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Abstract

The increase in energy consumption in buildings has gained global con-
cern due to its negative implications on the environment. A major part of
this increase is attributed to human behavioural energy waste, which has
triggered the development of energy simulation models. These models are
used to analyse energy consumption in buildings, study the effect of human
behaviour and test the effectiveness of energy interventions. However, exist-
ing models are limited in simulating realistic and detailed human dynamics,
including occupant interaction with appliances, with each other or with en-
ergy interventions. This detailed interaction is important when simulating
and studying behavioural energy waste.

To overcome the limitations of existing models, this thesis proposes a
complete layered Agent-Based Model (ABM) composed of three layers/
models. The daily behaviour model simulates realistic and detailed be-
haviour of occupants by integrating a Probabilistic Model (PM) in the ABM.
The peer pressure model simulates family-level peer pressure effect on the
energy consumption of the house. This model is underpinned using well-
established human behaviour theories by Leon Festinger – informal social
communication theory, social comparison theory and cognitive dissonance
theory. The messaging intervention model implements and tests a novel
messaging intervention that is proposed in the thesis along with the com-
plete ABM. The intervention is a middle solution between the abstract data
presented by existing energy feedback systems and the automated approach
followed by existing energy management systems. Therefore, it detects and
sends energy waste incidents to occupants who are allowed to take control
of their devices. The proposed intervention is tested in the messaging inter-
vention model, which takes advantage of the two other proposed models.

The undertaken experiments showed that the model is able to overcome
the limitations of exiting models by simulating realistic and detailed human
behaviour dynamics. Besides, the experiments showed that the model can
be used by policy makers to decide how to target family members to achieve
optimal energy saving, thus addressing the world’s concern about increased
energy consumption levels.
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Chapter 1

Introduction

1.1 Preamble

The world is being increasingly concerned about environmental issues in the
last couple of decades. This is due to the continuous increase in global elec-
tricity consumption especially electricity generated from fossil fuels [1]. Be-
sides, with the expected increase in population by 2050 and improvements in
life standards and economic conditions, energy consumption is still expected
to increase rapidly [2]. This rapid and continuous growth of energy con-
sumption has led to several world changes such as increased concentrations
of greenhouse gases [3], and increased global temperature level [4].

These global changes are highly attributed to human actions rather than
natural influences [3]. Specifically actions performed in buildings, knowing
that the buildings sector is the world’s largest energy consuming sector com-
pared to industry, transport, and agriculture sectors [2]. It consumes more
than one third of total worldwide energy consumption and half of its con-
sumed electricity. Additional focus is necessary on the residential sector that
is less understood than other sectors. The other sectors are centralised, highly
regulated, and have expertise in reducing energy consumption, while the res-
idential sector is highly affected by external factors, including the building
structure and materials, human behaviour and privacy issues of data col-
lection [5]. In this sense, several solutions have been proposed to improve
energy efficiency in buildings, including [6], [7]:

• building structural improvements that aim to reduce heating, cooling,
or ventilation consumption,

• technological improvements ranging from smart appliances to com-
plete energy management systems, which help in controlling energy
consumption, and
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• behavioural interventions that aim to motivate occupants to change
their energy consumption behaviour.

Among these solutions, the human behaviour factor is the most influen-
tial as it may reverse the effect of structural and technological improvements
[8], [9]. Knowing that big part of energy consumption in buildings is caused
by behavioural energy waste (e.g. leaving appliances and lights ON while
not in use, or unnecessary heating/cooling in buildings), occupants have a
great potential in reducing energy consumption in buildings [10], [11]. Be-
sides, it has been proven that similar households (in terms of household
composition, economic level, profession, and house structure) resulted in
different energy consumption levels, which is mainly attributed to different
human behaviour characteristics [12]. This necessitates the understanding
of human behaviour aspects, including their effect on energy consumption,
behaviour change and effectiveness of behavioural interventions.

1.2 Research Scope and Problem

In order to understand the effect of human behaviour and test solutions to
reduce energy consumption in buildings, energy simulation models are de-
signed and developed. The main aim of simulation models is to predict
energy consumption at different levels (regional, national, building, house-
hold, etc.). In many cases, they are extended to predict changes in energy
consumption when the affecting factors change (such as economic, atmo-
spheric, technological, or behavioural). The results obtained through sim-
ulation models are highly beneficial for policy makers and governing bodies
to assess energy consumption and decide the needed changes to control and
reduce it [13].

Given the importance of studying the residential energy consumption
sector and the human behaviour effect as presented in the previous section,
this thesis looks into modelling the human behavioural aspect and assessing
energy efficiency interventions through simulation models. Specifically sim-
ulating energy waste caused by occupants and testing interventions that help
them avoid this waste in housheolds. As an alternative to simulation models,
energy interventions and technological solutions can be tested through field
experiments. Field experiments require launching the intervention system in
a real environment, collecting data for a period of time, and observing the
interaction of occupants with the system. This process can be challenging
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in terms of time, cost, and data access opposed to the simulation technique
[14], which motivates the selection of simulation modelling in this reserarch.
Although field experiments allow to capture real user experience, they have
limited experimental variation and can only be studied for a limited period of
time [15]. However, computer simulations allow more varied scenarios and
long time frame for the study. It cannot be denied that simulation models are
limited in capturing all of the psychological aspect of energy interventions,
however, we consider it as a first step for evaluating new ideas that could be
implemented in the future. In this research, we use human behaviour theo-
ries in simulation models to capture psychological aspects at a high level of
granularity.

Energy simulation models can be categorised into top-down and bottom-up
approaches. Top-down approaches predict and study variations in energy
consumption based on economic variables at a high-level (energy sector, city,
region, nation, etc.) rather than low-level (household, individual energy use,
appliance-level, etc.). Thus, this high level energy modelling does not allow
the study of energy solutions, which are applied at the household/building
level [16]. On the other hand, bottom-up approaches build up the energy
consumption of a unit through simulating low-level consumption. One of
the famous bottom-up methods are engineering models that focus on the
physical heating behaviour of buildings. Engineering models are most suit-
able for assessing the effect of structural changes in buildings, but cannot be
used to study the effect of changes in human behaviour. This is because they
model human behaviour in a deterministic way through fixed and estimated
schedules for occupancy (i.e. existence at home) and operation of appliances
[5]. This does not only prevent energy interventions testing, but also leads to
unrealistic human behaviour simulation.

Another bottom-up approach for energy simulation are probabilistic mod-
els, which may be used to overcome the limitation in engineering models
[17]. Probabilistic Models (PMs) generate detailed energy consumption data
(at appliance-level in small time steps) by simulating realistic daily occupants
behaviour (presence in building, activities, and location). This is done by ex-
tracting probability distributions from Time-Use Surveys (TUS), which con-
tain real and fine-grained individual activities in different days of the week.
Detailed and activity-based energy modelling in PMs enables simulating en-
ergy waste and testing energy efficiency improvements, specifically Demand
Side Management (DSM) that target end-users rather than utility providers
or energy transportation [18], [19]. Although PMs are suitable for energy
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waste simulation and energy efficiency solutions, they are computationally
not suitable for simulating human dynamics, which include interaction with
appliances, with other individuals and with energy interventions. PMs fol-
low a staged modelling process, which is capable of reproducing realistic and
detailed occupant activities and energy consumption rather than simulating
dynamic human behaviour that is affected by several personal and environ-
mental factors. Besides, they assume that all occupants have the same and
ideal energy consumption characteristic, while human behaviour is not ideal
and may vary from one person to another [20].

Agent-Based Modelling is another technique used for energy simulation
modelling. It is a bottom-up approach that can be either probabilistic or de-
terministic based on the way it models human behaviour. An Agent-Based
Model (ABM) is composed of a group of interacting agents, which are au-
tonomous software components. Each agent behaves based on its charac-
teristics and a set of rules, and interacts with other agents in the environ-
ment [21]. ABM is used to simulate energy consumption where each agent
represents an energy consumer that causes energy consumption in a build-
ing environment. The amount of consumed energy is then calculated based
on the behavioural characteristics of the energy consumers. For example,
one of the models represent each household as an agent that belongs to one
consumer archetype [22]. The archetype determines the occupancy of the
household and energy awareness level. Another approach is to model agents
at occupant-level and characterise them using average energy consumption
per year [13]. Modelling agents at household-level and using average energy
consumption to characterise occupants lead to high-level energy data gen-
eration and do not allow the simulation of daily activities that cause energy
consumption. This makes these models not suitable for human behavioural
energy waste and occupant-appliance interaction simulation.

Another group of ABMs include occupant-level dynamics and generate
detailed data that is useful for energy waste simulation [23], [24]. However,
the occupancy and activities simulation in these models is extracted using a
uniform distribution in fixed time intervals. This does not serve in simulat-
ing realistic human behaviour that can be more stochastic. Besides, the fact
that these models use hypothetical/small case studies questions the generali-
sation of the results, especially the resulting effectiveness of energy interven-
tions. Therefore, given the above problems presented in existing energy sim-
ulation models, there is a need for a model that can be used to assess energy
interventions by simulating human behaviour energy wastage. This requires
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modelling realistic human behaviour and interaction with appliances.
Realistic occupant behaviour is not only modelled by simulating activities

and interaction with appliances, but also by including the natural human-to-
human interaction, which may affect individual’s behaviour. This is referred
to as peer pressure where individuals’ communication and comparison lead
to behaviour change in a community. This is highly applicable to environ-
mental behaviour, for example, energy interventions proved more efficient
when individuals discussed related issues with each other [25]. ABM has
been used to simulate the peer pressure effect on energy consumption [13],
[26]. The modelling of peer pressure is usually based on established human
behaviour theories that explain the effect of social pressure on the behaviour
of individuals, or may be calibrated using real data.

Existing models mainly focus on studying the effect of peer network struc-
tures on behaviour diffusion and energy consumption in commercial and
residential communities. However, these models may not be used to model
peer pressure in households because the used human behaviour theories and
peer network structures/types are not applicable to family members interac-
tion. In addition, these models do not model energy consumption behaviour
change accurately because occupants are characterised by average energy
consumption per day/year. Therefore the change in this attribute due to peer
pressure may be explained by a change in daily behaviour, energy awareness
(i.e. energy consumption behaviour), or both of them. Separating the daily
behaviour aspect from the energy awareness aspect ensures more realistic
study of peer pressure and energy interventions. Therefore, a new model
that simulate peer pressure among family members is needed while sepa-
rating occupants’ daily behaviour from energy awareness. Besides, human
behaviour change theories that are applicable to family environments need
to be explored to obtain realistic occupants interaction.

In addition to energy consumption and peer pressure simulation, ABM
has been used to test energy solutions, which include energy interventions.
For example, the effect of energy training and workshops was studied in [13]
where the affected individuals are randomly selected. The change in occu-
pants’ behaviour is based on an assumed effectiveness percentage for the
intervention. Similarly, feedback interventions are modelled in [27] where an
asymptotic equation is used with a specified rate of change. These models
assume that the effect of interventions is always the same whatever the char-
acteristics of the occupants and how often they are exposed to them. Whereas
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the interaction of occupants with the interventions differs from one individ-
ual to another. This makes the results of energy interventions not realistic
enough, and does not allow the study of factors affecting them.

Energy Interventions can be applied in different forms, including com-
mitment, goal setting, incentives, feedback. [28]. The most popular and used
intervention approach these days is real-time feedback, especially with the
development of sensing and communication technologies [29]. The purpose
of feedback is to make occupants aware of their energy consumption to al-
low them to control and reduce it. Several research studies have been done
to assess Energy Feedback Systems (EFS) and the interaction of occupants
with them. These studies have shown that feedback systems can be effec-
tive in changing occupants awareness and encouraged them to reduce en-
ergy consumption [30]. However, in many cases, users found difficulty in
understanding the displayed data and knowing what can be done to reduce
consumption [31], because the data are abstract and not related to their daily
practices. Many efforts also worked on supporting the energy consumption
values with context data such as location context [32] or activities context
[33]. Nevertheless, this still requires occupants to analyse the displayed data
to identify the needed actions to conserve energy. Therefore, there is a need
for an energy intervention that not only informs occupants about their energy
consumption, but also guides them to which actions can be done to reduce it.
This service requires sensing technologies and analysis techniques to identify
the causes of high consumption, which is available in Energy Management
Systems (EMS).

EMS provide the monitoring and control infrastructure to enable a cen-
tral control of energy consumption in buildings. Most existing EMS use data
related to occupants (e.g. presence and preferences) and the surrounding en-
vironment to control energy consuming devices on behalf of occupants [34],
[35]. When testing the automated control approach with people, it was found
that users lost the sense of control over their devices, which is proven to be
uncomfortable [36]. Besides, the automation effect may be reversed or at least
reduced by occupants if they are not comfortable with the system’s decisions
[9]. This highlights that a middle-point approach between automatic control
and abstract feedback would be the best solution. In this case, technology
and analysis techniques can be used to obtain actionable feedback by detect-
ing and informing occupants about energy waste, and keeping the control
for them.
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To summarize the above body of literature, the following problems are
identified in existing energy simulation models and energy solutions:

• PMs are not suitable for dynamic human behaviour simulation, and do
not differentiate occupant energy consumption awareness. This makes
it not possible to study energy waste and test energy interventions us-
ing PMs.

• Among existing ABMs, there are models that generate high-level data
and are not activity-based, therefore, they cannot be used to simulate
behavioural energy waste and occupant-appliance interaction.

• Another group of ABMs, are deterministic in simulating occupancy
data, or use uniform distributions in fixed occupancy and activities
time intervals, which may not generate realistic human behaviour.

• Existing ABMs that can simulate energy waste and probabilistic human
behaviour use hypothetical or small case studies, which does not allow
the study of varied scenarios and generalisation of results.

• ABMs that simulate peer pressure in residential and commercial com-
munities cannot be used to simulate family-level peer pressure, and do
not separate occupant daily behaviour simulation from the energy con-
sumption behaviour.

• ABMs that test the effectiveness of energy interventions either assume
the effect of the simulated intervention, or apply the same effect on all
individuals regardless of their characteristics.

• EFS provide energy consumption data that are not enough to inform
occupants’ actions to conserve energy, and EMS follow the approach of
automatic control, which is mostly uncomfortable for humans.

These identified research problems are used to scope the research contri-
butions and aims of this dissertation.

1.3 Research Aims and Objectives

There are two aims of this research. The first aim is to develop an energy
simulation model that can be used by policy makers to assess energy con-
sumption in residential buildings and test the effectiveness of energy inter-
ventions. In order to do so, the model has to simulate human behavioural
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energy waste through modelling realistic occupant-level dynamics, includ-
ing occupants’ interaction with appliances, with each other (i.e. peer pres-
sure) and with energy interventions. The other aim is to design a new energy
intervention mechanism that notifies occupants about energy waste incidents
and enables them to control their consumption. The proposed intervention
is assessed using the developed energy simulation model.

In order to achieve these aims, the following objectives are outlined:

1. Review existing energy simulation models and assess their capability to
simulate realistic human behaviour, energy waste, peer pressure, and
energy interventions in households.

2. Develop and validate a model that simulates detailed energy consump-
tion in residential buildings through simulating realistic human daily
behaviour and energy waste.

3. Explore human behaviour theories that explain the peer pressure effect
on behaviour change, and select the ones that can be used to model
family peer pressure.

4. Develop and validate a model that simulates peer pressure effect on
energy consumption behaviour among family members.

5. Review existing energy feedback and technological solutions (i.e. en-
ergy feedback systems and energy management systems) and assess
their effectiveness in reducing households energy waste.

6. Design an energy messaging intervention that informs occupants about
their energy waste and recommends actions to reduce the waste.

7. Develop a model that implements and assesses the proposed messag-
ing intervention taking advantage of the previously developed models
in objectives 2 and 4.

1.4 Contributions

The first contribution of this thesis is to conduct a thorough review of studies
related to energy simulation modelling. This review includes: (1) top-down
and bottom-up approaches, (2) probabilistic and deterministic approaches,
(3) ABMs and PMs for energy simulation, (4) ABMs for peer pressure sim-
ulation, (5) human behaviour change theories that study the effect of peer
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pressure, (6) ABMs that simulate energy interventions (7) and the energy ef-
ficiency solutions EFS and EMS. These are the most related areas that need to
be reviewed to show the addressed research gap.

In order to simulate realistic human behaviour and detailed energy con-
sumption data, we propose to integrate PMs and ABMs. In this case, the PM
provides the probability distributions that help in simulating realistic daily
occupant behaviour, and the ABM simulates the detailed occupant interac-
tion with appliances, with other occupants, and with energy interventions.
This integration overcomes the limitations in PMs as they cannot be used
for dynamic simulations as explained above. Besides, it supports the ABM
with robust and realistic human behaviour simulations, which is the limita-
tion in existing ABM as aforementioned in the previous section. Therefore,
the second contribution of this thesis is a model that generates fine-grained
and activity-based energy consumption data by integrating a PM in an ABM.
Probability distributions of occupancy and activities data are obtained from
an existing PM by Aerts [37]. The choice of this model is made after a re-
view of existing PMs. In the ABM, every occupant is modelled as an agent
that is characterised by its age and employment type. During the simula-
tion, every agent selects its occupancy and activities based on the probability
distributions from the PM. It also interacts with appliance agents that cause
the energy consumption of the house. To model energy waste, we assign a
personal energy consumption attribute to every occupant agent, which de-
termines how often the occupant performs energy efficiency actions. A set
of experiments are conducted to validate the model and show how it can be
used to assess energy consumption in households. This is done by varying a
number of social parameters such as employment type and household size.

The third contribution of this thesis is to develop a peer pressure model
for family-level interaction. The model is built over the daily behaviour
model, thus takes advantage of the separation of daily behaviour and en-
ergy consumption of occupants. To model realistic occupant interaction, we
utilise Festinger’s theories [38]–[40] that explain social group interaction and
its effect on individual behaviour. These theories were selected as they are
applicable for family-level peer pressure, and can lead to a usable and un-
complicated model while achieving realistic interaction of occupants. The
formalisation of Festinger’s theories is inspired by Granovetter’s Threshold
Model (TM) [41], which is basically aimed at simulating the diffusion of be-
haviour in a community. Therefore, the model is adapted to effectively sim-
ulate family-level peer pressure. The peer pressure model also includes the
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simulation of two types of interventions: (1) individual intervention and (2)
social interventions [42]. These are included as abstract and general interven-
tions to show how the model can be used to test interventions in different
scenarios. The model is validated showing that it reflects the used human
behaviour theories.

The developed daily behaviour and peer pressure models are used to
assess a novel intervention mechanism, which represents the fourth contri-
bution of this thesis. The intervention is considered a practical example of
individual-level interventions simulated in the peer pressure model. It over-
comes the limitations in existing EFS and EMS by informing occupants about
energy waste incidents happening in their house, and allowing them to con-
trol their appliances instead of controlling them automatically. The incidents
are suggested to be forwarded to occupants through their mobile devices. In
order to make the messaging intervention non-intrusive (i.e. does not inter-
rupt and annoy users), we propose a context-aware messaging strategy that
controls the number and time of the messages to be sent. The proposed mes-
saging intervention and strategy are implemented in a third model that is
built upon the daily behaviour and peer pressure models, which represents
the fifth contribution of this thesis. The fine grained and activity-based data
generated by the daily behaviour model enables the testing of the proposed
messaging intervention. A number of experiments are conducted to show
how the model can be used to assess energy interventions. The experiments
also show that the proposed messaging interventions is effective in reducing
energy consumption.

The three models proposed in this thesis can be visualised as a complete
layered ’onion-like’ model. This is to emphasise that each layer (i.e. model) is
built upon the other, and that extra layers can be added to the model when-
ever a new feature is needed. Figure 1.1 gives an illustration of the onion-like
layered model. The daily behaviour model is placed in the core, and the other
layers surround it. The last layer of the model (the messaging intervention
model) is meant to be a customisable layer, where different types of energy
interventions can be modelled, implemented and tested using the other two
layers of the model. More than one intervention can also be added to test the
effectiveness of multiple interventions.

Within the area of modelling, three roles of models can be defined: pre-
dictor models, mediator models, and generator models [43]. Predictor models are
developed when there is a high level of understanding of the real system.
In this case the model provides accurate predictions. When less is known
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FIGURE 1.1: The Proposed Onion-like Layered Agent-based
Model

about the system, the model can play the role of a mediator between theory
and the real world. A mediator model does not reflect the exact behaviour of
the system, but is used to gain insights into its characteristics and behaviour.
The third category of models is generator, where hypotheses and theories are
generated from the model, which are then experimented and validated in real
world. The model developed in this thesis is considered a mediator model.
This is because detailed real data about human interaction with each other
and with interventions can be difficult to obtain. Therefore, the proposed
model uses real data in the core daily behaviour model as it is available from
TUS, and uses human behaviour theories to model occupants interaction.
For the messaging intervention model, real statistics of smartphone posses-
sion and usage are used for the message reception simulation. Behaviour
change due to the energy intervention is simulated based on the actual inter-
action of occupants with the messages and their compliance to it. Therefore,
the proposed model can be used as a mediator to get a clear understanding of
energy consumption in households and assess energy interventions affecting
factors. In light of the obtained results, energy interventions can be deployed
in reality, and real observations are recorded.

1.5 Thesis Outline

The rest of the thesis is organised as follows:
Chapter 2 provides an extensive literature review of energy simulation

modelling. The chapter first gives a general overview of energy simulation
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approaches. Then a more detailed review is done on existing ABMs and
PMs showing how the strengths of each of them overcome the limitations
of the other. ABMs that model peer pressure effect are also reviewed in this
chapter along with human behaviour change theories that explain the social
effect on peoples’ behaviour. The chapter also reviews the energy solutions
EFS and EMS, and corresponding ABMs that are used to test these solutions.
It presents the argument of automated and human controlled approaches
to highlight the need for a middle-point energy intervention. The chapter is
concluded by summarising all reviewed ABMs comparing their different fea-
tures and showing the features of the proposed complete model. The review
in this chapter covers objectives 1, 3, and 5 outlined in section 1.3.

The core daily behaviour model is presented in Chapter 3. The ratio-
nale of selecting the existing PM is given first showing its unique features
compared to other PMs. After that, the details of the proposed ABM are
explained. The validation of the model is presented next and a number of ex-
periments are conducted to show the effect of various social parameters on
the consumption of households. The results of the experiments are discussed
last giving the insights gained. Chapter 3 fulfils objective 2 of the thesis.

Chapter 4 proposes the peer pressure model that is composed of two sub-
models: (1) the behaviour change sub-model, and (2) the energy intervention
sub-model. The behaviour change sub-model formalises Festinger’s theo-
ries and Granovetter’s TM. The energy intervention sub-model simulates the
occupant-level and family-level interventions. Experiments are presented in
this chapter to validate the proposed model, and study the effect of peer pres-
sure, energy interventions, and social parameters on the energy consumption
of the house. Objective 4 is covered in this chapter.

The new messaging intervention mechanism and the model that tests it
are proposed in Chapter 5. The chapter includes an overview of appliance
types that may be controlled using the intervention, the message pushing
strategy and the factors that affect the energy consumption and messaging
compliance. Then, technologies and technique needed to obtain the messag-
ing intervention in reality are presented. Next, the messaging intervention
model and the proposed strategy are formalised. At last, general interven-
tion and detailed strategy results are presented after a set of experiments.
This chapter satisfies objectives 6 and 7.

Finally, Chapter 6 concludes the thesis by summarising its contributions
and highlighting future directions to go further with this research.
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Figure 1.2 shows the structure of the thesis with the flow of output from
each chapter to the other.

FIGURE 1.2: Thesis Structure
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Chapter 2

Energy Simulation Modelling: A
Review

In light of the challenges presented in the previous chapter regarding existing
energy simulation models and energy efficiency solutions (i.e. Energy Feed-
back Systems (EFS) and Energy Management Systems (EMS)), this chapter
presents an in-depth literature review of energy consumption models, hu-
man behaviour change theories, EFS and EMS. The review of existing energy
models is done to assess the capability of these models to simulate realis-
tic human behaviour, study energy waste, model peer pressure and assess
energy interventions. Human behaviour change theories that explain peer
pressure are presented to select the ones suitable for family-level interaction
simulation. In addition, EFS and EMS are reviewed to assess their capability
to reduce energy consumption in households.

The structure of this chapter is driven by the main contributions of the
thesis where each of the Sections 2.2, 2.3 and 2.4 are related to the chapters
3, 4 and 5, respectively. Section 2.1 presents a general review of existing ap-
proaches and technologies used for energy simulation modelling. It contex-
tualises probabilistic and agent-based models in the wider categorisation of
these approaches and explains the rationale of selecting them. Then, a thor-
ough review of existing Agent-Based Models (ABMs) and Probabilistic Mod-
els (PMs) is presented in Section 2.2, which shows strengths and limitations
of these modelling techniques, and shows how integrating them overcomes
the limitations of others. Next, Section 2.3 refers to ABMs that model peer
pressure, and shows the need for a new peer pressure ABM at the family
members interaction level. A number of human behaviour theories are also
presented to explain the rationale of selecting the theories that were adopted
in the proposed model. Section 2.4 reviews a number of models that test
the effectiveness of energy solutions that help in reducing/controlling en-
ergy consumption. Besides, it presents a review of existing EFS and EMS
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highlighting limitations in these systems and presenting the argument of au-
tomated and human controlled approaches.

In the review of existing ABMs, it will be noticed that most of the studies
will be cited several times in different sections of this chapter. This is because
every section tackles the models from a different perspective. More Specif-
ically, section 2.2.1 focuses on the usage of ABM as a general technique for
energy consumption simulation and compares the way of modelling energy
consumption behaviour and the level of detail the model can produce. Sec-
tion 2.3.1 focuses on ABMs that model peer pressure. Section 2.4.1 presents
ABM that simulate the effect of policies, technologies and interventions on
occupant behaviour and energy consumption. Finally, section 2.5 presents
a summary of the previous sections and combines all referenced ABMs in
one comparison table, which shows the features implemented in these mod-
els and how the proposed layered model combines the strengths of existing
models.

2.1 Models for Energy Consumption Simulation

The purpose of energy simulation models is to predict energy demand at
macro-level (national and regional), and/or determine the change in con-
sumption at micro-level (household/appliance) after structural or technolog-
ical improvements [5]. This information can inform policy makers’ decisions
to take actions in order to control/reduce energy consumption. Different ap-
proaches and techniques exist in the domain of building simulations, and
each has its own purpose, strengths and limitations. Figure 2.1 shows the
categories of existing approaches and models that will be discussed below.

Building energy simulation models are categorised into top-down and bottom-
up approaches. This categorisation distinguishes the level of detail the model
starts with to get the total energy consumption of the residential sector [5].
Top-down approaches study the effect of general variables that are mostly
economic such as gross domestic progress, fuel prices, weather conditions,
etc. [16]. They study the effect of these general variables to estimate the
energy consumption of the sector as a whole, without studying energy con-
sumption at occupant, household, or group of households level. The aim of
top-down approaches is mainly to estimate energy supply. The strength of
this type of modelling is that they require highly aggregated data, which can
be easily obtained nationally and globally. However, this whole-sector level
of study makes it difficult to identify the effect of household-level changes
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FIGURE 2.1: Energy Simulation Approaches and Models Cate-
gorisation

such as behavioural interventions, energy efficiency technologies and struc-
tural improvements [5], [16]. This makes it infeasible to use top-down
approaches for detailed energy consumption simulation and intervention
studies.

Bottom-up approaches obtain the energy consumption of a building or a
city by calculating the consumption at appliance, individual end use, house-
hold, or group of households level, which are then aggregated to get the
total consumption. Within bottom-up approaches, statistical and engineer-
ing methods are the most famous. Statistical methods use different machine
learning techniques to predict the energy consumption based on historical
data [6]. This is done by correlating different input variables with energy
consumption [44]. These input variables are expected to affect energy con-
sumption, and include weather data (temperature, humidity, solar radiation,
wind speed, precipitation, etc.), occupancy data (occupant existence, time of
day, calendars, etc.) and rarely building characteristics data [45]. Techniques
that are usually used as statistical methods include regression, genetic algo-
rithms, artificial neural networks, support vector machines [5], [6], [44], [45].
Although statistical methods are known to be simple to use, accurate and
do not require detailed data, they cannot be used to evaluate energy effi-
ciency improvements and technologies [16]. This is because they only aim
to predict future consumption based on the input variables, and any change
in other factors such as new technologies or occupant behaviour necessitates
re-training the model [45]. One advantage of statistical models is that they
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incorporate the effect of occupant behaviour. They do so either implicitly
through the historical data, which embed occupant behaviour [5], or explic-
itly by including behavioural variables like average usage time of appliances
[46], or occupancy data [47]. However, statistical models still lack the flexi-
bility to model the interaction between occupants and appliances, and activ-
ities of occupants that cause the energy consumption. Therefore, they cannot
serve in modelling energy waste due to occupant behaviour.

The other group of bottom-up approaches are engineering (or building
physics) models. Unlike statistical methods, engineering models do not de-
pend on historical data, but define detailed thermodynamic equations to de-
fine the physical behaviour of heat transfer [5], [44]. The input variables for
these models include weather conditions, building geometry and thermal
characteristics, occupant schedules and the available Heating Ventilation and
Air Conditioning (HVAC) systems, appliances and lighting used along with
their operation schedules [16], [48]. Examples of software that use the en-
gineering models are EnergyPlus, ESP-r, DOE-2, eQuest among others [44],
[48]. The advantage of these models is that they are flexible enough to be
used to assess the effectiveness of new technologies and energy efficiency
improvements [5], [16]. This is because they define the equations that de-
termine the consumption based on the input of the model and do not rely
on historical data. The main purpose of these models is to predict thermal
energy consumption and assess occupant comfort, however, appliances and
lighting consumption is poorly represented and inaccurately predicted [49].
The main reason for this is that occupant behaviour, including occupancy
and appliance usage, is modelled using simple and fixed estimates [5], [48].
This fixed representation does not reflect the actual occupant behaviour and
usage of appliances. Therefore, there is a need for a bottom-up approach that
defines the internal determinants of energy consumption, like engineering
models, and represents realistic and detailed human behaviour.

The challenge in engineering models leads to another categorisation of
energy models that simulate human behaviour. They can be either determin-
istic or probabilistic (stochastic). Deterministic models define the behaviour
of the model components in a predictable and repeatable way, which is the
method used in bottom-up engineering models. However, this does not re-
flect realistic human behaviour which can be stochastic and unpredictable
[50]. To resolve this issue, probabilistic approaches were proposed to reflect



2.2. Agent-based and Probabilistic Models for Energy Consumption
Simulation

19

realistic human behaviour. Probabilistic Models (PMs) are bottom-up mod-
els that simulate high resolution data (in terms of time, appliances and oc-
cupant activities and location) using probability distributions extracted from
real data, which are then used to calculate the energy consumption of the
household [51]. These detailed data are appropriate for modelling energy
waste caused by human behaviour. However, some computational draw-
backs in PMs exist, which make them unsuitable for human interaction and
intervention simulation (these drawbacks will be detailed in the next sec-
tion). Therefore we utilise agent-based modelling technique. ABMs are mainly
used for dynamic human behaviour simulation where human agents can ad-
just their behaviour based on their characteristics and the surrounding envi-
ronment. They can be categorised under the bottom-up approaches because
they produce appliance/building-level consumption. In ABM, human be-
haviour can be modelled in a deterministic or probabilistic way.

In this research, we integrate probabilistic and agent-based modelling ap-
proaches combining the strengths of each of them. The next section reviews
existing PMs and ABMs highlighting their limitations and showing how inte-
grating them can overcome these limitations, which otherwise persist, when
they work separately.

2.2 Agent-based and Probabilistic Models for En-

ergy Consumption Simulation

2.2.1 Agent-based Models

Agent-based modelling started becoming popular in late 1990’s as an alterna-
tive to typical simulation techniques (such as discrete-event simulation and
differential equations) to explain interactive system dynamics [21], [43]. This
is because of its ability to simulate the interaction of small units that compose
a complex system in a simple way. ABM is defined as a computational tech-
nique, which models a group of autonomous software components called
agents [21]. Agents are characterised by a set of states and rules, which deter-
mine the agent’s behaviour [52]. Rules of behaviour are defined for agents
that are allowed to act and interact in the environment in order to observe
changes at the micro (low-level and individual) and macro-levels (high-level
and environment) [52], [53]. In ABM, the agent has the following properties:
(1) autonomy (not controlled externally but by its own rules), (2) social abil-
ity (interacts with other agents in the environment), (3) reactivity (responds
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to changes in the environment) and (4) pro-activity (uses the rules, interac-
tions and reactions to reach a specific goal) [54]. ABM is best used (1) when
the agent’s behaviour is dynamic (i.e. affected by the surrounding environ-
ment), (2) when its location is not fixed and (3) when its characteristics are
heterogeneous [21], [53]. These features of agents and agent-based models,
make ABM the most appropriate technique to model human behaviour and
study the factors that influence it [26]. This explains why ABM is chosen as
the main modelling technique in this thesis. Besides, it is useful to simulate
energy waste caused by human behaviour, occupant interaction and peer
pressure and energy interventions. These features of the developed ABM
will be detailed throughout this manuscript.

ABM has been applied in different application domains, including biol-
ogy [55], economics [56], social sciences [57]. Energy consumption behaviour
is an example of application domains where ABM have been used to model
energy consumption in both residential, commercial and office buildings for
different purposes. In such models, occupants are modelled as agents that
spend time in a building/house environment, and cause the consumption of
energy. In order to add the human behaviour aspect, the models characterise
occupant agents by a personal attribute that determines its level of energy
consumption. The way these models simulate the occupant agent behaviour
and define their personal characteristics affects the level of details the model
can generate.

Among existing ABM, Azar and Menassa [58] propose a model that adds
occupants’ energy consumption characteristics and interactions to engineer-
ing models. In their model, every occupant agent is characterised as a low,
medium, or high consumer by which the occupant’s level of energy con-
sumption is determined. The energy consumption of the building is pro-
duced using the energy simulation tool eQuest based on the number of con-
sumer types in the building. The consumer type attribute is used to deter-
mine the blinds position, periods for operating lights and equipment and
hot water consumption. These values are derived based on some assump-
tions, existing studies on energy consumption patterns and suggestions from
building standards. Although this work is among the first models that add
occupant characteristics to energy simulation tools, it does not overcome the
limitation in typical engineering energy simulation tools. This is because the
model generates the agent occupancy and activities in a deterministic way
through general and fixed schedules.
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Another approach to characterise occupants’ energy consumption in build-
ings is varying the average daily/weekly/yearly consumption per occupant.
This is applied by Chen et al. [26] and Anderson et al. [7] who model occu-
pants’ interaction and behaviour change while varying the types and struc-
tures of peer networks. Similarly, Azar and Menassa [13], [59] and Anderson
and Lee [14] study the effect of social networks on the results of interventions
in office and residential buildings. Characterising occupants with average
energy consumption per day/week/year does not only reflect the awareness
of occupants, but also how long they spend in the building, what appliances
they use and what activities they do. Hence, it is hard to distinguish if high
energy consumption is due to low awareness or daily occupancy/activities.
The energy consumption of the building in these models is calculated using
the number of occupants and their energy consumption levels.

Jensen et al. [27] propose a framework, which is implemented in an ABM,
for the assessment of behaviour change feedback devices. The framework
combines the direct impact of feedback devices in households, the diffusion
of devices to other households and the diffusion of behaviour change be-
yond these households. Focusing on the heating consumption, households
are characterised by the heating set point temperature as an indication of
household behaviour rather than the amount of energy consumed. There-
fore, this model does not produce energy consumption data and cannot be
used to produce appliance energy consumption.

The previously cited models [7], [13], [14], [26], [27], [59] may not be cat-
egorised into probabilistic or deterministic, because they do not simulate oc-
cupancy and activities of occupants (i.e. not activity-based). Therefore, these
models do not produce detailed data (occupant activities and location and
consumption data at appliance level), which are necessary to simulate, de-
tect and determine the causes of energy waste.

Zhang et al. [22] develop an ABM to study households’ interaction with
smart meters and the experience of using them. In this model, every agent
represents one household with one of four consumer archetypes. These arche-
types are developed based on survey data to determine the occupancy of the
household (time periods of leaving and getting back home), attitude toward
the smart meter and energy saving awareness level. The occupancy of the
household is simulated using a uniform distribution in the time periods of
leaving the home and getting back. This kind of modelling imposes a num-
ber of limitations. First, representing agents as a whole household makes it
impossible to model occupant-appliance interaction and study the effect of
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occupant behaviour on the consumption of the family. Second, it causes the
loss of occupant-level dynamics in terms of occupancy, where it is assumed
that all of the occupants leave home and get back at the same time. Third,
although it may be considered that the occupancy of the house is modelled in
a probabilistic way, it is based on fixed time periods. This affects the accuracy
of the occupancy data and does not reflect the stochastic nature of human be-
haviour. These three limitations are added to the limitations mentioned for
the aforementioned models [7], [13], [14], [26], [27], [59], where the model is
not activity-based and does not produce detailed data.

Among the existing ABMs, there is a number of models that are activity-
based, capture the occupant-appliance interaction and produce detailed data.
For example, SMACH is a model that aims to simulate realistic behaviour of
family members in households [60]. Its inputs are the duration of tasks, num-
ber of times they are repeated, preferred times to perform them, their type
(individual or group task) and the location they take place in. The time of
performing tasks can be affected by external factors, such as energy price
change, thus affecting the energy consumption of the house. The model
is capable of generating detailed energy consumption data based on occu-
pant activity and capturing the occupant-appliance interaction. However, as
the main aim of it is to produce reactive and realistic human agents, it does
not explicitly define a personal energy consumption characteristic per agent.
Thus, it cannot be used to simulate human behavioural energy waste. Be-
sides, the model was validated with ergonomics experts and a small sample
of data composed of 10 households [61], which may not be enough to prove
the robustness of the model.

Other models define an explicit attribute to simulate the human behavioural
aspect. For example, Zhang et al. [62] simulate occupant activities in a uni-
versity building to test the effectiveness of an automated light management
strategy opposed to a manual one. Every occupant agent has an energy
awareness attribute between 0 and 100, which is determined by the stereo-
type that the agent belongs to among: (1) Environment champion, (2) Energy
saver, (3) Regular user and (4) Big user. Similarly, Carmenate et al. [23] de-
veloped an ABM to determine the causes of behavioural energy waste in an
office environment. The model simulates the complex interaction among oc-
cupants, building units and appliances. By including this interaction level,
they highlighted the effect of both building structure and occupant aware-
ness on the energy consumption of the building. The energy consumption of
the office is generated based on the activities that occupant agents perform
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in the building and their energy literacy level. In the same vein, Lin et al.
[24] and Lin et al. [63] simulate electricity consumption in a university office
through an ABM to test the effect of pricing mechanisms on the behaviour
of occupants and energy consumption. Similar to [62], four consumer types
were defined to determine the probability that the occupants switch lights
and computers OFF in response to the price change. The advantage of these
models [23], [24], [62], [63] is that they simulate the detailed movement of
occupants in the building and direct interaction between the occupants and
appliances/lights. This enables the study of the factors that affect energy
consumption within the building environment whether they are physical, so-
cial, or others. However, they hold the same limitation as in [22] where they
simulate the occupancy, movement and activities of the occupants using a
uniform distribution in specified time intervals.

One existing model proposed by Klein et al. [64] uses real and time-based
probability distributions to generate occupant behaviour in the building. The
authors propose an agent-based system to study the effect of multiple en-
ergy management and control strategies. The system controls both the build-
ing devices and occupants by changing meeting locations such that the en-
ergy consumption is reduced and occupant comfort is enhanced. Occupant
agents are defined by temperature preferences, likelihood of turning devices
ON and OFF, as well as the level of energy consciousness and intimacy. Al-
though the probabilistic approach is used in this study, the model is built
upon a small case study composed of 242 occupants between permanent and
temporary employees. The same applies to the other models where [24] uses
the data of 237 participants, [62] uses the data of 143 participants and [23]
uses a hypothetical case study. This small number of participants used in
these models raises questions about the accuracy of the results, limits the
variation of parameters and offers energy efficiency strategies suited only for
the studied environments. Otherwise, using large samples of data allows for
generating more realistic data and enables more varied parameters, thus pro-
ducing more generalised conclusions. This leads us to the necessity of PMs,
which are used to reproduce realistic human behaviour from large samples
of data and using highly dimensional and parametrised probability distribu-
tions. This type of modelling will be detailed in the next section (2.2.2) and
section 2.2.3 compares both modelling techniques (PM and ABM) and shows
how integrating them overcomes the corresponding limitations of the two
techniques.
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2.2.2 Probabilistic Models

Probabilistic modelling approach is a bottom-up approach that models res-
idential demand profile by calculating the probability that an appliance is
turned On or OFF at specific times of the day. The main purpose of PMs is
to enhance the prediction of energy demand in residential buildings [17], as
well as testing Demand Side Management (DSM) approaches [18]. This is
because they can capture the variation of human behaviour, including unex-
plained emergent changes in actions [17] unlike the ABMs cited in the pre-
vious section that use fixed schedules for occupants [22]–[24], [62], [63]. Dif-
ferent techniques are used in PM such as Monte Carlo simulation [65], non-
homogeneous first-order Markov chain [18], [66], [67], higher-order Markov
chain [17], [51], logistic regression [50], [68], as well as hybrid approaches
that combine more than one technique [19], [69]. PMs have been been used
for several energy related applications and simulations, including occupancy
[18], [66], windows opening [68], daily activities [67], [70], lighting consump-
tion [71], disaggregated appliance consumption [19], [37], [70].

The most common approach in exiting models is simulating occupants’
existence and activities to predict when appliances are turned ON/OFF [17],
[51], [70], [72]. This is done with the help of Time-Use Surveys (TUS) which
are 24-hour diaries filled-in by thousands of participants for a number of
days. The participants record the activities they do throughout the day every
period of time. Another approach that was proposed recently is generat-
ing appliance-level consumption directly from the consumption data with-
out simulating occupancy and activities [19]. This approach is not useful
when studying energy waste due to the fact that it is only possible to study
energy waste when the information about the occupants’ activities, location
and schedule is available. Therefore, the PMs that we refer to in this thesis
are those that generate occupant presence, activities and appliance-level con-
sumption along with any other detail that may be produced or derived from
TUS.

Using large amounts of data from TUS has several advantages that range
from accuracy, variety and re-usability of the developed models. It is well
known that higher amounts of input data used in simulations lead to more
accurate models, thus more realistic simulated data. Besides, TUS offer a
good representation of social, economic and demographic factors that influ-
ence energy consumption such as income, household size, occupant ages or
employment types [17], [37], [73]. In addition, the level of granularity pro-
vided by TUS is useful to simulate and detect energy waste, and study the
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changes in occupant behavioural characteristics [51].
Although PMs produce detailed data, which are useful when modelling

energy waste, the existing models only aim to reproduce realistic occupant
activities and energy consumption. Therefore, they are not capable of cap-
turing how occupants react to changes in their environment [74]. From the
computational point of view, PMs follow a staged modelling process where
occupancy and activity data are generated, and then used to generate the re-
sulting electricity consumption in a following stage. This staged process can-
not be used to model human behaviour, which is dynamic and can change
based on several individual and environmental attributes [21]. For example,
behavioural changes due to social interaction, communication and influence
cannot be modelled using PMs.

Existing PMs assume that energy is consumed only when occupants are
available at home or doing the activity [37], [70], [72]. They assume that all
occupants are the same and consume energy in an rationale way. However,
human behaviour is more complex and unlikely to be the same, which can be
one of the most influential factors of energy consumption in buildings [13].
For example, more than 50% of energy consumption in commercial buildings
is consumed during unoccupied hours, and even in occupied hours, lights
and appliances are left ON when not in use [10]. In addition, the ‘greenness’
of household behaviour is considered one of the three dimensions when cat-
egorising residential energy consumers [20]. This dimension can be high or
low, where low consumers are those who have high energy awareness and
avoid energy waste. On the other hand, high consumers are those who have
low energy awareness and waste energy. Ignoring the different levels of hu-
man energy awareness by PMs have caused an underestimation of the real
energy consumption data in some existing models. Richardson et al. [70]
noticed that there is more consumption during night in the real data com-
pared to the simulated one, and attributed this to occupants leaving lights
ON when they sleep. Similarly, Aerts [37] realised that their PM failed to pro-
duce high energy consumption levels, and explained that the reason could be
behavioural energy waste.
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2.2.3 Integrating Probabilistic and Agent-based Models

Since PMs utilise large samples of data from TUS, it is guaranteed that the
produced data are realistic and possible to study the effect of social param-
eters on the energy consumption of the house. PMs also provide highly de-
tailed data at the level of appliance (including different types and number of
appliances) and at the level of occupants (including their activity, location,
usage of appliances). Therefore, PMs can overcome the limitations that ex-
isted in some of the ABMs that use small case studies and generate high level
data usually at building level. On the other side, ABMs overcome the staged
approach in PMs by enabling dynamic human behaviour modelling where
occupant agents take decisions based on their personal characteristics and
the external state of the environment. Besides, occupants’ peer pressure can
be simulated in ABM, unlike PMs that do not provide the means by which
peer pressure can be modelled. Furthermore, various energy awareness lev-
els can be modelled at the occupant level in ABM, which enables the study of
energy awareness in a family setting. Table 2.1 shows a comparison between
PMs and ABMs, where the limitations and strengths of each technique are
presented. The table motivates the need for an approach that cascades ABM
and PM, thus overcoming limitations of both models when they are sepa-
rated.

A similar methodology has been tested in Chapman et al. [75] who use
a number of exiting PMs in an ABM. The used stochastic models include a
presence model, activity model, windows usage model, lighting model and
heat-gain model. The purpose of the developed ABM is to feed engineering
models (such as EnergyPlus) with realistic human behaviour data, therefore,
cannot generate detailed energy consumptin data. Although the model uses
PMs in their ABM, they do not take advantage of the detailed activities data
in PMs to simulate the operation of appliances. Besides, they do not differ-
entiate between occupant energy consumption behaviour assuming that all
individuals behave the same. However, in this thesis, we use the detailed ac-
tivities and location data from PMs to simulate energy waste and test energy
interventions. Similarly, the research group that developed SMACH [60], has
recently suggested to calibrate their model through PMs [74]. However, the
same limitation exists as in the previous model, where it cannot be used to
simulate energy waste as mentioned in Section 2.2.1.

In this thesis, one of the existing PMs is selected to simulate the realis-
tic daily behaviour data. The rationale behind this selection is detailed in
Section 3.1 of Chapter 3. The methodology and probability distributions of
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TABLE 2.1: Probabilistic and Agent-based Models Comparison

Probabilistic Models Agent-based Models

+ Include large amounts of data - Use small case studies

+ Produce detailed activity and en-
ergy consumption data

- Produce high level data

- Cannot simulate dynamic be-
haviour

+ Most suitable to model dynamic
behaviour

- Assume same and ideal human be-
haviour

+ Enable having occupants with het-
erogeneous characteristics

- Cannot simulate social interaction
and pressure

+ Suitable to simulate social interac-
tion and pressure

the existing PM are cascaded in an ABM. Compared to existing ABMs, the
cascaded model generates fine-grained data, including occupant daily occu-
pancy, behaviour, location and interaction with appliances. The methodol-
ogy of cascading ABMs and PM is presented in Chapter 3.

2.3 Peer Pressure

Peer pressure is the influence that members of the same community have on
each other, which leads to change in behaviour. It is triggered by the exis-
tence of social norms, which represent the common accepted behaviour by a
society, where disobeying this behaviour results in a social punishment [76].
In the domain of energy interventions, it has been proven that the reach and
impact of energy interventions can be increased by spreading the individu-
als’ knowledge in the community [25]. Besides, peer pressure effect is shown
to be the most influential reason of environmental behaviour change [77].
This is because information received from personal relationships are better
recognised and remembered than other sources of information [78]. There-
fore, it is highly recommended that energy interventions take advantage of
peer pressure to promote a desired behaviour.

In this thesis, we add the peer pressure effect to the simulation model as
one of the factors that affect human behaviour and compliance to interven-
tions. This helps make the model more realistic and reflects the normal hu-
man behaviour. The next section presents an overview of existing ABMs that
simulate peer pressure and shows the need for a new peer pressure model
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for family environments. Peer pressure modelling has to be based on hu-
man behaviour theories, especially those that explain behaviour change due
to social norms. Therefore, we select the theories that are compatible with
peer pressure in families and lead to a usable model. Section 2.3.2 presents
related human behaviour theories and explains the rationale of selecting the
adopted theories.

2.3.1 Agent-based Models for Peer Pressure Simulation

As mentioned in Section 2.2.1, ABM is the most suitable technique for hu-
man behaviour simulation, especially when modelling social interaction [79].
This is because behaviour is defined at the individual level to observe the
emergent collective behaviour at the group-level. ABMs have been used
to study peer pressure effect on one-time decisions and/or continuous be-
haviour that need to be practised all the time [27], [80]. One-time decision
models study the adoption of energy efficient appliances/technologies or re-
newable sources such as natural gas vehicles [81], electric vehicles [82] and
efficient lighting [83]. The focus in this thesis is on simulating continuous be-
haviour rather than one-time decisions, where individual behaviour change
rules are defined to study the emergent behaviour at a family level.

Among existing ABMs reviewed in Section 2.2.1, there is a number of
models that simulate occupant behaviour change due to peer effect. Azar
and Menassa [58] propose a model that simulate the effect of peer pressure
and energy conservation workshops on the energy consumption of a com-
mercial building. Occupant agents change their behaviour based on the level
of influence of individuals and the number of occupants in each level of con-
sumption (low, medium and high). However, the used behaviour change
model is not theoretically grounded, but rather logically grounded. Models
that involve human behaviour simulations need to be validated using huge
amounts of real data, and if not available, need to be based on well estab-
lished and accepted human behaviour theories [15].

Another ABM that simulates social influence is proposed by Chen et al.
[26] who explore the effect of peer network structures on the energy con-
sumption in a residential community. Their results evidenced that targeting
individuals with strong relationships in peer networks is better to encourage
energy savings than targeting those with more relationships. In their model,
the occupant agent decreases its consumption when the consumption of con-
nected occupants is less than that of the agent. On the other hand, increasing
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the agent’s consumption is based on a constant probability that represents the
percentage of occupants who increase their consumption with no effect from
peers. However, it is more logical that peer effect happens in both directions–
so that high energy consumers may affect others and cause them to increase
their consumption in the same way low energy consumers may affect oth-
ers. Network structures in an office environment were also studied by Azar
and Menassa [13] where their model uses the relative agreement theory, which
is applied in a community of heterogeneous culture and values. Thus, be-
haviour change starts between close individuals. However, in a family en-
vironment, which is the case in the current thesis, it is common that family
members have similar culture and values. Therefore, other behaviour change
theories need to be applied, which will be detailed in the next section. In ad-
dition, Anderson et al. [7] proved through an ABM that network types have
an influence on the environmental behaviour change when using a feedback
intervention and introducing an intervening environmental champion. The
model in [7] was also used in [27] to implement a framework that combines
technology diffusion, impact of feedback devices and behaviour diffusion in
a neighbourhood. Peer networks were also studied by Anderson and Lee [14]
to test the effectiveness of feedback interventions and identify best strategies
of which occupants to target and when to target them.

Studies in [7], [13], [14], [26], [27] vary the structure and type of peer net-
works based on the fact that not all individuals in a residential or office com-
munity are connected. While in a family environment, family members are
always connected at least at night when they get back to the same house. Be-
sides, these models characterise occupants by average daily/weekly/yearly
energy consumption. As mentioned in Section 2.2.1, this attribute affects the
time the occupants spend in the building, the appliances they use and the
activities they do in the building, as well as their energy awareness. There-
fore, when simulating peer effect and energy interventions, the change of
this attribute does not always mean that the occupants are changing their
energy awareness. To overcome this limitation, it is necessary to separate
daily human occupancy and behaviour simulation, from occupant interac-
tion with appliances and energy awareness. This separation can ensure a
more realistic peer pressure simulation, because the detailed interaction of
the occupants in the building can be extracted from occupant location and
activities. It is worth to mention that this feature is very rarely implemented
in existing models that simulate peer pressure, while most of the models that
separate occupant daily behaviour and energy awareness do not simulate
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peer pressure. The layered model proposed in this thesis combines both fea-
tures in one model. Details about the peer pressure model will be discussed
in Chapter 4.

2.3.2 Human Behaviour Change Theories

Given that none of the models cited in the previous section are suited for
simulating peer pressure at the family level, this section reviews human be-
haviour change theories and select the ones that will be used in our model.
Several theories have been proposed in social related domains to explain hu-
man behaviour and human behaviour change. Due to the large number of
theories, it would not be possible to make a comprehensive review of these
theories. Therefore, we include well-established ones focusing on those that
include the effect of social norms on the behaviour of individuals. The pre-
sented theories are assessed based on how much they focus on and explain
the effect of peer pressure and whether they can be formalised in a computa-
tional model. Figure 2.2 shows illustrations of the presented theories.

The social cognitive theory [84] (see Figure 2.2a) is based on the idea that hu-
man beings learn by observation. This learning is a result of the interaction
between personal and environmental factors and the behaviour itself. Per-
sonal factors include the individual’s cognitive abilities such as belief, emo-
tion and attitude. Environmental factors include external context attributes
that affect behaviour such as social norms and physical resources. The the-
ory includes an effect of observational learning when individuals adopt a
behaviour by watching others performing an action and observing its conse-
quences (positive or negative).

The Theory of Reasoned Action (TRA) [85] (see Figure 2.2b) points that the
probability of performing a behaviour increases by the increase of the be-
haviour intention. Intention is in turn affected by the person’s attitude, which
represents the individual’s perception toward the behaviour and subjective
norms, which refer to the pressure performed by the surrounding society
causing a perception of what is accepted and not accepted. In 1985, the TRA
was extended and the Theory of Planned Behaviour (TPB) was created [86] (see
Figure 2.2c). The TPB adds the effect of perceived behavioural control to atti-
tude and subjective norms. Behavioural control is defined as the perception
of how feasible the behaviour is, which affects both the behaviour intention
and the behaviour itself.
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(A) Social
Cognitive

Theory

(B) Theory of Rea-
soned Action

(C) Theory
of Planned

Behaviour

(D) Goal-Directed Be-
haviour Model

(E) Norm-Activation Theory

FIGURE 2.2: Illustrations of the Human Behaviour Theories

Based on the TRA and TPB, the model of goal-directed behaviour was cre-
ated [87] (see Figure 2.2d). The model states that behaviour intention is
not directly affected by attitude, subjective norms and behavioural control.
Therefore, they introduce the concept of desire in between intention and the
affecting factors. The model also adds the effect of anticipated goal achieve-
ment and goal failure as additional determinants of desire.

The norm-activation theory [88] (see Figure 2.2e) is mainly aimed at ex-
plaining environmental behaviour or any behaviour that benefits the soci-
ety. It states that the environmental behaviour is triggered by activating per-
sonal norms, awareness of consequences, ascription of responsibility and so-
cial norms. Social norms usually affect personal norms which activate the
behaviour when there is high attention for outcomes (awareness of conse-
quences) for behaving pro-socially and responsibility for not behaving pro-
socially.
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Although all of the presented theories include the effect of social norms
on the behaviour of individuals, embedding these theories in an ABM re-
sults in a highly parametrised and complex model. Complex models im-
pose a number of challenges, including difficulty to relate external factors
to the agent rules and difficulty to understand and validate the obtained re-
sults [15], which affect the usability of the model. For example, the Consumat
model is a conceptual meta-model that formalises a number of human be-
haviour theories (some of which are briefly presented above) to determine
consumer behaviour [15]. The model is based on the idea that consumers en-
gage in one of four cognitive processes, including repetition, imitation, delib-
eration and social comparison. The choice of one of these processes depends
on the micro and macro-level driving factors of human behaviour. Although
this model formalises the theories using simple mathematical formulas (sub-
traction, weighted multiplication, asymptotic diminishing, etc.), the model
includes at least 20 parameters that need to be initialised before starting the
simulation. Besides, the model is targeted for consumer one-time behaviour
such as product purchase rather than continuous consumption behaviour
that is practised all days as the case in this thesis.

In order to overcome these challenges, we follow the approach of includ-
ing a small number of parameters that encapsulate the factors that affect the
behaviour. This is specially done because the aim of adding peer pressure
effect is to make the simulation more realistic while achieving the main pur-
pose of the simulation i.e. simulating energy waste and testing technological
energy interventions. To achieve this, we explore theories developed by Leon
Festinger [38]–[40] which are considered one of the classical pillars of social
norm formation and social groups interaction [89]. The difference between
Festinger theories and the theories presented above is that Festinger theo-
ries are generic enough to allow more space for testing and further develop-
ment [38]. Therefore, these theories do not identify very specific factors for
social group behaviour, however, they explain general informal interaction
that happen in social groups. This makes them possible to formalise with-
out using high number of parameters. In this case, it is necessary to keep a
range of uncertainty by introducing some stochastic parameters to simulate
the factors encapsulated in the parameters.

The first theory introduced by Festinger is the Informal Social Communica-
tion Theory (ISCT) [38]. The theory postulates that the need for uniformity is
a major source for communication in a social group. The communication oc-
curs about conflicting opinions, beliefs and attitudes within the group and is
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an intermediary action that influences the opinion or behaviour of the group
members to achieve uniformity. Festinger also identifies that the the pressure
towards communication increases when (1) the magnitude of the conflict in-
creases; (2) the relevance of the topic — to be discussed — to the functioning
of the group increases; and (3) the connection between the group members
increases, which makes it difficult for a member who holds a different opin-
ion than the others to simply leave the group.

These factors are highly applicable to family environments as it is ex-
pected that family members are strongly connected and hold the same group
goals. The ISCT was then developed further to obtain the social comparison
theory [39]. The theory states that humans, in their nature, tend to evaluate
their opinions and abilities by comparing them to those of others. Festinger
also discussed that the factors that increase the communication in a social
group identified in the ISCT also increase the comparison in the group, and
thus lead to behaviour change.

Another theory that Festinger developed is the the Cognitive Dissonance
Theory (CDT) is mainly focused on the explanation of individuals’ behaviour
when their cognitive elements are inconsistent or dissonant. These cogni-
tive elements, such as knowledge, opinions, beliefs, or attitudes, are the fac-
tors that drive the individual’s behaviour. Based on the fact that dissonance
is psychologically uncomfortable, the theory proves that humans try to re-
duce it by adapting their behaviour or changing one or more of the cognitive
elements. What makes this theory applicable to the case of peer pressure
is that one of the major sources of dissonance is social groups. Therefore,
observing others doing a behaviour that is very different from the individ-
ual’s behaviour or spreading a general belief that a specific behaviour is not
accepted, drives members of a social group to adapt their behaviour, thus
reducing the uncomfortable dissonance. Festinger considers that as the mag-
nitude of dissonance increases, it is expected that the tendency to reduce it
will increase, which is compatible with the ideas in the previously mentioned
theories [38], [39]. The magnitude of dissonance is affected by (1) the num-
ber of others who hold a different behaviour; and (2) the level of difference
between the individuals’ behaviours.

In order to formalise Festinger theories, we use an approach similar to
Granovetter’s Threshold Model (TM) [41] which is one of the collective be-
haviour models. Threshold modelling is one of the common approaches used
to simulate consumer adoption behaviour [90]. Granovetter uses threshold
modelling to explain the diffusion of a behaviour due to social contagion.
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Contagion is defined as the diffusion of a behaviour in a group due to the im-
itation of actions of others. The model follows a simple decision rule, where
individuals choose to adopt a behaviour when the percentage of others in
the same group/community doing the behaviour exceeds a threshold. This
threshold represents a complex combination of norms, values, motives, be-
liefs, etc. Once the threshold is exceeded, it is considered that the net benefit
of the behaviour exceeds the perceived costs. Bearing in mind that the main
idea of collective behaviour does not contradict Festinger theories, and in
order to keep the model simple, Granovetter’s TM is adopted to formalise
Festinger’s theories. The formalisation of these theories and the details of
the peer pressure model are presented in Section 4.1 of Chapter 4.

2.4 Energy Interventions

Having discussed ABMs that simulate energy consumption and peer pres-
sure effect, this section focuses on energy interventions, which aim to reduce
energy consumption, and ABMs that test energy interventions.

One of the approaches to address the energy consumption problem in
buildings is to influence energy consumption behaviour through interven-
tions. Interventions are defined as the interruption of peoples’ normal be-
haviour [91] by changing their values, attitudes, beliefs and knowledge to
motivate them to adopt an energy efficient behaviour. Existing interven-
tions include commitment, goal setting, information (workshops, mass me-
dia campaigns and home audits), modelling, incentives and feedback [28].
The effect of these methods on peoples’ knowledge and energy consumption
varies based on the intervention mechanism, and combining them can result
in even more reduction [28].

Energy interventions may directly or indirectly affect occupant behaviour,
while the resulting behaviour can be a one-time action/decision, or a con-
tinuous behaviour that needs to be practised all the time. Therefore, tar-
gets of interventions include (1) raising awareness and pro-environmental
motivation of energy consumers, (2) encouraging one-time energy efficiency
practices such as buying energy efficient appliances, (3) using renewable en-
ergy, (4) encouraging energy conservation (turn off appliances, line drying,
etc.), (5) eliminating stand-by consumption and (6) applying demand side re-
sponse, which involves reducing consumption during peak-times [42]. The
intervention introduced and tested in this thesis targets continuous direct
behaviour, including energy conservation and demand side management
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practices. Furthermore, it is considered an enhancement of feedback sys-
tems among the different intervention types. The proposed messaging inter-
vention is tested in an ABM, therefore, we present a comparison of existing
ABMs that evaluate energy interventions in the next section. Then, we ex-
plain in details the purpose, types and limitations of existing Energy Feed-
back Systems (EFS) and Energy Management Systems (EMS) showing the
need for an approach that provides more sensible information for occupants
while keeping the control for them.

2.4.1 Agent-Based Models for Energy Intervention Simula-

tion

ABM has been used to simulate the effect of external factors on the behaviour
and energy consumption of occupants. These external factors may include
energy management policies, technologies and interventions. For example,
Zhang et al. [62] compare the effectiveness of energy solutions, including
an automated lighting strategy and a human-controlled one. Although this
model includes an energy awareness attribute to simulate realistic lighting
behaviour, the energy solution they propose and test is not aimed at enhanc-
ing the energy awareness of the occupants, but only testing the automated
strategy. Therefore, it may not be categorised as an energy intervention. An
energy intervention approach is proposed in [64], where the research aims
to test a number of building management and control approaches. One of
the tested approaches includes a proactive meeting relocation capability. It
suggests changing meeting rooms to smaller rooms or rooms that were pre-
viously occupied (i.e. previously heated) to save energy consumption in a
university building. The occupant agents may or may not accept the reloca-
tion suggestion based on the meeting constraints and their energy conscious-
ness. However, the model does not capture the change of occupant energy
consciousness/behaviour in effect of the proactive approach after several in-
cidents of relocation. This contradicts the aim of energy interventions, which
is changing occupant actions and decisions to reduce their consumption.

Zhang et al. [22] simulate the learning experience of household agents as
a result of smart meters usage in the United Kingdom. For this purpose, they
use the behavioural learning theory where households learn through repe-
tition and conditioning. The formula is used to determine when the agents
change from inexperienced to experienced smart meter users. In this model,
energy consumer agents are modelled as a whole household that owns and



36 Chapter 2. Energy Simulation Modelling: A Review

uses the smart meter. This type of modelling not only affects the realistic
occupancy and behaviour simulation as mentioned in Section 2.2.1, but also
causes the loss of individual level dynamics where the intervention may af-
fect household members in different ways.

The ABMs in [13], [58] study the effect of discrete interventions such as
energy training and workshops along with peer pressure effect, which helps
the diffusion of the green behaviour in office buildings. As mentioned in
Section 2.2.1, these models do not generate detailed occupancy and activities
of occupants. Therefore, the only way to simulate the discrete intervention
is by randomly selecting the affected individuals, and changing the energy
consumption level based on the assumed success percentage of the interven-
tion. Besides, it is not possible to simulate accurately the effect of continuous
interventions such as feedback or messaging interventions.

One of the models that simulate continuous interventions is proposed by
Anderson and Lee [14], who compare the effect of individual and compar-
ative – to neighbours for example – feedback. The model stochastically de-
termines the possibility of checking the feedback, which causes change in
occupants’ behaviour. Feedback interventions are also studied in Jensen et
al. [27], where the intervention effect is modelled using an asymptotic equa-
tion. The behaviour level is changed toward an incentivised target with a
specific rate, which represents the intensity of the intervention. Similarly, Lin
et al. [24] and Lin et al. [63] evaluate the effectiveness of tiered pricing in office
buildings. The change of the energy awareness of occupants depends on the
level of change in the price. Although these models [14], [24], [27], [63] sim-
ulate continuous interventions at occupant level, the used behaviour change
equations assume the same effect of the intervention in all cases. However,
the effectiveness of interventions may vary based on how often the occupant
uses the intervention, whether he/she is interested in it and his/her social
and psychological characteristics. The ABM proposed in this thesis simu-
lates realistic interaction of occupants with the energy intervention based on
their social characteristics and interest in it, and changes the awareness of the
occupants based on how often they complied to it.

2.4.2 Energy Feedback Systems

As mentioned previously, feedback is one of the interventions that aims to
help occupants save energy. Consuming energy is considered abstract and
invisible as it is used indirectly to perform daily tasks [92]. Therefore, it
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is agreed that giving people information about the amount they are using
makes them aware of their consumption and ultimately allows them to con-
trol it. Direct feedback is available in various forms, including meter read-
ing, direct and interactive feedback via monitors, pay-as-you go meters and
plug/ appliance meters [91]. However, with the advancements in sensor and
communication technologies, direct and interactive feedback is now the most
common [29]. For example, in response to the European Commission plan
to reduce 20% of the Union’s energy consumption [93], the United Kingdom
has installed 8.5 million smart meters (along with feedback displays) up to
2017 [94].

Energy Feedback Systems (EFS) have been widely researched to study
their effectiveness and users’ interaction with them. For example, the ef-
fectiveness of simple energy displays (stationary and portable) was investi-
gated in [30]. The study shows that energy displays resulted in an average
of 11% energy reduction and increased the energy awareness of occupants.
Besides, commercial feedback systems were assessed qualitatively in [95] by
asking people about the motivation of owning display systems, ways of us-
age, observed behaviour change and limitations of usage. Along the same
lines, Karjalainen [96] systematically reviewed the different ways of present-
ing feedback. Several user interface prototypes were developed with varied
comparison types, units of display, disaggregation levels, presentation types
and time scales. They found that presentation of energy costs, appliance con-
sumption and historical comparison are the most preferred by users.

Although these studies showed that EFS play a role in increasing occu-
pant awareness, many studies highlighted a number of limitations. For ex-
ample, Strengers [31] observed that a considerable number of users struggled
in understanding the displayed data and converting them to meaningful in-
formation. This is because the displayed data are absolute and not related
to the surrounding context. The same conclusion was reported in [97] where
people wanted more context, such as occupancy and temperature to inter-
pret high/low consumption levels. In response to this challenge, a num-
ber of studies suggest to relate energy consumption to daily activities either
by annotating consumption graphs with activities [33], or using calendars
as an artefact to help understand consumption [98]. Similarly, Castelli et al.
[32] propose to use the location of appliances and occupants, which they call
‘room context’. This helps identify energy wastage, match consumption with
occupant presence and link consumption with everyday activities.

Despite that these efforts make more meaningful information, they still
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view users as micro-resource managers [31], [99] who are expected to anal-
yse the displayed data and change their behaviour– such that it meets their
preferences, everyday needs and financial and environmental goals. Based
on this, Pullinger et al. [99] identify one more specification for EFS, which
is explaining what the information means in terms of behaviour change. In
addition to detailed energy consumption data, this service requires collect-
ing environmental data and Artificial Intelligence (AI) analysis techniques,
which are not provided by existing EFS. In this thesis, we try to fill-in this
gap by proposing the idea of an energy messaging intervention, which pro-
vides occupants with sensible messages that tell them what to do to reduce
their consumption, instead of only giving them the amount of energy they
are using. We identify the technologies and techniques available to collect
and analyse the required data, and test the effectiveness of this approach in
an energy simulation model in Sections 5.1.4 and 5.2 of Chapter 5.

2.4.3 Energy Management Systems

Another approach to help understand and handle energy consumption in
buildings are Energy Management Systems (EMS), which provide the infras-
tructure to monitor and control energy consumption. They are defined as
the monitoring software, data collection hardware and communication sys-
tems for the purpose of storing, analysing and displaying the energy data of
buildings [100]. These systems are often integrated with smart homes and
home automation systems for the purpose of energy efficiency [101]. As an
example, Kim et al. [102] propose a home energy management system based
on universal plug-and-play architecture. The main purpose of the system is
to connect home appliances and mobile devices in one platform for the pur-
pose of adjusting energy consumption based on real-time prices. The system
automatically controls the activity or quality of service of appliances based
on electricity price and a policy agreed on between the customer and the
provider. The presented architecture allows users to control appliances using
mobile devices. Similarly, Jahn et al. [103] present a smart home that embeds
energy efficiency. It provides an intuitive interface that shows appliance us-
age, accumulated usage and cost on mobile devices and allows remote con-
trol of appliances by the users. These two systems are good examples of the
available platforms that help connect appliances and remote control services,
however, they do not depend on any environmental data to ensure occupant
comfort and understanding of the displayed consumption data.
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To overcome this limitation, a number of EMS were proposed taking ad-
vantage of Wireless Sensor Networkss (WSN) [104] and Internet of Things
(IoT) [105]. These systems utilise data collected from environmental sensors
(temperature, humidity, illuminance, etc.), user input (activities, preferences,
etc.) and appliance-level energy consumption. We refer to these types of
data as context data. AI algorithms are used to infer and analyse these data
to detect the situation of the occupants and help them make decisions that
comply with their comfort. An example of these approaches is by Dong
and Andrews [34] who propose an algorithm to model and predict occupant
presence using rich data patterns, including motion, illuminance, tempera-
ture, humidity. The predicted occupancy data are then used to set a dynamic
schedule for cooling temperature while maintaining occupant comfort. Sim-
ilarly, Agarwal et al. [35] provide the specifications of an accurate, low-cost
and easily deployable wireless sensor system, which is also used to control
the Heating Ventilation and Air Conditioning (HVAC) system of buildings.

EMS are not only designed to monitor and control HVAC systems, but
also for other everyday appliances. One of these systems is GreenBuilding
[106], [107], which combines monitoring and control of energy consumption.
GreenBuilding provides a sensor-based infrastructure to reduce standby con-
sumption, schedule flexible tasks and control appliances to eliminate energy
waste. These services are done based on rules set by the user and data
collected by environmental sensors. A general architecture of an EMS that
makes use of WSN is Sensor9K [104], the aim of which is to ease the develop-
ment of energy efficiency applications. The architecture is composed of two
layers: (1) a physical layer that contains the sensors/actuators and ensures
the communication among the components of the system, and (2) a middle-
ware layer that offers the basic functionalities of an EMS (such as monitoring
consumption, detecting user presence and profiling preferences), which can
then be used by application developers. The architecture was tested with
a temperature control case study. Within the effort to test the applicability
of smart grids, PowerMatching City [108] was established as a living lab
demonstration project. Smart grids refer to the infrastructure that ensures
two way communication between providers and end-users to balance the
supply and demand of energy. PowerMatching City project includes an en-
ergy management system that automatically controls the operation of ap-
pliances to minimise costs and take advantage of renewable energy. More
recently, an energy aware smart home system was proposed in [105]. The
system controls lighting and appliance consumption automatically based on
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occupant presence and natural lighting. The system ensures efficient com-
munication among the system components through IoT technologies.

In relation to the messaging intervention proposed in this thesis, existing
EMS provide evidence of enabling technologies and algorithms necessary
to produce the real-time sensible feedback. However, the main approach
in most of these systems is to utilise the collected data to act on behalf of
the occupant. They follow the school of thought that considers that smart
home control systems should be fully-automated, hence, it should predict
user’s changing preferences while maintaining comfort and achieving sav-
ings [109]. Another school of thought considers a smart home as a system
that engages its users in the energy management process, thus having well-
informed and aware occupants. The argument of these two schools is de-
tailed in the next section.

2.4.4 Automated vs. Human Controlled Approaches

While reviewing existing literature on energy management, it has been no-
ticed that most EMS approaches utilise AI and sensor technologies to au-
tomate the control of energy consumption of the house/building. The de-
velopment of such systems is stimulated based on the fact that encouraging
people to adopt energy efficient behaviour is not an easy job, therefore, act-
ing on behalf of them, while maintaining their comfort and minimising costs,
will improve user experience. However, automatic control has been proven
to take-off the sense of control from people, which is mostly uncomfortable
for humans [36]. For example, when asking users about their experience
when using PowerMacthing City EMS [108], they reported the lack of con-
trol over the system. Participants preferred to interact with the system and
actively participate in its decisions. Based on this feedback, the PowerMa-
ctching City project designers added semi-automatic and manual appliances
control in its second phase [110]. They gave people advice on the best time
to turn on appliances. In this case, users reported that they gained back the
sense of control over appliances, and with time they learned how to achieve
their energy efficiency goals. Thus, empowering users with information of
how to reduce their consumption maintains their feel of comfort.

Apart from losing the sense of control, automation is not always the best
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solution for energy efficiency. For example, Zhang et al. [62] found that in-
creasing the awareness of occupants is more efficient than applying an auto-
mated light management strategy. In addition, human behaviour may some-
times oppose the automation like opening windows and doors when the
heating is ON, or manually putting heavy appliances ON in peak times [111].
This is especially true if it happens that automatic actions interfere with oc-
cupants’ important life functions [109]. Besides, installing technologies with-
out informing users how to take advantage of them causes the limitation of
energy reduction [112]. This applies specifically when the technology does
not require user involvement and is usually referred to as rebound effect.
When people perceive that a technology has the potential to save energy, it
is proven that they change their behaviour to achieve more comfort, which
leads to less energy saving than expected [9], [111]. Therefore, giving occu-
pants enough information of how to use the technologies and raising their
awareness is more reliable than having a fully automated system.

Along these lines, Leake et al. [113] suggest a human centred computing
paradigm to design smart homes, which uses a simple and transparent learn-
ing process. Therefore, in order to maintain human trust in the system and
obtain informed and capable occupants, the system will need to interact with
the occupants and provide explanations of its decisions. In addition, Geelen
et al. [112] recommends to provide feedback that shows the occupants which
behaviours need to be changed.

In this thesis, we highlight the need for an intervention that takes ad-
vantage of technologies used in exiting EMS to trigger occupants’ actions to
reduce energy consumption. We suggest not to automatically control appli-
ances, but rather to detect energy wastage and inform users about it. In this
case, users are supported with information about what and when actions are
needed to control and reduce their consumption. The details of this inter-
vention and its simulation in the proposed ABM are presented in Chapter
5.

2.5 Summary

This chapter has presented a review of existing approaches for simulating
energy consumption. It showed the need for a probabilistic bottom-up ap-
proach, which can be used to simulate realistic and detailed energy consump-
tion of occupants in residential buildings. Since PMs has a number of com-
putational limitations that prevents dynamic human behaviour simulation,
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we suggest that integrating them with ABMs overcomes these limitations.
Besides, using PMs fills-in the gap that existed in some ABMs in terms of
detailed data generation and using small samples of data.

A thorough review of existing ABMs was also presented in different sec-
tions of this chapter. Table 2.2 summarises the features of these models and
compares them among each other. Based on the performed literature re-
view, we propose an ABM that combines the strengths of existing models
and structures them in a three layered model: the Daily Behaviour Model, the
Peer Pressure Model and the Messaging Intervention Model (see Figure 1.1 of
Chapter 1).

The daily behaviour model is the core model that generates occupant
daily behaviour. This model is activity-based and produces detailed indi-
vidual occupancy, activities and energy consumption (every 10 minutes at
appliance level) opposed to [7], [13], [14], [22], [26], [27], [58], [59], which
generate high level data (at building/household level, every day, week, or
year) and are not activity-based. This is possible because the core layer of the
ABM is integrated with a PM while some other models [22]–[24], [58], [62],
[63] generate occupancy and activity data in fixed time intervals. The used
PM is based on large amounts of data from TUS, which overcome the limita-
tions in ABMs that use small or hypothetical case studies [23], [24], [62], [64].
The detailed data generated by the core model enable real-time detection of
energy waste and identification of its causes. Besides, the energy behaviour
attribute is modelled at the occupant-level rather than household-level as in
[22].

Another layer included in this model is a family level peer pressure model.
The model simulates the social pressure among family members compared
to exiting models [7], [13], [14], [26], [27], which focus on office and residen-
tial communities rather than family level interaction. The proposed model
characterises occupants using a personal energy behaviour attribute that is
separated from daily behaviour simulation. This ensures that the change in
this attribute due to peer pressure or energy interventions does not affect
the individual’s daily occupancy and activities compared to existing models
that do not make this separation [7], [13], [14], [26], [27]. The peer pressure
model is based on well established human behaviour theories by Leon Fes-
tinger [38]–[40], which explain the effect of social norms on individual in-
teraction and behaviour. These theories were chosen as they are applicable
to family-level environments, and lead to a usable model (i.e. a model with
small number of parameters) while ensuring realistic simulation of pressure
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effect.
This chapter also presented the argument of automated vs. human con-

trolled energy solutions by exploring limitations in energy feedback systems
and energy management systems. Based on this review, we highlighted the
need for actionable energy interventions. Instead of just displaying abstract
data as in typical EFS or taking action on behalf of occupants as in EMS, these
interventions are preferred to be in a middle-point position. This is done by
taking advantage of existing technologies/techniques (i.e. monitoring, con-
trolling and analysing energy consumption and context data) for informing
occupants about actions they can take to reduce their energy consumption,
while keeping the control for them. In Chapter 5, we present technologies
and techniques that enable the implementation of a messaging intervention,
which detects energy waste incidents and forward them to occupants in real-
time allowing them to take action to avoid energy waste. Besides, a strat-
egy is proposed in this chapter to ensure that the occupants are not annoyed
and interrupted by the energy messages. This strategy is context-aware and
based on the data produced by the core daily behaviour model. Then, we
use the developed ABM to asses the proposed intervention and strategy in
the family environment.

Therefore, the third layer of the model is a messaging intervention model.
This layer is considered a customisable layer where different types of inter-
ventions can be plugged in to test their effectiveness. Comparing the mes-
saging intervention model with existing ABMs, our simulated intervention
is considered a continuous intervention opposed to other peer pressure mod-
els that model discrete interventions [13], [58], where the effect of the inter-
vention needs to be determined beforehand and applied randomly. With the
level of details of data generated by the core model, it is possible to model
a realistic effect of continuous interventions. This is based on how often the
occupants have used the intervention and their energy awareness about us-
ing it. The result of the intervention is also affected by the occupant age,
employment type and family composition, which in turn affect their interac-
tion with it. This is unlike existing ABMs [14], [24], [27], [63] that assume the
same effect in all cases.

The last row of Table 2.2 shows that the proposed layered ABM combines
the strengths of existing models. Bringing these feature in one model has not
been attempted in any of the previous models. The following three chap-
ters address each of the layers of the model as follows : Chapter 3 proposes
the Daily Behaviour Model, Chapter 4 presents the Peer Pressure Model and
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Chapter 5 discusses the Messaging Intervention Model.
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TABLE 2.2: Exiting Agent-Based Models Comparison and Features

Authors [Refer-
ence]

Activity-
based

Probabilistic
(P) / Determin-
istic (D) / Not
Applicable (-)

Captures
the
occupant-
appliance
interaction

Generates
detailed
data

Models hu-
man energy
consumption
behavioural
aspect

Simulates
peer pres-
sure

Evaluates
energy
interven-
tions

Azar and Menassa
[58]

7 (D) 7 7 3 3 3

Azar and Menassa
[13]; Azar and
Menassa [59]

7 - 7 7 3 3 3

Anderson et al. [7];
Anderson and Lee
[14]

7 - 7 7 3 3 3

Jensen et al. [27] 7 - 7 7 3 3 3

Chen et al. [26] 7 - 7 7 3 3 7

Zhang et al. [22] 7 (D) 7 7 3 7 3

Zhang et al. [62] 3 (D) 3 3 3 7 7

Carmenate et al.
[23]

3 (D) 3 3 3 7 7
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Lin et al. [63]; Lin et
al. [24]

3 (D) 3 3 3 7 3

Klein et al. [64] 3 (P) 3 3 3 7 3

Amouroux et al.
[60]; Quentin et al.
[61]; Quentin et al.
[74]

3 (P) 3 3 7 7 3

Chapman et al. [75] 3 (P) 7 7 7 7 7

The Proposed Lay-
ered ABM

3 (P) 3 3 3 3 3
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Chapter 3

The Daily Behaviour Model

This chapter proposes the first model – the core daily behaviour model –
of the complete Agent-Based Model (ABM) proposed in this thesis (Figure
3.1). The daily behaviour model simulates realistic and detailed daily human
behaviour data, which enable studying energy waste.

FIGURE 3.1: The Core Daily Behaviour Model from the Layered
ABM

The proposed model integrates a Probabilistic Model (PM) in an ABM. To
design this process of integration, we model it as a cascaded process where
the first stage is obtaining probability distributions from realistic data to sim-
ulate the occupant daily behaviour, and the second stage is using these dis-
tributions in an ABM to simulate the dynamic interaction of occupants and
appliances as shown in Figure 3.2. The inputs to this model are the occu-
pants’ employment type, age and personal energy rating, which are going to
be explained in the following sections.

The following section presents the PM that was selected from existing
literature to be used in the developed ABM. Next, the ABM formalisation and
design are discussed, followed by the experiments and discussion sections.
Findings reported in this chapter are published in [114] and [115].
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FIGURE 3.2: Cascaded Probabilistic Model and Agent-based
Model

3.1 The Selected Probabilistic Model

To get the realistic probability distributions, we take advantage of an existing
PM that is developed by Aerts [17],[37]. Aerts model is one of the recent
models that has advantages over other PMs and satisfies the requirements
of modelling energy waste. The model was selected because it includes the
following features:

• obtains more realistic duration of activities and occupancy states (op-
posed to [70] and [72]) by separating the transition and duration prob-
abilities of a state/activity;

• enables multitasking where occupants can be doing more than one ac-
tivity at a time (opposed to [72]);

• includes nine activities that are linked to energy usage opposed to [51]
that includes activities that may not be connected to energy consump-
tion;

• simulates household dynamics by distinguishing between household
tasks that are done by one member of the family, and personal activities
that can be done and shared by more than one occupant at a time;

• uses seven patterns of typical occupancy behaviour based on age and
employment type, which results in more realistic occupancy data;

• models daily occupancy and activities depending on time, previous
state, occupant’s age, employment type, work routine and day type
(Weekday/Saturday/Sunday) opposed to [18], [67], [70], which are based
on time and previous state only; and
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• assigns different types and number of appliances to households based
on income level and household composition (used interchangeably with
household type), which includes the number of occupants, their ages
and employment type.

Aerts [37], [116] model generates realistic occupancy and activity data us-
ing higher order Markov Process. The process is based on transition prob-
ability from one state to another, and the probability distribution for the
duration of the state. Probability Distribution Functions (PDFs) were ex-
tracted from Belgian time-use survey and household budget survey collected
in 2005, which include 6400 respondents from 3455 households, and the En-
ergy Consumption Survey (ECS) collected in 2012 for households energy
consumption and appliances ownership. Table 3.1 shows the size of the sam-
ple that was selected from the surveys grouped by household composition.

TABLE 3.1: Data Sample Grouped by Household Composition

Household Composition Sample Size
1 Adult 1276
1 Adult with Children 179
2 Adults 366
2 Adults with Children 721
Total 2542

The PDFs are generated based on several social and environmental pa-
rameters such as occupant ages and employment types, household composi-
tion and day of week. The model is composed of three stages (1) occupancy
model, (2) activity model, (3) and electricity model.

The occupancy and activity models with their associated PDFs are used
in the ABM to produce realistic human behaviour. The PM by Aerts [17],
[37], [117] was re-implemented to be embedded in the agent-based platform.
The three models in the existing PM are implemented consecutively such that
one-year data is generated from the occupancy model, which are passed as
the input to the activity model. Then, the activity model generates one-year
data for the electricity model, which generates the electricity consumption of
the house. This is the process referred to as the staged modelling process in
Section 2.2.2, which is not suitable for intervention testing. This process is
broken down in the implemented ABM where the activities and energy con-
sumption behaviour of occupants are simulated per time step (10 minutes).
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This allows for intervention modelling where changes in the occupant en-
ergy consumption behaviour and activities should be simulated as a result of
the intervention.

In order to model behavioural energy waste, modifications were made
mainly to the electricity model. Two attributes were added to the model: (1)
an attribute that determines the personal energy consumption behaviour of
occupants, and (2) a location attribute that determines the rooms that the oc-
cupants are using. These attributes affect when occupants turn appliances
and lights ON or OFF. Thus, behavioural energy waste is modelled by com-
bining data about which appliances are ON, what activities are being per-
formed and what locations/rooms are occupied, along with other environ-
mental factors that will be explained in Section 3.2.3.

The following section discusses the components of the proposed ABM
(i.e. ‘Occupant Agents’, ‘Appliance Agents’ and the ‘Environment’ that the
agents act in). Details about the usage of the probability distributions in the
ABM are presented where necessary.

3.2 Model Formalisation and Design

3.2.1 Appliance Agents

Electric appliances in the house are modelled as dummy agents that react
to occupant agents. The types and number of appliances in the house are
obtained from appliances PDFs in the PM. During the simulation initialisa-
tion, the household is assigned a number of appliances along with their types
based on the household composition and income. The appliance type identi-
fies the amount of energy that the appliance consumes, which is represented
using the variable inUseConsumption measured in Watt (W).

Every appliance is located in a room (r) of the house environment that is
defined in the next section. Lights are assigned to every room, and computers
and televisions are assigned to living rooms and bedrooms. Occupant agents
change appliances state from ON to OFF or vice versa based on the activities
they perform in the house. Therefore, every appliance (a) has a set of occu-
pants using it (denoted Oa). The appliance agent is implemented as a state
chart as shown in Figure 3.3. Occupant agents communicate with appliance
agents through messages that are received by the state chart. The state chart
is executed every time step by processing the received messages. It changes
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FIGURE 3.3: Appliance Agent State chart

the state of the appliance (ON or OFF) accordingly and assigns the amount
of energy the appliance is consuming (ct,d) every time step t and day d.

The set of appliance agents A in the house can be formalised as follows:

• A is the set of appliances in the house: For every appliance a ∈ A, a
is defined by the tuple <inUseConsumption, r, Oa, C>, where inUseC-
onsumption is the amount of energy used when the device is ON, r is
the room that the appliance is in, Oa is the set of occupants using the
appliance and C is the consumption array of the appliance over a whole
year, where every ct,d ∈ C = {0,inUseConsumption} based on its ON-OFF
state.

3.2.2 The House Environment

Occupant agents live and interact in a house environment composed of a
number of rooms, each having a set of appliances (Ar) and occupants using
the room (Or). The number of rooms affects the mobility and number of loca-
tions that the occupants can be in, and consequently the energy consumption.
Therefore, the number of rooms was obtained from the ’Income and Living
Conditions Database‘ by Eurostat [118]. The database contains data about
the average number of rooms per person by household composition and in-
come group. Table 3.2 1 was obtained after extracting the Belgian data in year
2012 2. Every household was assigned one kitchen, one living room, at least
one bedroom and at least one bathroom. Dining and laundry/utility rooms
were added in high income houses when necessary. The size of basic rooms
was set to 20 m2 based on the average room size in Belgium [119]. The room
size was used to calculate the amount of light consumed in the every room
as the lights consumption is expressed in W/m2.

In terms of the day and time, occupant agents are aware of the day of the
week (d) distinguishing between weekdays, Saturdays and Sundays, time of

1 The number of rooms refers to separate spaces intended for habitation, including
kitchens, bedrooms, living rooms, dining rooms. Therefore, other spaces such as bathrooms,
toilets and passageways are not counted as rooms

2 The year 2012 was selected because the probabilistic model used the 2012 Belgian ECS
to get the income and appliances data
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TABLE 3.2: Average number of rooms as function of household
type and income group

Household Type/Income <e1000 >e1000
One adult younger than 65 years 3 4
One adult older than 65 years 4 5
One adult with one or two children 4 4
Two adults younger than 65 years 5 5
Two adults older than 65 years 5 6
Two adults with one child 4 5
Two adults with two children 5 6

day in a 10-minute time step (t) and the amount of external daylight (daylightt,d)
measured in lux (lx).

The simulation environment E can be defined using the two sets T and R,
where:

• T is a one-year simulation time defined by the triplet <t, d, daylightt,d>
where t ∈ [1-144] is a 10-minute time step in 24 hours, d is the day of
the week, which is defined by its number (1 to 7) and type (weekday,
Saturday and Sunday) and daylightt,d is the amount of external daylight
at every time step and day.
• R is the set of rooms in the house: For every room r ∈ R, r is defined by

the triplet <size, Ar, Or>, where size is the size of the room, Ar is the set
of appliances in the room and Or is the set of occupants that are in the
room.

3.2.3 Occupant Agents

Initially, occupant ages and employment types are given as input for the
model. Employment types include: full time job, part time job, unemployed,
retired and school. Occupants whose age is between 12 and 17 are given the
employment type school by default, and similarly those who are 65 and above
are given the employment type retired. Another input attribute of the model
is the Personal Energy Rating (PER) attribute, which determines how often
occupants follow energy saving actions. The income group of the household
is assigned using the income PDF in the PM. Next, the appliances and rooms
of the house are determined as functions of the household composition and
income group. At this stage, all occupant agents are initialised and start do-
ing activities in the house. At every time step, the occupant agents change
the state of the environment by performing activities, changing their location
and using the electric appliances.
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Occupant Daily and Weekly Behaviour

In order to simulate occupancy of members, two parameters are needed be-
fore starting to generate detailed data: (1) work routine, and (2) occupancy
pattern. Working occupants (full time and part-time) can belong to one of
ten work routines (wr) to decide working days and duration of work per day.
The work routines include different forms of standard, extended and part-
time work weeks (for more details about work routines refer to [37]). The
selection of the work routine depends on the age and employment type of
the working occupant. Every day, and based on the occupant age, employ-
ment type, day type and work routine for working occupants, the occupant
agent chooses one occupancy pattern opd for the day. The PM includes seven
occupancy patterns which were used in [37], [116].

Every time step, the occupant agent either selects a new occupancy state
ost,d and a duration (dr) for the state based on the PDF in the PM, or decre-
ments the duration of an already running occupancy state. The occupant
agent’s action to select new occupancy state is defined by Formulae (3.1)

OS : opd, os(t−1),d, t→ ost,d

opd, ost,d, t→ dr ,
(3.1)

where ost,d is the new occupancy state, ost,d ∈ {Away, Sleeping, Active} (Away:
when the occupant is not at home, Sleeping: when the occupant is at home
but sleeping and Active: when the occupant is at home and not sleeping).
The agent first selects a new state as function of its occupancy pattern opd,
previous state os(t−1),d and time of day t, then decides the duration dr of the
state based on its occupancy pattern, current occupancy state and time of
day.

The PM distinguishes between tasks and personal activities, where tasks
are performed by one occupant at a time, while personal activities can be
performed by more than one occupant at a time and can be shared. When
the occupant agent is in the Active occupancy state, it can do several tasks
(tk) or personal activities (ac). The agent can either select to start the activity,
or decrement the duration (dr) of an ongoing activity. The action of selecting
new activities is defined by Formulae (3.2).

ACac|tk : age, emp, t, d→ {0, 1}ac|tk, dr (3.2)
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This function is performed by the occupant agent for every personal activ-
ity ac ∈ {Using the computer, Watching television, Listening to music, Taking
shower/bath} and task tk ∈ {Preparing food, Vacuum cleaning, Ironing, Doing
dishes, Doing laundry}. The equation returns a boolean value {0,1} to dis-
tinguish whether the action will take place or not. This way of modelling
enables multitasking (i.e. the occupant can perform more than one activity at
a time given that the activities are compatible). The decision of doing an ac-
tivity is based on the occupant’s age, employment type (emp), time of day (t)
and day type (d). Once a new activity is selected to be performed, the agent
selects the duration dr of the activity based on the same input variables.

The decision of which factors affect the prediction of individual’s occu-
pancy and activities is adapted from the PM by Aerts [37]. The author proved
through detailed analysis of the data from the Belgian time-use survey that
the age, employment type, time of the day and day of week are the most
affecting factors.

Algorithm 1 generalises the process of extracting occupant states (weekly
work routine, occupancy state, occupancy, activities, duration of occupancy
/activities) from PDFs.

Algorithm 1: Select New State

rand← Rand(0, 1) // Rand(0,1) is a uniform random generator

between 0 and 1

foreach state ∈ States do
p← P(state, a1, a2, ..., an)
if rand ≤ p then

return state

P is a cumulative PDF, where its last value is always equal to 1, of n + 1
parameters. One of the parameters of P is state that will be selected from
the set of available States. The rest of the parameters (a1, a2, ..., an) are n fac-
tors that affect the choice of state. For example, if it is required to select a
new occupancy state (ost,d), then States is the set of possible states {Away,
Sleeping, Active} and P(ost,d, opt,d, os(t−1),d, t) is the cumulative PDF of occu-
pancy states that has 4 parameters, where ost,d is the state to be selected, and
opt,d,os(t−1),d and t are the factors that affect the choice of ost,d.
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Occupant Location

Whenever the occupant agent is at home, it needs to be in one of the house
rooms (r). Every activity is assigned to a room or a set of possible rooms as
shown in Table 3.3.

TABLE 3.3: Location where Activities and Tasks Take Place

Activity/Task Location/s
Using the Computer Computer Location (Living Room/Bedroom)
Watching Television Television Location (Living Room/Bedroom)
Listening to Music Random
Taking Shower/Bath Bathroom
Preparing Food Kitchen
Vacuum Cleaning Random
Ironing Bedroom/Television Location
Doing Dishes Kitchen
Doing Laundry Kitchen
None Random

The occupant agent determines its location using Formulae (3.3).

OL : ost,d, ACt,d, TKt,d → rt,d (3.3)

The occupant agent decides its location rt,d based on its occupancy state ost,d,
the set of ongoing personal activities ACt,d and the set of ongoing tasks TKt,d.
Sleeping occupant agents are assigned to bedrooms by default. The occupant
agent can have a set of possible rooms when doing more than one activity at a
time. In this case, the agent alternates randomly between the possible rooms.
If the agent is Active at home and not performing any of the activities or tasks,
its locations is selected randomly among the basic house rooms.

Occupant Energy Awareness and Energy Usage

In addition to the occupant’s age and employment type, the ABM charac-
terises occupants based on their personal energy consumption behaviour.
This is because energy consumption behaviour is different from one occu-
pant to another. Occupants’ energy awareness has been modelled in existing
literature in different ways. For example, Carmenate et al. [23] distinguish
between energy literate and energy illiterate occupants. Similarly, Zhang
et al. [20] categorise occupants into high and low consumers and Azar and
Menassa [58] divide occupants into high, medium and low consumers. An-
other way is using average yearly/daily consumption as a characteristic of
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the occupant [26], [13]. The most detailed and flexible definition of energy
awareness was proposed by Zhang et al. [22] where energy consumers can
belong to one of four consumer types: ‘Follower Green’, ‘Concerned Green’,
‘Regular Waster’ and ‘Disengaged Waster’. Based on the consumer type, the
agent’s energy awareness attribute is assigned a value between 0 and 100.
This attribute is used to decide the probability that an occupant follows en-
ergy saving actions such as turning OFF devices when they are not in use or
avoiding putting heavy appliances ON in peak times. The value is calculated
based on a normal distribution for every consumer type (Table 3.4).

TABLE 3.4: Mean and Standard Deviation of Consumer Types
from Zhang et al. [22]

Consumer Types Mean µ Standard Deviation σ
Follower Green 0.74 0.041
Concerned Green 0.72 0.043
Regular Waster 0.41 0.033
Disengaged Waster 0.25 0.057

In the current model, the consumer types defined in [22] are adopted to
model energy awareness of occupant agents. The consumer types are re-
flected in the model by the PER attribute, which is assigned using the nor-
mal distributions in Table 3.4 during the simulation initialisation. PER is
also used to determine how often occupants comply to the recommendations
forwarded by the messaging intervention that is proposed and modelled in
Chapter 5 of this thesis.

The action of turning appliances ON/OFF is related to the occupants’ ac-
tivities and their energy awareness defined by the attribute PER. Every activ-
ity that the occupant performs is associated to an appliance a. The actions of
turning appliances ON and OFF (turnOna, turnO f fa) are shown in Formulae
(3.4).

TOa : act,d → turnOna |
act,d, PER, Oa → {keepOn, turnO f f }a

(3.4)

When the occupant agent starts an activity (act,d), it turns ON the appliance
associated to this activity. When the activity ends and based on the agent’s
PER attribute, it may turn OFF the appliance or keep it ON. The occupant
may also communicate with other occupant/s (Oa) who may be using the
same appliance at the same time to decide whether to turn OFF the appliance.
The action of turning OFF appliances is also executed every time an occupant
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agent visits a room and finds appliances that are ON but unused, taking into
consideration its PER.

The action of turning lights ON/OFF is different from using appliances
since using lights depends on the amount of natural daylight and the location
of occupants. The actions of turning lights ON and OFF is shown in Formulae
(3.5).

TOr : rt,d, daylightt,d → {turnOn, keepO f f }r |
rt,d, PER, Or → {keepOn, turnO f f }r

(3.5)

Every time the occupant agent is in a room rt,d, it may decide to turn ON
the light in this room based on the amount of natural daylight (daylightt,d).
The agent chooses to turn ON the lights when daylightt,d × 0.02 < 200 lx as
modelled in [37], which was also used to obtain real daylight data. When the
occupant leaves the room, it decides whether to turn OFF the light based on
its PER attribute and other occupant agents (Or) that may be using the room.

In summary, the occupant agent OA is defined using the tuple <age, emp,
wr, opd, ostd, PER, ACtd, TKtd, rtd > and can perform the actions in the tuple
<OS, ACac|tk, OL, TOa, TOr>.

3.3 Model Implementation Environment

The model was implemented in Repast Simphony [120] version 2.4 (2016),
which is an agent-based platform, using Java version 8. Using a software
platform (i.e. Repast Simphony) instead of a plain programming language
helps in overcoming challenges of agents memory and simulation time man-
agement [121]. Among several platforms for agent-based simulation, Repast
Simphony is one of the top used software platforms [122], it is free, open-
source and fully object-oriented. It includes an embedded scheduler of meth-
ods, which automatically executes concurrent multi-threaded events. The
choice of object-oriented programming (Java) is driven by the nature of agents,
which are autonomous. Therefore, agents can be easily implemented as ob-
jects that have a set of attributes representing the agent characteristics, and
methods representing the agent rules and behaviour [121], [122].

The experimental scenarios are run on a remote server hosted by Mi-
crosoft Azure. The server has 140 GB of RAM and 20 CPU processors. These
high specifications of the server where selected to speed up the simulation,
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where multiple scenarios were run using the batch service in Repast Sim-
phony.

Three appliances were implemented as a proof-of-concept: (1) lights, (2)
televisions and (3) computers. These appliance are clearly affected by the
energy awareness of occupants like leaving lights ON when leaving a room
or leaving the television/computer ON when the activity ends.

3.4 Experiments and Results

This section presents a set of experiments to test the validity of the model and
study the effect of social parameters on the energy consumption of the house
with varied consumer types of occupants. Every simulation run (or scenario)
calculates the average energy consumption of 100 simulated households of
the same composition, but different work routines for occupants, income lev-
els, appliances number and types and house rooms.

3.4.1 Model Validation

In order to validate and verify the developed model, we use a number of
common techniques, including tracing, graphical representation, model-to-
model comparison and statistical significance. More details about these tech-
niques will follow.

Predictive Validity

For the predictive validation of the daily behaviour data (occupancy and ac-
tivities), we refer to TAPAS (Take A Previous Model and Add Something)
principle [123], which is one of the startegies to validate simulation models.
This incremental strategy is one of the most successful strategies for model
creation, where a new model is built upon a previously validated model. In
this case, the predictive validity of the previous model (the PM in our case)
is passed to the new one (the developed ABM). In order to verify that the
implemented ABM actually generates the same data as the previous PM, we
use the Model-to-Model comparison technique [124]. In this technique the
outputs of each of the models are compared and the difference is calculated
and/or graphically represented. Figures 3.4 and 3.5 show the plots for occu-
pancy data and activities data (watching television and using the computer)
generated by the PM and the implemented ABM. The shown data represent
the average of 100 simulations of the scenario "one adult aged 25-39 with a
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full-time job" given that the two models use uniform random number gen-
erators with different seeds. The figures clearly show that the implemented
ABM is able to generate identical data to the one generated by the existing
PM [37]. To statistically prove that the data sets generated by the two mod-
els come from the same distribution, we perform Kolmogorov-Smirnov test
[125]. The results of the test are shown in table 3.5, which shows that the
p-value is close to 1. This indicates that the models produce the same dis-
tribution of data, thus the predictive validity of the occupancy and activities
data is passed from the existing PM to our developed ABM.
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FIGURE 3.4: Average Occupancy Data Comparison between
the developed ABM and the existing PM

As the PER attribute is added in the developed ABM to simulate energy
waste, the energy consumption data generated by the existing PM was dif-
ferent from the one generated in the ABM. Therefore, testing the predicitive
validity of energy consumption data requires knowing the distribution of the



60 Chapter 3. The Daily Behaviour Model

4AM 12PM 20PM 4AM
0

0.05

0.1

0.15

0.2

0.25

PM
ABM

(A) Weekdays
Watching Television

Activity

4AM 12PM 20PM 4AM
0

0.05

0.1

0.15

0.2

(B) Saturdays Watch-
ing Television Activ-

ity

4AM 12PM 20PM 4AM
0

0.05

0.1

0.15

0.2

0.25

(C) Sundays Watch-
ing Television Activ-

ity

4AM 12PM 20PM 4AM
0

0.02

0.04

0.06

0.08

(D) Weekdays Using
the Computer Activ-

ity

4AM 12PM 20PM 4AM
0

0.01

0.02

0.03

0.04

0.05

(E) Saturdays Using
the Computer Activ-

ity

4AM 12PM 20PM 4AM
0

0.02

0.04

0.06

(F) Sundays Using
the Computer Activ-

ity

FIGURE 3.5: Average Activities Data Comparison between the
developed ABM and the existing PM

PER attribute in the Belgian community where the time-use survey was col-
lected, and comparing the simulated energy consumption data with the real
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TABLE 3.5: Daily Behaviour Predictive Validity: Kolmogorov-
Smirnov Test Results

Tested Dataset p-value
Occupancy 0.999
Watching television activity 0.988
Using the computer activity 0.975

ones. Obtainig this distribution was not possible since the survey took place
in 2005. Therefore, predictive validation of the energy consumption data was
not possible. Taking this limitation into account, we follow the approach of
comparative analysis experiments by observing the changes in results when
the inputs of the model change. This approach is common among ABMs that
simulate energy cosumption, as the collection of data is not always possible
[59]. Besides, this is also compatible with the mediator role of the model that
we described in Chapter 1. Mediator models are developed when a high
level of understanding of the system is not possible, where the model is used
to gain insights that are then tested in reality.

Internal Validity

To prove the internal validity of the model, we compare the data generated
by the model when using different seeds. If the replicated scenarios with
different seeds generate the same distribution of data, then the model is in-
ternally valid [124]. For this purpose, we run 5 pairs of 5 different house-
hold types each with different random seed and calculate the p-value using
Kolmogorov-Smirnov test [125]. The results of the test are reported in Ta-
ble 3.6. The table shows that the p-value for all the simulated scenarios is
close/equal to 1, which indicates that each tested pair of datasets come from
the same distribution. This proves the internal validity of the model.

Structural Validity

The structural validity of the occupancy and activities modelling is done us-
ing the tracing technique [59]. The agent behaviour is followed per time step
to ensure that it is behaving as designed. We start by observing one occu-
pant agent in a household, and proceed to observe the collective behaviour
of several family members who may be sharing activities and appliances. A
rule-based method has been followed to observe whether the agents are log-
ically behaving based on values of parameters in the model. An abstraction
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TABLE 3.6: Internal Validity: Kolmogorov-Smirnov Test Re-
sults

Household Type p-value
One adult 25-39 years old with full-time
job

0.968

One adult 40-54 years old with full-time
job, and one child 12-17 years old

1

Two adults 40-54 years old one with full-
time job and the other is unemployed, and
one child 12-17 years old

1

Two adults 55–64 years old both with full-
time job

1

One elderly 65-75 years old who is retired 0.999

of these rules is presented in Relation (3.6)

c1 ∧ c2 ∧ · · · ∧ cn → B , (3.6)

where c1, c2, . . . cn are the rule conditions, and B is the expected behaviour if
the conditions are true. For example, when the occupant finishes the watch-
ing television activity, it is not supposed to turn OFF the television if another
occupant is still watching television. All the rules that affect the agent be-
haviour and reaction have been tested and approved, thus validity by tracing
is confirmed.

To prove the structural validity of the electricity model, we run experi-
ments of a single occupant household and observe the results graphically.
This is done by studying how the occupant consumer type affects the energy
consumption of the house. Households with one occupant were simulated
varying ages and employment of occupants. Figure 3.6 represents the re-
sulting weekday average energy consumption of lights, TV and PC for an
occupant who is 25-39 years old in a full-time job. Each of the sub-figures
in Figure 3.6 includes the results of 5 scenarios: the basic model that is the
ideal scenario with 100% PER (referring to the existing PM [37]), and four
scenarios, each having a different consumer type.

In the basic model (i.e. ideal scenario), it is observed that every time the
occupant is sleeping or away, the energy consumption is very low or almost
zero. For the other four scenarios, it is observed that the implemented model
produces similar trend of daily energy consumption. The only difference is
due to the addition of the PER attribute, which has caused the line graph
to level up in a proportional way based on the percentages in Table 3.4.
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FIGURE 3.6: Appliances energy consumption of one occupant
(25-39 years old / full-time job)
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The energy consumption of Follower Green and Concerned Green occupants
are almost similar because their mean PER is very close (74% and 72% re-
spectively). While the other two waster occupants are much higher with the
Regular Waster being more efficient than the Disengaged Waster who turns off
appliances and lights only 25% of the time. Same observations were noticed
for Saturdays and Sundays and for all age groups and employment types.
These results prove the structural validity of the implemented model, which
produces energy consumption trends similar to the basic model, and reflects
the various consumer types levels of occupants.

3.4.2 Effect of Social Parameters

These experiments study the effect of social parameters on the energy con-
sumption of households. In order to limit the number of scenarios, while
achieving the objectives of the study, the consumer types of occupants is re-
duced to the two extreme types: Follower Green (G) and Disengaged Waster
(W). Table 3.7 shows the simulated household types. The last column of the
table shows the number of simulated scenarios for each household type with
all possible combinations of consumer types. For example, a 4 occupant fam-
ily has 16 (= 24) possible combinations where every occupant can be either
a Follower Green or a Disengaged Waster. The total of these scenarios is 214 as
shown in Table 3.7. Besides, 30 scenarios were simulated (equal to the num-
ber of available household types) for the basic model (100% PER value) to
calculate the rate of energy waste. Therefore, a total of 244 (= 214 + 30) scenar-
ios were simulated. Out of these 244 scenarios a diverse set of scenarios are
selected to be presented and discussed in this section as a proof-of-concept.

For every simulated scenario the total yearly consumption for three ap-
pliances (lights, TV and PC) is calculated using Equation (3.7),

Cn =
144

∑
t=1

7

∑
d=1

∑
a∈A

ct,d,a , (3.7)

where Cn is the total energy consumption of scenario n and ct,d,a is the
average energy consumption for appliance a at time step t and day d. In
order to calculate the energy efficiency of each scenario, the energy waste
rate Wn is calculated using the equation (3.8),

Wn =
Cn

Cn,base
, (3.8)
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TABLE 3.7: Simulated Household Types and Number of Sce-
narios

Age of
adults

Number and employment
types of adults

Number
of chil-
dren

Total
number
of oc-
cupants
(N)

Number
of sim-
ulated
sce-
narios
(= 2N)

23-39

One adult with full-time job
0 1 2
1 2 4
2 3 8

Two adults both with full-time
job

0 2 4
1 3 8
2 4 16

Two adults one with full-time
job and one with part-time job

0 2 4
1 3 8
2 4 16

Two adults one with full-time
job and one unemployed

0 2 4
1 3 8
2 4 16

40-54

One adult with full-time job
0 1 2
1 2 4
2 3 8

Two adults both with full-time
job

0 2 4
1 3 8
2 4 16

Two adults one with full-time
job and one with part-time job

0 2 4
1 3 8
2 4 16

Two adults one with full-time
job and one unemployed

0 2 4
1 3 8
2 4 16

55-64

One adult with full-time job 0 1 2
One retired adult 0 1 2
Two adults both with full-time
job

0 2 4

Two adults both retired 0 2 4

65-75 One retired adult 0 1 2
Two adults both retired 0 2 4

Total 214

where Cn,base is the ideal energy consumption for scenario n where devices
are only ON when they are being used (i.e. all occupants of the house are
100% energy aware). Analytically, Wn ≥ 1 as the nominator is always more
than the denominator that represents the ideal consumed energy. As much
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as Wn is closer to 1 it means that the household is closer to the ideal scenario
i.e. causes less energy waste.

Effect of Energy Awareness

This experiment studies the effect of energy awareness on the consumption
of multiple occupant households. Figure 3.7 shows the consumption of two
25-39 year old occupants (Figure 3.7a where both are in full-time job, and
Figure 3.7b where one is in full-time job and the other is unemployed). The
legend of the figure encodes the consumer type of the household, where the
sequence of the letters (G and W) has the same sequence as the description
of the household type in the captions of the sub-figures.

It is noticed that the observation in the previous section for a single occu-
pant household (Figure 3.6) still applies on two-occupant households, which
proves that the model reflects consumer types of occupants with multiple
occupancy. Both Figures (3.7a and 3.7b) show the two extremes of energy
consumption when there are two Follower Green (G) occupants or two Dis-
engaged Waster (W) occupants at home. In-between scenarios in Figure 3.7a
resulted in the same energy consumption (crossed yellow and orange lines)
even when reversing the consumer types of the two occupants. However,
this observation does not hold when having different employment types
(Figure 3.7b). It is observed that the household consumes less energy when
the unemployed occupant is a Follower Green. This is observed during the
whole 24 hours except few hours in the morning (7:00 am and 9:30 am) when
it is more probable that the Disengaged Waster full-time occupant is awake
and the Follower Green unemployed occupant is sleeping. A similar observa-
tion is noticed when the unemployed occupant is a Disengaged Waster, where
the household consumes more energy. This is explained by the fact that un-
employed occupants spend more time in the house which makes their effect
more obvious than full-time employed occupants.

These observations show that employment type is a factor that affects the
energy consumption of the house when varying occupants’ consumer types.
However, further investigation is needed to quantify this effect and test it
on other age groups and household types, which is the focus of the coming
experiments.
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FIGURE 3.7: Total energy consumption of two occupant house-
holds both 25-39 years old

Effect of Family size

This experiment is intended to study the effect of the number of occupants
in the house. As a proof of concept, scenarios of the age group 25-39 in full-
time job that are studied in this experiment are presented in Table 3.8. The
table consists of two groups of scenarios; each group has the same age and
employment type for adults, same consumer type, but different number of
occupants.
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TABLE 3.8: Scenarios and Results for the Effect of Family Size

Adults Age Group/
Empl. Type

/ Consumer Types
N. of Occupants Household Composition Wn

25-39/
Full-time Job/

All Green
Occupants

1 One adult 2.31
2 One adult, one child 1.97
2 Two adults 1.99
3 One adult, two children 1.42
3 Two adults, one child 1.58
4 Two adults, two children 1.59

25-39/
Full-time Job/

All Waster
Occupants

1 One adult 10.49
2 One adult, one child 6.13
2 Two adults 6.66
3 One adult, two children 3.92
3 Two adults, one child 4.18
4 Two adults, two children 4.17

In the first group of scenarios, where all family members are green oc-
cupants, it is observed that as the number of occupants increases, the waste
rate Wn decreases. This means that more green occupants causes less energy
waste. For the second group of scenarios, where all occupants are energy
wasters, it could be expected that when the number of wasters increases, Wn

should increase. However, it is observed that as the number of wasters in-
creases, Wn decreases (i.e. the family becomes closer to the ideal scenario –
Cn,base). This indicates that more occupants in the house causes energy waste
to decrease, regardless of the consumer types of the occupants.

Effect of Employment Type

The purpose of this experiment is to test the effect of employment type on
the energy consumption of the house. In order to do that, it is important to
fix occupant ages and number of occupants while varying the employment
types. Therefore, based on the household compositions available in the data
of the PM, it is only possible to study the effect of full-time, part-time and
unemployed occupants. Table 3.9 represents the scenarios for age group 40-
45 involved in this experiment.

The ‘Consumer Types’ column encodes the energy awareness of occu-
pants. The sequence of letters (G and W) in this column has the same se-
quence of occupants defined in the previous columns of the same table. For
every household composition, the first two occupants (which are full-time/
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part-time or full-time/unemployed) are involved in the consumer types vari-
ation, while the rest are put all green or all waster occupants in order to ob-
serve the effect. The difference between the waste rate of every two varied
scenarios is calculated in the last column.

TABLE 3.9: Scenarios and Results for the Effect of Employment
Type

Occupants Age Group/
Employment Type Consumer Types Wn Diff.

Occ. 1 Occ. 2 Occ. 3 Occ. 4
40-54/
Full-time

40-54/
Part-time

GW 3.89 0.23WG 3.66

40-54/
Full-time

40-54/
Part-time

12-17/
School

GWG 2.34 0.11WGG 2.23
GWW 3.14 0.07WGW 3.07

40-54/
Full-time

40-54/
Part-time

12-17/
School

12-17/
School

GWGG 1.88 0.05WGGG 1.83
GWWW 3.10 0.09WGWW 3.01

40-54/
Full-time

40-54/
Unemployed

GW 3.05 0.37WG 2.68

40-54/
Full-time

40-54/
Unemployed

12-17/
School

GWG 2.12 0.24WGG 1.88
GWW 2.75 0.14WGW 2.61

40-54/
Full-time

40-54/
Unemployed

12-17/
School

12-17/
School

GWGG 1.69 0.03WGGG 1.66
GWWW 2.62 0.15WGWW 2.47

Among the total number of simulated scenarios, there are cases when two
occupants belong to the same age group and have the same employment
type. It was observed that swapping the consumer types between these oc-
cupants resulted in similar amounts of energy consumption with very slight
differences. This difference is expected to be due to random numbers gen-
eration. The average difference between these scenarios was calculated and
denoted by ε = 0.1, which is the error due to randomisation. Therefore,
whenever the difference between two scenarios is greater than ε, it is con-
sidered a significant difference and further analysis is made to identify the
cause of the difference.

The first three household types in Table 3.9 are for comparing full-time
and part-time employment types. It is observed in all of these scenarios
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that whenever the part-time occupant is the green occupant, the energy con-
sumption of the house is closer to the ideal scenario. This means that green
part-time occupants are responsible for improving the house energy con-
sumption when compared to full-time occupants. A similar observation is
noticed when comparing full-time and unemployed occupants in the other
three household types. This observation was noticed in the previously dis-
cussed experiment that studied the effect of energy awareness in multiple
occupant household, and is further supported in this experiment.

Looking at the difference values, part-time occupant efficiency effect is
significant (> ε) in two cases: (1) the two-occupant families and (2) the three-
occupant families when the third occupant is a green occupant. This indicates
that part-time occupants can make an energy saving effect in small families
(a small family is a family less than 4 occupants) and when there are more
green occupants in the house, but not in big families where the difference is
0.05 ≤ ε and 0.09 ≤ ε. However, for unemployed occupants, the efficiency
effect is significant in most of the cases except for the four-occupant family
when all of the other occupants are green occupants. It is also observed that
unemployed occupants, in general, have higher efficiency effect than part-
time occupants. These observations show that unemployed occupants are
more efficient than part-time occupants, and the latter are more efficient than
full-time occupants in small families.

Effect of Occupant Ages

In order to study age groups for adults, households that have the same em-
ployment type and number of occupants with no children were considered
(Table 3.10). As for the children effect, households with an equal number of
adults and children, with the same employment type for adults were studied
(Table 3.11).

Table 3.10 shows that as the age of adults in small families increases, the
household becomes less efficient (both for waster and green households).
And for children, it is observed in Table 3.11 that children were more efficient
than adults in small families (0.26 > ε and 0.11> ε), but not in big families
where adults were more efficient in some of the cases (-0.17 ≤ ε). These ob-
servations imply that younger occupants, including children, can make more
efficiency effect in small families but not in big families.
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TABLE 3.10: Scenarios and Results for the Effect of Adults Ages
in Full-time Job

Consumer Types Occupant 1
Age Group

Occupant 2
Age Group Wn

All Green
Occupants

25-39 2.31
40-54 2.47
55-64 2.78

All Waster
Occupants

25-39 10.49
40-54 11.35
55-64 13.29

All Green
Occupants

25-39 25-39 1.99
40-54 40-54 1.87
55-64 55-64 1.85

All Waster
Occupants

25-39 25-39 6.66
40-54 40-54 6.68
55-64 55-64 6.75

TABLE 3.11: Scenarios and Results for Studying the Effect of
Children

Adults
Age Group

Household
Type

Occupant
Types Wn Difference

25-39 One adult,
one child

GW 3.94 0.26WG 3.68

40-54 One adult,
one child

GW 3.11 0.11WG 3.20

25-39 Two adults,
two children

WWGG 2.41 0.04GGWW 2.45

40-54 Two adults,
two children

WWGG 2.57 -0.17GGWW 2.74

3.5 Discussion and Insights

This chapter proposed a model to combine ABM and PM to produce fine
grained data. The implemented model simulates the dynamic interaction
of occupants with appliances to produce detailed activities and energy con-
sumption of houses. Opposed to exiting PMs [17], [37], [51], [70], [72] the
cascaded model simulates dynamic occupant behaviour, which is affected
by occupant personal characteristics and surrounding environment. In ad-
dition, a personal energy rating attribute can be assigned at occupant-level,
which varies based on the occupant’s greenness level, while PMs assume the
same and ideal energy consumption behaviour of occupants.

The proposed model simulates energy waste caused by human behaviour.
Existing ABMs that simulate the effect of human behaviour [13], [14], [22],
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[26], [27], [58], [59] produce the consumption data at household or build-
ing level. This is because these models either represent consumer agents at
household level or characterise occupant agents by yearly/monthly/daily
consumption. The daily behaviour model developed in this chapter gener-
ates energy consumption data at appliance level as shown in the structural
validity experiment, and models the detailed occupant-appliance interaction.
These detailed data and simulated interaction enabled the study of energy
waste in households as shown in the experimental results. Another group of
ABMs produce appliance-level consumption, model energy awareness at oc-
cupant level, and simulate the occupant appliance interaction. Thus, they are
able to simulate energy waste [23], [24], [62]–[64]. However, these models use
small case studies and/or generate occupant behaviour using uniform distri-
butions in fixed schedules for occupancy and activities. On the other hand,
the proposed ABM uses a PM (with embedded Markov Process technique)
to get the realistic occupant activities. In addition, using PMs enables the
inclusion of data for a whole city (thousands of respondents vs. few hun-
dreds of respondents), which leads to more varied scenarios and generalised
conclusions.

Additionally, the integration of PM with ABM has given the advantage of
studying the effect of social parameters on the energy consumption of fami-
lies. These conclusions are important as they give insights for policy makers
and governments about how to target family members to achieve higher en-
ergy saving. In section 3.4.2, the experiment that studied the effect of family
size showed that as the number of occupants increases, the household wastes
less energy even if all of the occupants are not energy aware. Although the
implemented model that was used for these experiments does not model
family pressure, which means that family members do not affect the energy
awareness of each other, we have shown that merely having more occupants
in the house causes less energy waste even though they actually consume
more. This is explained by the fact that more occupants in the house means
higher probability that somebody turns OFF appliances/lights that are not
currently in use (knowing that occupant agents can know if a device is being
used or a room is being occupied by other occupants). For example, if one
occupant, who lives alone, leaves the house/room while the lights are ON,
the lights will never be OFF until s/he returns back to the location. How-
ever, in a four-occupant family, if a member leaves an appliance ON and
goes away, there is still a probability that somebody will turn it OFF or use
it before s/he returns back. This conclusion implies that high intensity and
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focused interventions are needed in small families, because they cause high
rates of energy waste. Whereas, interventions in big families can have lower
intensity and can be distributed on the family members since they help each
other in avoiding the energy waste as proved in this chapter.

The experiments that studied the effect of employment type proved that
unemployed occupants have the most efficiency effect in small families com-
pared to part-time and full-time occupants. Whereas part-time occupants
are more efficient than full-time occupants, again in small families. This is
mainly explained by the occupancy pattern of each employment type, where
unemployed and part-time occupants are available at home more than full-
time occupants. This enables unemployed and part-time occupants to reduce
the waste in small families. However, in big families, this effect is reduced
due to the existence of more occupants in the house who may cancel the effect
of the green occupant. A similar conclusion was obtained concerning ages of
occupants, where younger occupants made the household more efficient in
small families of the same size. It is important here to note that this conclu-
sion does not imply that younger occupants are more aware than older occu-
pants. However, with the same energy awareness levels, the longer existence
or longer active durations of younger occupants at home causes less energy
waste than older occupants. These conclusion can imply similar insights as
those implied from the family size experiment. Occupants with full-time jobs
and elder ones in small families need to be targeted by high intensity inter-
ventions as they have high energy waste rate. However, children and adults
who are housewives, unemployed, carers, or part-time employees in small
families can be targeted with lower intensity interventions. This is because
these occupants are more efficient than full-time and elder occupants. For
big families, and since the effect of employment type and age was not signif-
icant, the same implication as the family size experiment can be concluded,
which is the need for an intervention that is distributed on all the members
of the family.

3.6 Summary

This chapter presented a model for energy consumption simulation. The
model produces appliance energy consumption data by simulating occupant
daily behaviour (occupancy, activities and location) in a house. This is done
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with the help of a PM that is integrated with an ABM. The integration pro-
cess has shown efficient as each of the models shows its strengths in the de-
veloped model. The PM provides highly dimensional probability distribu-
tions that help in producing realistic occupant daily behaviour, and the ABM
enables simulating dynamic human behaviour and interaction with appli-
ances. These features provided by each of the models enable the study of
energy waste caused by human behaviour. The PM by Aerts [37] was chosen
among existing PMs as it includes the requirements of energy waste simula-
tion. The probability distributions from this PM were used in the developed
ABM to initialise the characteristics of the household and simulate the daily
behaviour of the occupants. The ABM also distinguishes between occupant
energy consumption behaviour through a PER attribute, which helps in sim-
ulating energy waste. The model validity (predictive, structural and internal)
was tested using a number of techniques, and a set of experiments were con-
ducted to show what insights can be gained when using the model. Through
parameter variation, we found that the social characteristics (employment
type, age and family size) are factors that affect the energy efficiency of the
house. We found that the employment types retired, part-time job and full-
time job have different efficiency effect on households, with the retired type
being the most efficient and the full-time job being the least efficient. Simi-
larly, bigger families cause less energy waste than smaller families. Regard-
ing occupant ages, we found that younger occupants are more efficient than
elder ones. These conclusions are mainly explained by the fact that these
factors affect the movement and activity of occupants in the house. Thus,
they may give more/less chance for occupants to control their appliances.
The experiments have also shown that the developed model can be used by
policy makers as an effective tool for studying energy consumption, and giv-
ing insights of which family members to target with energy interventions of
various intensities.

The PER attribute used in this model can be affected by peer pressure
where occupant behaviour may change based on the behaviour of others.
This effect is going to be modelled in the next chapter. Besides, the level of
details provided by the model is required to test energy interventions, which
will be demonstrated in Chapter 5.
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Chapter 4

The Peer Pressure Model

Having discussed the daily behaviour model in the previous chapter, this
chapter presents a family-level peer pressure model that is the second model
of the complete Agent-Based Model (ABM) proposed in this thesis (Figure
4.1). The model adds a more realistic layer of human behaviour and interac-
tion.

FIGURE 4.1: The Peer Pressure Model from the Layered ABM

The model is implemented in a family setting, therefore we may refer to
it as the family pressure model. It is composed of two sub-models: (1) be-
haviour change sub-model, which formalises the behaviour change theories;
and (2) energy efficiency intervention sub-model, which is intended to study
the effect of peer pressure on the results of energy interventions. The coming
sections formalise and design the two sub-models, then the experiments and
discussion are presented. Findings reported in this chapter are published
[126].

4.1 Behaviour Change Sub-Model

The occupant behaviour change is based on Festinger theories, namely, in-
formal social communication theory, social comparison theory and cognitive
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dissonance theory [38]–[40]. The formalisation of Festinger theories uses Gra-
novetter’s Threshold Model (TM) [41] – such that the occupant agents change
their behaviour when a threshold is exceeded as expalined in Section 2.3.2.
In our model, the threshold is a combination of norms, values, motives and
beliefs that trigger social comparison, communication and behaviour change
as in Festinger theories. Although Granovetter’s model simualtes collective
behaviour which is compatible with social pressure, it does not fit the family
pressure effect on energy efficient behaviour for two reasons. First, the model
is applied in a public community, which has different values and motives,
therefore different thresholds for individuals. However, in a family setting,
we consider that family members have similar values and motives based on
the fact that they have chosen to live together or were raised together. There-
fore, when adapting Granovetter’s TM to the application at hand, we con-
sider one global threshold for the whole family. This does not revoke the fact
that people react differently, therefore, we have set the global threshold as
a probabilistic one [90] – so once the threshold is exceeded the individuals
adopt the behaviour with a probability. Second, Granovetter’s TM considers
binary decisions while energy consumption behaviour is a continuous be-
haviour that is performed at different levels. This point is addressed by ap-
plying one of the main principles in Festinger theories. Knowing that social
communication, social comparison and tendency to reduce cognitive disso-
nance increase with the increase in the magnitude of opinion/behaviour dif-
ference as outlined in Section 2.3.2, we adapt the definition of the threshold
to fit the continuous energy consumption behaviour. Therefore, we formalise
the threshold as the difference between the individual’s consumer type and
the average of other’s consumer types.

In terms of network type, the occupant agents are structured in a fully
connected network because in a family environment we can assume that ev-
ery occupant can communicate with all other occupants unlike office, com-
mercial and residential communities. Figure 4.2 shows an illustration of a
fully connected network composed of 5 agents. The time step in this model
is set to 4 weeks of simulation time (hereafter time period (T)), given that be-
haviour change is a process that does not happen instantly [127]. In order to
express consumer types in numerical values, every type is given an integer
value as shown in the second column of Table 4.1.

For a family composed of N occupants, every time period T, each occu-
pant agent i calculates the difference diff T,i between its consumer type ai and
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FIGURE 4.2: Fully Connected Network Illustration

TABLE 4.1: Value and Abbreviations of Consumer Types

Consumer Type Value (a) Abbreviation
Follower Green 1 F
Concerned Green 2 C
Regular Waster 3 R
Disengaged Waster 4 D

the average consumer types of others aj, where j ∈ [1, N] : j 6= i using equa-
tion (4.1).

diff T,i = ai −

N

∑
j=1,j 6=i

aj

N − 1
(4.1)

Behaviour change happens if |diff T,i| exceeds the global threshold d where
d ∈ IR. If d ≤ 3, then there is a possibility for behaviour change, while
if d > 3, then behaviour change is not possible as diff T,i can be maximum
3. The latter case is included to cover all possible types of people, where
it is possible that an extreme person does not change her/his behaviour in
any case. Within the range [0, 3], a high threshold implies low sensitivity
to social communication, comparison and cognitive dissonance, and a low
threshold implies high sensitivity to social communication, comparison and
cognitive dissonance. The global threshold d is a probabilistic threshold such
that the occupant changes behaviour with probability p where p ∈ [0, 1]. This
attribute is referred to as threshold lag [128], which explains the stochastic
nature of human behaviour due to uncertainty and differences in the speed
of reaction, where a high value of p means a high rate of change.

Once behaviour change is decided, the consumer type of the occupant
changes towards the average of others’ consumer types assuming that the oc-
cupant agent adapts its behaviour to be similar to others. Behaviour change
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is done by stepping between the consumer types one step at a time either to
the green side (green effect) or the waster side (waster effect) as shown in Fig-
ure 4.3. The occupant agent is then assigned a new Personal Energy Rating
(PER) value based on the mean and standard deviation of the new consumer
type as in Table 3.4.

FIGURE 4.3: Behaviour Change Steps between Consumer
Types

The behaviour change step is outlined in Algorithm 2, which is repeated
for every agent i at every time period T. Figure 4.4 shows a flow chart of the
behaviour change decision.

Algorithm 2: Behaviour Change Step

calculate diff T,i using Equation (4.1)
if |diffT,i| ≥ d then

rand← Rand(0, 1) // Rand(0,1) is a uniform random

generator between 0 and 1

if rand ≤ p then
if diffT,i > 0 then

if ai > 1 then
ai ← ai − 1

else
if ai < 4 then

ai ← ai + 1

4.2 Energy Efficiency Intervention Sub-Model

Energy interventions can be categorised into individual or social interven-
tions among a range of categories as presented in [42]. Individual interven-
tions are those that consider specific consumers as targets of the intervention
regardless of their community context, while social interventions target the
group of individuals as a whole, affecting the social norms within the group.
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FIGURE 4.4: Behaviour Change Flowchart

Therefore, in this model we distinguish between family-level interventions
and occupant-level interventions. Each of these interventions can be of any
form as outlined in Section 2.4, but they differ in the number of occupants to
target. The family-level intervention targets the family in general by chang-
ing its overall norms, values and beliefs. It can be applied by promoting the
energy efficient behaviour such as giving financial incentives or repressing
the wasting behaviour such as incurring charges [129]. The occupant-level
intervention targets specific occupant/s in the family and leads to increasing
their awareness levels. These two types of interventions are considered to
observe how the collective family pressure can help in achieving more aware
occupants and less energy consumption. It also allows policy makers to de-
cide the needed combination and intensity of interventions based on each
family composition (in terms of energy awareness levels and social parame-
ters).

When the family-level intervention is applied, the overall norms, values
and beliefs of the family change. The family-level intervention has two inten-
sities, which represent the efficiency or effort made to achieve better results.
Therefore, Ip ∈ [1, 4] is defined as the promotion intensity and Ir ∈ [1, 4] as
the repression intensity. These two types of family-level interventions are
reflected by two thresholds: one that affects the promotion of green effect
dg ∈ IR and another that affects the repression of waster effect dw ∈ IR. There-
fore, the intervention increases dw by Ir, thus increasing the cost to adopt
waster behaviour and/or decreases dg by Ip, thus increasing the benefit of
adopting the green behaviour as outlined in Granovetter [41]. dg and dw

change in effect of the intervention based on equations (4.2) and (4.3) given
the initial threshold d.
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dg = d− Ip (4.2)

dw = d + Ir (4.3)

For deciding behaviour change, dg is checked when there is a possibility
to change towards the green side (diff T,i > 0), and dw is checked when there
is a possibility to change towards the waster side (diff T,i < 0) as shown in Al-
gorithm 3. The flowchart for behaviour change due to intervention is shown
in Figure 4.5.

Algorithm 3: Intervention Behaviour Change Step

calculate diff T,i using Equation (4.1)
if diffT,i > 0 then

if |diffT,i| ≥ dg then
rand← Rand(0, 1) // Rand(0,1) is a uniform random

generator between 0 and 1

if rand ≤ p then
if ai > 1 then

ai ← ai − 1

if diffT,i < 0 then
if |diffT,i| ≥ dw then

rand← Rand(0, 1)
if rand ≤ p then

if ai < 4 then
ai ← ai + 1

FIGURE 4.5: Intervention Behaviour Change Flowchart



4.3. Experiments and Results 81

The occupant-level intervention does not change the threshold of the fam-
ily because it targets specific occupants. It aims to change the awareness
of occupants while the regular behaviour change step represented by Algo-
rithm 2 is applied. The intervention can have an intensity Io ∈ [1, 3] and can
be applied to a member of the family i at a specific time period T according
to Equation (4.4).

ai,(T+1)) =

{
ai,T − Io : ai,T > 1

ai,T : ai,T = 1
(4.4)

The messaging intervention proposed and tested in the next chapter is
considered an application of the occupant-level intervention. Occupants may
change their behaviour by changing their consumer type in effect of the mes-
saging intervention. The messaging intervention simulation and behaviour
change step as a result are detailed in Chapter 5.

4.3 Experiments and Results

This section presents a number of experiments with different input param-
eters to show how varying these inputs can result in different intervention
outcomes. It is worth to mention that these experiments only present a num-
ber of significant scenarios as a proof-of-concept to show how the model
can be used to analyse different cases, while achieving the purpose of the
study. Abbreviations of consumer types (third column of Table 4.1) are used
to identify the initial awareness of the family. For example, a four occupant
family with one ‘Follower Green’ and three ‘Disengaged Wasters’ is denoted by
FDDD. In every simulation run, 100 households were simulated to capture
the stochastic effect of the threshold lag. The scenarios are run for a year and
the resulting average yearly consumption and converged consumer types
are recorded. These types were categorised based on the number of Green
occupants in the family (represented in the figures by different colours in
the bars). The threshold lag p is set to 0.5 as a middle point between high
and low rate of change [13] throughout the simulations in this chapter. The
same hardware specifications mentioned in Section 3.3 of Chapter 3 have
been used for these experiments.



82 Chapter 4. The Peer Pressure Model

4.3.1 Family Pressure Convergence

The aim of this experiment is to observe the resulting consumer types as an
effect of family pressure based on different thresholds. Since the threshold
d ∈ IR (i.e. it can have infinite number of values), we limit the values of d
with the significant values {0,1,2,3,4}. This is because |diff T,i| ∈ [0, 3], there-
fore, if d = 4, then the change in the family will not be possible, and as the
value of d decreases, the change in the family will be easier. Figure 4.6 shows
the results of four scenarios: (a) FFFD, (b) FCRD, (c) FFDD and (d) FDDD.
The colours in the bars refer to the number of Green occupants in the family
after convergence. The last bar of every graph when d = 4 shows the initial
category of the family before convergence.

In scenarios (b) and (c), the family remained with two green occupants
at thresholds 2 and 3, besides, in (a) and (d), the family remained the same
at threshold 3 and only one occupant was changed at threshold 2. This in-
dicates that the family does not change significantly when the threshold is
high (d = 2 and d = 3). However, at low thresholds (d = 0 and d = 1), the
family converged mainly toward the dominant consumer type. For example,
in (a) the convergence was mostly toward ‘4 green occupants’, because ini-
tially there were three green occupants. A similar observation was noticed in
(d). In scenario (b) and (c) where there is no dominant awareness type, the
convergence was with equal probabilities either to all green occupants or all
waster occupants (‘no green occupants’ category) with higher convergence to
the extremes at threshold 0. These results indicate that the proposed model
is conceptually valid as it reflects Festinger theories and collective behaviour,
which agree that people tend to change their behaviour to conform with the
behaviour of others.

It is worth noting that in (a) and at threshold 0, around 20% of the house-
holds converged to ‘no green occupants’. This means that the only waster
occupant succeeded to change the behaviour of the other three green occu-
pants. This phenomenon is explained in the cognitive dissonance theory,
which states that dissonance can be reduced by either adapting with others,
or convincing the others to adapt with the individual. This explains how the
three green occupants converged to wasters in effect of one waster occupant
as in (a) and vice versa in (d). Festinger [40] mentions that in this case, the
overall cognitive elements of the surrounding environment change, but this
is easy when the individual can find others who follow the same behaviour,
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(c) FFDD

FIGURE 4.6: Family Consumer Types Convergence (Continued
in the next page)

which explains the low percentage of this convergence (20% in our experi-
ment). Scenarios with no green occupants are usually targets for interven-
tions to repress the waster effect and achieve more energy efficiency, which
are the focus of the next two experiments.
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(d) FDDD

FIGURE 4.6: Family Consumer Types Convergence

4.3.2 Family-level Intervention

In this experiment, family-level interventions are applied to scenario (d) of
the previous experiment (FDDD) as it has the most waster occupants after
convergence. For each threshold, the possible intensities of family-level in-
terventions are applied keeping the thresholds dg and dw within the the sig-
nificant values {0,1,2,3,4}. The aim of this experiment is to show the effect of
promotion and repression interventions when varying their intensities. Fig-
ure 4.7 shows the results with initial thresholds d = {0, 1, 2, 3, 4}.

It is noticed that in all the scenarios, when the promotion and repression
intensities are the maximum, the category ‘4 green occupants’ dominates.
Looking at the scenarios in-between when varying the intervention intensi-
ties, we can observe that the number of green occupants increases as the pro-
motion intensity (Ip) increases, which is not the case with repression intensity
(Ir) where most of the occupants stayed wasters. For example, at threshold 2,
applying promotion intervention (Ip = 2) resulted in around 100% ‘4 green
occupants’, while applying repression intervention (Ir = 2) resulted in 100%
‘1 green occupants’. This indicates that repression intervention is less effec-
tive than the promotion intervention. This is attributed to the high number
of waster occupants that existed in the family (FDDD), such that encouraging
them to adopt the green behaviour is more effective than repressing the only
green occupant from getting affected by waster occupants.

Another indication from varying intervention intensities is inferring the
minimum intensity needed to increase the possibility of getting 4 green occu-
pants. For example, at threshold 0, applying repression intervention (Ir = 2)
is enough to get ‘4 green occupants’ with probability more than 0.95. This
allows to identify the minimum effort needed while achieving the maximum
number of green occupants.
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(b) 4 Occupants Family (FFDD)
4 Green Occupants 3 Green Occupants 2 Green Occupants 1 Green Occupant No Green Occupants

FIGURE 4.7: Family-level Intervention Convergence – Scenario
FDDD (Continued in the next page)
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FIGURE 4.7: Family-level Intervention Convergence – Scenario
FDDD

4.3.3 Occupant-level Intervention

This experiment studies the effect of occupant-level intervention, which di-
rectly changes the awareness of specific occupants. For this experiment, we
choose to target the least aware occupant of the family. The intervention can
be applied at specific times of the year, therefore we set 3 times for it: (1)
‘early intervention’ at T = 2, (2) ‘mid-year intervention’ at T = 6, or (3) ‘late
intervention’ at T = 9. Scenario FFFD with threshold d = 0 is selected to get
the minimum intensity required to prevent the ‘no green occupants’ conver-
gence (as shown in scenario (a) in the experiment reported in Section 4.3.1).
Besides, it can be used to determine the best intervention time just before the
waster occupant affects other green occupants. Figure 4.8 shows the results
while varying the intervention time and intensity.
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FIGURE 4.8: Occupant-level Intervention Convergence – Sce-
nario FFFD, d = 0 (Continued in the next page)

It is observed that as earlier the intervention is and as its intensity in-
creases, more green occupants are obtained. The early interventions with in-
tensities 2 and 3 are the most effective with no waster occupants after a year.
This is expected because the waster occupant is affected by the occupant-
level intervention at an early stage, thus leading to 4 green occupants. How-
ever, in all other scenarios, waster occupants are observed even at high in-
tensities. This shows that one intervention per year is not enough to make an
impact on families with only one waster occupant. This suggests to perform
continuous interventions to maintain the green effect and combine them with
family-level interventions. Note the this experiment was performed with
very low threshold of the family (d = 0) – so occupants can easily influence



88 Chapter 4. The Peer Pressure Model

0 1 2 3

I
o

0

20

40

60

80

100

P
er

ce
nt

ag
e 

of
 H

ou
se

ho
ld

s

Late-year Intervention

FIGURE 4.8: Occupant-level Intervention Convergence – Sce-
nario FFFD, d = 0

each other.

4.3.4 Effect of Interventions on Families with Varied Social

Parameters

In the previous chapter, it was shown that social parameters affect the en-
ergy efficiency of the family. Although the previous model does not simulate
family pressure, we showed that energy waste in large families is less than
small families. On the basis of this conclusion, the current experiment tests
whether the repression family-level intervention is more effective in big or
small families. For this purpose, the family-level intervention is applied on
(a) a two-occupant family (two adults 25-39 years old both with full-time
job), and (b) a four-occupant family (two adults 25-39 years old both with
full-time job, and two children). The initial threshold d of both families is 0,
and the initial number of green and waster occupants is equivalent ((a) FD
and (b) FFDD). Figures 4.9a and 4.9b show the consumer types convergence
of scenarios (a) and (b), respectively. Figure 4.9c shows the resulting energy
saving percentage when compared to the no-intervention scenario (Ir = 0)
and the convergence time, which is the time it takes the family to reach a stable
state where the occupants are no more affected by each other.

In Figure 4.9c, at intervention intensities 1 and 2, the percentages of sav-
ing for big families are 9% and 16% respectively, which are more than that of
small families (i.e. 1% and 11%). This is also observed in the awareness type
convergence (Figures 4.9a and 4.9b) where the ‘4 green occupants’ category is
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(b) 4 Occupants Family (FFDD)
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(b) 4 Occupants Family (FFDD)

FIGURE 4.9: Effect of Family-level Intervention on Two- and
Four-Occupant Families – d = 0 (Continued in the next page)

more dominant in (a) than the ‘2 green occupants’ category in (b). However,
at intensities 3 and 4, the savings of small families are 21% and 25% respec-
tively, which dominates that of big families (i.e. 16% and 15%)(Figure 4.9c).
Besides, all of the occupants in scenarios (a) and (b) converged to green occu-
pants as shown in Figures 4.9a and 4.9b. This is explained by the lower con-
vergence time of small families (Figure 4.9c). This means that a higher inten-
sity intervention converges small families quicker than big families, which
consequently leads to higher saving. Besides, low intensity interventions can
lead to maximum saving in big families.
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FIGURE 4.9: Effect of Family-level Intervention on Two- and
Four-Occupant Families – d = 0

4.4 Discussion and Insights

The model proposed in this chapter simulates peer pressure effect on energy
awareness levels and consumption of families. The peer effect behaviour of
occupants is underpinned by the well-established human behaviour theo-
ries by Festinger[38]–[40] opposed to other models that do not use existing
theories [58]. Besides, the existing models [7], [14], [26], [27], which are de-
veloped for residential and commercial communities vary the structure and
type of peer networks, which is not applicable for families. The developed
peer pressure model uses behaviour theories that are adapted to comply with
family pressure effect on energy consumption in households. In addition, as
the model is built upon the daily behaviour model, it separates the change in
energy use behaviour attribute from the daily activities of occupants.

The experiments presented in this chapter showed how the model can be
used to analyse the effect of interventions in a number of significant scenar-
ios. We proved that the promotion family-level intervention is more effective
than the repression intervention in a family where the waster occupants dom-
inate. This implies that it is better to give incentives and rewards for mem-
bers of waster families to encourage them to adopt the green behaviour. For
the occupant-level intervention, we showed that even when green occupants
dominate in a family, one intervention per year is not enough to prevent the
waster occupant from affecting the green occupants. This indicates that occu-
pants need to be continuously targeted by interventions even if the number
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of green occupants is high in the family.
In the last experiment, we showed that the family-level intervention can

result in maximum saving at low intensity in big families as opposed to small
families. While a high intensity intervention is more effective in small fami-
lies as it leads to a larger and quicker saving than big families. This indicates
that more effort is needed when targeting small families, while big families
can reach their maximum saving with lower effort. These implications are
compatible with the ones obtained from the experiment that studied family
size in Section 3.4.2 of Chapter 3 and discussed in Section 3.5. The recom-
mendation in Chapter 3 was to target small families with focused and high
intensity interventions, and big families with low intensity and distributed
interventions. This is because small families waste more energy as proved in
in Chapter 3, and save more when targeted with high intensity interventions
as shown in this chapter, and big families waste less and save the maximum
when targeted with low intensity interventions.

The developed model can be used to repeat these experiments with var-
ied social parameters, thresholds and intervention types to obtain the most
effective intervention in every case.

4.5 Summary

This chapter has presented a model that simulates the effect of peer pres-
sure on the energy consumption of households. Behaviour change due to
peer pressure is modelled using Festinger theories (informal soaicl commu-
nication theory, social comparison theory and cognitive dissonance theory),
which are compatible to a family setting and lead to an uncomplicated model.
Besides, these theories are formalised by adapting Granovetter’s Threshold
Model. The occupant agents change their energy behaviour every period of
time based on the observed behaviour of other occupant agents around it.
The model also includes an abstraction of two types of energy interventions
(occupant-level, and family-level interventions). This is done to study the
effect of peer pressure on the results of interventions. The presented exper-
iments prove the conceptual validity of the model – such that it reflects the
used theories. In addition, they show how the model offers an analytical tool
for governing bodies to analyse the effect of interventions and decide how to
target different families to get the best desired results.

The next chapter presents an energy messaging intervention, which is cat-
egorised as an occupant-level intervention. The intervention will be tested
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using a third model that is built over the daily behaviour model presented in
the previous chapter and the peer pressure model presented in this chapter.
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Chapter 5

The Messaging Intervention Model

After presenting the peer pressure model that simulate realistic occupant-to-
occupant interaction, this chapter models the occupant-intervention interac-
tion. The chapter also proposes a messaging intervention that combines the
technologies used for automated control and the service of providing energy
feedback. The proposed intervention is implemented in a third layer of the
proposed complete Agent-Based Model (ABM) (Figure 5.1). The messaging
intervention model is built upon the daily behaviour model and the peer
pressure model.

FIGURE 5.1: The Messaging Intervention Model from the Lay-
ered ABM

In this chapter, we show the strengths of designing the complete model
in a layered onion-like structure for the following reasons:

• The messaging intervention model takes advantage of the detailed daily
behaviour and energy consumption data generated by the core model,
and the realistic family pressure simulated in the peer pressure model.
The previously developed models enable the simulation and detection
of energy waste incidents, which are used to test the messaging inter-
vention. Besides, they are necessary to simulate realistic interaction of
occupants with the intervention.
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• The layered onion-like structure enables plugging and unplugging var-
ious intervention types and mechanisms taking advantage of the data
generated by the models. This makes the complete model a useful tool
for policy and decision makers to design customised energy interven-
tions.

The following section presents the proposed intervention, then, the model
formalisation and design are presented. Next, a number of experiments that
assess the intervention are presented and discussed. Findings reported in
this chapter are published in [130].

5.1 The Proposed Messaging Intervention

Based on the literature reviewed in Section 2.4, we present a messaging in-
tervention that is a middle solution between Energy Feedback Systems (EFS)
and Energy Management Systems (EMS). Therefore, instead of providing the
amount of energy being consumed or comparing the household consump-
tion with similar ones as in EFS, the intervention provides the occupant with
real-time messages about their current energy wastage and recommends ac-
tions to reduce their consumption. This is done by relating the energy con-
sumption of appliances with the context of the house, including occupant
presence, activities and schedule, as well as environmental data. This en-
ables the detection of energy waste incidents in which the intervention can
recommend to reduce this waste based on the occupant state. The approach
in this intervention is to avoid taking automatic actions opposed to the gen-
eral approach in EMS. This is done to maintain the occupants’ comfort allow-
ing them to take decisions whether to comply with the messages or not. An
example of real-time messages would be: "Your television in the master bedroom
is now ON while nobody is there, it is recommended that you turn OFF devices while
not in use", or "The lights in the living room are now ON while there is enough day-
light in the room, you can take advantage of natural daylight to reduce your energy
consumption".

The following sections (1) detail the type of appliances that was imple-
mented in the simulation model, (2) define a messages pushing strategy/
heuristic to control the rate and number of messages to be sent to occupants,
(3) present the factors that affect occupants energy consumption behaviour,
including compliance to the waste messages and (4) present different en-
abling technologies and techniques that may be used to obtain and forward
the messages in reality.



5.1. The Proposed Messaging Intervention 95

5.1.1 Appliance Types

Energy waste incidents involve different appliances and reasons for the waste,
and consequently different suggestions to minimise or avoid the waste. In
this sense, three general types of appliances can be identified based on the
type of waste that may occur:

• Presence-dependent appliances (televisions, computers, game consoles,
fans, lights, etc.), which are not supposed to be ON if they are not being
used.

• Presence-independent and heavy appliances (washing-machine, tum-
ble dryer, dishwasher, etc.), which are not recommended to be ON in
peak-times, therefore can be scheduled as they do not depend on the
occupant presence.

• Heating/cooling related devices where the waste may happen if win-
dows/doors are opened while they are ON, or over-heating/cooling is
detected in some areas of the house.

Detecting energy waste incidents of each of these types requires a differ-
ent set of context data. The context data needed to obtain meaningful energy
feedback for occupants include: occupant context, appliance context and envi-
ronment context [131]. This thesis focuses mainly on the presence-dependent
appliances, namely, televisions, computers and lights as a proof-of-concept. En-
ergy waste from presence-dependent appliances is detected when they (1)
are switched ON while occupants are not in the location of the appliance,
(2) are not being used, or (2) are not needed to be ON (e.g. keeping the
lights ON while there is enough daylight in the room). This requires data
about the occupant context (occupant location and ongoing activities), envi-
ronment context (amount of natural daylight depending on the time of the
day and weather conditions) and appliance context that is used to identify
appliances that are turned ON.

5.1.2 Message Pushing Strategy

Forwarding messages to the occupants is done by pushing notifications to
the occupants’ mobile devices taking advantage of the wide availability of
mobile technologies these days. However, in order to ensure that occupants
are not continuously interrupted by the messages, a message pushing strat-
egy needs to be defined. This is because notifications sent in high numbers,
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at a high rate and/or in inappropriate times can affect the users’ ongoing-
tasks, hence causing frustration [132]. In addition, it may lead ultimately to
un-installing the application [133]. Therefore, we propose a non-intrusive
message pushing strategy that minimises the annoyance level of occupants,
whilst ensuring that the family reaches the saving target set by governmen-
tal bodies and policy makers. The strategy is implemented in the simulation
model by a heuristic, which will be detailed in Section 5.2.

In order to define this strategy, we explore studies that aim to study user’s
notification-interaction behaviour and build interruptibility management me-
chanisms. These studies aim to determine the most appropriate times and
contextual situations to send notifications, and identify the factors that af-
fect the interruptibility and receptivity of notifications. The aim is to reduce
users’ interruptibility (i.e. interruption of ongoing activities) and increase re-
ceptivity (i.e. the probability that the user receives the notification and reacts
to it). One study found that sending a notification when the user transits from
one activity to another reduces interruptibility [134]. Other studies, such
as [135]–[137], develop machine learning models that use contextual data to
predict the appropriate times for sending notification messages. These con-
text data include time of the notification, type and the sender of information,
location, emotional state, level of engagement in the activity, response time
to notifications and phone lock/unlock times. Another study found that the
content factors of the message (including interest, entertainment, relevance
and actionability) affect the receptivity of the message more than the time of
delivery [138].

Based on these studies, the proposed strategy aims to minimise occupant
annoyance level caused by the feedback messages. This is achieved by the
following:

• sending messages only in appropriate times based on the occupants
location and activity;

• limiting the number of messages sent to occupants per day based on
the occupants’ interest in the information,

• distributing the messages over the time of the day,

• giving priority for high wastage incidents and

• adjusting the number of occupants to be targeted by the intervention
based on the saving target
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5.1.3 Effective Energy Consumption Behaviour Factors

The possibility of receiving the message does not mean that the occupants
will comply to the messages anyway. There are several factors that determine
whether the occupant will accept the suggestion of the intervention. These
factors are outlined by Li et al. [139] who adapt the Motivation-Opportunity-
Ability (MOA) model to the energy consumption behaviour. The MOA model
is initially developed to explain consumers purchasing behaviour. The fol-
lowing points map the factors that affect occupant energy consumption be-
haviour and compliance to the feedback messages with motivation, oppor-
tunity and ability.

• Motivation is defined as the needs, goals and values that affect the level
of interest and willingness to adopt the energy conservation behaviour.
It represents the level of concern about personal energy consumption
and personal relevance of the presented feedback information.

• Opportunity includes the relevant resources (external and environmen-
tal factors not in control of the person) that enable or prevent the be-
haviour. In terms of energy feedback, it represents understandable and
accessible feedback and easily accessible controls. It also includes so-
cial opportunity such as peer pressure from other individuals in the
environment.

• Ability is defined as the personal capabilities that enable the behaviour.
It includes the knowledge capacity of interpreting energy related in-
formation, consequences of energy use, as well as the ways for saving
energy.

The messaging intervention proposed in this chapter enhances occupant
ability and opportunity of control by exposing occupants to understandable
information and making the information accessible through mobile devices.
However, other parts of the MOA model are not affected by the messaging
intervention. Therefore, we use the Personal Energy Rating (PER) attribute
in the simulation model to determine how often occupants comply to the
messages, and assume that these factors are embedded in the PER. This PER
value is also affected by peer pressure as presented in the previous chapter.

5.1.4 Messaging Intervention Enabling Technologies

In order to realise the sensible real-time messages, several enabling technolo-
gies and techniques exist in research and in industry. These technologies and
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techniques are presented in the following points to help practitioners provide
the intervention in reality. Note that the enabling technologies presented in
this section serve in detecting energy waste for all appliance types not just
presence-dependent appliances implemented in this thesis.

• Energy monitoring at appliance level: This can be achieved using smart
plugs, which detect when the appliance is turned ON and monitor the
amount of energy being used. For more information about commer-
cial smart plugs, Ford et al. [140] provide a comprehensive review of
smart plugs available these days. Another way of detecting appliance
consumption is through smart appliances, which allow the monitoring
of their energy consumption and status, as well as control and com-
munication with the user [109], [112], [140]. Appliance consumption
can also be obtained from aggregated consumption data through Non-
Intrusive Load Monitoring (NILM) techniques [141]. Beside these di-
rect energy monitoring methods, some appliances can be monitored
indirectly through environmental sensors such as temperature, noise,
vibration, etc. [142].

• Environment monitoring: The surrounding environment inside and
outside the house can be monitored through different sensors such as
temperature, humidity, illuminance, motion, presence, body detection
(e.g. smart watches), doors/windows detectors, among others. In ad-
dition, virtual/software sensors can provide useful information such as
occupants’ schedules and calendars, or live and forecast weather data.

• AI techniques: These techniques may be used for different purposes
to analyse the collected context data. For example, Bayesian Networks
[143] and Ontological and Probabilistic Reasoning [144] are used for ac-
tivity recognition in households. Sleeping detection is also possible by
utilising data from smart watches [145] which are considered as per-
manent monitoring devices. Other activity recognition, learning and
prediction techniques can be found in [142]. Another application of AI
techniques is NILM which is usually based on Hidden Markov Models
and artificial neural networks [141]. Optimisation algorithms are also
used for appliance scheduling [146] in order to minimise energy costs
and peak demand, and maximise user preferences and comfort.

• Platforms for communication: As energy waste detection requires the
communication of different elements, communication platforms need
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to be in place to provide the connection among them. The most com-
mon way for this purpose are Wireless Sensor Networks (WSN) which
are used in [103] and [104]. In these approaches, sensors and actuators
are set to communicate with each other in a single network. More re-
cently, the Internet of Things (IoT) paradigm was established where ap-
pliances and objects (e.g. smart appliances and smart plugs) can com-
municate and exchange data [147]. IoT technologies are proposed to
ensure reliable communication in a complex environment [105].

• System Architecture: The general architecture of EMS, including the
messaging intervention proposed in this chapter, is outlined by De Paola
et al. [142]. The system is composed of different components, each hav-
ing a specific functionality.

– Sensory and actuation infrastructure: includes the energy and envi-
ronment monitoring devices, as well as actuators, which allow to
control the appliances.

– Middleware: deals with the heterogeneous devices and sensors in
the home, and provides a common interface for processing.

– Processing engine: performs the analysis of the collected context
data such as activity recognition and detection of energy waste.

– User interaction interface: provides the occupants of the house with
notifications about the energy waste, and collects their feedback
and preferences about the system suggestions. This is suggested
to be provided through mobile devices such as smartphones and
smart watches.

The components that provide the proposed intervention can be centralised
such that all communication and processing passes through a central server,
or distributed – so that the components communicate directly and the pro-
cessing is done in distributed processing units [142]. Figure 5.2 provides a
general illustration of the system that can provide the messaging interven-
tion.

5.2 Model Formalisation and Design

The approach proposed in this intervention is to detect energy waste and
forward the messages to occupants. This layer models the energy detection
feature, and implements a heuristic to simulate the message pushing strategy
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FIGURE 5.2: Messaging Intervention Technologies Illustration

defined in 5.1.2. Then, it simulates the message reception, compliance and
behaviour change of occupants in effect of the messaging intervention.

5.2.1 Energy Waste Detection

As the ABM simulates presence-dependent appliances, the energy waste in-
cidents detected are related to the occupant location in the house, ongoing
activities and natural daylight as follows:

• Televisions and computers are detected as wasting energy when they
are turned ON but not being used. The appliance is identified to be
used when the activity associated to it (watching television and using
the computer) is being performed regardless of the location of the oc-
cupant in the house, because the ABM enables multitasking. For ex-
ample, the occupant can be watching television and preparing food in
the kitchen. In this case, the television located in the living room is not
detected to be wasting energy.

• Lights are detected to be wasting energy when the light is on and (1) the
room is not in use,(2) the room is in use but natural daylight is enough
to light the room, or (3) the room is in use but all the occupants in the
room are sleeping. The room is considered to be in use if there is an
occupant using it even if s/he is not in the room due to multitasking as
explained above. This covers the case when people leave the lights ON
when they are returning to the room in a short while.
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The above mechanism is provided as an example for energy waste de-
tection. Any other detection mechanism can be implemented and tested, in-
cluding mechanisms that utilise predicted activities and energy consumption
of occupants or customise the waste detection to the occupant preferences.

5.2.2 Message Pushing Strategy Simulation

The energy waste incidents are detected and updated every time-step based
on the mechanism determined in the previous section. However, it is not
possible to send the occupants a group of messages about their energy waste
every 10 minutes (the time step in the daily behaviour model) asking them to
turn OFF appliances and change their behaviour. Using the studies presented
in Section 5.1.2, we implement a non-intrusive strategy that selects to forward
messages at appropriate times, and limits and distributes the messages to be
sent to occupants in order to reduce interruptibility and increase receptivity.
The strategy is implemented based on a heuristic defined in the following 4
steps:

(1) Send messages in appropriate times

As shown by Ho and Intille [134], the appropriate time to send notifications
to users is when they are transiting from one activity to another, which re-
duces interruptibility. Applying this factor to the messaging intervention,
the messages are only sent to occupant agents when they transit from one
occupancy state to another, from one activity to another, or from one location
to another (inside the house).

(2) Set a frequency cap per day

Many studies identify that the user’s level of interest in the information is one
of the influential factors that affect receptivity of notifications. Therefore, we
use this factor to limit the number of messages to be sent to occupant agents.
Consequently, we define a frequency cap f c that determines the number of
messages that can be sent per day. f c is determined based on the number of
transitions the occupant agent performs during the day and its interest in the
information, which is determined by the consumer type. Every consumer
type is given a weight to determine the level of interest, setting the maxi-
mum for the ‘Follower Green’ type and the minimum for the ‘Disengaged
Waster’ type with an arbitrary equal difference between any two consecutive
consumer types as shown in Table 5.1.
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TABLE 5.1: Weighting of Consumer Types used in the Messag-
ing Intervention Strategy

Consumer Type Weight (wa)
Follower Green 1.00
Concerned Green 0.75
Regular Waster 0.50
Disengaged Waster 0.25

Every time period T (set to 4 weeks – the same as the peer pressure
model), the frequency cap f ci,T of every occupant agent i is calculated us-
ing Equation (5.1).

f ci,T = nTran(T−1) × wa (5.1)

where nTran(T−1) is the number of transitions the occupant agent performed
in the previous time period T-1, and wa is the weighting of the agent’s con-
sumer type.

The frequency cap f ci,T is then divided on the number of days in the
period T (nT = 28 = 4 weeks × 7 days per week) to ensure that the
messages are distributed over the days. The frequency cap per day f ci,d is
calculated using Equation (5.2).

f ci,d =
f ci,T

nT
(5.2)

The messaging intervention strategy keeps the number of messages sent to
the occupant agent less than or equal the frequency cap per occupant.

(3) Adjust the number of messages per occupant per time step

In order to guarantee that the messages are distributed over the day, the strat-
egy adjusts the number of messages to be sent to the occupant agent per time
step while focusing on high energy wastage. This is done based on the re-
maining number of messages that can be sent to the occupant (hereafter oc-
cupant’s messaging capacity) and the expected number of waste incidents
until the end of the day.

Every time step t, the number of messages to be sent to the occupant agent
i is set using Equations (5.3), (5.4) and (5.5).

nMsgi,t =

⌈
ci,t

nExpt

⌉
(5.3)
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ci,t = f ci,d − NMsgi,t (5.4)

nExpt = nDett − NExpd (5.5)

where nMsgi,t is the number of messages to be sent to the occupant agent i at
time step t, ci,t is the occupant’s messaging capacity, nExpt is the remaining
number of incidents expected at time step t until the end of the day, NMsgi,t

is the total number of messages received by the occupant agent i so far, nDett

is the number of detected incidents so far and NExpd is the total number of
incidents expected per day. In this model, NExpd is calculated from the last
time period (4 weeks) then divided over the days. It was possible to calculate
NExpd in the ABM, however, in reality various machine learning algorithms
can be applied to identify the expected incidents throughout the day.

(4) Adjust the number of occupants per time period

Every period of time, the strategy adjusts the the number of occupants to
be targeted by the intervention. The family is set an energy saving target
(in percentage) to be achieved after one year of applying the intervention.
This target is supposed to be set by policy makers and governmental bodies.
Therefore, based on whether the percentage of saving is more or less than
the target, the number of occupants is decided in a way that reduces the
annoyance of occupants if they have already reached the target. This process
is shown in Algorithm 4, which is repeated every time period T, where nTarT

Algorithm 4: Adjust Number of Occupants

Ensure: nTarT ≥ 0 and nTarT ≤ N
if first time period T then

nTarT ← N
else

if sT > tar + 1 then
nTar(T+1) ← nTarT − 1

if sT ≥ tar− 1 and sT ≤ tar + 1 then
nTar(T+1) ← nTarT

if sT < tar− 1 then
nTar(T+1) ← nTarT + 1

is the number of targeted occupants at time period T, N is the total number
of occupants in the family, sT is the energy saving percentage before time
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period T and tar is the energy saving target (in percentage) set for the family
to reach. Occupants with the highest frequency cap are selected to be targeted
by the intervention. The simulation is run for one year without the messaging
intervention in order to calculate the energy saving percentage.

5.2.3 Message Reception Simulation

The energy waste incidents are forwarded to the occupant agents’ mobile de-
vice (smartphone, tablet, etc.) if they possess any. In this thesis, we simulate
the case of smartphones as they are the most widely used types of mobile
devices these days [148]. Real statistical figures were obtained for the pos-
session and usage of smartphones from Deliotte Global Mobile Consumer
Survey (Belgian edition)1 [148]. Table 5.2 shows the possibility of owning a
smartphone based on the occupant’s age. Therefore, it is decided in the ini-
tialisation phase whether the occupant agent possesses a smartphone or does
not.

TABLE 5.2: Smartphone Possession Probability by Age Group

Age Group Smartphone Possession Probability (%)
12-17 2 86.1
18-24 90.0
25-39 92.0
40-54 83.0
55-64 3 83.0
65-75 56.0

Possessing a mobile device does not mean that the occupant will always
receive the message. To determine the mobile device check probability, the
Global Mobile Consumer Survey was used. The survey includes data about
how often people check their smartphone per day by age group (Table 5.3),
and the percentage of people who check their phone while doing different
activities during the day (Table 5.4).

1The Belgian edition of the survey was selected since the probability distributions used
in the ABM are calibrated using the Belgian time-use surveys.

2The age group 12-17 is not included in the Global Mobile Consumer Survey [148].
Instead, we used a survey by IVox and Wiko who found that 86.1% of children
aged 13-16 possess smartphones in 2015. Reference: http://be-nl.wikomobile.com/

a4342-Wat-is-de-ideale-leeftijd-om-een-smartphone-te-bezitten (Accessed 2 May
2018). For the smartphone usage we used the data of the closest age group 18-24 as shown
in Table 5.3

3Results for age group 55-64 are not reported in the Global Mobile Consumer Survey
report. Therefore, we used the data of the closest age group 40-54 instead. This also applies
for smartphone usage percentages in table 5.3.

http://be-nl.wikomobile.com/a4342-Wat-is-de-ideale-leeftijd-om-een-smartphone-te-bezitten
http://be-nl.wikomobile.com/a4342-Wat-is-de-ideale-leeftijd-om-een-smartphone-te-bezitten
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TABLE 5.3: Frequency of Checking the Smartphone by Age
Group

Age group (age) Frequency of checking the smartphone
per day

12-17 70
18-24 70
25-39 46
40-54 28
55-64 28
65-75 11

TABLE 5.4: Percentage of Checking the Smartphone while Do-
ing Different Activities

Day Period Activity Percentage (%)

Morning
(7am-9am)

Within 5 minutes after
waking-up 31

While on road 26
Daytime/
Work Time
(9am-5pm)

While working 66
In a meeting 22
While Shopping 33

Evening
(5pm-11pm)

While on road 26
While Watching TV 52
While spending time
with friends/family 33

Sleep
(11pm-7am)

Within 5 min before sleeping 28
If sleeping was interrupted 40

Based on these data, we calculate the percentage of checking the smart-
phone for every age group and day period, which is mapped to the corre-
sponding age groups and periods in the model, and assume that the message
is received once the phone is checked. The action of smartphone checking
(sct,d) depends on the time of the day (t), day type –workday or weekend–
(d), occupant age and occupancy state (ost,d) as shown in Formulae (5.6).

SC : age, ost,d, t, d→ sct,d (5.6)

5.2.4 Message Compliance Simulation

Whenever the occupant agent receives a message, it may comply to it by turn-
ing OFF the appliance that is causing the waste. This action happens based
on the agent’s PER attribute, which embeds different personal and external
factors that either allow or prevent the action from happening.
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When the message is sent to the occupant’s mobile device, the agent’s
smartphone check probability (sct,d) is used along with its occupancy state
(ost,d), location/room (rt,d) and PER to determine the reaction towards the
message as in Equation (5.7).

MC : sct,d, ost,d, rt,d, PER→ {keepOn, turnO f f } (5.7)

5.2.5 Behaviour Change Due to Messaging Intervention

The occupant agents may change their consumer type, and consequently
their PER assuming that they are becoming more energy aware as a result
of the messaging intervention. This is decided by comparing the actual be-
haviour of the occupant agent and the mean value of the consumer types
shown in Table 3.4. The actual behaviour of the agent is calculated using
Formulae (5.8)

aB =
nOFF

supNOFF
, (5.8)

where aB is the ratio of the number of times the occupant agent turned
the appliance OFF (nOFF) and the number of times it was supposed to turn
the appliance OFF (supNOFF). If aB exceeds the mean of the more-green con-
sumer type (see Table 3.4), the agent changes its consumer type to the green
side, thus increases its PER attribute. This step is executed every time period
T, then the peer pressure behaviour change step (Algorithm 2) is executed
such that the occupant agent may affect others’ behaviour or the others may
affect it.

5.3 Experiments and Results

The aim of these experiments is to show how the proposed simulation model
can be used to test energy interventions. The family simulated in these ex-
periments is composed of four occupants: two adults who are 25-39 years old
in a full-time job, and two children 12-17 years old who go to school. For this
family type, we simulate two scenarios by varying the consumer types and
PER values (all follower green families, and all disengaged waster families)
to test the effect of energy awareness on the effectiveness of the intervention.
In order to test the effectiveness of the proposed message pushing strategy,
we run two types of scenarios, one where the proposed strategy is applied at
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its entirety as outlined in the previous section, and another where messages
are sent whenever the occupants are active at home (hereafter naive strategy).
With the naive strategy, it is assumed that occupants stop complying to mes-
sages when their frequency cap is reached, while the messages continue to
be sent by the messaging intervention in response to energy waste incidents.
This follows the conclusion reached in [133], where users stop using the ap-
plication when they receive a high number of notifications. Besides, we vary
the saving target of the proposed strategy to get the maximum percentage of
saving that can be achieved when applying it.

For every scenario, 100 households were simulated to capture the proba-
bilistic nature of the model. Each household has the same composition but
different income levels, work routines for employed occupants, ages, app-
liance number and types and number of rooms in the house, all drawn based
on the probability distributions from the real data. Every household is run
for one year without any intervention to get the baseline consumption of the
house, then for another year while applying the proposed strategy or the
naive strategy. The percentage of saving of every scenario is calculated using
Equation (5.9),

S =
(C0 − C)
C0 × 100

, (5.9)

where S is the percentage of saving, C is the yearly consumption when ap-
plying the messaging intervention, and C0 is the yearly consumption when
no intervention is applied.

In order to measure the level of annoyance that occurs as a result of the
feedback messages, we calculate the percentage of messages sent in compar-
ison to the frequency cap of the occupants (5.10).

A =
NMsgtotal

f ctotal
× 100 , (5.10)

where A is the level of annoyance of occupants, NMsgtotal is the total number
of messages sent to the occupants in the whole year and f ctotal is the sum-
mation of frequency caps of all the occupants in the whole year. A value
of annoyance less than 100 means that the occupants were not annoyed by
the messages, and a value more than 100 means that they are annoyed by
the messages, which indicates high probability of switching off the notifica-
tions. Annoyance level may exceed 100 when the messages are sent even if
the frequency cap is exceeded as in the naive strategy.
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First, we show some general results (average savings and annoyance) of
the simulated scenarios, then we present detailed results of the messaging
intervention to show how the model can be used to test the performance
of the proposed strategy. The same hardware specifications mentioned in
Section 3.3 of Chapter 3 have been used to run these experiments.

5.3.1 General Results

Figures 5.3 and 5.4 show the average and standard deviation of energy saving
and annoyance level of the simulated 100 households in each scenario.

Scenarios that run with the naive strategy have the same indication when
varying the energy saving target, because the target does not affect the way
of sending the messages. In order to get the maximum saving result of the
messaging intervention when applying the proposed strategy, we start by
simulating scenarios with low targets (10%) and increase it until we noticed
that the average saving is not changing. When the average saving does not
increase as the target increases, then this means that the proposed strategy is
targeting the maximum number of occupants, but the household could not
achieve more saving. This is noticed when increasing the target from 20%
to 30% where the saving increased only 1% with the green occupants and
decreased 1% with waster occupants. Therefore, with the proposed strategy,
the maximum average saving for green occupants is 13% and for waster oc-
cupants is 11%.

The energy saving of the intervention with the naive strategy ranges be-
tween 13-15% for both green and waster families, while the savings achieved
when applying the proposed strategy is between 7-13%. However, when
looking at the annoyance levels, we notice that the proposed strategy is able
to achieve these savings with low levels of annoyance (21-52% for green oc-
cupants, and 45-75% for waster occupants). While the annoyance level of all
waster families with the naive strategy exceeds the frequency cap of the oc-
cupants by almost three times (287-294%). This indicates that the saving per-
centage 14-15% resulting from using the naive strategy could not be achieved
in reality because of the high annoyance level. Besides, for green occupants,
the proposed strategy achieved the same amount of savings (12-13%) with
annoyance level 48-52% compared to 96% annoyance level when the naive
strategy is applied. This indicates that the proposed strategy succeeded to
keep occupants unannoyed while achieving reasonable savings. This is be-
cause it reduces the number of occupants to target when the saving target is
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(A) All Green Scenario

(B) All Waster Scenario

FIGURE 5.3: Average of Savings When Applying the Proposed
Strategy and the Naive Strategy

reached, and distributes the messages over the day while focusing on high
wastage. These results indicate that the proposed intervention strategy is
more affective than the naive one. The details of the proposed strategy will
be presented in the next experiment.

Looking at the standard deviation of the reported results, we notice that
results of all waster families are more scattered than green families. This is
because waster occupants have the chance to change their consumer type
and become more aware, thus achieving different energy savings. An exam-
ple of two different scenarios will be presented in the next section to show
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(A) All Green Scenario

(B) All Waster Scenario

FIGURE 5.4: Average of Annoyance When Applying the Pro-
posed Strategy and the Naive Strategy

the reason of these scattered results. In terms of achieving the saving target,
the proposed strategy did not succeed to achieve the targets in average. The
percentage of successful scenarios among the simulated households is 14%,
3% and 1% for the targets 10%, 20%,and 30%, respectively. This reveals that
policy makers will need to adjust the message pushing strategy and/or ap-
ply a combined intervention approach – such that targets are achieved while
minimising the annoyance level of the occupants. The proposed model can
help to evaluate these strategies and interventions before implementing them
in reality. Note that these results are specific for the family type tested in this



5.3. Experiments and Results 111

experiment. Different results may be obtained when changing the inputs to
the model. City level results can be obtained by feeding the model with the
demographic distribution of the city to obtain the effectiveness of the inter-
vention and strategy.

5.3.2 Detailed Strategy Results

This section presents detailed examples to show how the proposed strategy
works. Figure 5.5 compares how the messages are sent over the 24 hour
period using the proposed strategy and the naive one. In Figure 5.5a where
the naive strategy is applied, messages are sent to occupants whenever they
are active at home. It is noticed that most of the messages are sent once the
occupants wake up in the morning, and the occupants stop complying to the
messages at the middle of the 24 hour period (at 04:00 pm). After this time,
the intervention system continues sending the messages, but it is assumed
that the occupants stop complying to them when the number of messages
received reaches their frequency cap. Figure 5.5b shows how the messages
are sent when the proposed strategy is applied. It is clear that the messages
continue to be sent until the end of the day (at 10:00 pm), and no messages
are sent after the frequency cap of each occupant is reached. This ensures
that the messages are distributed over the day while focusing on high waste
incidents.

Figure 5.6 shows how the energy saving changes over the year (tracked
every 4 weeks) and how the proposed strategy changes the number of oc-
cupants to target accordingly (the left y-axis refers to the saving percentage,
and the right y-axis refers to the number of occupants to target). Figure 5.6a
presents a scenario where the family succeeded to reach the energy saving
target (30%) at week 28. As a result, the proposed strategy started to de-
crease the number of occupants to target from 4 until it reaches 0 at week
44. By the end of the year, the family had 30 % of energy saving. This sav-
ing percentage was possible, because the occupants changed their consumer
types from “4 disengaged wasters” to “3 regular wasters and one follower
green”. This is due to both peer pressure and the effect of the messaging
intervention. Figure 5.6b shows a family that did not succeed to reach the
saving target during the whole year. As a result, the number of occupants
to target remained equal to the maximum that is 4 occupants. Concerning
the consumer types of this family, all of the occupants remained disengaged
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(A) Proposed Strategy

(B) Naive Strategy

FIGURE 5.5: Messages Distribution over the Day when using
the Proposed Strategy and the Naive Strategy

wasters by the end of the year. This shows one of the reasons why interven-
tions work in some cases but not in others. In addition, it indicates that in
some cases, the messaging intervention is not enough to achieve the saving
target. In this case, another type of intervention needs to be combined with
it to change occupant awareness and save more energy.
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(A) Successful Scenario

(B) Unsuccessful Scenario

FIGURE 5.6: Change of Energy Saving over the year and Ad-
justment of Occupants to Target

5.4 Discussion and Insights

This chapter introduced an energy messaging intervention. Most existing en-
ergy feedback systems display abstract or contextualised energy consump-
tion data [32], [33], [97], [98]. However, these data still need to be further
analysed by occupants to determine energy waste causing activities/actions
and minimise their consumption [31], [99]. In this chapter, we identified the
specifications and enabling technologies and techniques that can be used to
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realise the messaging intervetntion in reality. The intervention supports oc-
cupants to reduce their energy consumption using sensible feedback; a feed-
back that tells occupants what appliances are causing high energy waste.
Instead of controlling appliances on behalf of occupants, like most existing
EMS do [34], [35], [102], [105], [108], we propose to keep occupants in con-
trol. Therefore, we suggest that the energy wastage messages are forwarded
to occupants’ mobile devices giving them the choice whether to comply to
the feedback messages or not.

One challenge that exists when dealing with applications that forward
messages to users is the intrusiveness of the messages – such that the pushed
notifications may be sent at the wrong times or in high number/rate. In or-
der to overcome this challenge, we presented a heuristic approach that sends
messages only when the occupants transit from one location/activity to an-
other, sets a frequency cap to limit the number of messages, distributes them
over the day and reduces the number of occupants to be targeted when a
saving target is reached.

We use the daily behaviour and peer pressure models developed in the
previous two chapters to implement a model that tests the proposed mes-
saging intervention. The model uses real statistical figures of the possession
and usage of smartphones by occupants to simulate the occupants’ interac-
tion with the intervention. Therefore, unlike existing models [13], [14], [24],
[27], [58], [63], the developed model simulates realistic interaction of occu-
pants with energy interventions, where the result of the intervention can be
affected by the occupant daily behaviour and social characteristics. The ex-
periments presented in the chapter showed that the proposed intervention
strategy was effective as it achieves reasonable saving and keeps the occu-
pants not annoyed when compared to a naive strategy. The presented sce-
narios also showed that the intervention may be effective in one family but
not in another. Therefore, the developed model enables policy makers to
determine the effectiveness of interventions and the factors that affect it.

5.5 The Complete Model: Putting Things Together

In order to present the steps in all of the three models together, Figure 5.7
shows a flowchart of the occupant agent behaviour. The colors of the steps
refer to the model that the step is executed in. The chart also shows the as-
sociated equation/algorithm used in each step. The steps are repeated until
the simulation time – set to one year – is finished.
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FIGURE 5.7: Occupant Agent Execution steps

5.6 Summary

This chapter has presented a messaging intervention that helps occupants to
reduce their energy consumption by informing them about real-time energy
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waste incidents. Unlike existing EFS, the intervention does not only pro-
vide the amount of energy being consumed, but provides actionable feed-
back, which tells them how to avoid energy waste. Besides, compared to
existing EMS, which control appliances automatically, the messaging inter-
vention allows occupants to control their appliances, thus making them feel
comfortable. The chapter has also presented the enabling technologies and
techniques that are needed to realise the messaging intervention in reality. In
order to avoid occupants annoyance from the notifications (which are sug-
gested to be sent to their mobile devices), we have proposed a strategy that
controls the number of occupants to target, the number of messages to send
per occupant and the time of sending the messages.

The proposed messaging intervention and strategy were implemented in
a model that is built upon the daily behaviour and peer pressure models.
The developed model takes advantage of the fine-grained data generated
in the daily behaviour model to detect energy waste and simulate realistic
interaction of occupants with the intervention. The occupant agents in the
model can then decide to comply to the messages or to ignore them based
on their PER. They may also change their PER to simulate that they have
been affected by the intervention. The model has been used to run a set of
experiments. The experiments showed that the proposed intervention and
strategy can result in acceptable energy saving while keeping the occupants
comfortable (not annoyed by the messages). It also showed how the model
can be used as an analytical tool to explain how interventions can be effective
in some families but not in others.
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Chapter 6

Conclusion and Future Directions

6.1 Summary of Contributions

Human behaviour is one of the most influential factors that are causing global
energy consumption to increase, specifically in buildings. Therefore, it is im-
portant to study the factors that affect it and suggest the needed actions to
change occupant behaviour, thus reducing energy consumption. Therefore,
this thesis has looked into energy simulation models that aim to predict and
assess energy consumption in buildings. As the human behaviour aspect is
very important, we focused on behavioural energy waste and interventions
to help occupants reduce it.

The first contribution of this thesis is an extended literature review of ex-
iting energy simulation models. The review started by identifying the main
categories for energy simulation approaches: top-down and bottom-up ap-
proaches, which differ in the level of detailed data the model generates. An-
other categorisation of energy simulation models that has been reviewed is
deterministic and probabilistic approaches, which differ in the process of hu-
man behaviour data generation (occupancy and activities). From this gen-
eral review of energy simulation approaches, we concluded that a bottom-up
probabilistic approach is needed to allow the study of the human behaviour
factor on the energy consumption of households. This approach is also im-
portant for the assessment of energy efficiency interventions.

The dynamism of agent-based modelling, which is one of the techniques
for energy simulation, makes it the most suitable for human behaviour sim-
ulation. An Agent-Based Model (ABM) is a bottom-up approach that can be
used in a deterministic or probabilistic way. The review of existing ABMs
that simulate energy consumption highlighted a number of challenges, in-
cluding: (1) deterministic human behaviour simulation [58], (2) generation
of high level data (that is not activity-based and/or at building or household
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level) [7], [13], [14], [26], [27], [59], (3) lack of human behavioural aspect sim-
ulation [60], [61], [74], [75], (4) lack of occupant-appliance interaction sim-
ulation [22] and (5) usage of small case studies [23], [24], [62], [64]. These
limitations do not allow the simulation of realistic human behaviour and the
caused energy waste in households. When reviewing existing Probabilistic
Models (PMs), we found that the level of details they generate (appliance
level energy consumption and activity-based) and the large amounts of data
they use are suitable for realistic human behaviour and energy waste sim-
ulation. However, they are not capable of simulating dynamic human be-
haviour, which may be affected by external factors (e.g. energy interventions)
[74]. Therefore, the integration of probabilistic and agent-based models was
proposed as a solution to overcome the limitations in both models.

The review then discussed the applicability of existing ABMs that sim-
ulate peer pressure effect on energy consumption of individuals to family
environments. Existing models usually study commercial, office and resi-
dential communities [7], [13], [14], [26], [27]. We found that the used hu-
man behaviour theories and network structures/types are not applicable to
simulate peer pressure among family members. Besides, occupants’ daily
behaviour and energy consumption behaviour are simulated and controlled
using the same attribute. This leads to unrealistic simulation of peer pres-
sure. Therefore, we identified that a new model that simulates family peer
pressure is needed. In relation to energy interventions, ABMs that test en-
ergy interventions were also reviewed. The main limitation of these models
is that they either select affected individuals randomly or assume the same
effect for the intervention on all occupants regardless of their characteristics
and interaction with it [13], [14], [24], [27], [58], [63]. This leads to unrealistic
assessment of energy interventions, and prevents studying the factors that
affect its results. This review of energy simulation models achieves objective
1 outlined in Chapter 1.

Based on the review of energy simulation models, this thesis has pro-
posed a complete agent-based model that combines (1) a daily behaviour
model, (2) a family-level peer pressure model and (3) an energy interven-
tion model. The complete model is designed in a layered ‘onion-like’ struc-
ture, where the daily behaviour model is in the core, the peer pressure model
is built upon the core model and the energy intervention model is the outer-
most layer. This structure emphasises that each upper layer model takes ad-
vantage of the model underneath to achieve its aim. The peer pressure model
changes the energy consumption attribute of occupants without changing



6.1. Summary of Contributions 119

the occupant daily behaviour that is simulated in the core model, and the
intervention model uses the detailed data in the core model to detect energy
waste and simulate detailed and realistic interaction of occupants with the
intervention. Besides, the structure of the complete model allows plugging
various energy interventions for testing and comparing among them, in or-
der to decide the most efficient ones for every scenario. This complete model
encompasses three contributions of this thesis each representing one model
as summarised below.

The core daily behaviour model is developed by integrating an exist-
ing PM in an ABM. The model simulates realistic human behaviour and
detailed energy consumption data with the help of the PM developed by
Aerts [37]. The ABM characterises occupants with a Personal Energy Rating
(PER) attribute that indicates how often they apply energy efficiency actions,
and helps simulating the detailed occupant-appliance interaction. These fea-
tures allow for energy waste simulation and energy intervention assessment,
which are used by the other models developed in this thesis. The model
was validated using a number of techniques, including: (1) model-to-model
comparison (predictive validity of daily behaviour data), (2) graphical rep-
resentation and tracing (structural validity) and (3) seed variation (internal
validity). Experiments were conducted by varying social parameters (em-
ployment type, family size and occupant age) to assess the effect of these fac-
tors on the energy consumption of the house. It was concluded that bigger
families cause less energy waste than small families due to the higher proba-
bility of somebody to turn OFF unneeded consumption. Besides, young, un-
employed and part-time occupants can make more efficiency effect in small
families than full-time and older occupants, because they are more active at
home. This efficiency is calculated by the amount of wasted energy in the
house. These conclusions prove that the developed model is effective in as-
sessing energy consumption and energy waste in households, therefore, it
fulfils objective 2 of the thesis. The daily behaviour model is the second con-
tribution of the thesis.

The second developed model is a family-level peer pressure model. Since
none of the reviewed ABMs use human behaviour change theories that are
applicable to family interaction, a review of human behaviour theories was
conducted. Theories that explain the effect of social interaction on the be-
haviour of individuals were reviewed. The review resulted in choosing Fes-
tinger theories (i.e. informal social communication theory [38], social com-
parison theory [39] and cognitive dissonance theory [40]) to be used in the
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model as they are applicable to family environments. Besides, Granovetter’s
threshold model was identified to formalise Festinger theories in a usable
model that has a small number of encapsulated parameters. This review
of human behaviour theories satisfies objective 3 of the thesis. The peer
pressure model was developed by adapting Granovetter’s threshold model
and formalising Festinger theories where every occupant agent may change
its PER when it is affected by the behaviour of other occupant agents. The
model also includes the simulation of two abstract types of interventions: (1)
individual-level intervention, (2) and family-level intervention. Experiments
were conducted to prove the conceptual validity of the model, which has
shown that the model reflects the used theories. The experiments has also
given examples of how the model can be used to assess energy interventions
and decide the needed intervention types and intensities in different scenar-
ios. The developed and validated peer pressure model achieves objective 4
of the thesis, and is the third contribution of it.

As an example of the individual-level energy intervention, we proposed
an intervention that can be tested using the proposed models. Therefore,
we reviewed the energy efficiency solutions Energy Feedback Systems (EFS)
and Energy Management Systems (EMS) and highlighted their limitations.
On the one hand, EFS, which aim to inform occupants about their energy
consumption, display either abstract or contextualised energy data [32], [33],
[97], [98]. These data need to be analyses by users to decide what actions
are needed to reduce their house consumption. On the other hand, EMS use
technological and analytical tools to infer the surrounding context (occupant
presence, preferences, environmental data, etc.), and control appliances on
behalf of occupants to reduce their consumption [34], [35], [102], [105], [108].
However, it was proven that this automated approach makes the users feel
uncomfortable, and may be reversed by their actions. Therefore, we found
that a middle solution is needed – such that occupants maintain their control,
and at the same time get informed and know what is needed to reduce their
consumption. This review satisfies objective 5 of the thesis.

Based on these limitations in existing energy efficiency solutions, we pro-
posed an intervention that detects energy waste incidents, and informs oc-
cupants about the incidents recommending actions to avoid them. The in-
cidents are suggested to be sent to occupants’ mobile devices. Since mobile
messages can be annoying, we designed a messaging strategy where the time
of the notifications is based on the context of the occupant, and the number
of notifications is controlled based on the occupant’s interest in the message.
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We also identified all necessary technologies and techniques needed to re-
alise the messaging intervention in reality. This proposed intervention and
strategy achieves objective 6 of the thesis.

The messaging intervention and strategy were implemented and assessed
in a third simulation model of the complete ABM. This model uses the de-
tailed data produced by the core model to detect energy waste. Once the
occupant agents receive the messages based on the designed strategy, they
have the choice to comply to it or not. The intervention may also cause the
occupants to change their PER attribute indicating that they are learning and
changing their behaviour because of it. The occupant interaction with the in-
tervention is simulated by real statistical figures of the possession and usage
of smartphones. A set of experiments were conducted to test the proposed
intervention and strategy in specified scenarios. The experiments showed
that the strategy is effective in keeping occupants not annoyed and achiev-
ing acceptable saving. The detailed results of the experiments showed that
the intervention can be effective in some scenarios but not others. Therefore,
the developed model can be used to simulate these cases and test various
interventions. The messaging intervention model fulfils objective 7 of the
thesis, and together with the proposed intervention are the fourth and fifth
contributions of this thesis.

The complete layered ABM developed in this thesis is capable of simulat-
ing realistic and detailed human behaviour dynamics, thus overcoming the
shortcomings of existing models. It offers an effective tool for policy makers
and governing bodies to (1) study the effect of human behaviour on energy
consumption in buildings, and (2) assess energy interventions. In addition,
the proposed messaging intervention makes the consumers informed about
needed energy efficiency actions. Therefore, the developed model and inter-
vention play a role in resolving the global concern of reducing energy con-
sumption.

6.2 Future Directions

After the development of the complete ABM and the assessment of the mes-
saging intervention in the model, the following future directions can be iden-
tified.

In terms of daily behaviour modelling, individual’s occupancy and activ-
ities can be modelled in an interactive way where the behaviour of one oc-
cupant may be dependent on the other (e.g. going out of the house together,
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choosing to do a shared activity, etc.). This aspect is implicitly included in
TUS used in this research. Besides, the chosen PM [37] simulates part of this
interaction by distinguishing between household tasks and personal activi-
ties, where household tasks are modelled at household-level then assigned
to individuals. This aspect can be simulated explicitly either by modelling
the occupant deliberative process using Belief-Desire-Intention models as in
[149], or by modelling reactive occupants as in SMACH [60].

The model developed in this thesis has concentrated on household-level
simulation for the purpose of studying energy waste. However, making pol-
icy decisions may require studying a group of buildings or cities. Therefore,
the same model can be used to obtain city-level data by feeding the model
with the demographic composition of the city and the distribution of aware-
ness levels of the occupants. In this case, peer pressure interaction may occur
between families or members of different families in addition to peer pres-
sure among family members. This emphasises the strength of the onion-like
layered structure of the proposed model, where an extra layer can be added
to implement peer pressure between families. This is implemented in exist-
ing models such as [26] and [14], which simulate peer pressure in residential
communities.

Besides, further calibration of the generated energy consumption data can
be conducted to represent real energy consumption. This requires the avail-
ability of real energy consumption data to validate the output of the model.
In addition, the accuracy of the messaging intervention model, as well as the
complete model, can be measured by implementing the intervention in re-
ality and observing the results. This will help obtain the ground truth data
that can be used to calculate the exact accuracy of the model. This will move
the model from the mediator role to the predictor role by introducing the
predictive validation of it. The required data set would include occupants’
daily activities, appliance level energy consumption, and data about the in-
teraction of occupants with the messaging intervention. Such data sets are
currently not publicly available. Governing bodies and researchers with in-
terest can gather such data sets, which in turn would enable them to use the
model proposed in this thesis.

For the peer pressure model, the behaviour change equation is designed
at the consumer type level rather than the PER attribute value. A variation
of this approach is to design it at the PER value level. This can enhance
model’s capability to simulate more fine-grained behaviour change. Besides,
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the equation is calculated every time period regardless of how much the oc-
cupant has made contact with the other occupants. Otherwise, this can be
done by relating the effect of members with the total time they are in contact
in the house, which makes the interaction more realistic. This can be easily
achieved in the current model as the core daily behaviour model simulates in-
dividual daily availability at home in a 10-minute time step. Therefore, it will
be easy to track how often occupants exist at home together, occupy the same
room, or make a shared activity. Another enhancement of the peer pressure
model is to add a weighting attribute, which determines the level of relation
between the occupants, thus affecting the peers level of influence [7]. This
attribute can be added in the future where the intervention may be targeted
at specific relationships if it proves efficient as in [26]. These enhancements
are expected to produce an even more realistic model that reflects the quality
and rate of daily interactions among the family members.

The current peer pressure model includes a number of human-related pa-
rameters that are abstracted using numerical values such as the threshold
and the threshold lag. These attributes need to be concretely related to hu-
man characteristics and behaviour. This can be done by conducting a sur-
vey/questionnaire, which matches between the actual human characteristics
and the values of the parameters, such as the questionnaire performed in
[150]. The peer pressure model offers different options of inputs, including
social parameters (family size, employment types, ages), awareness levels,
values and beliefs that affect the energy consumption behaviour and inter-
vention options. Through a number of simulated scenarios, we proved in
the experiments that these inputs affect the outcome of interventions. The
experiments focused on demonstrating the application of the model in pre-
specified scenarios. The model can ideally be used to study the impact of
any intervention planned by governing bodies on the outcome (i.e. energy
saving). This can be done by estimating unknown parameters, running the
model with initial parametrisation of known and unknown parameters. Then
a search mechanism (e.g. grid search) can be applied to best estimate the un-
known parameters, minimising the difference between the model’s synthe-
sised data and the observed real data. If the search space is large, in case of
having too many unknown parameters, computational intelligence methods
like Genetic Algorithm [151] can be applied. Revealing these unknown pa-
rameters can help in determining the reason why interventions are effective
in some cases, but not in others.

Concerning the proposed messaging intervention, a number of challenges
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may be observed when applying a human controlled approach. The first
challenge is the possibility that the occupants do not comply to the mes-
sages. This may be affected by several internal barriers (e.g. personal mo-
tivation), and external barriers (e.g. inaccessibility to control the appliances).
Therefore, it is important to identify and overcome these barriers through
field testing. The second challenge is the users’ trust in the system, which
may be breached if the forwarded energy waste incidents are not accurately
predicted. This challenge can be addressed by developing and using accu-
rate sensing devices and analysis techniques, and taking the users’ feedback
about the provided messages.

It is worth to mention that in a behaviour change type of problems, there
is no “silver-bullet type of solution” [42]. Therefore, it cannot be assumed that
the proposed intervention will work in any case and type of household where
a combination of interventions may be needed. Therefore, one of the future
directions to further develop such interventions is to study it from the so-
cial psychological point of view. This is done to determine the most effective
way of presenting the information – so that occupants are encouraged to take
action. This can be done by field experiments as well as agent-based mod-
elling. One of the models that study the needed persuasive mechanisms to
encourage occupants to adopt energy efficient actions and tailor energy mes-
sages based on the occupants’ characteristics is developed by Mogles et al.
[152]. Their model is considered a complementary model to the complete
ABM developed in this thesis. The model developed in this thesis focuses on
implementing the detailed energy consumption and activities of occupants in
households, and the used PER attribute represents a black box formalisation
of the occupant’s energy consumption decisions. Mogles et al. [152] model
simulates the human cognitive process by formalising the determinants of
energy consumption behaviour, which enables a more detailed study of en-
ergy interventions.

The complete model proposed in this thesis is now implemented for lights,
televisions and computers which are presence-dependent appliances. The
model can be extended to simulate other types of appliances, thus testing
other types of interventions or actions to control energy consumption. These
appliance types include presence-independent and heavy appliances (wash-
ing machine, tumble dryer, dishwasher, etc.), which are not recommended
to be switched ON in peak-times. This is called demand response, which
is applied when the price of electricity unit varies based on the time of the
day. Demand response benefits both consumers (by reducing their energy
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bill), and providers (by reducing the generation cost and operating the elec-
tricity system more efficiently) [100]. In this case, the messaging intervention
could suggest to reschedule the heavy appliance to a non-peak time that is
convenient for the occupants’ schedule and preference, or use an alternative
such as using line drying instead of using tumble dryer, renewable energy
instead of electricity, etc. The other type of energy waste that can be tested is
heating/cooling energy waste. This could happen when (1) heating/cooling
devices are ON when occupants are not present and pre-cooling/heating is
not scheduled, (2) windows/doors are opened while the devices are ON, or
(3) over-heating/cooling is detected. The suggestions in these cases are to
turn the device OFF or adjust the temperature set point of heating/cooling.
In order to test these interventions, all the necessary context data will need
to be added to the simulation model (specifically the core daily behaviour
model) such as occupant schedules, occupant preferences and internal and
external temperature. Then, the interventions related to these appliances can
be modelled and tested. Besides, various strategies for sending messages
out to occupants may be defined, implemented and tested using the same
model. This emphasises the applicability of the customisable energy inter-
vention testing feature of the complete model proposed in this thesis.
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Abstract—Several agent-based and probabilistic models were
proposed to simulate human behaviour, which is an important
cause of high energy consumption in buildings. However, some
of these models ignore behavioural energy waste at occupant
level, and when they model it, they are based on small case
studies and produce high level energy consumption data. This
paper proposes a hybrid approach that integrates agent-based
and probabilistic models to simulate behavioural energy waste at
occupant level. The combination of the two approaches helps pro-
duce fine-grained data, and is based on large real data samples.
The developed model was validated against realistic data. The
results show that employment type have an effect on the energy
consumption of households, which needs further investigation to
quantify the effect and test other social parameters.

I. INTRODUCTION

More than half of the energy consumption of buildings

is caused by human behavioural energy waste (e.g. leaving

appliances and lights on while not in use) [1]. Therefore,

it is crucial to study human behaviour especially with the

recent research in zero carbon buildings design where human

behaviour is important [2].

To analyse buildings energy performance and study the

effect of human behaviour, several energy simulation models

have been proposed. Among these are Probabilistic Models

(PM) and Agent-Based Models (ABM) that simulate energy

consumption human behaviour. PM simulate the activities

of occupants through probability distributions then get the

resulting energy consumption of appliances [2], [3]. However,

these models do not simulate occupants behavioural energy

waste. They assume ideal human behaviour [4] and consider

that occupants have identical behavioural characteristics, while

in fact, occupants may have different consumption habits [5].

ABM approaches have been proposed to model behavioural

energy waste in both commercial [6] and residential build-

ings [7]. In these models, occupants/energy consumers are

modelled as separate computational entities that change their

state and make decisions by interacting with their environment

(electric appliances) and other occupants [8]. However, most

of these models do not model the low level interaction be-

tween occupants and appliances thus produce high level data.

Modelling this interaction at a fine-grained level is important

to determine the causes of energy waste in buildings [9].

This paper proposes a hybrid approach that takes advantage

of both probabilistic and agent-based models to overcome

their limitations when they work separately. Thus, obtaining

a model that simulates various levels of energy awareness of

occupants and produces more detailed data at occupant and

appliance level. This helps in understanding the impact of

occupant’s energy awareness levels in family settings. The

results of this paper set the way for more experiments to study

the effect of social parameters on the energy consumption of

a family. The paper is divided into the following sections:

the next section presents part of the existing probabilistic

and agent-based models highlighting their limitations and

showing how integrating them in one model overcomes these

limitations. Section III presents the integration methodology.

Section IV illustrates the resulting energy consumption of

different types of households. Finally, conclusion and future

work are presented in section V.

II. RELATED WORK

A. Probabilistic Models

Probabilistic Models (PM) have been widely proposed to

predict energy demand in residential buildings. They utilise

time-use surveys to calculate the probability that an action

occurs and simulate occupant activities and energy consump-

tion at home. These models are considered as bottom-up ap-

proaches that build up the energy consumption of the building

from high resolution data at activity and appliance level [3].

Bottom-up approaches make it possible to detect energy waste

when having information about what the occupant is doing,

what is his/her location, which appliances are turned on, etc.

In addition, this level of granularity is useful to study the

changes in occupant behavioural characteristics [10].

Although PM produce high resolution data which is useful

when modelling energy waste, existing models only aim to re-

produce realistic occupant activities and energy consumption.

This is because these models follow a linear data generation

process where occupancy and activity data are generated and

then used to generate the resulting electricity consumption.

This linear process cannot be used to model dynamic be-

haviour because human behaviour is non-linear and can change

based on several individual and environmental attributes [8].

Existing PM assume that all occupants are the same and

consume energy in an ideal way; That is, energy is consumed

only when occupants are available at home or doing the activ-

ity [3], [4], [11]. However, human behaviour is more complex

and is unlikely to be the same. For example, more than 50%

of energy consumption in commercial buildings is consumed

during unoccupied hours [1]. In addition, residential occupants

can be categorised into high, medium, and low consumers [6].

Ignoring the different levels of human energy awareness have
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caused an underestimation of energy consumption compared

to the real data in some existing PM. Richardson et al. [4]

noticed that there is more consumption during night in the

real data compared to the simulated one, and attributed this to

occupants leaving lights on when they sleep. Similarly, Aerts

[11] realised that the developed model failed to produce high

energy consumption levels, and explained that the reason could

be behavioural energy waste.

B. Agent-based Models

Besides PM, Agent-Based Models (ABM) simulate human

actions in dynamic environments. In ABM, agents are defined

as autonomous software components that take decisions based

on their state and rules of behaviour. ABM is best used when

agents behaviour is non-linear and affected by the surrounding

environment, when agents location is not fixed, and when

agents characteristics are heterogeneous [8].

Existing ABM approaches have been proposed for both res-

idential and commercial buildings and for different purposes.

For example, Azar and Menassa [5], [6] used ABM to study

the effect of peer pressure and energy conservation workshops

on the energy consumption of a commercial building. This

model differentiates between occupants by varying the average

yearly consumption. This factor is not only affected by how

aware the occupants are, but also how long they spend in

the building or what appliances they use. In addition, it does

not produce high resolution data like location and activity

of occupants which are important attributes when studying

behavioural energy waste. In a similar way, Zhang et al.

[7] represented energy-consumer agents at household level

to study the experience development of households when

using smart meters. Taking the household as a whole entity

which has one energy awareness level makes it difficult to

model occupants-appliances interaction and study the effect of

occupants energy awareness on the consumption of the family.

Among existing ABM a few of them model the occupant-

appliance interaction and vary the energy awareness at occu-

pant level. For instance, Carmenate et al. [9] developed an

ABM that models the human-appliance-building interaction,

and highlighted the effect of both building structure and

occupants awareness on energy consumption of the building.

The advantage of such models is that they simulate the detailed

movement of occupants in the building and study the factors

that affect energy consumption whether they are physical,

social or others. However, the limitation of these models is that

they are implemented for specific case studies which offers

energy efficiency strategies specific for these environments,

whereas using large samples allows for studying more varied

scenarios which results in wider conclusions.

C. Integrating Probabilistic and Agent-based models

PM utilise large samples of data which guarantees that

the produced data are realistic. They also provide high res-

olution data at appliance and occupant level. Therefore, PM

can overcome the limitations in some of the ABM models

presented above. On the other hand, ABM overcomes the

linear approach in PM by enabling dynamic human behaviour

modelling where occupant agents take decisions based on

their personal characteristics and the external state of the

environment. Furthermore, various energy awareness levels

can be modelled at the occupant level in ABM which enables

the study of energy awareness in a family setting. Therefore,

a hybrid approach that combines ABM and PM overcomes

limitations of both models when they are separated. This idea

of using PM in ABM was recently proposed in Reynaud et

al. [12] who propose to calibrate an ABM model with PM to

gain reactivity and coordination of occupant agents. Despite

the fact that the integration has not been implemented yet, the

ABM they proposed do not model behavioural energy waste.

III. THE AGENT-BASED AND PROBABILISTIC MODEL

INTEGRATION METHODOLOGY

The ABM model proposed in this paper obtains realistic

behaviour of occupants from Aerts PM [2], [11]. Aerts model

is one of the recent models which has advantages over

other models [3], [4], [10] and satisfies the requirements of

modelling energy waste. The model was selected because

it (1) produces more realistic occupancy and activities data,

(2) enables doing more than one activity at a time, (3)

includes nine activities that are linked to energy usage, and (4)

distinguishes between household tasks and personal activities.

Aerts model generates realistic occupancy and activity data

through probability distribution functions (PDF) extracted

from Belgian Time-Use Survey and Household Budget Survey

which include 6400 respondents from 3455 households. The

PDFs are generated based on several parameters such as

occupant ages and employment types, household types, and

days of week. The model is composed of three stages: (1)

occupancy modelling and (2) activity modelling which were

used in the ABM to produce realistic human behaviour, and

(3) electricity modelling. In order to model behavioural energy

waste, modifications were made mainly on the electricity

model by adding an energy awareness and location attribute

for occupant agents. These attributes, along occupants activity

and time of day, are used to control when occupants turn appli-

ances and lights on or off. The ABM consists of: ‘Occupants

Agents’, ‘Appliances Agents’, and the ‘Environment’ that the

agents act in.

A. The Environment and Appliances Agents

Occupants and appliances agents act in a house environment

composed of a number rooms. The house rooms affect the

mobility and number of locations that the occupants can be

in, and consequently their energy consumption. Therefore, the

number of rooms in the house was obtained from the Eurostat

income and living conditions database [13] which contains

the average number of rooms per person by type of household

and income group. The data was normalized and fitted to the

household types included in the PM. Every household was

assigned one kitchen, one living room, at least one bedroom

and at least one bathroom. Dining and laundry/utility rooms

were added in high income houses when necessary. The size

of basic rooms was set to 20 m2 based on the average

room size in Belgium [14] which was used to calculate lights

consumption. In terms of the day and time, the occupant agent

is aware of the day type (Weekday, Saturday, or Sunday),

992



time of day (10-minute time step), and the amount of external

daylight.

Electric appliances in the house are modelled as dummy

agents that are controlled by occupant agents. They only

respond to actions from occupants to change their state from

on to off or vice versa. At every time step, each appliance

records the amount of consumed energy based on its state.

Before initialising the simulation, every household is assigned

a number and types of appliances based on the household type

and income as modelled in the PM. The type of appliance

identifies the amount of energy that the appliance consumes

when it is on.

Therefore, the simulation environment E can be define using

the triplet <T, R, A>, where:

• T is a one-year simulation time defined by the triplet <t,
d, daylighttd>where t ∈ [1-144] is a 10-minute time step

in every day d, and daylighttd is the amount of external

daylight at every time step t and day d.

• R is the set of rooms in the house. For every room r ∈
R, r is defined by the triplet <size, Ar, Or>, where size
is the size of r, Ar is the set of appliances in r, and Or

is the set of occupants that are in r.

• A is the set of appliances. For every appliance a ∈ A, a
is defined by the set <inUseConsumption, r, Oa, Ctd>,

where inUseConsumption is the amount of energy used

when the device is on, r is the room that the appliance

is in, Oa is the set of occupants using the appliance,

and Ctd is the consumption array of the appliance over

a whole year, where every ctd ∈ Ctd can be either

inUseConsumption or 0 based on the appliance state.

B. The Occupant Agent

Initially, occupants’ ages and employment types are given

as input for the model. Employment types include: full time

job, part time job, unemployed, retired and school, where

under 18 occupants are school children and above 65 are

retired. Based on the household type (occupants’ ages and

employment types) the income of the household is assigned

using the income PDF in the PM. Next, the appliances and

rooms of the house are determined as detailed above. At every

time step, the occupants change the state of the environment

by changing their location and using the electric appliances.

1) Occupant Daily and Weekly Behaviour: Before simu-

lating occupancy, work routines and occupancy patterns are

assigned to each occupant. Details of these attributes can be

found in Aerts et al. [11]. At every time step, the occupant

either selects a new occupancy state ostd based on PDFs in

the PM, or decrements the duration of an already running

occupancy state. The occupant action to select new occupancy

state is defined by the function OS : opd,os(t−1)d, t → ostd
opd,ostd, t → dr

where, ostd is the new occupancy state, ostd ∈ {Away,

Sleeping, Active} (Away: when the occupant is not at home,

Sleeping: when the occupant is at home but sleeping, and

Active: when the occupant is at home and not sleeping). The

agent first selects a new state as function of his occupancy

pattern opd, previous state os(t−1)d, and time of day t, then

decides the duration dr of the state.

The PM distinguishes between tasks which can be per-

formed by one occupant at a time and personal activ-

ities that can be performed by some/all occupants and

can be shared. When the occupant is in the Active state,

he/she can either select to start a task or personal ac-

tivity, or decrement the duration of an ongoing activ-

ity. The action of selecting new activities is defined by

the function AC : age, emp, t,d → {0,1}ac/tk,dr which

is performed by the occupant agent for every personal

activity ac ∈ {Using the computer, Watching television,

Listening to music, Taking shower/bath} and task tk ∈
{Preparing food, Vacuum cleaning, Ironing, Doing dishes,

Doing laundry}. The function returns a Boolean value {0,1}
to distinguish if the action will take place or not. This way

of modelling enables the occupant to perform more than one

activity at a time. The decision of doing an activity is based

on the occupant age, employment type (emp), time of day t,
and day type d. If a new activity is selected to be performed,

the agent selects the duration dr of the activity.

2) Occupant Location: Whenever the occupant agent is in

the Active or Sleeping state, it means he/she should be in one

of the house rooms. Every activity is assigned a set of possible

rooms. The occupant agent determines his/her location rtd
using the function OL : ostd,ACtd,TKtd → rtd, where

ACtd are ongoing personal activities, and TKtd are ongoing

tasks. If the occupant is doing more than one activity at a time,

he/she may have a set of possible rooms and his/her location

alternates among these rooms at every time step.

3) Occupant Energy Awareness and Energy Usage: Oc-

cupants’ energy awareness have been modelled in existing

literature in different ways. For example, Carmenate et al.

[9] distinguishes between energy literate and energy illiterate

occupants. Similarly, Azar and Menassa [6] divided occupants

into high, medium, and low consumers. Another way is using

average yearly/daily consumption as a characteristic of the

occupant [5]. The most detailed and flexible definition of

energy awareness was proposed in Zhang et al. [7] where

energy consumers can belong to one of four consumer types:

‘Follower Green’, ‘Concerned Green’, ‘Regular Waster’, and

‘Disengaged Waster’. Based on the consumer type, the agent’s

energy awareness attribute is assigned a value between 0 and

100. This attribute is used to decide the probability that an

occupant follows energy saving actions such as turning off

devices when they are not in use. The value is calculated based

on a normal distribution for every consumer type (Table I). In

the current ABM, the energy awareness of occupant agents is

defined based on occupant types in Zhang et al. [7].

TABLE I: Mean and Standard Deviation of Consumer Types

Consumer Types Mean μ Standard Deviation σ

Follower Green 0.74 0.041

Concerned Green 0.72 0.043

Regular Water 0.41 0.033

Disengaged Waster 0.25 0.057

The action of turning appliances on/off is defined by the

function TOa : actd → turnOna

actd,Oa, ea → {keepOn, turnOff}a.
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Fig. 1: Appliances energy consumption of one occupant (25-39 years old / full-time job)

When the occupant starts an activity actd, he/she turns on

the appliance a associated to this activity. When the activity

ends and based on the occupants energy awareness ea, he/she

may turn off the appliance or keep it on. The occupant may

also communicate with other occupant/s Oa who may be using

the same appliance at the same time to decide whether to

turn off the appliance. The action of turning off appliances is

also executed every time an occupant visits a room and finds

appliances that are on but unused. The action of turning lights

on/off is different from using appliances, because using lights

depends on the amount of daylight and the location of occu-

pants. TOr : rtd,daylighttd → {turnOn, !turnOn}r
rtd,Or, ea → {turnOff , !turnOff}r

Every time the occupant is in a location rtd he may decide to

turn on the light in this room based on the amount of daylight

at the timestep (daylighttd) [11]. When the occupant leaves

his/her location, he/she checks if there is more occupants in

the room Or, and based on his energy awareness (ea) he/she

may decide to turn off the light or not.

In summary, the occupant agent OA is defined using the set

<age, emp, opd, ostd, ea, ACtd, TKtd, rtd >and can perform

the actions <OS,AC,OL,TOa,TOr>. The model was

implemented in Repast Simphony (https://repast.github.io),

a Java-based agent-based platform. The implementation of

the occupancy and activity behaviour in ABM was tested

and found to be generating the same occupant behaviour as

the original PM [11]. Three appliances were implemented:

Lights, TV, and PC, which are clearly affected by the energy

awareness of occupants like leaving lights on when leaving a

room or leaving the TV/PC on when the activity ends.

IV. SIMULATION RESULTS AND DISCUSSION

This section presents a set of experiments to test the validity

of the model and study the effect of energy awareness on

household consumption. In each scenario, the average energy

consumption of 100 simulated households (with the same

type and energy awareness, but different income, appliances

number and types, and house rooms) is calculated.

A. Experiment 1: Single Occupant Household

The purpose of this experiment is to demonstrate the validity

of the developed model. In order to study the effect of energy

awareness, single occupant households were simulated varying

ages and employment of occupants. Fig. 1 represents the

resulting weekday average consumption of lights, TV, and

PC for a 25-39 years old occupant in full-time job. Each

of the sub-figures in Fig. 1 includes 5 scenarios: the basic

model which is the ideal scenario with 100% energy awareness

(referring to Aerts PM [11]), and four scenarios each with a

different occupant type.

In the basic model, it is observed that when the occupant is

sleeping or away the energy consumption is very low or almost

zero. For the other four scenarios, it is observed that the im-

plemented model produces very similar trend of daily energy

consumption. The observed difference in energy consumption

is due to the energy awareness attribute which has caused the

line graph to level up in a proportionally based the energy

awareness percentages in Table I. The energy consumption of

Follower Green and Concerned Green occupants are almost

similar because their mean energy awareness is very close

(74% and 72% respectively). While the two waster occupants

are much higher with the Regular Waster being more efficient

than the Disengaged Waster (41% and 25% respectively).

Same observations were made for other day types, age groups,

and employment types.

These results prove the validity of the implemented model

that produces energy consumption trends similar to the basic

model which was constructed from real data in the PM, and

reflects the various energy awareness levels of occupants.

B. Experiment 2: Two Occupant Household

In order to study the effect of energy awareness on multiple

occupant households, the energy awareness of occupants is

reduced to the two extreme types: Follower Green (G) and

Disengaged Waster (W) which limits the number of scenarios

while achieving the objectives of this study. The total energy

consumption per day for the three appliances (lights, TV, and

PC) was calculated and shown in Fig. 2 which shows the

consumption of two 25-39 year old occupants (Fig. 2a where

both are in full-time job, and Fig. 2b where one is in full-time

job and the other is unemployed). The legend of the figure

encodes the energy awareness of the household, where the

sequence of the letters (G and W) has the same sequence as
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the description of the household type in the captions of the

sub-figures.
It is noticed that the observation in the previous experiment

(one occupant household) still applies on two occupant house-

holds which proves that the model reflects energy awareness

of occupants with multiple occupancy. Both Figures (2a and

2b) show the two extremes of energy consumption when

there are two Follower Green occupants or two Disengaged
Waster occupants at home. In-between scenarios in Fig. 2a

resulted in the same energy consumption (yellow and orange

crossed lines) even when reversing the energy awareness of the

two occupants. However, this observation doesn’t hold when

having different employment types (Fig. 2b). It is observed that

the household consumes less energy when the unemployed

occupant is a Follower Green. This is observed during the

whole 24 hours except few hours in the morning (7:00 am

and 9:30 am) when it is more probable that the Disengaged
Waster full-time occupant is awake and the Follower Green
unemployed occupant is sleeping. Similar observation is no-

ticed when the unemployed occupant is a Disengaged Waster
where the household consumes more energy. This is explained

by the fact that unemployed occupants spend more time in the

house which makes their effect more obvious than full-time

employed occupants.
These observations show that employment type is a factor

that affects the energy consumption of the house when varying

occupants energy awareness. However, further investigation is

needed to quantify this effect and test it on other age groups

and household types.

V. CONCLUSION AND FUTURE WORK

This paper presented a methodology to integrate agent-

based and probabilistic models to overcome limitations of

existing models. The proposed hybrid model incorporates

energy awareness at occupant level and produces fine-grained

data to model behavioural energy waste. It was shown that the

developed model produces valid consumption data compared

to the real data and reflects various energy awareness levels

of occupants. The experiments also showed that there is an

effect for employment type on the energy consumption of

the house. This conclusion needs to be quantified in future

research, and other social parameters such as occupants ages

and household types can also be studied to gain insights

towards energy efficiency plans for families. Furthermore,

the model opens the way for more experiments to study the

effect of intervention technologies (e.g. customized energy

waste messages) and family members pressure on the energy

consumption of household.
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Abstract. This paper presents a methodology to cascade probabilistic
models and agent-based models for fine-grained data simulation, which
improves the accuracy of the results and flexibility to study the effect of
detailed parameters. The methodology is applied on residential energy
consumption behaviour, where an agent-based model takes advantage of
probability distributions used in probabilistic models to generate energy
consumption of a house with a focus on energy waste. The implemented
model is based on large samples of real data and provides flexibility to
study the effect of social parameters on the energy consumption of fami-
lies. The results of the model highlighted the advantage of the cascading
methodology and resulted in two domain-specific conclusions: (1) as the
number of occupants increases, the family becomes more efficient, and
(2) young, unemployed, and part-time occupants cause less energy waste
in small families than full-time and older occupants. General insights on
how to target families with energy interventions are included at last.

1 Introduction

The building sector accounts for more than one-third of the total worldwide
energy consumption which is also expected to increase with the increase in pop-
ulation [1]. From this high percentage, more than a half is caused by human
behavioural energy waste (e.g. leaving appliances ON while not in use) [2]. Beis-
des, human behaviour is gaining more interest in the zero carbon design as it is
considered one of the barriers against the efficiency of zero carbon buildings [3].

This concern about the effect of human behaviour on energy consumption has
been considered in several energy simulation models which are used to analyse
buildings energy performance. One approach of simulation models are Probabilis-
tic Models (PM) whose aim is to add the human behaviour factor to building
simulation tools. These models simulate the activities of occupants, and as a
result the energy consumption of the house. Furthermore, PM enable modelling
different household characteristics such as occupants’ ages, employment types,
and household income [3,4]. However, these models do not simulate behavioural

c© Springer International Publishing AG, part of Springer Nature 2018
L. Rutkowski et al. (Eds.): ICAISC 2018, LNAI 10842, pp. 489–503, 2018.
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energy waste because they assume ideal and identical behaviour among occu-
pants [5]. While in fact, occupants may have different energy awareness levels
thus different energy consumption habits [6]. Another emerging trend of energy
simulation models are Agent-Based Models (ABM). Several ABM approaches
have been used to model behavioural energy waste in both residential [7] and
commercial buildings [8]. In these models, occupants/energy consumers are mod-
elled as agents that change their state and make decisions by interacting with
their environment (electric appliances) and other occupants [9]. However, most
of these models do not capture the low level interaction between occupants and
appliances which is important to determine the causes of energy waste in build-
ings [10], and to produce high level data. These limitations in existing PM and
ABM in simulating energy consumption motivates the approach of this paper,
where the integration process can overcome their limitations when they work
separately. The ABM takes advantage of probability distributions used in PM
to produce more detailed data at occupant and appliance level, and simulates
various levels of energy awareness of occupants. The same cascading approach
can be used in other human behaviour models such as transport modelling and
human communications to ensure the accuracy and flexibility of the results. The
energy simulation model has been validated in [11] and proved that there is an
effect of employment type on the energy efficiency of the house. Therefore, beside
proposing the integration approach, detailed results of the effect of varied social
parameters are presented to gain insights towards energy efficiency plans.

The paper is organised as follows. The next section presents existing PM
and ABM highlighting their limitations and advantages of integrating them.
Section 3 presents the proposed cascading approach. Section 4 illustrates how
the proposed model can be used to analyse energy consumption based on occu-
pants energy awareness and varied social parameters. Based on the results, the
model is compared with existing PM and ABM in Sect. 5 and the results of the
experiments are discussed providing general recommendations for policy mak-
ers on how to target family members to achieve less energy waste in buildings.
Finally, conclusion and future work are presented in Sect. 6.

2 Related Work

2.1 Probabilistic Models

Probabilistic (or stochastic) Models (PM) have been widely proposed to enhance
the prediction of energy demand in residential buildings by simulating occu-
pant activities. They utilise time-use surveys, where occupants record the activ-
ities they do throughout the day, to calculate the probability that an action
occurs. Using large amounts of data from time-use surveys enables generat-
ing the data based on different socio-economic factor like income, household
size, occupants ages or employment types [3,4]. These models are considered as
bottom-up approaches because they use highly detailed data (at activity and
appliance level) to build up the energy consumption of the house [12]. Bottom-
up approaches make it possible to detect energy waste when having information
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about what the occupant is doing, what is her/his location, which appliances
are turned ON, etc. In addition, this level of granularity is useful to study the
changes in occupant behavioural characteristics [13].

Although PM produce detailed data which is useful when modelling energy
waste, the existing models only aim to reproduce realistic occupant activities and
energy consumption. Therefore, they are not capable of capturing how occupants
react to changes in their environment [14]. From the computational view, PM fol-
low a linear modelling process where occupancy and activity data are generated,
then the resulting electricity consumption. This linear process cannot be used
to model dynamic humna behaviour which is non-linear and can change based
on several individual and environmental attributes [9]. Existing PM assume that
all occupants are the same and consume energy in an ideal way, i.e. energy is
consumed only when occupants are active at home or doing an activity [4,5,12].
However, human behaviour is more complex and is unlikely to be always the
same, which can be one of the most influential factors of energy consumption
in buildings. For example, more than 50% of energy consumption in commercial
buildings is consumed during unoccupied hours, and sometimes even in occupied
hours [2]. In addition, occupants can be categorised based on their greenness of
behaviour [6]. Assuming that no energy is wasted have caused an underestima-
tion of the real data in some existing models. For example, Aerts [4] realised
that the developed model failed to produce high energy consumption levels, and
explained that the reason could be behavioural energy waste.

2.2 Agent-Based Models

Besides PM, buildings energy consumption can be generated using Agent-Based
Models (ABM). In ABM, agents are defined as autonomous software compo-
nents that take decisions based on their state and rules of behaviour [9]. ABM
are widely used in social sciences to study dynamic human behaviour and its
influential factors [8]. Azar and Menassa [15] developed an ABM that represents
social network structures in commercial buildings to study the effectiveness of
energy interventions. Similarly, Chen et al. [8] studied structural properties of
peer networks in residential buildings. These models differentiate between occu-
pants by varying the average daily/yearly consumption. This factor is not only
affected by how aware the occupants are, but also how long they spend in the
building or what appliances they use. Therefore, no consideration was made
whether high energy consumption is a result of occupant behaviour. In another
way, Zhang et al. [7] represented energy-consumer agents at household level to
study experience development of households when using smart meters. Modelling
the household as a whole entity with one energy awareness level makes it diffi-
cult to model occupants-appliances interaction and study the effect of occupants
behaviour on the consumption of the family. Therefore, the aforementioned mod-
els [7,8,15] do not produce detailed data like location and activity of occupants
which are important attributes when studying behavioural energy waste.

Among the existing ABM, only a few capture the occupant-appliance inter-
action and produce detailed data that is useful in energy waste analysis. Zhang
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et al. [16] tested the effectiveness of automated lighting strategy against manual
lighting strategy in a university building. They found that the manual strat-
egy is more effective when occupants have high energy awareness level, and the
automatic one is better when occupants have low awareness level. Similarly, Car-
menate et al. [10] developed an ABM that models the human-appliance-building
interaction to understand determinants of energy waste in an office environment.
By including this interaction level they highlighted the effect of both building
structure and occupants awareness on energy consumption of the building. The
advantage of these models is that they simulate the detailed movement of occu-
pants in the building and study the factors that affect energy consumption within
the building environment (physical, social or others). However, the limitation of
these models is that they are implemented from hypothetical [10] and small [16]
case studies which questions the accuracy of the results, limits the variation of
parameters, and offers energy efficiency strategies specific for these environments,
while using large samples allows more realistic data, more varied parameters, and
more generalised conclusions.

2.3 Cascading Probabilistic and Agent-Based Models

PM utilise large samples of data, therefore, it is guaranteed that the produced
data are realistic and possible to study the effect of social parameters on energy
consumption of the house. PM also provide detailed data at appliance and occu-
pant level. Therefore, cascading PM with ABM overcomes the limitations that
existed in some of the ABM presented above. Besides, ABM overcome the linear
approach in PM by enabling dynamic human behaviour modelling where occu-
pant agents take decisions based on their personal characteristics and the state
of the environment. Furthermore, various energy awareness levels can be mod-
elled at occupant level in ABM which enables the study of energy awareness in a
family setting. Therefore, an approach that combines ABM and PM overcomes
limitations of both models when they are separated.

3 The Agent-Based and Probabilistic Model Cascading
Methodology

The model proposed in this paper cascades PM and ABM, where the first stage
is obtaining probability distributions from realistic data to simulate the occu-
pants daily behaviour, and the second stage is using these distributions in an
ABM to simulate the dynamic interaction of occupants and appliances. To get
the probability distributions, we take advantage of an existing PM which is
developed by Aerts [3,4]. Aerts model is one of the recent models which has
advantages over other models and satisfies the requirements of modelling energy
waste. The model was selected because it includes the following features: (1)
Obtains more realistic duration of activities and occupancy states (opposed to
[5,12]); (2) enables multitasking where occupants can be doing more than one
activity at a time (opposed to [12]); (3) includes nine activities that are linked



Cascading Probability Distributions in Agent-Based Models 493

to energy usage opposed to [13] that includes activities that may not be con-
nected to energy consumption; (4) simulates household dynamics by distinguish-
ing between household tasks and personal activities; and (5) uses 7 patterns of
typical occupancy behaviour based on age and employment type, which results
in more realistic occupancy data. The main approach followed in Aerts model is
generating realistic occupancy and activity data using higher order Markov Pro-
cess. The process is based on transition probability from one state to another,
and the probability distribution for the duration of the state. Probability Dis-
tribution Functions (PDF) were extracted from Belgian Time-Use Survey and
Household Budget Survey which include 6400 respondents from 3455 households.
The PDFs are generated based on several social and environmental parameters
such as occupants ages and employment types, household type, and day of week.
The model is composed of three stages: (1) occupancy model, (2) activity model
and (3) electricity model. The occupancy and activity models with their associ-
ated PDFs are used in the ABM to produce realistic human behaviour. However,
in order to model behavioural energy waste, modifications were made mainly on
the electricity model by adding an energy awareness and location attributes for
occupant agents. These attributes control when occupants turn appliances and
lights ON or OFF. Thus, behavioural energy waste is modelled by combining
data about occupants activity, location, energy awareness, and time of day.

The following subsections explain the components of the agent-based model:
‘Occupants Agents’, ‘Appliances Agents’, and the ‘Environment’ that the agents
act in. Details about the usage of the probability distributions in the ABM is
explained where necessary.

3.1 The Environment and Appliances Agents

Occupant agents live and interact in a house environment composed of a number
rooms, each having a set of appliances. The number of rooms affects the mobility
and number of locations that the occupants can be in, and consequently the energy
consumption. Therefore, the number of rooms was obtained from the Income and
Living Conditions Database by Eurostat [17]. The database contains data about
the average number of rooms per person by household type and income group. The
data were normalised and fitted to the included household types. Every household
is assigned a kitchen, a living room, at least one bedroom and at least one bath-
room, in addition to dining and laundry rooms when necessary. The size of basic
rooms was set to 20 m2 based on the average room size in Belgium [18] (the room
size was used to calculate the amount of lights consumed in every room). In terms
of the day and time, occupant agents are aware of the day of the week, time of
day in a 10-min time step, and the amount of external daylight. Electric appli-
ances in the house are modelled as dummy agents that react to occupant agents.
Occupants change appliances state from ON to OFF or vice versa. The types and
number of appliances in the house are obtained from appliances PDFs in the PM.
Before initialising the simulation and based on the household type and income,
the household is assigned a number and types of appliances which identifies the
amount of energy that the appliance consumes.



494 F. Abdallah et al.

The simulation environment E can be defined using the triplet <T,R,A>,
where:

– T is a one-year simulation time defined by the triplet <t, d, daylighttd>
where, t ∈ [1–144] is a 10-min time step in 24 h, d is the day of the year,
and daylighttd is the amount of external daylight at every time step and day.

– R is the set of rooms in the house: For every room r ∈ R, r is defined by
the triplet <size,Ar, Or>, where size is the size of the room, Ar is the set of
appliances in the room, and Or is the set of occupants that are in the room.

– A is the set of appliances in the house: For every appliance a ∈ A, a is
defined by the set <inUseConsumption, r,Oa, Ctd>, where inUseConsump-
tion is the amount of energy used when the device is ON, r is the room that
the appliance is in, Oa is the set of occupants using the appliance, and Ctd

is the consumption array of the appliance over a whole year, where every
ctd ∈ Ctd, ctd = {0,inUseConsumption} based on its ON-OFF state.

3.2 The Occupant Agent

Initially, occupants’ ages and employment types are given as input for the model.
Employment types include: full time job, part time job, unemployed, retired and
school, where under 18 occupants are school children and above 65 are retired.
Another input attribute of the model is the energy awareness which will be
explained in this section. Based on the defined household type (occupants’ ages
and employment types) the income group of the household is assigned using
the income PDF in the PM. Next, the appliances and rooms of the house are
determined as functions of the household type and income group. At this stage,
all occupant agents are initialised and start doing activities in the house. At
every time step, the occupants change the state of the environment by changing
their location and using the electric appliances.

Occupant Daily and Weekly Behaviour. In order to simulate occupancy of
members, work routines and occupancy patterns are needed. Working occupants
can belong to one of ten work routines (wr) to decide working days and duration
of occupants. Every day, and based on the occupant’s age, employment and day
type, the occupant chooses one occupancy pattern opd for the day. The PM
includes 7 occupancy patterns which could be referred to in Aerts et al. [3].

At every time step, the occupant either selects a new occupancy state ostd
based on PDFs in the PM, or decrements the duration of an already running
occupancy state. OS is the function to select a new occupancy state.

OS : opd, os(t−1)d, t → ostd (1)
opd, ostd, t → dr (2)

where, ostd is the new occupancy state, ostd ∈ {Away, Sleeping, Active} (Away :
out of home, Active: at home and not sleeping, Sleeping : at home but sleeping).
The agent first selects a new state as function of his/her occupancy pattern opd,
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previous state os(t−1)d, and time of day t, then decides the duration dr of the
state based on his occupancy pattern, current occupancy state, and time of day.

The PM distinguishes between household tasks which are performed by one
occupant at a time, and personal activities that can be performed and shared
by all occupants. When the occupant is in the Active occupancy state, he/she
can do several tasks or personal activities. The occupant can either select to
start the activity, or decrement the duration of an ongoing activity. The action
of selecting new activities is defined by the function AC

AC : age, emp, t, d → {0, 1}ac/tk, dr (3)

This function is performed by the occupant agent for every personal activity
ac ∈ {Using the computer, Watching television, Listening to music, Taking
shower/bath} and task tk ∈ {Preparing food, Vacuum cleaning, Ironing, Doing
dishes, Doing laundry}. The function returns a Boolean value {0,1} to distin-
guish if the action will take place or not. This way of modelling enables the
occupant to perform more than one activity at a time. The decision of doing an
activity is based on the occupant age, employment type (emp), time of day t,
and day type d ; and similarly the duration dr of the activity.

Occupant Location. Whenever the occupant is at home, he/she needs to be
in one of the rooms. Every activity is assigned to a room or a set of possible
rooms. The occupant agent determines his/her location using the function OL

OL : ostd, ACtd, TKtd → rtd (4)

The occupant decides his/her location rtd based on his occupancy state ostd,
ongoing personal activities ACtd, and ongoing tasks TKtd. If the occupant is
doing more than one activity at a time, he/she may have a set of possible rooms
and his/her location alternates among the rooms of this set at every time step.

Occupant Energy Awareness and Energy Usage. Occupants’ energy
awareness have been modelled in existing literature in different ways. For exam-
ple, Carmenate et al. [10] distinguishes between energy literate and energy illit-
erate occupants. Similarly, Zhang et al. [6] categorises occupants into high and
low consumers. Another way is using average yearly/daily consumption as a
characteristic of the occupant [8,15]. The most detailed and flexible definition
of energy awareness was proposed in Zhang et al. [7] where energy consumers
can belong to one of four consumer types: ‘Follower Green’, ‘Concerned Green’,
‘Regular Waster’, and ‘Disengaged Waster’. Based on the consumer type, the
agent’s energy awareness attribute is assigned a value between 0 and 100. This
attribute is used to decide the probability that an occupant follows energy sav-
ing actions such as turning off devices when they are not in use. The value is
calculated based on a normal distribution for every consumer type (Table 1). In
the current model, the occupant types and energy awareness attribute defined
in Zhang et al. [7] are used to model energy awareness of occupant agents.
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Table 1. Mean and standard deviation of consumer types

Consumer types Mean μ Standard deviation σ

Follower green 0.74 0.041

Concerned green 0.72 0.043

Regular waster 0.41 0.033

Disengaged waster 0.25 0.057

The action of turning appliances ON/OFF is defined by the function TOa

TOa : actd → turnOna (5)
actd, Oa, ea → {keepOn, turnOff}a (6)

Every activity actd that the occupant performs is associated to an appliance a.
When the occupant starts an activity, he/she turns ON the appliance associated
to this activity. When the activity ends and based on the occupants energy
awareness attribute, he/she may turn OFF the appliance or keep it ON. The
occupant may also communicate with other occupant/s Oa who may be using
the same appliance at the same time to decide whether to turn the appliance
OFF. The action of turning OFF appliances is also executed every time an
occupant visits a room and finds appliances that are ON but unused.

The action of turning lights ON/OFF is different from using appliances,
because using lights depends on the amount of daylight and the location of
occupants.

TOr : rtd, daylighttd → {turnOn, !turnOn}r (7)
rtd, Or, ea → {turnOff, !turnOff}r (8)

Every time the occupant is in a room rtd he may decide to turn ON the light in
this room based on the amount of daylight (daylighttd) [4]. When the occupant
leaves the room, he/she checks other occupants in the room Or, and based on
his energy awareness (ea) he/she may decide whether to turn off the light.

In summary, the occupant agent OA is defined using the set <age, emp,wr,
opd, ostd, ea,ACtd, TKtd, rtd> and can perform the actions <OS,AC,OL, TOa,
TOr> to act in the house environment.

The model was implemented in Repast Simphony (https://repast.github.io),
a Java-based agent-based platform. For validation of the model refer to [11].
Three appliances were implemented: Lights, TV, and PC. These appliance are
clearly affected by the energy awareness of occupants like leaving lights ON when
leaving a room or leaving the TV/PC ON when the activity ends.

4 Simulation Experiments and Results

This section presents a set of experiments that were done to study the effect
of social parameters on the energy consumption of the house with various occu-
pants energy awareness. Every simulation run (or scenario) calculates the average

https://repast.github.io
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energy consumption of 100 simulated households of the same type, but different
work routines, income, appliances number and types, and house rooms.

The energy awareness of occupants is reduced to two types: Follower Green
and Disengaged Waster in order to limit the number of scenarios, while achiev-
ing the objectives of this study. The validation of the model which includes all
occupant types can be found in [11]. A total of 244 scenarios were tested; for
every simulated scenario the total amount of energy per day for three appliance
types (lights, TVs, and PCs) is calculated using the formula:

Cn =
∑

t,d,a

ctd (9)

where Cn is the total energy consumption of scenario n and ctd is the average
energy consumption at time step t and day d. In order to calculate the energy
efficiency of each scenario, the distance to the ideal energy saving behaviour Dn

is calculated using the formula:

Dn =
Cn

Cbase
(10)

where, Cbase is the total energy consumption in the ideal scenario where devices
are only ON when they are being used. As much as Dn is closer to 1 means that
the household is closer to the ideal scenario, thus more efficient. In the below
experiments, family size, employment type, and occupants’ ages are the tested
social parameters. These parameters were selected, because they are available
in the real data provided in the PM. Other social parameters can be included if
the corresponding real data are available.

4.1 Experiment 1: Effect of Family Size

This experiment is intended to study the effect of number of occupants in the
house. Scenarios of the age group 25–39 in full-time job are presented in Table 2.
The table consists of two groups of scenarios, each group has the same age and
employment type for adults, same energy awareness type, but different num-
ber of occupants. In the first group of scenarios, where all family members are
green occupants, it is observed that as the number of occupants increases, Dn

decreases. This means that more green occupants in the house makes the fam-
ily more energy efficient. For the second group of scenarios, where all occu-
pants are energy wasters, it could be expected that when the number of wasters
increases, Dn should increase. However, it is observed that as the number of
wasters increases, Dn decreases and the family is closer to the ideal scenario.
This indicates that more occupants in the house, whether they are green or
waster occupants, causes the house to be more efficient. Similar observations
were noticed for other age groups and employment types.
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Table 2. Scenarios and results for the effect of family size

Adults age group/empl.
type/energy awareness

No. of occupants Household type Dn

25–39/full-time job/All
Green occupants

1 One adult 2.31

2 One adult, one child 1.97

2 Two adults 1.99

3 One adult, two children 1.42

3 Two adults, one child 1.58

4 Two adults, two children 1.59

25–39/full-time job/all
Waster occupants

1 One adult 10.49

2 One adult, one child 6.13

2 Two adults 6.66

3 One adult, two children 3.92

3 Two adults, one child 4.18

4 Two adults, two children 4.17

4.2 Experiment 2: Effect of Employment Type

The purpose of this experiment is to test the effect of employment type on the
energy consumption of the house. In order to do that, it is important to fix
occupants ages and number of occupants while varying the employment types.
Therefore, based on the household types available in the PM, it is only possible to
study the effect of full-time, part-time, and unemployed occupants. Table 3 rep-
resents the scenarios for age group 40–45. The Occupant Types column encodes
the energy awareness of occupants where G refers to green occupants and W
refers to waster occupants. The sequence of letters (G and W ) has the same
sequence of occupants defined in the previous columns.

For every household type, the first two occupants (which are full-time/part-
time or full-time/unemployed) are involved in the energy awareness variation,
while the rest are put all green or all waster occupants in order to observe the
effect. The difference between every two varied scenarios is calculated in the
last column. Among the total number of simulated scenarios, there are cases
when two occupants belong to the same age group and have the same employ-
ment type. It was observed that swapping the energy awareness between these
occupants resulted in similar amounts of energy consumption with very slight
differences. This difference is expected to be due to random numbers generation.
The average difference between these scenarios was calculated and found to be
0.1. Therefore, whenever the difference between two scenarios is more than 0.1,
it is considered a significant difference and further analysis is made to identify
the cause of the difference. The first three household types in Table 3 are for
comparing full-time and part-time employment types. It is observed in all of
these scenarios that whenever the part-time occupant is the green occupant,
the energy consumption of the house is closer to the ideal scenario. This means
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Table 3. Scenarios and results for the effect of employment type

Occupants age group/employment type Occ. types Dn Difference

Occ. 1 Occ. 2 Occ. 3 Occ. 4

40–54/full-time 40–54/part-time GW 3.89 0.23

WG 3.66

40–54/full-time 40–54/part-time 12–17/school GWG 2.33 0.1

WGG 2.23

GWW 3.14 0.07

WGW 3.07

40–54/full-time 40–54/part-time 12–17/school 12–17/school GWGG 1.88 0.05

WGGG 1.83

GWWW 3.10 0.09

WGWW 3.01

40–54/full-time 40–54/unemployed GW 3.05 0.37

WG 2.68

40–54/full-time 40–54/unemployed 12–17/school GWG 2.12 0.24

WGG 1.88

GWW 2.75 0.14

WGW 2.61

40–54/full-time 40–54/unemployed 12–17/school 12–17/school GWGG 1.69 0.03

WGGG 1.66

GWWW 2.62 0.15

WGWW 2.47

that green part-time occupants are responsible for improving the house energy
consumption when compared to full-time occupants. A similar observation is
noticed when comparing full-time and unemployed occupants in the next three
household types. This observation was noticed in our previous paper [11] and is
further supported in Table 3. Looking at the difference values, part-time occu-
pants efficiency effect is significant (>0.1) in two cases: (1) the two-occupant
family and (2) the three-occupant family when the third occupant is a green
occupant. This indicates that part-time occupants can make an energy saving
effect in small families (a small family is a family less than 4 occupants) and
when there are more green occupants in the house, but not in big families where
the difference is 0.05 and 0.09. However, for unemployed occupants, the efficiency
effect is significant in most of the cases except for the four-occupant family when
all of the other occupants are green occupants. It is also observed that unem-
ployed occupants, in general, have higher effect than part-time occupants. These
observations show that unemployed occupants are more efficient than part-time
occupants, and the latter are more efficient than full-time occupants in small
families.
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4.3 Experiment 3: Effect of Occupants Ages

In order to study age groups for adults, households that have the same employ-
ment type and number of occupants with no children were considered (Table 4).
As for the children effect, households with an equal number of adults and chil-
dren, with the same employment type for adults were studied (Table 5). Table 4
shows that as the age of adults in small families increase, the household is becom-
ing less efficient (both for waster and green households). And for children, it is
observed in Table 5 that children were more efficient than adults in small families
(0.26 and 0.1), but not in big families where adults were more efficient in some
of the cases (−0.17). These observations imply that younger occupants including
children can make more efficiency effect in small families but not in big families.

Table 4. Scenarios and results for the effect of adults ages in full-time job

Energy awareness Occupant 1 age group Occupant 2 age group Dn

All green occupants 25–39 2.31

40–54 2.47

55–64 2.78

All waster occupants 25–39 10.49

40–54 11.35

55–64 13.29

All green occupants 25–39 25–39 1.99

40–54 40–54 1.87

55–64 55–64 1.85

All waster occupants 25–39 25–39 6.66

40–54 40–54 6.68

55–64 55–64 6.75

Table 5. Scenarios and results for studying the effect of children

Adults age group Household type Occupant types Dn Difference

25–39 One adult, one child GW 3.94 0.26

WG 3.68

40–54 One adult, one child GW 3.10 0.10

WG 3.20

25–39 Two adults, two children WWGG 2.41 0.04

GGWW 2.45

40–54 Two adults, two children WWGG 2.57 −0.17

GGWW 2.74
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5 Discussion and Insights

This study proposes a methodology to combine ABM and PM to produce fine
grained data. The implemented model simulates the dynamic interaction of occu-
pants with appliances to produce detailed activities and energy consumption
of houses. Opposed to exiting PM [3–5,12,13] the cascaded model simulates
dynamic occupants behaviour which is affected by occupants personal character-
istics and surrounding environment. In addition, an energy awareness level can
be assigned at occupant level which varies based on the occupant’s greenness
level, while PM assume same and ideal energy consumption behaviour of occu-
pants. The proposed model simulates energy waste caused by human behaviour.
Existing ABM that simulate the effect of human behaviour [7,8,15] produce the
consumption data at household or building level, however, the proposed model
generates energy consumption data at appliance level as shown in our previ-
ous paper [11]. This is because exiting models either model consumer agents at
household level or characterise occupant agents by yearly/monthly consumption.
The most similar ABM in terms of output are Carmenate et al. [10] (hypotheti-
cal case study) and Zhang et al. [16] (real case study). These models can produce
appliance level consumption and model energy awareness at occupant level. The
difference is that the proposed model uses PM (embedded Markov Process tech-
nique) to get the realistic occupants activities as a preprocessing stage to ABM,
while existing models use the real data directly in the ABM to simulate human
activity. Using PM ensures that the produced data are realistic and enables the
inclusion of data for a whole city (6400 respondent vs. 143 respondent in Zhang
et al. [16]) which leads to more varied scenarios and generalised conclusions.

Besides the above discussions, the integration of PM with ABM has given the
advantage of studying the effect of social parameters on the energy consumption
of families. Experiment 1 showed that as the number of occupants increases, the
household becomes more energy efficient even if all of the occupants are unaware
of energy consumption. Although the implemented model does not model family
pressure, which means that family members do not affect the energy awareness of
each other, we have shown that merely having more occupants in the house makes
the family more efficient (by more efficient we mean that big families waste less
than small ones even though they actually consume more). This is explained by
the fact that more occupants in the house means more probability that somebody
turns off unneeded appliances/lights (knowing that occupant agents can know if
a device is being used or a room is being occupied). For example, if one occupant,
who lives alone, leaves the house/room while the lights are ON, the lights will
never be OFF until he/she returns back to the location. However, in a four-
occupant family, if a member leaves something ON and goes away, there is still
a probability that somebody will turn it OFF before he/she returns back. The
second experiment proved that unemployed occupants have the most efficiency
effect in small families compared to part-time and full-time occupants. Whereas
part-time occupants are more efficient than full-time occupants, again in small
families. This is mainly explained by the occupancy pattern of each employment
type, where unemployed and part-time occupants are available at home more
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than full-time occupants. This enables unemployed and part-time occupants to
reduce the waste in small families. However, in big families, this effect is reduced
due to the existence of more occupants in the house who may cancel the effect
of the green occupant. A similar conclusion was obtained concerning ages of
occupants, where younger occupants made the household more efficient in small
families. It is important here to note that this conclusion does not imply that
younger occupants are more aware than older occupants, but with the same
energy awareness levels younger occupants’ longer existence at home or longer
active durations causes less energy waste than older occupants.

These conclusions are important as they give insights for policy makers and
governments about how to target family members to achieve higher energy effi-
ciency. The developed model shows that it is important to target all members
of big families with energy efficiency interventions and technologies – not just
because big families consume more energy in general, but also because increasing
the energy awareness of all members of big families makes more effect than small
families. Concerning small families, it is important to concentrate on younger
occupants including children, and adults who are housewives, unemployed, car-
ers, or those who work in part-time jobs, because we have shown that these
types of people can make more efficiency effect than older occupants and full-
time employees.

6 Conclusion and Future Work

This paper presented a methodology to cascade ABM and PM in order to gener-
ate detailed and accurate data. The proposed approach was applied on the energy
consumption domain, however, it can be used to simulate other human behaviour
applications. The energy consumption model incorporates energy awareness at
occupant level and produces fine-grained data to simulate behavioural energy
waste. The paper have shown that the cascading approach overcomes limita-
tions of exiting PM and ABM when they work separately. Social parameters
were varied to gain insights towards energy efficiency plans for families. It was
concluded that bigger families cause less energy waste than small families due to
the higher probability of somebody to turn OFF unneeded consumption. Besides,
young, unemployed and part-time occupants can make more efficiency effect in
small families than full-time and older occupants because they are more active
at home. The model can be used in the future to study the effect of intervention
technologies (e.g. energy waste notifications) or family pressure when varying
social parameters. This will give insights about how to target and customise
interventions for different types of occupants/households.
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Abstract. This paper presents a novel model for simulating peer pres-
sure effect on energy awareness and consumption of families. The model
is built on two well-established theories of human behaviour to obtain
realistic peer effect: the collective behaviour theory and the theory of cog-
nitive dissonance. These theories are implemented in a collective agent-
based model that produces fine-grained behaviour and consumption data
based on social parameters. The model enables the application of dif-
ferent energy efficiency interventions which aim to obtain more aware
occupants and achieve more energy saving. The presented experiments
show that the implemented model reflects the human behaviour theo-
ries. They also provide examples of how the model can be used as an
analytical tool to interpret the effect of energy interventions in the given
social parameters and decide the optimal intervention needed in different
cases.

1 Introduction

Increased energy consumption generated from fossil fuels is causing high car-
bon emissions and increased global temperature which is mainly attributed to
human actions rather than nature [1]. A significant part of the human effect
is accounted for the residential sector which consumes high percentages of the
world’s electricity consumption (23–31%) [2]. Although many technological and
structural improvements are suggested to decrease energy consumption, occu-
pants’ behaviour plays an important role in this matter [3]. A human solution
is based on peer pressure, knowing that human actions are mostly affected by
the behaviour of others [4]. Hence, it is suggested that policy makers work on
stimulating peer pressure to encourage energy efficient behaviour.

This paper presents an Agent-Based Model (ABM) that studies the collective
peer pressure effect on energy consumption in a family environment (hereafter
family pressure). The occupant agent’s peer effect behaviour is inspired by two
theories of human social behaviour: collective behaviour by Granovetter [5] and
cognitive dissonance by Festinger [6]. The model then adds two types of interven-
tions that aim to enhance the occupants’ energy awareness and thus reduce their
c© Springer Nature Switzerland AG 2018
N. T. Nguyen et al. (Eds.): ICCCI 2018, LNAI 11055, pp. 283–296, 2018.
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consumption. The presented model offers a tool that enables analysing the out-
comes of energy efficiency interventions in different social conditions. The paper
is organised as follows. The next section presents related work including similar
ABMs. The used human behaviour theories and available energy interventions
are presented in Sect. 3.1. Section 4 presents the ABM that simulates family pres-
sure and energy efficiency interventions, and explains how the behaviour theories
were adapted to the application at hand. Section 5 presents the results of simu-
lating a number of scenarios showing how the model can be used to determine
the efficiency of interventions in these scenarios. Finally, Sect. 6 concludes the
paper with a summary and pointers for future directions.

2 Related Work

Agent-based modelling is considered the most suitable technique to simu-
late social interaction [7]. An agent-based model is composed of a group of
autonomous software components, called agents, which take decisions based on
their state and rules of behaviour. The collective agents’ decisions cause changes
in the environment which is observed and analysed [8]. The technique has been
widely used to study occupants energy consumption behaviour.

Among existing ABMs, there are few that simulate occupants’ behaviour
change due to peer effect. Azar and Menassa [9] propose a model that adds occu-
pants’ energy consumption characteristics and interaction to traditional energy
simulation tools. The peer effect model is based on the level of influence of indi-
viduals and the number of occupants in each level of consumption. However, the
used behaviour change model is not theoretically grounded. Models that involve
human behaviour simulations need to be validated using huge amounts of real
data, and if not available, need to be based on well established and accepted
human behaviour theories. Another ABM that simulates social interactions is
Chen et al. [10] who explore the effect of peer network structures on the energy
consumption in a residential community. The occupant agents decrease their
consumption when the consumption of connected occupants is less than that of
the agent. On the other hand increasing the agent’s consumption is based on a
constant probability that represents the percentage of occupants who increase
their consumption with no effect from peers. However, it is more logical that
peer effect happens in both directions so that high energy consumers may affect
others and cause them to increase their consumption in the same way low energy
consumers may affect others. Network structures were also studied in Azar and
Menassa [11] which is applied in an office environment. The model uses the rela-
tive agreement theory which is applied in a community of heterogeneous culture
and values. Thus, behaviour change starts between close individuals. However,
in a family environment, which is the case in the current paper, it is common
that family members have similar culture and values. Therefore, other behaviour
change theories need to be applied which will be detailed in Sect. 3.1.

Studies in [10,11] vary the structure of peer networks based on the fact that
not all individuals in a community are connected. While in a family environment,
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family members are always connected at least at night. Therefore, in the current
model, the agents are structured in a fully connected network. Another difference
between the currently proposed model and existing models [9–11] is related to
the occupant awareness modelling. Existing models characterise occupants by
one attribute which is the average yearly/monthly consumption. This attribute
does not only reflect the awareness of occupants, but also the time they spend in
the building. Hence, it is hard to distinguish if high energy consumption is due
to low awareness or daily occupancy. However, the proposed model separates
daily human behaviour of occupants (which is based on social parameters) from
their energy awareness. More details will follow in Sect. 4.

3 Background: Behaviour Change Theories and Energy
Interventions

3.1 Behaviour Change Theories

Humans beings can be highly affected by the behaviour of others. Based on this
observation, the theory of collective behaviour was formalised in Granovetter’s
threshold model [5] to explain the diffusion of a behaviour due to social con-
tagion. The model follows a simple decision rule, where individuals choose to
adopt a behaviour when the percentage of others doing the behaviour exceeds
a threshold. This threshold represents a complex combination of norms, values,
motives, beliefs, etc. Once the threshold is exceeded, it is considered that the net
benefit of the behaviour exceeds the perceived costs. The threshold model has
been widely used in several applications such as effective targets to influence col-
lective behaviour [12]. The other human behaviour theory used in this model is
cognitive dissonance by Festinger [6]. Dissonance is defined as the inconsistency
that happens between the individual’s knowledge, opinion, beliefs, or attitudes,
which are the cognitive factors that drive behaviour. Based on the fact that
dissonance is uncomfortable, Festinger [6] proves that humans try to reduce it
by adapting their behaviour or changing one or more of the cognitive factors.
One of the major sources of dissonance are social groups. Therefore, observing
others doing a behaviour that is very different from the individual’s behaviour or
spreading a general belief that a specific behaviour is not accepted, drives mem-
bers of a social group to adapt their behaviour, thus reducing the uncomfortable
dissonance. Besides, as the magnitude of dissonance increases, it is expected that
the tendency to reduce it will increase. The magnitude of dissonance is affected
by (1) the number of others who hold a different behaviour, and (2) the level of
difference between the individuals’ behaviours.

3.2 Energy Efficiency Interventions and Peer Pressure

Given the high percentage of energy consumption in residential buildings,
research and policy makers efforts have been focused on promoting energy
efficient behaviour, technologies, and structural improvements. This paper is
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focused on the behavioural aspect by modelling energy efficiency interventions.
The target of interventions is to motivate occupants to adopt energy efficiency
behaviour by working on their values, attitudes, beliefs, and knowledge [13].
Interventions can be of many forms such as goal setting, information (work-
shops, mass media campaigns, and home audits), rewards, and feedback [13]. In
many occasions, these interventions take advantage of the peer pressure effect
by comparing ones behaviour with the behaviour of others. Peer pressure is the
influence that members of the same community have on each other which leads
to change in behaviour. This effect is shown to be the most influential reason of
environmental behaviour change [4]. This is because information received from
personal relationships are better recognised and remembered than other sources
of information [14].

4 Methodology

4.1 The Agent-Based Model

The proposed family pressure model is based on the ABM developed in Abdallah
et al. [15,16]. The model simulates energy consumption behaviour of families.
Every occupant is represented by an agent that acts in a house environment
and interacts with appliances. The inputs of the model are the social parameters
including family size, ages, and employment types (full/part-time job, unem-
ployed, retired and school). Besides, the energy awareness type of occupants
determines the probability of performing energy saving actions (e.g. turning off
devices when not in use). This can be one of four types: ‘Follower Green’, ‘Con-
cerned Green’, ‘Regular Waster’, and ‘Disengaged Waster’. Each of these types
is reflected in the model as a continuous attribute called ‘energy awareness’
between 0 and 100 based on a normal distribution as shown in the 2nd and 3rd

column of Table 1.

Table 1. Mean and standard deviation of awareness types

Awareness type Mean μ Standard
deviation σ

Value (a) Abbreviation Category

Follower Green 0.74 0.041 1 F Green

Concerned Green 0.72 0.043 2 C Green

Regular Waster 0.41 0.033 3 R Waster

Disengaged Waster 0.25 0.057 4 D Waster

The ABM is supported by probability distributions from an integrated prob-
abilistic model based on large sets of real data. The distributions are used to
generate realistic occupancy and activities based on the given social parameters.
The simulation time is determined by the day of the week (d) and 144 time steps
per day (t) each representing 10 min. During the simulation, the occupant agent
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selects an occupancy state (ostd) which can be away, active at home, or sleep-
ing, for a duration (dr). The occupancy state is selected based on the occupant’s
previous state os(t−1)d, age, employment type (emp), day (d), and time (t) as
shown in functions (1) and (2). When the occupant agent is active at home, it
performs activities from the following set {Using the computer, Watching tele-
vision, Listening to music, Taking shower, Preparing food, Vacuum cleaning,
Ironing, Doing dishes, Doing laundry}. The decision of doing an activity for a
specific duration (dr) depends on the occupant’s age, employment type (emp),
day (d), and time (t) as shown in function (3).

OS : age, emp, os(t−1)d, t, d → ostd (1)
age, emp, ostd, t, d → dr (2)

AC : age, emp, t, d → actd, dr (3)

Every activity that the occupant performs is associated to an appliance a.
Appliances are modelled as dummy agents that only react to occupant agents
actions (turn ON and OFF). When the occupant agent starts an activity, it
turns the associated appliance ON. When the activity ends, it chooses to turn
the appliance ON or OFF based on its energy awareness attribute (ea) and any
other occupant (Oa) who is sharing the same appliance according to functions 4
and 5. For more details about the previous model, readers are referred to [15,16].

TOa : actd → turnOna (4)
actd, Oa, ea → {keepOn, turnOff}a (5)

4.2 The Family Pressure Model

The family pressure model is composed of two sub-models: behaviour change
sub-model, and energy efficiency interventions sub-model.

Behaviour Change Sub-Model. The occupants behaviour change is moti-
vated by Granovetter’s threshold model [5] such that the occupant agents change
their behaviour when a threshold is exceeded. Although Granovetter’s model
explains the effect of social pressure on behaviour, it does not fit to the family
pressure effect on energy efficient behaviour for two reasons. First, the model is
applied in a public community which has different values and motives, therefore
different thresholds. However in a family setting, we consider that family mem-
bers have similar values and motives based on the fact that they have chosen
to live together or were raised together. Therefore, when adapting Granovet-
ter’s model to the application at hand, we consider one global threshold for
the whole family. This does not revoke the fact that people react differently
because we have set the global threshold as a probabilistic one [17] – so once the
threshold is exceeded the individuals adopt the behaviour with a probability. Sec-
ond, the threshold model considers binary decisions. However, energy consump-
tion behaviour is a continuous behaviour that is performed at different levels.
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This difference led us to explore the well-established theory of cognitive disso-
nance by Festinger [6] which is used to adapt the threshold model to the energy
consumption application. Based on the two factors that affect the magnitude of
dissonance outlined in Sect. 3.1, we adapt the definition of the threshold to fit the
energy consumption behaviour. The first factor goes along with Granovetter’s
threshold definition such that more adopters of a given behaviour leads to chang-
ing others’ behaviour. The second factor is used to overcome the inapplicability
of the threshold model with the energy efficiency behaviour being continuous.
Therefore, we define the threshold as the difference between the individual’s
awareness type and the average of other’s awareness types.

The time step in this model is set to 4 weeks of simulation time since indi-
viduals usually take time to observe the behaviour of others. In order to express
awareness types in numerical values, every awareness type is given an integer
value as shown in the 4th column of Table 1. For a family composed of N occu-
pants, every time step T , each occupant agent i calculates the difference diffTi

between its awareness type ai and the average awareness types of others aj ,
where j ∈ [1, N ] : j �= i using Eq. (6).

diffTi = ai − (
N∑

j=1,j �=i

aj)/(N − 1) (6)

Behaviour change happens if |diffTi| exceeds the global threshold d where d ∈
[0, 4]. A high threshold implies low sensitivity to cognitive dissonance and a low
threshold implies high sensitivity to cognitive dissonance. The global threshold
d is a probabilistic threshold such that the occupant changes behaviour with
probability p where p ∈ [0, 1]. This attribute is referred to as threshold lag [18]
which explains the stochastic nature of human behaviour due to uncertainty and
differences in the speed of reaction, where a higher value of p means a higher rate
of change. p is set to 0.5 as a middle point between high and low rate of change
throughout the simulations in this paper. Once behaviour change is decided, the
awareness type of the occupant changes towards the average of other’s awareness
types assuming that the occupant is adapting her/his behaviour to be similar to
others. Behaviour change is done by stepping between the awareness types one
step at a time either to the green side (green effect) or the waster side (waster
effect). The behaviour change process step is outlined in Algorithm 1 which is
repeated for every agent i at every time step T.

Energy Efficiency Interventions Sub-Model. This paper distinguishes
between family-level interventions, and occupant-level interventions. Each of
these interventions can be of any form as outlined in Sect. 3.2, but they dif-
fer in the number of occupants to target. The family-level intervention targets
the family in general by changing its overall norms, values and beliefs. It can
be applied by promoting the energy efficient behaviour such as giving financial
incentives or repressing the wasting behaviour such as incurring charges [12].
The occupant-level intervention targets the least aware occupant/s in the family
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Algorithm 1: Behaviour Change Step

calculate diffTi using equation (6)
if |diffTi| ≥ d then

select random number rand
if rand ≤ p then

if diffTi > 0 then
ai = ai − 1

else
ai = ai + 1

Algorithm 2: Intervention Behaviour

Change Step

calculate diffTi using equation (6)
if diffTi > 0 then

if |diffTi| ≥ dg then
select random number rand
if rand ≤ p then

ai = ai − 1

if diffTi < 0 then
if |diffTi| ≥ dw then

select random number rand
if rand ≤ p then

ai = ai + 1

and leads to increasing their awareness levels. These two types of interventions
are considered to observe how the collective family pressure can help in achiev-
ing more aware occupants, thus less energy consumption. It also allows policy
makers to decide the needed combination and intensity of interventions based
on each family composition (in terms of awareness levels and social parameters).

When the family-level intervention happens, the overall norms, values and
beliefs of the family change. The family-level intervention has two intensities
which represent the efficiency or effort made to achieve better results. There-
fore, Ip ∈ [1, 4] is defined as the promotion intensity and Ir ∈ [1, 4] as the
repression intensity. These two types of family-level interventions are reflected
by two thresholds: one that affects the promotion of green effect dg ∈ [0, 4]
and another that affects the repression of waster effect dw ∈ [0, 4]. Therefore,
the intervention increases dw by Ir thus increasing the cost to adopt waster
behaviour and/or decreases dg by Ip thus increasing the benefit of adopting the
green behaviour as outlined in Granovetter [5]. dg and dw change in effect of the
intervention based on Eqs. (7) and (8) given the initial threshold d. For deciding
behaviour change, dg is checked when there is a possibility to change towards the
green side (diffTi > 0), and dw is checked when there is a possibility to change
towards the waster side (diffTi < 0) as shown in Algorithm 2. The occupant-level
intervention does not change the threshold of the family because it targets spe-
cific occupants. It aims to change the awareness of occupants while the regular
behaviour change step in Algorithm 1 is applied. The intervention can have an
intensity Io ∈ [1, 3] and can be applied to a member of the family i at a specific
time step T according to Eq. (9).

dg = d − Ip : dg ∈ [0, 4] (7)
dw = d + Ir : dw ∈ [0, 4] (8)

ai(T+1) = aiT − Io : aiT ∈ [0, 4] (9)
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5 Experiments and Discussion

This section presents a number of experiments with different input parameters to
show how varying these inputs can result in different intervention outcomes. It is
worth to mention that this paper only presents a number of significant scenarios
as a proof-of-concept while achieving the purpose of the paper. Abbreviations of
awareness types (5th column of Table 1) are used to identify the initial aware-
ness of the family, such that a four occupant family with one ‘Follower Green’
and three ‘Disengaged Wasters’ is denoted by FDDD. In every simulation run,
100 households were simulated to capture the stochastic effect of the threshold
lag1. The scenarios are run for a year and the resulting average yearly consump-
tion and converged awareness types are recorded. These types were categorised
based on the number of Green occupants in the family (represented in the fig-
ures by different colours in the bars). The categories of the awareness types are
determined by the last column of Table 1.

5.1 Family Pressure Convergence

The aim of this experiment is to observe the resulting awareness types as an
effect of family pressure based on different thresholds. Figure 1 shows the results
of three scenarios: (a) FFFD, (b) FCRD, and (c) FDDD. The last scenario of
every bar graph (d = 4) shows the initial category of the family because diffTi

can be maximum 3, thus no change in awareness types.

Fig. 1. Family awareness types convergence (Color figure online)

In scenario (b), the family remained with two green occupants at thresholds
2 and 3, besides, in (a) and (c) the family remained the same at threshold 3 and
changed only one occupant at threshold 2. This indicates that the family does
not change significantly when the threshold is high (d = 2 and 3). However, at
low thresholds (d = 0 and 1), the family converged mainly towards the domi-
nant awareness type. For example, in (a) the convergence was mostly towards ‘4
1 The model was validated by running a number of scenarios with different random

numbers seed where the results came out to be similar.
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green occupants’, because initially there were three green occupants. A similar
observation was noticed in (c). In scenario (b) where there is no dominant aware-
ness type, the convergence was with equal probabilities either to all green occu-
pants or all waster occupants (‘no green occupants’ category) with higher con-
vergence to the extremes at threshold 0. These results indicate that the proposed
model reflects the theory of cognitive dissonance and collective behaviour which
agree that people tend to change their behaviour to conform with the behaviour
of others. It is worth noting that in (a) and at threshold 0, around 20% of the
households converged to ‘no green occupants’. This means that the only waster
occupant succeeded to change the behaviour of the other three green occupants.
This phenomenon is explained in the cognitive dissonance theory which states
that dissonance can be reduced by either adapting with others, or convincing the
others to adapt with the individual. This explains how the three green occupants
converged to wasters in effect of one waster occupant as in (a) and vice versa in
(c). Festinger [6] mentions that in this case, the overall cognitive elements of the
surrounding environment change, but this is easy when the individual can find
others who hold the same behaviour, which explains the low percentage of this
convergence (20% in our experiment).

5.2 Family-Level Intervention

In this experiment, family-level interventions are applied to scenario (c) of the
experiment 1 (FDDD) as it has the most waster occupants after convergence. For
each threshold, the possible intensities of family-level interventions are applied
keeping the thresholds dg and dw in their limits [0, 4]. The aim of this experiment
is to show the effect of promotion and repression interventions when varying their
intensities. Figure 2 shows the results with initial thresholds 0, 1 and 2.

Fig. 2. Family-level intervention convergence (Scenario FDDD)

It is noticed at thresholds 1 and 2 that the number of green occupants
increases as the promotion intensity (Ip) increases, which is not the case with
repression intensity (Ir) where most of the occupants stayed wasters. This indi-
cates that repression intervention is less efficient than the promotion interven-
tion. This is attributed to the high number of waster occupants, such that encour-
aging them to adopt the green behaviour is more effective than repressing the
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only green occupant from getting affected by waster occupants. Another indi-
cation from varying intervention intensities is inferring the minimum intensity
needed to increase the possibility of getting 4 green occupants. For example at
threshold 0, repression intensity 2 is enough to get ‘4 green occupants’ with
probability more than 0.95. This allows to identify the minimum effort needed
while achieving the maximum number of green occupants.

5.3 Occupant-Level Intervention

This experiment studies the effect of occupant-level interventions which directly
change the awareness of least aware occupants. Scenario FFFD with threshold
0 is selected to get the minimum intensity required to prevent the ‘no green
occupants’ convergence (as shown in scenario (a) in Sect. 5.1). As the family
initially has one waster occupant, the intervention is applied for one occupant
with different intensities. Besides, the intervention can be applied at specific
times of the year, therefore it can be an ‘early intervention’ at T = 2, ‘mid-year
intervention’ at T = 6 or ‘late intervention’ at T = 9. This determines the best
intervention time just before the waster occupant affects other green occupants.
Figure 3 shows the results while varying the intervention time and intensity.

Fig. 3. Occupant-level intervention convergence (Scenario FFFD d = 0) (Color figure
online)

It is observed that as earlier the intervention and as higher its intensity,
as more green occupants are obtained. The early interventions with intensities
2 and 3 are the most effective with no waster occupants after a year. This is
expected because the waster occupant is affected by the external intervention at
an early stage, thus leading to 4 green occupants. However, in all other scenarios,
waster occupants are observed even at higher intensities. This shows that one
intervention per year is not enough to make an impact on families with only one
waster occupant. This suggests to perform continuous interventions to maintain
the green effect and combine them with family-level interventions. Note the this
experiment was performed with very low threshold of the family (d = 0) so
occupants can easily influence each other.
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5.4 Effect of Interventions on Families with Varied Social
Parameters

In our previous paper [16], it was concluded that social parameters affect the
energy waste of the family. Although the previous model does not simulate family
pressure, we showed that energy waste in large families is less than small families.
On the basis of this conclusion, the current experiment tests if a family-level
intervention is more efficient in big families than small families. For this purpose,
the family-level intervention is applied on (a) a two-occupant family and (b) a
four-occupant family. Figures 4a and b show the awareness types convergence of
scenarios (a) and (b) respectively with an equivalent initial numbers of green
and waster occupants (FD and FFDD) and threshold d = 0. Figure 4c shows
the resulting energy saving percentage when compared to the no-intervention
scenario (Ir = 0) and the convergence time which is the time it takes the family
to reach a stable state where the occupants are no more affected by each other.

Fig. 4. Effect of Family-level intervention on two and four occupant families (d = 0)
(Color figure online)

In Fig. 4c at intervention intensities 1 and 2, the percentages of saving for big
families are 9% and 16% respectively, which are more than that of small families
(i.e. 1% and 11%). This is also observed in the awareness types convergence
(Figs. 4a and b) where the ‘4 green occupants’ category is more dominant in
(a) than the ‘2 green occupants’ category in (b). However, at intensities 3 and
4, the savings of small families are 21% and 25% respectively, which dominates
that of big families (i.e. 16% and 15%) (Fig. 4c). Besides, all of the occupants in
scenarios (a) and (b) converged to green occupants as shown in Figs. 4a and b.
This is explained by the lower convergence time of small families (Fig. 4c). This
means that a higher intensity intervention converges small families quicker than
big families which consequently leads to higher saving. Thus, the family-level
intervention can result in maximum saving at low intensity in big families as
opposed to small families. While a high intensity intervention is more efficient
in small families as it leads to a larger and quicker saving than big families.
This experiment can be repeated with varied social parameters, thresholds, and
intervention types to obtain the most efficient intervention in every case.
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5.5 Discussion

The model proposed in this paper simulates peer pressure effect on energy aware-
ness levels and consumption of families. The peer effect behaviour of occupants
is based on two human behaviour theories opposed to other models that do not
use existing theories [9]. The behaviour theories were adapted to comply with
the energy consumption behaviour and family environment, while other models
use different theories that simulate office environments [11]. Beside, the cur-
rent model offers different options of input including social parameters (family
size, employment types, ages), awareness levels, values and beliefs that affect
the energy consumption behaviour, and intervention options. We proved in the
experiments that these inputs affect the outcome of interventions. The exper-
iments focused on demonstrating the application of the model in pre-specified
scenarios. The model can ideally be used to study the impact of any inter-
vention planned by governing bodies on the outcome (i.e. energy saving). This
can be done by estimating unknown parameters, running the model with initial
parametrisation of known and unknown parameters. Then a search mechanism
(e.g. grid search) is applied to best estimate the unknown parameters, minimis-
ing the difference between the model’s synthesised data and the observed real
data. If the search space is large, in case of having too many unknown parame-
ters, computational intelligence methods like Genetic Algorithm can be applied.
Revealing these unknown parameters can help in determining the reason why
interventions are effective in some cases, but not in others.

6 Conclusion and Future Work

This paper presented an ABM that simulates energy awareness peer pressure in
a family setting. The model uses the collective behaviour theory and the theory
of cognitive dissonance to reflect realistic peer effect. Different energy efficiency
interventions can be applied and the resulting awareness types and savings are
observed. The presented experiments show that the human behaviour theories
are well-reflected in the model. Besides, they show how the model can offer an
analytical tool for governing bodies to analyse the effect of interventions and
make decisions of how to target different families to get the best results.

A variation of this model is to make the effect of members depend on how
often they are in contact in the house, which makes the interaction more real-
istic. This can be easily achieved because the ABM simulates individuals’ daily
availability at home in a 10-minute time step. The current model have not con-
sidered a weighting attribute which determines the level of relation between the
occupants which affects the level of influence. This attribute can be added in
the future where the intervention may be targeted at a specific relationship if
it proves efficient. Also the modelling of behaviour change can be done at the
energy awareness level, not at the awareness type level. This can enhance model’s
capability to simulate more fine-grained behaviour change. These enhancements
are expected to produce an even more realistic model that reflects the quality
and rate of daily interactions among the family members.
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ABSTRACT In response to the increased energy consumption in residential buildings, various efforts
have been devoted to increase occupant awareness using energy feedback systems. However, it was shown
that the feedback provided by these systems is not enough to inform occupant actions to reduce energy
consumption. Another approach is to control energy consumption using automated energy management
systems. The automatic control of appliances takes out the occupant sense of control, which is proved to be
uncomfortable in many cases. This paper proposes an energy messaging intervention that keeps the control
for occupants while supporting themwith actionablemessages. Themessages inform occupants about energy
waste incidents happening in their house in real time, which enables occupants to take actions to reduce their
consumption. Besides, a heuristic is defined to make the intervention non-intrusive by controlling the rate
and time of the messages sent to occupants. The proposed intervention is evaluated in a novel layered agent-
based model. The first layer of the model generates the detailed energy consumption and realistic occupant
activities. The second layer is designed to simulate the peer pressure effect on the energy consumption
behavior of the individuals. The third layer is a customizable layer that simulates energy interventions. The
implemented intervention in this paper is the proposed non-intrusive messaging intervention. A number of
scenarios are presented in the experiments to show how the model can be used to evaluate the proposed
intervention and achieve energy efficiency targets.

INDEX TERMS Agent-based modeling, energy consumption, energy efficiency, energy feedback system,
energy interventions, energy management system.

I. INTRODUCTION
Global electricity consumption is experiencing a continuous
increase over the past decades with a focus on electricity
generated from fossil fuels [1]. This increase in energy
consumption is leading to climate change effects, which are
highly attributed to human activities [2]. In response to this
human effect, the European Commission recommended that
end-users will need to play a major role in reducing energy
consumption in buildings [3]. Therefore, many efforts have
been made to make energy consumption in buildings tangible
using energy consumption feedback systems. These systems
are considered one of the energy interventions that aim to
change occupants energy consumption behavior. Existing
feedback systems suffer from abstract data, which is not
usually understood by occupants and does not inform their
actions to reduce consumption [4]. Besides, technological
advancements enabled the development of smart energy

management systems that provide the infrastructure to mon-
itor and control consumption. The main approach of these
systems is to control appliances on behalf of occupants,
which was proven to breach their comfort [5]. This paper
introduces a non-intrusive messaging intervention that takes
advantage of exiting sensing and analysis technologies to
send real-time sensible messages to occupants. The messages
help occupants to be informed about energy waste incidents
happening in the house, and thus take actions to reduce it. The
intervention is designed to be non-intrusive by proposing a
context-aware heuristic that control the time of the messages
and their number per day based on the occupants location,
activity and interest in the information.

In order to test the effectiveness of the intervention, we pro-
pose a novel layered Agent-Based Model (ABM). The model
generates consumption data based on occupant activities,
which makes the data more realistic and enables the detection
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of waste incidents. It also includes a layer that simulates the
effect of peer pressure on the energy consumption behavior
of occupants. In addition, a customizable layer for simu-
lating and evaluating energy interventions is included. The
messaging intervention is considered an example of these
interventions, where any other intervention can be introduced
and tested.

The paper is outlined as follows. The next section presents
literature review related to energy efficiency including energy
interventions, energy feedback systems and energy manage-
ment systems. It highlights limitation in these approaches and
presents the argument of automated and human controlled
approaches. Section III presents existing ABM’s showing
the advantage of the layered ABM proposed in this paper.
The details of the non-intrusive messaging intervention are
presented in Section IV along with the technologies &
techniques that enable its implementation in reality. Next,
Section V details the layered ABM, which simulates the
occupants daily behavior, peer pressure, and the messaging
intervention. Section VI presents the results of simulating
a number of scenarios to show how the model can be used
to evaluate energy interventions. The results discussion is
presented in section VII, and finally, section VIII concludes
the paper and suggests future directions.

II. RELATED WORK: ENERGY EFFICIENCY
A. ENERGY EFFICIENCY INTERVENTIONS TO CHANGE
OCCUPANT BEHAVIOUR
One of the approaches to address the energy consumption
problem in buildings is to influence occupants’ energy con-
sumption behavior through interventions. Interventions are
defined as the interruption of peoples’ normal behavior [6]
by changing their values, attitudes, beliefs, and knowledge to
motivate them to adopt an energy efficient behavior. Existing
interventions include commitment, goal setting, information
(workshops, mass media campaigns, and home audits), mod-
eling, incentives, and feedback [7]. The effect of these meth-
ods on peoples’ knowledge and energy consumption vary
based on the intervention mechanism, and combining them
can result in more reduction [7].

Energy interventionsmay directly or indirectly affect occu-
pant behavior, while the resulting behavior can be a one-time
action/decision, or a continuous behavior that needs to be
practiced all the time. Therefore, targets of interventions
include raising awareness and pro-environmental motivation
of energy consumers, encouraging one-time energy effi-
ciency practices such as (1) buying energy efficient appli-
ances, (2) using renewable energy, (3) encouraging energy
conservation (turn off appliances, eliminate stand-by con-
sumption, line drying, etc.), and (4) applying demand side
response that involves reducing consumption during peak-
times [8]. The intervention introduced and tested in this paper
targets continuous direct behavior including energy conser-
vation and demand side management practices. Furthermore,
it is considered an enhancement of feedback systems among

the different intervention types. The next section explains
in details the purpose, types, and limitations of existing
feedback systems.

In many occasions, energy interventions take advantage
of the peer pressure effect knowing that human behavior is
highly affected by the behavior of others [9]. Peer pressure
is the influence that members of the same community have
on each other, which leads to change in behavior when com-
paring ones behavior with the behavior of others. This effect
is shown to be the most influential reason of environmental
behavior change [9]. This is because information received
from personal relationships are better recognized and remem-
bered than other sources of information [10]. In this paper,
we add the peer pressure effect to the simulation model used
to test the messaging intervention as one of the factors that
affect human behavior. This helps make the model more
realistic and reflects the normal human behavior.

B. ENERGY CONSUMPTION FEEDBACK SYSTEMS
As mentioned in the previous section, feedback is one of the
interventions that aims to help occupants save energy. Con-
suming energy is considered abstract and invisible because
it is used indirectly to perform daily tasks [11]. Therefore,
it is agreed that giving people information about the amount
they are using makes them aware of their consumption and
ultimately allows them to control it. Direct feedback is avail-
able in various forms including meter reading, direct and
interactive feedback via monitors, pay-as-you go meters,
plug/appliance meters [6]. However, with the advancements
in sensor and communication technologies, direct and inter-
active feedback is now the most common [12]. For example,
in response to the European Commission plan to reduce 20%
of the Union’s energy consumption [3], the UK has installed
8.5 million smart meters (along with feedback displays) so
far up to 2017 [13].

Energy feedback displays have been widely researched to
study their effectiveness and users interaction with them. For
example, the effectiveness of simple energy displays (station-
ary and portable) was investigated in [14]. The study shows
that energy displays resulted in an average of 11% energy
reduction and increased the energy awareness of occupants.
Besides, commercial feedback systems were assessed qual-
itatively in Hargreaves et al. [15] by asking people about
the motivation of earning display systems, ways of usage,
observed behavior change, and limitations of use. Along the
same lines, Karjalainen et al. [16] systematically reviewed the
different ways of presenting feedback. Several user interface
prototypes were developed with varied comparison types,
units of display, disaggregation levels, presentation types, and
time scales. They found that presentation of energy costs,
appliances consumption, and historical comparison are the
most preferred by users.

Although these studies showed that feedback systems play
a role in increasing occupants’ awareness, many studies high-
lighted a number of limitations. For example, Strengers [4]
observed that a considerable number of users struggled in
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understanding the displayed data and converting them to
meaningful information. This is because the displayed data
are absolute and not related to the surrounding context. The
same conclusion was reported in [17] where people wanted
more context such as occupancy and temperature to interpret
high/low consumption levels. In response to this challenge,
a number of studies suggest to relate energy consumption to
daily activities either by annotating consumption graphs with
activities [18], or using calendars as an artefact to help under-
stand consumption [19]. Similarly, Castelli et al. [20] propose
to use the location of appliances and occupants, which they
call room context. This helps identify energy wastage, match
consumption with occupant presence, and link consumption
with everyday activities.

Despite that these efforts make more meaningful infor-
mation, they still view users as micro-resource managers
[4], [21] who are expected to analyze the displayed data and
change their behavior such that it meets their preferences,
everyday needs, and financial & environmental goals. Based
on this, Pullinger et al. [21] identify one more specifica-
tion for feedback displays, which is explaining what the
information means in terms of behavior change. In addition
to detailed energy consumption data, this service requires
collecting environmental data and Artificial Intelligence (AI)
analysis techniques, which are not provided by existing feed-
back systems. In this paper, we try to fill-in this gap by
proposing the idea of an energy messaging intervention,
which provides occupants with sensible messages that tell
them what to do to reduce their consumption, instead of only
giving them the amount of energy they are using. We iden-
tify the technologies and techniques available to collect and
analyze the required data, and test the effectiveness of this
approach in an innovative layered simulation model.

C. ENERGY MANAGEMENT SYSTEMS
Another approach to help understand and handle energy
consumption in buildings are Energy Management Systems
(EMS), which provide the infrastructure to monitor and con-
trol energy consumption. They are defined as the monitor-
ing software, data collection hardware, and communication
systems for the purpose of storing, analyzing and displaying
the energy data of buildings [22]. These systems are often
integrated with smart homes and home automation systems
for the purpose of energy efficiency [23]. As an example,
Kim et al. [24] propose a home EMS based on universal
plug-and-play architecture. The main purpose of the system
is to connect home appliances and mobile devices in one
platform for the purpose of adjusting energy consumption
based on real-time prices. The system automatically controls
the activity or quality of service of appliances based on
electricity price and a policy agreed on between the cus-
tomer and the provider. The presented architecture allows
users to control appliances using mobile devices. Similarly,
Jahn et al. [25] present a smart home that embeds energy
efficiency. It provides an intuitive interface that shows appli-
ances usage, accumulated usage and cost on mobile devices,

and allows remote control of appliances by the users. These
two systems are good examples of the available platforms
that help connect appliances and remote control services,
however, they do not depend on any environmental data to
ensure occupant comfort and understanding of the displayed
consumption data.

To overcome this limitation, a number of EMS were
proposed taking advantage of Wireless Sensor Networks
(WSN) [26] and Internet of Things (IoT) [27]. These sys-
tems utilize data collected from environmental sensors (tem-
perature, humidity, illuminance, etc.), user input (activities,
preferences, etc.), and appliance-level energy consumption.
We refer to these kinds of data as context data. AI algorithms
are used to infer and analyze these data to detect the situ-
ation of the occupants and help them make decisions that
comply with their comfort. An example of these approaches
is by Dong and Andrews [28] who propose an algorithm to
model and predict occupants presence using rich data patterns
including motion, illuminance, temperature, humidity, etc.
The predicted occupancy data are then used to set a dynamic
schedule for cooling temperature while maintaining occupant
comfort. Similarly, Agarwal et al. [29] provide the specifica-
tions of an accurate, low-cost, and easily deployable wireless
sensor system which is also used to control the HVAC (Heat-
ing Ventilation and Air Conditioning) system of buildings.

EMS are not only designed to monitor and control HVAC
systems, but also for other everyday appliances. One of these
systems is GreenBuilding [30], [31], which combines mon-
itoring and control of energy consumption. GreenBuilding
provides a sensor-based infrastructure to reduce standby con-
sumption, schedule flexible tasks, and control appliances to
eliminate energy waste. These services are done based on
rules set by the user and data collected by environmental
sensors. A general architecture of an EMS that makes use of
WSN is Sensor9K [26], the aim of which is to ease the devel-
opment of energy efficiency applications. The architecture is
composed of two layers: a physical layer that contains the
sensors/actuators and ensures the communication between
the components of the system, and a middleware layer that
offers the basic functionalities of an EMS (such as monitoring
consumption, detecting user presence, and profiling prefer-
ences), which can then be used by application developers.
The architecture was tested with a temperature control case
study. Within the effort to test the applicability of smart
grids, PowerMatching City [5] was established as a living lab
demonstration project. Smart grids refer to the infrastructure
that ensures two way communication between providers and
end-users to balance the supply and demand of energy. Pow-
erMatching City project includes an EMS that automatically
controls the operation of appliances to minimize costs and
take advantage of renewable energy. More recently, an energy
aware smart home system was proposed in [27]. The system
controls lighting and appliances consumption automatically
based on occupant presence and natural lighting. The paper
ensures efficient communication among the system compo-
nents through IoT technologies.
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In relation to the messaging intervention proposed in this
paper, existing EMS provide evidence of enabling technolo-
gies and algorithms necessary to produce the real-time sen-
sible feedback. These details will be explored in details in
section IV. However, the main approach in most of these
systems is to utilize the collected data to act on behalf of the
occupant. They follow the school of thought that considers
that smart home control systems should be fully-automated,
hence, it should predict user’s changing preferences while
maintaining comfort and achieving savings [32]. Another
school of thought considers a smart home as a systems that
engages its users in the energy management process, thus
having well-informed and aware occupants. The argument of
these two schools is detailed in the next section.

D. AUTOMATED VS. HUMAN CONTROLLED APPROACHES
While reviewing existing literature on energy management,
it has been noticed that most EMS approaches utilize AI
and sensors technologies to automate the control of energy
consumption of the house/building. They explain this by
the fact that encouraging people to adopt energy efficient
behavior is not an easy job, therefore, acting on behalf of
them, while maintaining their comfort and minimizing costs,
will improve user experience. However, automatic control has
been proven to take off the sense of control from people,
which is mostly uncomfortable for humans [33]. For exam-
ple, when asking users about their experience when using
PowerMacthing City EMS [5], they reported the lack of con-
trol over the system. Participants preferred to interact with the
system and actively participate in its decisions. Based on this
feedback, the PowerMactching City project designers added
semi-automatic and manual appliances control in its second
phase [34]. They gave people advice of when is the best time
to turn on appliances. In this case, users said that they gained
back the sense of control over appliances, and with the time
they learned how to achieve their energy efficiency goals.
Thus, empowering users with information of how to reduce
their consumption maintains their feel of comfort.

Apart from losing the sense of control, automation is not
always the best solution for energy efficiency. For example,
Zhang et al. [35] found that increasing the awareness of
occupants is more efficient than applying an automated
light management strategy. In addition, human behavior may
sometimes oppose the automation like opening windows and
doors when the heating is ON, or manually putting heavy
appliances ON in peak times [36] especially if it happens that
automatic actions interfere in occupants’ important life func-
tions [32]. Besides, installing technologies without informing
users how to take advantage of them causes the limitation
of energy reduction [37]. This applies specifically when the
technology does not require user involvement and is usually
referred to as rebound effect. When people perceive that
a technology has the potential to save energy, it is proven
that they change their behavior to achieve more comfort,
which leads to less energy saving than expected [36], [38].
Therefore, giving occupants enough information of how to

use the technologies and raising their awareness is more
reliable than having a fully automatic system.

Along these lines, Leake et al. [39] suggest human cen-
tered computing paradigm to design smart homes, which
uses a simple and transparent learning process. Therefore,
in order to maintain human trust in the system and obtain
informed and capable occupants, the system will need to
interact with the occupants and provide explanations of its
decisions. In addition, Geelen et al. [37] recommends to
provide feedback that shows the occupants what behaviors
need to be changed.

In this paper, we introduce an intervention that takes advan-
tage of technologies used in existing EMS to trigger occu-
pants’ actions to reduce energy consumption. We suggest
not to automatically control appliances, but rather to detect
energy wastage and inform users about it. In this case users
are supported with information about what and when actions
are needed to control and reduce their consumption.

III. RELATED WORK: AGENT-BASED MODELS
This paper examines the effectiveness of the messaging inter-
vention in a simulation model. The simulation approach was
selected as an alternative to field experiments, which require
launching the system in a real environment, collecting data
for a period of time, and observing the interaction of occu-
pants with the system. Although field experiments allow to
capture real user experience, they have limited experimental
variation and can only be studied for a limited period of
time [40]. However, computer simulations allow more varied
scenarios and long time frame for the study. It cannot be
denied that simulation models are limited in capturing all the
psychological aspect of the messaging intervention, however,
we consider it as a first step for evaluating new ideas that
could be implemented in the future. In this research, we use
human behavior theories in simulation models to capture
psychological aspects at a high level of granularity.

Agent-Based Models (ABM) is a computational system in
which a group of autonomous software components, called
agents, interact in an environment based on their rules of
behavior, other agents around them and the state of the envi-
ronment [41]. Rules of behavior are defined for agent,s which
are allowed to act and interact in the environment in order
to observe changes at the macro and micro-levels. In ABM,
the agent has the following properties: (1) autonomy (not
controlled externally but by its own rules), (2) social ability
(interacts with other agents in the environment), (3) reactivity
(responds to changes in the environment), and (4) pro-activity
(uses the rules, interactions, and reactions to reach a specific
goal) [42]. ABM is best used when agents’ behavior is non-
linear (i.e affected by the surrounding environment), when
agents’ location is not fixed and when agents are heteroge-
neous [43]. These features of agents and ABM, make it the
most appropriate technique to model human behavior and
study the factors that influence it, and provides the rationale
of selecting ABM compared to typical simulation techniques
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(such as discrete-event simulation and differential equations)
which cannot model interactive systems [43], [44].

One of the applications of human dynamic behavior is
energy consumption behavior in buildings. In such models,
occupants are modeled as agents responsible for energy con-
sumption in a building/house environment over a period of
time. In order to add the human behavior aspect, the mod-
els characterize occupant agents by a personal attribute that
determines its level of energy consumption. The way these
models simulate the occupant agents behavior and define
their personal characteristic affects the level of details the
model can generate. Besides, some models aim to evaluate
energy interventions, which change occupants characteris-
tics. These models often focus on the peer pressure effect,
which is a natural human behavior change factor.

A group of existing models generate the energy consump-
tion data based on activities that the occupant agents perform
in the building. For example, Carmenate et al. [45] developed
an ABM to determine the causes of behavioral energy waste
in an office environment. The model simulates the complex
interaction between occupants, building units and appliances.
The energy consumption of the office is generated based
on the activities occupant agents perform in the building
and their energy literacy level. Similarly, Zhang et al. [35]
simulate occupant activities in a university building to test
the effectiveness of an automated light management strategy
opposed to the manual strategy. They categorize occupant
agents into 4 agent types, which determine their energy sav-
ing awareness, and found that the manual strategy can be
more efficient when increasing occupants awareness. This
activity-based type of modeling ensures that the resulting
energy consumption is accurate in comparison to other mod-
eling techniques, which are based on fixed schedules and
activities of occupants. Besides, it enables generating detailed
data (occupants activities and location, and consumption
data at appliance level), which facilitates detecting energy
waste and determining its causes. Although these two models
([35], [45]) are activity-based and generate detailed data, they
lack the peer pressure aspect and do not include any inter-
vention modeling and evaluation. An ABM that simulates
an energy intervention approach is proposed in [46]. The
research aims to test a number of building management and
control approaches. One of the tested approaches includes
a proactive meeting relocation capability. It suggests chang-
ing meeting rooms to smaller rooms or rooms that were
previously occupied (i.e. previously heated) to save energy
consumption. The occupant agents may or may not accept
the suggestion based on the meeting constraints and their
energy consciousness. However, the model does not capture
the change of occupants energy consciousness/behavior in
effect of the proactive approach, which is usually the aim of
energy interventions. Besides, similar to the previous models,
the model does not simulate the peer pressure effect.

Another group of ABMs that simulate human energy
consumption behavior focuses on the effect of peer pres-
sure in communities. For instance, Azar and Menassa [47]

introduced human characteristics and interaction to typical
energy simulation tools through an ABM. The occupant
agents are characterized as low, medium or high consumers
by which the occupant’s level of energy consumption is deter-
mined. Besides, the model simulates peer pressure, where
occupant agents change their behavior based on the level of
influence of other agents and the number of agents in each
level of consumption. A behavior change is also triggered by
discrete interventions (training or workshops), which are sim-
ulated by randomly selecting the affected individuals based
on the success percentage of the intervention. Moreover,
the same authors (Azar and Menassa [48]) developed an
ABM to help identify the social network characteristics that
lead to the most energy savings when applying discrete inter-
ventions. The effect of peer networks was also studied in [49],
which varies the structure of peer networks. The authors
found that targeting individuals with strong relationships in
peer networks is better to encourage energy savings than
targeting those withmore relationships. However, their model
does not simulate energy interventions. Energy Interventions
and peer networks were also studied in Anderson and Lee
[50] through an ABM. The model tests the effectiveness of
individual and comparative to neighbors for example feed-
back while varying the network types and strategies of which
occupants to target and when to target them. As a result of
occupants’ interaction and feedback intervention, the occu-
pants change their energy use behavior, which is measured by
average consumption per week. All of thesemodels that focus
on peer networks, such as those discussed in ([47]–[50]),
are not activity-based and do not produce detailed occupants
activities and energy consumption data. This is because they
characterize occupants by average daily/weekly/yearly con-
sumption [48]–[50] or generate the occupancy of the agents
through general fixed schedules [47].

The ABM proposed in this paper combines strengths of
these previous models and structures them in a layered
model. The core layer generates occupant daily behavior.
It is activity-based and produces detailed occupants activities
and energy consumption (every 10 minutes at appliance-
level). This is possible because the core layer of the ABM is
integrated with a probabilistic model based on big amounts of
data. These detailed data enable real-time detection of energy
waste and identification of its causes. Besides, the core layer
characterizes occupants by their personal energy consump-
tion behavior, which is changed due to peer pressure and
energy interventions. Another layer included in this model
is a family level peer pressure model, which is not usually
implemented in ABMs that are activity-based. The model
includes a customizable energy intervention layer where dif-
ferent types of interventions can be plugged and unplugged
to test their effectiveness. The intervention implemented in
this model is a messaging intervention that sends sensible
feedback to occupants about energywaste incidents occurring
in real-time. This is considered a continuous intervention
opposed to other peer pressure models that model discrete
interventions only [47], [48]. In these models, the effect of
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TABLE 1. Exiting models comparison and features.

discrete interventions needs to be assumed and applied ran-
domly. Similarly, the model in [50] stochastically determines
the possibility of checking the feedback, which is consid-
ered a continuous intervention. However, with the level of
details generated in the core model, it is possible to model
a realistic effect of continuous interventions. This is based
on how much the occupants are exposed to the intervention
and their compliance to it. The details of the layered model
will be explained in Section V. Table 1 shows the differences
among existingABMs and the last row of it shows the features
included in the layered model proposed in this paper.

IV. THE PROPOSED ENERGY MESSAGING INTERVENTION
In this paper, we propose a messaging intervention that com-
bines the technologies used for automated control and the
service of providing energy feedback. Instead of providing
the amount of energy being consumed or comparing the
household consumption with similar ones, the intervention
provides the occupants with real-time messages about their
current energy wastage and recommends actions to reduce
their consumption. This is done by relating the energy con-
sumption of appliances with the context of the house includ-
ing occupant presence, activities, and schedule, as well as
environmental data. The approach in this paper is to avoid
taking automatic actions in order not to breach the occupants’
comfort, but to allow the occupants to take decisions whether
to comply with the messages or not. An example of real-time
messages would be : ‘‘Your television in the master bedroom
is now ON while nobody is there, it is recommended that you
turn off devices while not in use’’, or ‘‘The lights in the living
room are now ON while there is enough daylight in the room,
you can take advantage of natural daylight to reduce your
energy consumption’’.

The following sections (1) detail the type of appliances
that was implemented in the simulation model, (2) define a
messages pushing strategy/heuristic to control the rate and
number of messages to be sent to occupants, (3) present the
factors that affect occupants energy consumption behaviour

including compliance to the waste messages, and (4) present
different enabling technologies and techniques that may be
used to obtain and forward the messages in reality.

A. APPLIANCES TYPES
Detecting energy waste incidents involves different appli-
ances and reasons for the waste, and consequently different
suggestions to minimize or avoid the waste. In this sense,
three general types of appliances can be identified based on
the type of waste that may occur:
• Presence-dependent appliances (televisions, computers,
game consoles, fans, lights, etc.), which are not sup-
posed to be ON if they are not being used.

• Presence-independent and heavy appliances (washing-
machine, tumble dryer, dishwasher, etc.), which are not
recommended to be ON in peak-times, therefore can
be scheduled as they do not depend on the occupants
presence.

• Heating/cooling related devices where the waste may
happen if windows/doors are opened while they are
ON, or over-heating/cooling is detected in some areas
of the house.

Detecting energy waste incidents of each of these types
requires a different set of context data. In a previous
paper [51], we identified the context data needed to obtain
meaningful energy feedback for occupants, which include:
occupant context, appliances context, and environment con-
text. This paper focuses mainly on the presence-dependent
appliances: televisions, computers and lights as a proof-of-
concept. Energy waste from presence-dependent appliances
is detected when they (1) are switched ON while occupants
are not in the location of the appliance, (2) are not being
used, or are not needed to be ON (e.g. keeping the lights ON
while there is enough daylight in the room). This requires data
about the occupant context (occupant location and ongoing
activities), environment context (amount of natural daylight
depending on the time of the day and weather conditions),
and appliances context that is used to identify appliances that
are turned ON.
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B. MESSAGES PUSHING STRATEGY
Forwarding messages to the occupants is done by pushing
notifications to the occupants’ mobile devices taking advan-
tage of the wide spread of mobile technologies these days.
However, in order to ensure that occupants are not continu-
ously interrupted by the messages, a messages pushing strat-
egy need to be defined. This is because notifications sent in
high numbers, at a high rate, and/or at an inappropriate times
can affect the users’ ongoing-tasks, hence causing frustra-
tion [52]. In addition, it may lead ultimately to un-installing
the application [53]. Therefore, we propose a non-intrusive
message pushing strategy that minimizes the annoyance level
of occupants, whilst ensuring that the family reaches the
savings target set by the governmental bodies and policy
makers. The strategy is implemented in the simulation model
by a heuristic, which will be detailed in section V-C.

In order to define this strategy, we explore studies that aim
to study user’s notification-interaction behaviour and build
interruptibility management mechanisms. These studies aim
to determine the most appropriate times and contextual situa-
tions to send notifications, and identify the factors that affect
the interruptibility and receptivity of notifications. The aim is
to reduce users’ interruptibility (i.e. interruption of ongoing
activities) and increase receptivity (i.e. the probability that
the user receives the notification and reacts to it). One study
found that sending a notification when the user transits from
one activity to another reduces interruptibility [54]. Other
studies, such as [55]–[57], develop machine learning models
that use contextual data to predict the appropriate times for
sending notification messages. These context data include
time of the notification, type and the sender of information,
location, emotional state, level of engagement in the activity,
response time to notifications, and phone lock/unlock times.
Another study found that the content factors of the message
including interest, entertainment, relevance, and actionability
affect more the receptivity of the message than the time of
delivery [58].

Based on these studies, the proposed strategy aims to
minimize occupant annoyance level caused by the feedback
messages. This is achieved by the following:
• Sendingmessages only in appropriate times based on the
occupant location and activity

• Limiting the number of messages sent to occupants per
day based on their interest in the information

• Distributing the messages over the day
• Giving priority for high wastage incidents
• Adjusting the number of occupants to be targeted by the
intervention based on the saving target

C. EFFECTIVE ENERGY CONSUMPTION
BEHAVIOUR FACTORS
The possibilities of receiving the message does not mean
that the occupants will comply to the messages anyway.
There are several factors that determine whether the occu-
pant will accept the suggestion of the intervention. These
factors are outlined in Li et al. [59] who adapt the

Motivation-Opportunity-Ability (MOA) model to the energy
consumption behaviour. The MOA model is initially devel-
oped to explain consumers purchasing behaviour. The fol-
lowing points map the factors that affect occupant energy
consumption behaviour and compliance to the feedback mes-
sages with motivation, opportunity, and ability.
• Motivation is defined as the needs, goals, and values
that affect the level of interest and willingness to adopt
the energy conservation behaviour. It represents the level
of concern about personal energy consumption and per-
sonal relevance of the presented feedback information.

• Opportunity includes the relevant resources (external
and environmental factors not in control of the person)
that enable or prevent the behaviour. In terms of energy
feedback it represents easily accessible controls, more
understandable and accessible feedback. It also includes
social opportunity such as peer pressure from other indi-
viduals in the environment.

• Ability is defined as the personal capabilities that enable
the behaviour. It includes the knowledge capacity of
interpreting energy related information, consequences of
energy use, as well as the ways for saving energy.

The messaging intervention proposed in this paper
enhances occupant ability and opportunity of control by
exposing occupants to understandable information and mak-
ing the information accessible through mobile devices.
However, other parts of the MOA model are not affected by
the messaging intervention. Therefore, we use the Personal
Energy Rating (PER) attribute in the simulation model to
determine how often occupants comply to the messages, and
assume that these factors are embedded in the PER. The
details of implementation of the PER attribute will be detailed
in section V.

D. ENABLING TECHNOLOGIES
In order to realize the sensible real-time messages, several
enabling technologies and techniques exist in research and
in industry. These technologies and techniques are presented
in the following points to help practitioners provide the
intervention in reality. Note that the enabling technologies
presented in this section serve in detecting energy waste for
all appliances types not just presence-dependent appliances
implemented in this paper.
• Energy monitoring at appliance level: This can be
achieved using smart plugs, which detect when the appli-
ance is turned ON and monitor the amount of energy
being used. For more information about commercial
smart plugs, Ford et al. [60] provide a comprehensive
review of smart plugs available today. Another way
of detecting appliances consumption is through smart
appliances, which allow the monitoring of their energy
consumption and status as well as control and com-
munication with the user [32], [37], [60]. Appliance
consumption can also be obtained from aggregated
consumption data through NILM (Non-Intrusive Load
Monitoring) techniques [61]. Beside these direct energy
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monitoring methods, some appliances can be monitored
indirectly through environmental sensors such as tem-
perature, noise, vibration, etc. [62].

• Environment monitoring: The surrounding environ-
ment inside and outside the house can be moni-
tored through different sensors such as temperature,
humidity, illuminance, motion, presence, body detection
(e.g smart watches), doors/windows detectors, among
others. In addition, virtual/software sensors can provide
useful information such as occupant schedules and cal-
endars, or live & forecast weather data.

• AI techniques: These techniques may be used for dif-
ferent purposes to analyze the collected context data.
For example, Bayesian Networks [63] and Ontological
& Probabilistic Reasoning [64] are used for activity
recognition in households. Sleeping detection is also
possible by utilizing data from smart watches [65],
which are considered as permanent monitoring devices.
Other activity recognition, learning and prediction tech-
niques can be found in [62]. Another application for AI
techniques is NILM, which is usually based on Hidden
Markov Models and artificial neural networks [61].
Optimization algorithms are also used for appliances
scheduling [66] in order to minimize energy costs
and peak demand, and maximize user preferences and
comfort.

• Platforms for communication: As energy waste detec-
tion requires the communication of different elements,
communication platforms need to be in place to provide
the connection among them. The most common way for
this purpose are WSNs, which are used in references
[25] and [26] cited in section II-C. In these approaches,
sensors and actuators are set to communicate with each
other in a single network. However, more recently the
IoT paradigm was established where appliances and
objects (e.g. smart appliances and smart plugs) can com-
municate and exchange data [67]. IoT technologies are
proposed to ensure reliable communication in a complex
environment [27].

• System Architecture: The general architecture of any
EMS, including the messaging intervention tested in this
paper, is outlined by De Paola et al. [62]. The system
is composed of different components each having a
specific functionality.
– Sensory and actuation infrastructure: includes

the energy and environment monitoring devices,
as well as actuators, which allow to control the
appliances.

– Middleware: deals with the heterogeneous devices
and sensors in the home and provides a common
interface for processing.

– Processing engine: performs the analysis of the
collected context data such as activity recognition
and detection of energy waste.

– User interaction interface provides the occupants of
the house with notifications about the energy waste

and collects their feedback and preferences about
the system suggestions. This is suggested to be pro-
vided through mobile devices such as smartphones
and smart watches.

The components that provide the proposed intervention can
be centralized such that all communication and processing
passes through a central server, or distributed so that the
components communicate directly and the processing is done
in distributed processing units [62]. Fig. 1 provides a general
illustration of the system that can provide the messaging
intervention.

V. THE LAYERED AGENT-BASED MODEL
The ABM proposed in this paper is designed using an inno-
vative layered structure, which includes realistic and detailed
occupant behaviour, peer pressure social aspect, and cus-
tomizable interventions modeling. Fig. 2 shows the three
layers of the model:

• Layer One: Daily Behaviour sub-model, which is
the core model that simulates detailed and realis-
tic occupants daily occupancy, activities, and energy
consumption.

• Layer Two: Peer Pressure sub-model, which adds a
more realistic human behaviour aspect by simulating the
peer pressure effect on occupants’ energy consumption
behaviour.

• Layer Three: Messaging Intervention sub-model,
which detects energy waste and simulates the messages
reception and compliance by occupants.

The last layer of the model (the messaging intervention sub-
model) is a customizable layer where any type of intervention
can be modeled, implemented and tested using the other two
layers of the model. More than one intervention can also be
added to test the effectiveness of multiple interventions. Here,
the messaging intervention is implemented and applied as an
enhancement to the existing EMS and feedback displays.

A. LAYER ONE: DAILY BEHAVIOUR SUB-MODEL
The messaging intervention is simulated in an ABM that
was developed in Abdallah et al. [68], [69]. The ABM is
implemented in Repast Simphony (https://repast.github.io) –
a Java-based agent-based platform. The model simulates
energy consumption behaviour of families and allows the
simulation and detection of energy waste incidents caused
by occupants behaviour. This is because the generated data
are fine-grained (generated every 10 minutes at appliance-
level) and activity-based where the appliances consumption
is generated based on occupant presence and activities. Every
occupant is represented by an agent that resembles an indi-
vidual in a household environment and interacts with other
occupants and appliances. Occupant agents are characterized
by the social parameters such as age and employment type
(full-time job, part-time job, unemployed, retired and school),
while the house is characterized by the total number of
occupants, income, number of rooms, and number and types
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FIGURE 1. Messaging intervention technologies illustration.

FIGURE 2. The layered agent-based model.

of appliances. The ABM generates realistic occupancy and
activities based on the given occupants characteristics, then
appliances consumption is generated as a result of occupants
interaction with appliances agents.

The ABM was validated by incorporating probability dis-
tributions from an existing Probabilistic Model (PM) [70],
which uses higher-order Markov Process. The PM is cali-
brated using Belgian Time-Use Survey (TUS) and the House-
hold Budget survey. The surveys include real data from
6400 occupants in 3455 households. Table 2 shows the size
of the sample that was selected from the surveys grouped by
household composition with different employment types.

TABLE 2. Data sample grouped by household composition.

1) OCCUPANCY AND ACTIVITIES SIMULATION
The simulation time is determined by the day of the week (d),
which is distinguished between a workday or a weekend,
and 144 time-steps per day (t) each representing 10 minutes.
Every time step, the occupant agent either selects a new occu-
pancy state and activity based on the probability distributions,
or decrements the duration of an already running occupancy
state/activity. The occupant agent selects an occupancy state
(ost,d ), which can be away, active at home, or sleeping, for
a duration (dr). The occupancy state and its duration are
selected based on the occupant’s previous state os(t−1),d , age,
employment type (emp), day (d), and time (t) as shown in (1).

OS : age, emp, os(t−1),d , t, d → ost,d
age, emp, ost,d , t, d → dr (1)

When the occupant agent is active at home, it performs
activities from the following set {Using the computer, Watch-
ing television, Listening to music, Taking shower, Preparing
food, Vacuum cleaning, Ironing, Doing dishes, Doing laun-
dry}. The decision of doing an activity (act,d ) for a specific
duration (dr) depends on the occupant’s age, employment
type (emp), day (d), and time (t) as shown in (2). This step
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TABLE 3. Mean and standard deviation of occupant types.

is repeated for every activity to allow multitasking where the
occupant can be performing more than one activity at a time
given that the activities are compatible i.e can be performed
together.

AC : age, emp, t, d → act,d , dr (2)

The decision of which factors affect the prediction of
occupants’ occupancy and activities is adapted from Aerts
research [70]. The author proved through detailed analysis of
the data from the Belgian TUS that the age, employment type,
time of the day and day of the week are the most affecting
factors.

The occupant agent’s location in the house is determined
by the activity being performed every time-step. Each activity
is assigned to a room or a set of possible rooms. The agent
decides its location rt,d based on its occupancy state ost,d
and the set of ongoing activities (ACt,d ) as shown in (3).
The occupant agent can have a set of possible rooms when
doing more than one activity at a time. In this case, the agent
alternates randomly between the possible rooms.

OL : ost,d ,ACt,d → rt,d (3)

2) ENERGY CONSUMPTION BEHAVIOUR SIMULATION
In addition to the occupant age and employment type,
the ABM characterizes occupants based on their personal
energy consumption behaviour. This is because energy con-
sumption behaviour is different from one occupant to another.
Therefore, the occupant type attribute is added to determine
how often the occupant applies energy saving actions such as
turning OFF appliances when they are not in use or avoid-
ing putting heavy appliances ON in peak times. For this
purpose, the ABM utilizes the categorization introduced
by Zhang et al. [71] who divide occupants to four types:
‘Follower Green’, ‘Concerned Green’, ‘Regular Waster’, and
‘Disengaged Waster’. Each of these types is reflected in the
model by the Personal EnergyRating (PER) attribute between
0 and 100 based on a normal distribution as shown in the
2nd and 3rd columns of Table 3. PER is also used to deter-
mine how often occupants comply to the recommendations
forwarded by the messaging intervention, therefore embeds
the MOA factors identified in section IV.

Appliances are modelled as dummy agents that only react
to occupant agents actions (turn ON and OFF). Every activity
(act,d ) that the occupant performs is associated to an appli-
ance a. When the occupant agent starts an activity, it turns

ON the appliance associated to this activity. When the activ-
ity ends and based on the agent’s PER attribute and other
occupant agents (Oa) that may be using the same appliance,
the agent decides whether to turn OFF the appliance or keep it
ON. The actions of turning appliances ON and OFF is shown
in (4).

TOa : act,d → turnOna |

act,d ,PER,Oa → {keepOn, turnOff }a (4)

Turning lights ON/OFF is different from using appliances,
because using lights depends on daylight and location. Every
time the occupant agent is in a room rt,d , it may decide to
turn ON the light in this room based on the amount of natural
daylight (daylightt,d ). The agent chooses to turnON the lights
when daylightt,d × 0.02 < 200 lx as modelled in [70],
which was also used to obtain real daylight data measured in
lux (lx). When the agent leaves the room, it decides whether
to turn OFF the light based on its PER attribute and other
occupants (Or ) in the room. The actions of turning lights ON
and OFF is shown in (5).

TOr : rt,d , daylightt,d → {turnOn, keepOff }r |

rt,d ,PER,Or → {keepOn, turnOff }r (5)

The ABM simulates presence-dependent appliances (tele-
visions, computers, and lights), which are related to the agents
occupancy state, location, and the activities: watching televi-
sion and using the computer.
For the predictive validation of the implemented daily

behaviour data, we refer to TAPAS (Take A Previous Model
andAdd Something) principle [72], which is one of the strate-
gies to validate simulation models. This incremental strategy
is one of the most successful strategies for models creation,
where a newmodel is built upon a previously validatedmodel.
In this case, the predictive validity of the previous model (the
PM in our case) is passed to the new one (the ABM). In order
to verify that the implemented ABM actually generates the
same data as the previous PM, and the generated data were
plotted on the same graph for comparison. Fig. 3 shows the
plot for occupancy data for three day types generated by
the PM and the implemented ABM. The shown data is the
average occupancy for 100 simulations of the scenario ‘‘one
adult aged 25-39 with a full-time job’’ given that the two
models are fed with the different random numbers generator.
The figure clearly shows that the implemented ABMwas able
to generate identical data to the one generated by the existing
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FIGURE 3. Average occupancy data comparison between the developed ABM and the existing PM. (a) Weekdays occupancy. (b) Saturdays occupancy.
(c) Sundays occupancy.

PM [70]. To statistically prove that the data sets generated by
the two models come from the same distribution, we perform
Kolmogorov-Smirnov test. The results of the test are shown
in Table 4, which shows that the p-value is close to 1. This
indicates that the models produce the same distribution of
data, thus the predictive validity of the occupancy and activ-
ities data is passed from the existing PM to our developed
ABM. For further validation, the reader is referred to [68]
and [69].

TABLE 4. Kolmogorov-Smirnov test results.

B. LAYER TWO: PEER PRESSURE SUB-MODEL
The peer pressure sub-model used in this research is based
on the approach proposed in [73], which models the effect of
peer pressure on the energy consumption of family members.
The model is based on two well-established human behaviour
theories: the collective behaviour theory [74] and the theory
of cognitive dissonance [75]. The collective behaviour the-
ory was formalized in Granovetter’s threshold model [74]
to explain the diffusion of a behaviour due to social con-
tagion. The model follows a simple decision rule, where
individuals choose to adopt a behaviour when the percent-
age of others doing the behaviour exceeds a threshold. This
threshold represents a complex combination of norms, values,
motives, beliefs, etc. Once the threshold is exceeded, it is
considered that the net benefit of the behaviour exceeds the
perceived costs, which means that the individual will adopt
the behaviour of others. The other human behaviour theory
used in the model is the theory of cognitive dissonance [75].
Dissonance is defined as the inconsistency that happens
between the individual’s cognitive factors (e.g. knowledge,
opinion, and beliefs) that drive behaviour. Based on the fact
that dissonance is uncomfortable, Festinger [75] proves that
humans try to reduce it by adopting the behaviour of others.
One of the major sources of dissonance are social groups.

Therefore, observing others doing a behaviour that is very
different from the individual’s behaviour or spreading a gen-
eral belief that a specific behaviour is not accepted, drives
members of a social group to adopt the behaviour of the
majority, thus reducing the uncomfortable dissonance. The
two theories were adapted – so they can be applied to simulate
the effect of peer pressure on energy consumption in families.
Accordingly, the threshold for behaviour change is define as
the difference between the individual’s occupant type and the
average of others’ occupant types, knowing that the occupant
type is what determines the energy efficiency behaviour of
individuals.

The time step in this model is set to 4 weeks of simu-
lation time (hereafter time period) since individuals usually
take time to observe the behaviour of others to change their
behaviour. In order to express occupant types in numerical
values, every occupant type is given an integer value as shown
in the 4th column of Table 3. For a family composed of
N occupants, every time period T , each occupant agent i
calculates the difference diffT ,i between its occupant type ai
and the average occupant types of others aj, where j ∈ [1,N ] :
j 6= i using (6).

diffT ,i = ai −

N∑
j=1,j 6=i

aj

N − 1
(6)

Behaviour change happens if |diffT ,i| exceeds the threshold d
where d ∈ [0, 4]. A high threshold implies low sensitivity
to cognitive dissonance and a low threshold implies high
sensitivity to cognitive dissonance. The model simulates the
stochastic nature of human behaviour due to uncertainty and
differences in the speed of reaction by using a threshold
lag attribute such that the occupant changes behaviour with
probability p ∈ [0, 1] (a higher value of p means a higher
rate of change). p is set to 0.5 as a middle point between
high and low rate of change throughout the simulations in
this paper. Once behaviour change is decided, the occupant
type of the individual changes towards the average of others
occupant types assuming that the occupant agent is adapting
its behaviour to be similar to others. Behaviour change is done
by stepping between the occupant types one step at a time
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either to the green side or the waster side. The behaviour
change process step is outlined in algorithm 1, which is
repeated for every agent i at every time step T.

Algorithm 1 Behaviour Change Step

calculate diffT ,i using Equation (6)
if |diffT ,i| ≥ d then

rand ← Rand(0, 1) // Rand(0,1) is a
uniform random generator between
0 and 1

if rand ≤ p then
if diffT ,i > 0 then

if ai > 1 then
ai = ai − 1

else
if ai < 4 then

ai = ai + 1

The peer pressure sub-model was conceptually validated
in [73] proving that the model generates data that conforms
to the used human behaviour change theories. The paper also
defines interventions that change the occupant type of spe-
cific individuals (called occupant-level interventions), then
uses the model to study the effect of the intervention and
peer pressure on the occupant types of the family mem-
bers and their energy consumption. The feedback messaging
intervention proposed and tested in this paper is considered
an application of the occupant-level intervention. Occupants
may change their behaviour by changing their occupant type
in effect of the messaging intervention. The messaging inter-
vention simulation and behaviour change step as a result are
explained in the next section.

C. LAYER THREE: MESSAGING INTERVENTION
SUB-MODEL
As outlined in section IV, the approach proposed in this paper
is detecting energy waste and forwarding the messages to
the occupants. This layer models the energy detection feature
and implements a heuristic to simulate the messages pushing
strategy defined in IV. Then, it simulates the messages recep-
tion and compliance of occupants.
Energy Waste Detection: As the ABM simulates presence-

dependent appliances, the energy waste incidents detected
are related to the occupants location in the house, ongoing
activities, and natural daylight as follows:
• Televisions and computers are detected as wasting
energy when they are turned ON but not being used.
The appliance is identified to be used when the activ-
ity associated to it (watching television and using the
computer) is being performed regardless of the loca-
tion of the occupant in the house, because the ABM
enables multitasking. For example, the occupant can be

watching television and preparing food in the kitchen.
In this case the television located in the living room is
not detected to be wasting energy.

• Lights are detected to be wasting energy when the light
is on and (1) the room is not in use, (2) the room is in
use but natural daylight is enough to light the room, or
(2) all the occupants in the room are sleeping. The room
is considered to be in use if there is an occupant using
it even if he/she is not in the room due to multitasking
as explained above. This covers the case when people
leave the lights on when they are returning to the room
in a short while.

The above mechanism is provided as an example for
energy waste detection. Any other detection mechanism can
be implemented and tested, including mechanisms that uti-
lize predicted activities and energy consumption of occu-
pants or customize the waste detection to the occupant pref-
erences.
Messages Pushing Strategy Simulation: The energy waste

incidents are detected and updated every time-step based on
the mechanism determined in the previous section. However,
it is not possible to send the occupants a group of messages
about their energy waste every 10minutes asking them to turn
off appliances and change their behaviour. Using the studies
cited in section IV, we implement a non-intrusive strategy
that selects to forward messages at appropriate times, and
limits and distributes the messages to be sent to occupants
in order to reduce annoyance and frustration. The strategy is
implemented based on a heuristic defined in the following
4 steps:

1) SEND MESSAGES IN APPROPRIATE TIMES
As shown in [54], the appropriate time to send notifications
to users is when they are transiting from one activity to
another, which reduces interruptibility. Applying this factor
to the messaging intervention, the messages are only sent to
occupant agents when they transit from one occupancy state
to another, from one activity to another, or from one location
to another (inside the house).

2) SET A FREQUENCY CAP PER DAY
Many studies identify that the user’s level of interest in
the information is one of the influential factors that affect
receptivity of notifications. Therefore, we use this factor to
limit the number of messages to be sent to occupant agents.
Consequently, we define a frequency cap that determines the
number of messages that can be sent per day. The frequency
cap is determined based on the number of transitions the
occupant agent performs during the day and its interest in
the information, which is determined by the occupant type.
Every occupant type is given a weight to determine the level
of interest, setting the maximum for the ‘Follower Green’
type and the minimum for the ‘DisengagedWaster’ type with
an arbitrary equal difference between any two consecutive
consumer types as shown in the 4th column of Table 3.
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Every time period T (set to 4 weeks – the same as the peer
pressure sub-model), the frequency cap fi,T of every occupant
agent i is calculated using (7).

fi,T = nTran(T−1) × wa (7)

where nTran(T−1) is the number of transitions the occupant
agent performed in period T-1, and wa is the weighting of the
agent’s occupant type.

The frequency cap fi,T is then divided on the number
of days in the period T (nT = 28 = 4 weeks ∗
7 days per week) to ensure that the messages are dis-
tributed over the days. The frequency cap per day fi,d is
calculated using (8).

fi,d =
fi,T
nT

(8)

The messaging intervention strategy keeps the number of
messages sent to the occupant agent less than the frequency
cap per occupant.

3) ADJUST THE NUMBER OF MESSAGES PER
OCCUPANT PER TIME STEP
In order to guarantee that the messages are distributed over
the day, the strategy adjusts the number of messages to be sent
to the occupant agent per time step while focusing on high
energy wastage. This is done based on the remaining number
of messages that can be sent to the occupant (hereafter occu-
pant’s messaging capacity) and the expected number of waste
incidents until the end of the day.

Every time step t, the number of messages to be sent to the
occupant i is set using (9), (10), and (11).

nMsgi,t = d
ci,t
nExpt

e (9)

ci,t = fci,d − NMsgi,t (10)

nExpt = nDett − NExpd (11)

where nMsgi,t is the number of messages to be sent to the
occupant at time step t, ci,t is the occupant’s messaging
capacity, nExpt is the remaining number of incidents expected
at time step t until the end of the day,NMsgi,t is the number of
messages received by the occupant so far,NDett is the number
of detected incidents so far, and NExpd is the total number of
incidents expected per day. In this model NExpd is calculated
from the last time period (4weeks) then divided over the days.
It was possible to calculate NExpd in the ABM, however in
reality various machine learning algorithms can be applied to
identify the expected incidents throughout the day.

4) ADJUST THE NUMBER OF OCCUPANTS PER TIME PERIOD
Every period of time, the strategy adjusts the number of occu-
pants to be targeted by the intervention. The family is set an
energy saving target (in percentage) to be achieved after one
year of applying the intervention. This target is supposed to
be set by policy makers and governmental bodies. Therefore,
based on whether the percentage of saving is more or less
than the target, the number of occupants is decided in a way

that reduces the annoyance of occupants if they have already
reached the target. This process is shown in Algorithm 2,
which is repeated every time period T.

Algorithm 2 Adjust Number of Occupants

Ensure: nTarT ≥ 0 and nTarT ≤ N
if first time period T then
nTarT ← N

else
if sT > tar + 1 then

nTar(T+1)← nTarT − 1

if sT ≥ tar − 1 and sT ≤ tar + 1 then
nTar(T+1)← nTarT

if sT < tar − 1 then
nTar(T+1)← nTarT + 1

nTarT is the number of targeted occupants at time period T,
N is the total number of occupants in the family, sT is the
energy saving percentage before time period T, and tar is
the energy saving target (in percentage) set for the family to
reach. Occupants with highest frequency cap are selected to
be targeted by the intervention. The simulation is run for one
year without the messaging intervention in order to calculate
the energy saving percentage.
Messages Reception Simulation: The energy waste inci-

dents are forwarded to the occupant agents’ mobile device
(smartphone, tablet, smart watches, etc.) if they possess
any. In this paper, we simulate the case of smartphones as
they are the most spread and used types of mobile devices
these days [76]. Real statistics were obtained for the pos-
session and usage of smartphones from Deliotte Global
Mobile Consumer Survey (Belgian edition)1 [76]. Table 5
shows the possibility of owning a smartphone based on the
occupant’s age. Therefore, it is decided in the initialization
phase whether the occupant agent possesses a smartphone or
does not.

Possessing a mobile device does not mean that the occu-
pant will always receive the message. To determine the
mobile device check probability, the Global Mobile Con-
sumer Survey was used. The survey includes data about how
often people check their smartphone per day by age group
(Table 6), and the percentage of people who check their phone
while doing different activities during the day (Table 7).
Based on these data, we calculate the percentage of checking
the smartphone for every age group and day period, which
are mapped to the corresponding age groups and periods in
the Belgian Time-Use Survey, and assume that the message is
received once the phone is checked. The action of smartphone
checking (sct,d ) depends on the occupants age, occupancy
state (ost,d ), day type (workday or weekend), and the time

1The Belgian edition of the survey was selected since the probability
distributions used in the ABM are calibrated using the Belgian time-use
survey.
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TABLE 5. Smartphone possession probability by age group.

TABLE 6. Frequency of checking the smartphone by age group.

TABLE 7. Percentage of checking the smartphone while doing different
activities.

of the day as shown in (12).

SC : age, ost,d , t, d → sct,d (12)

Messages Compliance Simulation:Whenever the occupant
agent receives the message, it may comply to it by turning
OFF the appliance that is causing the waste. This action
happens based on the agent’s PER attribute, which embeds
different personal and external factors that either allow or pre-
vent the action from happening as outlined in Section IV.

When the message is sent to the occupant agent’s mobile
device, the agent’s smartphone check probability (sct,d ) is
used along with its occupancy state (ost,d ), location (rt,d ) and
PER to determine the reaction towards the message as in (13).

MC : sct,d , ost,d , rt,d ,PER→ {keepOn, turnOff } (13)

Behaviour Change Due to Messaging Intervention: The
occupant agents may change their occupant type and con-
sequently their PER assuming that they are becoming more

2The age group 12-17 is not included in the Global Mobile Consumer
Survey [76]. Instead, we used a survey by IVox and Wiko who found
that 86.1% of children aged 13-16 possess smartphones in 2015.
Reference: http://be-nl.wikomobile.com/a4342-Wat-is-de-ideale-leeftijd-
om-een-smartphone-te-bezitten (Accessed 2 May 2018). For the smartphone
usage we used the data of the closest age group 18-24 as shown in Table 6

3Results for age group 55-64 are not reported in the Global Mobile
Consumer Survey report. Therefore, we used the data of the closest age group
40-54 instead. This also applies for smartphone usage percentages in table 6.

energy aware as a result of the messaging intervention. This
is decided by comparing the actual behaviour of the occu-
pant agent and the mean value of the occupant type shown
in Table 3. The actual behaviour of the agent is calculated
using (14)

aB =
nOFF

supNOFF
, (14)

where aB is the ratio of the number of times the occupant
agent turned the appliance OFF (nOFF) and the number of
times it was supposed to turn OFF (supNOFF). If the aB
exceeds the mean of the more-green occupant type, the agent
changes its occupant type to the green side, thus increases
its PER attribute. This step is executed every time period T,
then the peer pressure behaviour change step (Algorithm 1)
is executed such that the occupant agent may affect others’
behaviour or the others may affect it. Every step executed
by the occupant agent is demonstrated in Fig. 4 with the
associated equation/algorithm used in the step. The step is
executed until the total time of the simulation is reached (set
to one year in the experiments).

VI. EXPERIMENTS AND RESULTS
The aim of these experiments is to show how the proposed
simulation model can be used to test energy interventions.
The family simulated in these experiments is composed of
four occupants: two adults who are 25-39 years old in a
full-time job, and two children 12-17 years old who go to
school. For this family type, we simulate two scenarios by
varying the occupant types and PER values (all follower green
families, and all disengaged waster families) to test the effect
of energy awareness on the effectiveness of the intervention.
In order to test the effectiveness of the proposed message
pushing strategy we run two types of scenarios, one where
the proposed strategy is applied at its entirety as outlined
in the previous section, and another where messages are
sent whenever the occupants are active at home (hereafter
naive strategy). With the naive strategy, it is assumed that
occupants stop complying to messages when their frequency
cap is reached, while the messages continue to be sent by the
messaging intervention in response to energy waste incidents.
This follows the conclusion reached in [53], where users
stop using the application when they receive a high number
of notifications. Besides, we vary the savings target of the
proposed strategy to get the maximum percentage of saving
that can be achieved when applying it.

For every scenario, 100 households were simulated to
capture the probabilistic nature of the model. Each house-
hold has different income levels, work routines for employed
occupants, ages, appliances number and types, and number of
rooms in the house, all drawn based on the probability distri-
butions from the real data. Every household is run for one year
without any intervention to get the baseline consumption of
the house, then for another year while applying the proposed
strategy or the naive strategy. The percentage of saving of
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FIGURE 4. Occupant agent execution steps.

every household is calculated using (15)

S =
(Cn − C)

Cn
× 100, (15)

where S is the percentage of saving, C is the yearly consump-
tion when applying the messaging intervention, and Cn is the
yearly consumption when no intervention is applied.

In order to measure the level of annoyance that occurs as
a result of sending out feedback messages, we calculate the
percentage of messages sent in comparison to the frequency
cap of the occupants (16)

A =
NMsgtotal
ftotal

× 100, (16)

where A is the level of annoyance of occupants, NMsgtotal
is the total number of messages sent to the occupants in
the whole year, and ftotal is the total frequency caps of all
the occupants in the whole year. A value of annoyance less
than 100 means that the occupants were not annoyed by the
messages, and a value more than 100 means that they are
annoyed by the messages which indicates high probability of
switching off the notifications.

First, we show some general results (average savings
and annoyance) of the simulated scenarios, then we present
detailed results of the messaging intervention to show how
the model can be used to test the performance of the strategy.

A. GENERAL RESULTS
Fig. 5 and Fig. 6 show the average and standard deviation
of energy saving and annoyance of the simulated 100 house-
holds in each scenario. Scenarios that run with the naive
strategy have the same indication when varying the energy
saving target since the target does not affect the way the
messages are sent. In order to get the maximum saving result
of the messaging intervention when applying the proposed
strategy, we start by simulating scenarios with low targets
(10%) and increase it until we noticed that the average saving
is not changing. When the average saving does not increase
as the target increases, then this means that the proposed
strategy is targeting the maximum number of occupants
but the household could not achieve more savings. This is
noticed when increasing the target from 20% to 30% where

FIGURE 5. Average of savings when applying the proposed strategy and
the naive strategy. (a) All green scenario. (b) All waster scenario.
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FIGURE 6. Average of annoyance when applying the proposed strategy
and the naive strategy. (a) All green scenario. (b) All waster scenario.

the saving increased only 1% with the green occupants and
decreased 1% with waster occupants. Therefore, with the
proposed strategy, the maximum average savings for green
occupants is 13% and for waster occupants is 11%.

The energy savings of the intervention with the naive
strategy ranges between 13-15 % for both green and waster
families. While the savings achieved when applying the
proposed strategy is between 7-13%. However, when looking
at the annoyance levels, we notice that the proposed strategy
is able to achieve these savings with low levels of annoyance
(21-52% for green occupants, and 45-75% for waster occu-
pants). While the annoyance level of all waster families with
the naive strategy exceeds the frequency cap of the occupants
by almost three times (287-294%). This indicates that the
saving percentage 14-15% resulting from using the naive
strategy could not be achieved in reality because of the high
annoyance level. Besides, for green occupants, the proposed
strategy achieved the same amount of savings (12-13%) with
annoyance level 48-52% compared to 96% annoyance level
when the naive strategy is applied. This indicates that the
proposed strategy succeeded to keep occupants unannoyed
while achieving reasonable savings. This is because it reduces
the number of occupants to target when the savings target
is reached, and distributes the messages over the day while
focusing on high wastage. These results indicate that the
proposed intervention strategy is more efficient than the naive
one. The details of the proposed strategy will be presented in
the next section.

FIGURE 7. Messages distribution over the day when using the proposed
strategy and the naive strategy. (a) Proposed strategy. (b) Naive strategy.

Looking at the standard deviation of the reported results,
we notice that results of all waster families is more scattered
than green families. This is because waster occupants have
the chance to change their occupant type and become more
aware, thus achieving different energy savings. An example
of two different scenarios will be presented in the next section
to show the reason of these scattered results. In terms of
achieving the savings target, the proposed strategy did not
succeed to achieve the targets in average. The percentage of
successful scenarios among the simulated households is 14%,
3%, and 1% for the targets 10%, 20%,and 30% respectively.
This reveals that policy makers will need to adjust the mes-
sages pushing strategy and/or apply a combined intervention
approach such that targets are achieved while minimizing
the annoyance levels of the occupants. The proposed model
can help evaluate these strategies and interventions before
implementing them in reality. Note that these results are spe-
cific for the family type tested in this experiment. Different
results may be obtained when changing the inputs for the
model. City level results can be obtained by feeding themodel
with the demographic distribution of the city to obtain the
effectiveness of the intervention and strategy.

B. DETAILED STRATEGY RESULTS
This section presents detailed examples to show how the
proposed strategy works. Fig. 7 compares how the messages
are sent over the 24 hours period using the proposed strategy
and the naive one. In Fig. 7a where the naive strategy is
applied, messages are sent to occupants whenever they are
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FIGURE 8. Change of energy saving over the year and adjustment of
occupants to target. (a) Successful scenario. (b) Unsuccessful scenario.

active at home. It is noticed that most of the messages are
sent once the occupants wake up in the morning, and the
occupants stop complying to the messages in the middle of
the 24 hour period (at 04:00 PM). After this time, the inter-
vention continues sending the messages but it is assumed
that the occupants stop complying to them when the number
of messages received reaches their frequency cap. Fig. 7b
shows how the messages are sent when the proposed strategy
is applied. It is clear that the messages continue to be sent
until the end of the day (at 10:00 PM), and no messages are
sent after the frequency cap of each occupant is reached. This
ensures that the messages are distributed over the day while
focusing on high waste incidents.

Fig. 8 shows how the energy savings change over the
year (tracked every 4 weeks) and how the proposed strategy
changes the number of occupants to target accordingly (the
left y-axis refers to the savings percentages, and the right
y-axis refers to the number of occupants to target). Fig. 8a
presents a scenario where the family succeeded to reach
the energy saving target (30%) at week 28. As a result the
proposed strategy started to decrease the number of occupants
to target from 4 until it reaches 0 at week 44. By the end of
the year, the family had 30 % of energy saving. This saving
percentage was possible because the occupants changed
their occupant types from 4 disengaged wasters to 3 regular
wasters and one follower green. This is due to both peer
pressure and the effect of the messaging intervention. Fig. 8b
shows a family that did not succeed to reach the savings target
during the whole year. As a result, the number of occupants to

target remained equal to the maximum (4 occupants). Talking
about the occupant types of this family, all of the occupants
remained disengaged wasters by the end of the year. This
shows one of the reasons why interventions work in some
cases but not in others. In addition, it indicates that in some
cases, the messaging intervention is not enough to achieve
the savings target, and another type of intervention needs to
be combined with it to change occupants awareness and save
more energy.

VII. DISCUSSION
This paper introduces an energy messaging intervention.
Most existing energy feedback systems display abstract or
contextualized energy consumption data [17]–[20]. However,
these data need to be further analyzed by occupants to deter-
mine energy waste causing activities/actions and minimize
their consumption [4], [21]. In this paper, we identify the
specifications and enabling technologies & techniques that
can support occupants to reduce their energy consumption
using sensible feedback; a feedback that tells occupants what
appliances are causing high energy waste. Instead of control-
ling appliances on behalf of occupants, like most existing
EMS [5], [24], [27]–[29], we propose to keep occupants in
control. Therefore, we suggest that energy wastage messages
are forwarded to occupants’ mobile devices giving then the
choice whether to comply to the feedback message or not.

One challenge that exists when dealing with applications
that forward messages to users is the intrusiveness of the
messages. Such that the pushed notifications may be sent at
the wrong times or in high number/rate. In order to over-
come this challenge, we presented a heuristic approach by
sending messages only when the occupants transit from one
location/activity to another, setting a frequency cap to limit
the number of messages, distributing them over the day, and
reducing the number of occupants to be targeted when a
saving target is reached.

In order to test this messaging intervention, we use a
novel layered ABM that simulates the household’s energy
consumption and the messaging intervention. Opposed to
other ABM [47]–[50], the layered ABM is activity-based
and generates detailed data, which enhances the accuracy
of the simulation. In addition, it simulates occupants peer
pressure effect on energy consumption behaviour in com-
parison to other models that do not simulate peer pressure
[35], [45], [46]. The messaging intervention sub-model
enables realistic simulation of interventions by using real
statistical figures of the possession and usage of smart-
phones by occupants to simulate the occupants’ interaction
with the intervention. Therefore, unlike existing models
[47], [48], [50], the developed model simulates realistic
interaction of occupants with energy interventions, where the
result of the intervention can be affected by the occupant daily
behaviour and social characteristics.

For the messaging intervention and in order not to annoy
occupants with messages, we define a non-intrusive strategy
to forward the messages to occupants. The experiments pre-
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sented in the chapter showed that the proposed intervention
strategy was effective as it achieves reasonable saving and
keeps the occupants not annoyed when compared to a naive
strategy. The presented scenarios also showed the details that
can be generated and controlled in the simulation model. This
will enable policy makers to evaluate the effectiveness of the
intervention, its strategies, and any other energy intervention.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a non-intrusive messaging inter-
vention that detects and sends waste incidents to occupants
to help reduce energy consumption in buildings. It is con-
sidered a middle-point between techniques and technologies
used for automatic control, and typical feedback displays.
The paper has also presented the enabling technologies and
techniques that are needed to realize the messaging interven-
tion in reality. In order to avoid occupants annoyance from
the notifications (which are suggested to be sent to their
mobile devices), we have proposed a strategy that controls
the number of occupants to target, the number of messages to
send per occupant, and the time of sending the messages.

The intervention is evaluated using a novel layered ABM
that combines strengths of existing ABM. It simulates
detailed energy consumption and wastage, models the effect
of peer pressure, and evaluates energy interventions. The
presented experiments showed that the proposed intervention
and strategy can result in acceptable energy saving while
keeping the occupants comfortable (not annoyed by the mes-
sages). It also showed how the model can be used by decision
makers to explain how interventions can be effective in some
families but not in others and test different approaches of
interventions. Although the results in this study are obtained
through a realistic simulation model, real world testing is
needed because there are many factors that can affect the
success of interventions. However, such simulation analy-
sis is needed as a first step towards the evaluation of new
approaches that require lots of equipment and time to be
installed and tested in real scenarios.

Concerning the proposed messaging intervention, a num-
ber of challenges may be observed when applying a human
controlled approach. The first challenge is the possibility that
the occupants do not comply to the messages. This may be
affected by several internal (e.g. personal motivation), and
external (e.g. inaccessibility to control the appliances) barri-
ers. Therefore, it is important to identify and overcome these
barriers through field testing. Besides, occupants’ trust in
such a system may be breached if the energy waste incidents
are not accurately predicted. This challenge can be addressed
by developing and using accurate sensing devices analysis
techniques, and taking feedback from the occupants about the
provided messages. It is worth to mention that in behaviour
change type of problems, there is no ‘‘silver-bullet type of
solution’’ [8]. Therefore, it cannot be assumed that the pro-
posed intervention will work in any case and type of house-
hold where several types of interventions may be needed.
Besides, one of the future directions to further develop such

interventions is to study it from the social psychological point
of view in order to determine the best way of presenting the
information – so that occupants are encouraged to take action.

The model presented in this paper is now implemented
for lights, televisions and computers which are presence-
dependent appliances. The model can be extended to sim-
ulate other types of appliances thus testing other types of
interventions or actions to control energy consumption. These
appliance types include presence-independent and heavy
appliances (washing-machine, tumble dryer, dishwasher,
HVAC systems etc.) which are not recommended to be
switched ON in peak-times. This is called demand response
which is appliedwhen the price of electricity unit varies based
on the time of the day. In this case, the messaging intervention
could suggest to reschedule the heavy appliance to a non-
peak time that is convenient for the occupants’ schedule
and preference, or use an alternative such as line drying
instead of using tumble dryer, renewable energy instead of
electricity, etc. Demand response benefits both consumers (by
reducing their energy bill), and providers (by reducing the
generation costs and operating the electricity systems more
efficiently) [22]. The other type of energy waste that can be
tested is heating/cooling loss. This could happen when heat-
ing/cooling devices are ON when occupants are not present
and pre-cooling/pre-heating is not scheduled, windows/doors
are opened while the devices are ON, or over-heating/cooling
is detected. The suggestions in these cases are to turn the
device off or adjust the set point of heating/cooling. In order
to test these interventions, all the necessary context data will
need to be added to the simulation model (specifically the
core daily behaviour model) such as occupants schedule,
occupants preferences, and internal & external temperature.
Then the interventions related to these appliances can be
modeled and tested. Besides, various strategies for sending
messages out for occupants may be defined, implemented,
and tested using the same model. This emphasizes the cus-
tomizable energy intervention testing feature of the model.
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