cfDNA and tumours in studies of multiple cancer types.

Author/Cohort Size Cancer Type Concordance or Discordance
Information Driver and Actionable Driver Alterations Method for Tumour/cfDNA

Kim/75 [139]

CRC, melanoma gastrointestinal
stromal tumour, renal cell

carcinoma, gastric cancer, sarcoma
and 4 other cancers

85.9% when all detected mutations
considered across all tumour types Panel of 54 cancer genes Sequencing

Rachiglio/79 [140] 44 metastatic NSCLC and 35 mCRC High concordance for EGFR (17/22) and
lower concordance for other drivers

ALK, EGFR, ERBB2, ERBB4, FGFR1, FGFR2,
FGFR3, MET, DDR2, KRAS, PIK3CA, BRAF,

AKT1, PTEN, NRAS, MAP2K1, STK11,
NOTCH1, CTNNB1, SMAD4, FBXW7, TP53

Sequencing/Sequencing and
ddPCR

Phallen/200 [141] Breast, colorectal, Lung, Ovarian
cancer High concordance 58 cancer related genes including drivers Sequencing (TEC-Seq)

Riviere/213 [9]

colorectal adenocarcinoma,
appendiceal adenocarcinoma,

hepatocellular carcinoma,
pancreatic ductal adenocarcinoma

96% KRAS amplification, 94% MYC
amplification, 95% KRAS G12V, 91%

EGFR amplification
96% overall concordance on gene level

Panel of 68 genes including KRAS
amplification, MYC amplification, KRAS G12V,

EGFR amplification
Guardant360 panel

Jovelet/334 [76]
thoracic, gastrointestinal, breast,

head and neck, gynaecologic and
urologic cancers

On a gene level only 173/347 mutations
corresponded between cfDNA and
tumour tissue, 174/347 discordant

mutations

Panel of 50 cancer hotspots V2 (CHP2)
including TP53, KRAS, PIK3CA, EGFR, APC Sequencing

Leary/91 [56] Colorectal or breast cancer Good concordance for cancer driver
genes such as ERBB2 and CDK6

Chromosomal alterations including
rearrangements of CDK6 and ERBB2 loci Sequencing

Toor/28 [89] advanced stage gastrointestinal and
lung malignancies

7% for lung subgroup, 8% for
gastrointestinal subgroup (90% positive

concordance), high discordance with
respect to driver and actionable

alteration

Caris or paradigm
panels/Guardant360 panel

Baumgartner/80 [142]

appendix cancer, colorectal,
peritoneal mesothelioma, small

bowel, cholangiocarcinoma,
ovarian, and testicular cancer

Overall, positive, and negative
concordance was 96.7%, 35.3%, and

96.6% (in 15 cases with matched
samples)

Panel of genes including TP53 and KRAS Sequencing

Kato/55 [85]
Esophageal, gastroesophageal

junction, and gastric
adenocarcinoma

61.3% (TP53 alterations) to 87.1%
(KRAS alterations)

54-73 gene panel
Including KRAS, TP53 and PTEN Sequencing

Perkins/105 [143]

Colorectal, melanoma, breast,
prostate, ovarian, NSCLC,
mesothelioma, sarcoma,

glioblastoma, ACUP,
cholangiocarcinoma, and cervical,

endometrial, duodenal, esophageal,
pancreatic and renal cancers

Overall 60% (25/42) BRAF, KRAS, NRAS, HRAS, MET, AKT,
PIK3CA, KIT

Standard methods/Mass
Spectrometry TypePLEX and

OncoCarta panel (v1.0)

CRC: colorectal cancer; mCRC: mCRC: metastatic colorectal cancer; NSCLC: non-small cell lung cancer; ACUP: adenocarcinoma of unknown primary.
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Drug therapy may also affect the detection of driver alterations. If a particular clone is resisting
therapy through clonal evolution and selection [144,145] and if therapy is stabilising the tumour and
suppressing cell turnover, this could potentially affect the representation of clones in the cfDNA pool.
Therefore, the selection pressure induced by therapies can lead to heterogeneity within or between
tumours, which may, in turn, lead to no or variable representation of subclonal populations within
the cfDNA population [5]. In a cohort of 88 NSCLC patients, Schwaederle et al., observed a trend for
higher concordance rates of alterations in pre-treatment patients compared to post-treatment patients
(64.7% vs. 48.9%) in a subgroup of patients with dynamic (non-flat) cfDNA profiles. Although not
statistically significant, differences between the representation of alterations pre- or post-treatment were
observed [112]. In a study conducted on HER2-positive metastatic breast cancer patients, fluctuations
in HER2 copy number detectable in cfDNA was observed in patients undergoing multiple cycles of
therapy. In this cohort of 18 patients, prior to treatment initiation, HER2 amplification was detectable
in cfDNA in only 50% of patients (9/18) (despite HER2 amplification detection in tumour tissue
in all cases (18/18)). In one particular patient, HER2 copies were not identified in cfDNA prior to
treatment and until after cycle 2 of treatment, however, they were detected at an elevated level after
cycle 4 of chemotherapy. This level increased further through disease progression after cycle 6 of
chemotherapy [146]. This study further supports the effect of cancer treatment on the dynamics of
cfDNA release from the tumour.

3.3. Sampling and Processing of Tumour Tissue

Due to logistic and safety limitations of taking multiple biopsies in patients [5], detection of SGAs
in the peripheral blood has promising potential as a non-invasive alternative [62]. Regarding biopsy
sampling intervals, minimising the collection intervals between cfDNA and tumour tissue enhances
concordance rates [32,45,147]. Thompson et al., analysed EGFR mutations in advanced NSCLC patients
and found that increasing timing intervals between tumour and cfDNA sampling from less than 2
weeks to more than 6 months, led to significantly lower concordance (p=0 .038) [15]. In a similar study
on a cohort of 88 patients with NSCLC, the overall concordance of EGFR mutations varied depending
on sampling time, with 88.2% and 64.7% concordance for time intervals of 0.8 months and >0.8 months
between blood draw and tissue biopsy, respectively [112].

With regards to tumour tissue processing methods, the use of fresh frozen (FF) samples for tumour
tissue instead of formalin-fixed paraffin-embedded (FFPE) marginally increased from 57.1% to 66.7%,
suggesting fragmentation of DNA in FFPE processing may be significant, especially when the detection
assay relies on amplicon-based amplification [72,100,148].

3.4. Detection Method

Some biomarkers are not easily detectable in the plasma of early stage cancer patients by
conventional methods such as ELISA and more sensitive methods such as ddPCR or targeted
sequencing may be more appropriate [107,149]. Due to the low abundance of circulating tumour
DNA in plasma of early stage cancer patients, using a highly sensitive method while keeping the
cost low is challenging. ddPCR assays have high sensitivity and specificity for SNV detection
but may not be practical to interrogate a large scope of alterations or unknown alterations, while
sequencing approaches including amplicon-based targeted sequencing may profile a broader spectrum
of alterations. Demuth and colleagues compared KRAS mutation status of 28 patients with metastatic
colorectal cancers between cfDNA and matched tumour samples with targeted sequencing and ddPCR,
yielding a concordance rate of 79% and 89% for each method, respectively [75]. Similarly, in a study
of 127 patients with advanced NSCLC, assaying for driver and drug-resistance alterations, the use
of ultra-deep sequencing of cfDNA and orthogonal ddPCR was compared [89]. This study revealed
almost identical findings in relation to EGFR and KRAS mutations by ultra-deep NGS and ddPCR
(21/22 cases). In addition, ultra-deep sequencing identified KRAS mutations in 17 cases where tumour
tissue was deemed insufficient for genotyping, suggesting that ultra-deep targeted sequencing of
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cfDNA may be instrumental for the identification of specific SGAs in cfDNA missed in tumour tissue.
One limitation of targeted sequencing is that analysis is restricted to pre-defined genomic regions, and
therefore only patients who display alterations in the analysed regions can be included [150].

Depth of sequencing may also play a key role in establishing whether SGAs detected are truncal
(ancestral mutation shared by all clones) or subclonal. Chicard et al., in a study of neuroblastoma
patients, detected 17 suspected relapse-specific SNVs using WES. However, upon deeper targeted
sequencing of the primary tumours, these SNVs were identified in minor subclones present at
diagnosis [54].

Sequencing depth is also significant in the case of detection of CNAs including chromosome-level
copy number or structural changes and rearrangements [56]. In a study of multiple paediatric solid
tumours, Klega et al., use ultra-low-pass WGS (ULP-WGS) with a coverage of 0.2x to 1x for detecting
CNAs in cfDNA [78]. Another study demonstrated that WGS with a shallow coverage of 0.1x is
sufficient for reliable analysis of CNAs [151]. This method was also successfully leveraged in metastatic
prostate cancer [18]. This study revealed chromosome arm gains and losses, high level copy number
gains, fusions and SNVs indicated in the pathogenesis of prostate cancer, therefore the timely and
costly deep coverage WGS may be avoidable. Finally, the use of either the same analysis platform for
both cfDNA and tumour or analysing all samples on both platforms may reduce the discordance rates
attributed to differences in sensitivity [55].

3.5. Heterogeneity

Subsequent to fine-tuning of methods and practices for detecting technical and biological artefacts
in cfDNA and tumour tissue comparative studies, the degree of contribution of tumour heterogeneity
and clonal evolution to differences between matched cfDNA and tumour biopsies can be evaluated.

In a study on renal cell carcinoma, it was shown that 65% of SGAs were not detectable in every
region of the primary and metastatic tumours. In addition, intratumoural heterogeneity was observed
in relation to specific tumour suppressor genes [5]. These results suggest the presence of subclones,
within the primary tumour that may compete or collaborate. These subclones may both evolve and
expand through disease progression, leading to divergence of genomic landscapes [152], in addition to
increasing adaptability to the dynamic microenvironment of the tumour [4].

The presence of spatial and temporal tumour heterogeneity has been detected in studies comparing
cfDNA alterations with primary or metastatic tumours. A good example of this is a study conducted in
gastroesophageal adenocarcinoma comparing the genomic profiling of primary and metastatic lesions
by sequencing across multiple cohorts. This study found extensive differences in SGAs including
actionable alterations between primary and metastatic tumours. One key observation was the high
concordance rate of 87.5% for actionable alterations between cfDNA and metastatic tissue that were
originally found to be discordant between primary and metastatic tumours. This valuable observation
may implicate cfDNA in providing a representation of malignant disease, in addition to highlighting
heterogeneity between alterations of primary and metastatic tumours [21,153,154], although high
agreement between primary and metastatic tumour SGAs has been reported in other studies [155,156].

4. The future of cfDNA in precision oncology

Precision oncology applies tailored treatment to individual characteristics of patients by detecting
and monitoring actionable alterations to inform targeted therapy and patient management strategies.
The tumour biopsy remains the most efficient diagnostic tool at present but due to the impracticality of
obtaining multiple tumour samples to capture a larger scope of spatial and temporal heterogeneity [157],
the use of cfDNA has emerged as a viable alternative [158]. The emergence of cfDNA as a clinically
relevant, minimally invasive tool to inform disease burden, acquisition of actionable alterations and
resistance to therapy has been extensively documented [20,28,42]. Despite these promising prospects,
the extent to which cfDNA captures and reflects the SGAs of the tumour and its metastases is not fully
dissected. Furthermore, cfDNA as a diagnostic tool poses limitations; for instance, cfDNA cannot
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replace histologic information obtained from tissue biopsy and the dynamics of cfDNA release may
lead to variable representation of important actionable alterations in the cfDNA population [60–64].
Considering these limitations, many studies suggest a “companion role” for cfDNA in the clinical
diagnostic setting, in which tumour tissue and cfDNA samples could be considered in parallel to
improve the likelihood of early detection of actionable alterations in patients. This approach would
provide a window of opportunity for early detection and initiation of targeted therapy, especially
in cases where actionable alterations are detected in cfDNA and not tumour tissue due to sampling
bias inherent in tissue biopsies [15,36,54,73,89,159]. When tumour biopsies cannot be obtained
safely or tumour tissue is not available, plasma sampling could provide valuable information for
clinical decision-making.

In addition to the utility of cfDNA as a diagnostic tool, clinical resistance to therapy can be
longitudinally monitored in time by analysing serial cfDNA samples [20,160]. Resistance to therapy
can emerge from the acquisition of SGAs in genes and pathways targeted by therapy. Understanding
the mechanism of resistance by analysis of tumour tissue is challenging due to safety issues of
serial tissue biopsies. Hence, the serial mutation profiling based on cfDNA over the duration of
the diseas, may permit the real-time appreciation of the efficacy of systemic therapy and detection
of disease resistance. In multiple studies, cfDNA has been utilised for monitoring of resistance
mutations including EGFR T790M, BRAF, ALK, ERBB2 amplification in NSCLC patients receiving
therapy [15,37,41,73,109,128,161,162]. In a study by Sung et al., longitudinal cfDNA analysis lead
to the detection of EGFR T790M mutation emergence in 28.6% of NSCLC patients receiving EGFR
TKI treatment [36]. Also longitudinal cfDNA analysis has been used in colorectal cancer patients for
monitoring of cetuximab resistance through acquisition of secondary KRAS mutations [139] and also
resistance to antiangiogenic therapies [163].

5. Conclusions

In conclusion, the importance of this study was the review of the feasibility of using cfDNA for
detecting a range of SGAs of tumours across the broad field of solid tumours. Further, concordance
rates of actionable driver alterations across solid tumours were examined. Despite some inconsistencies,
a trend of high concordance rates for these alterations detected in plasma and tumour tissue was
observed. However, due to factors such as clonality and treatment that may affect these rates, we
would suggest for each study to be considered in the specific context of cycle of treatment, method,
cancer type and stage. Actionable alteration status is critical to targeted therapy decision-making and
monitoring treatment response and the promising prospect of leveraging plasma cfDNA for detecting
and monitoring these alterations is clinically relevant. In addition, this study drew examples from
the literature to interrogate the technical challenges that impact agreement rates between tumours
and cfDNA. Fine-tuning of methods and practices is warranted to confidently dissect and distinguish
heterogeneity from artefacts. As more sensitive and affordable sequencing technologies become
available, deep sequencing of cfDNA can provide insight into tumour evolution and monitoring
treatment resistance in several cancers [159].
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