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Abstract
In predictive healthcare data analytics, high accuracy is both vital and paramount
as low accuracy can lead to misdiagnosis, which is known to cause serious health
consequences or death. Fast prediction is also considered an important desideratum
particularly for machines and mobile devices with limited memory and processing
power. For real-time health care analytics applications, particularly the ones that run
on mobile devices, such traits (high accuracy and fast prediction) are highly desirable.
In this paper, we propose to use an ensemble regression technique based on CLUB-
DRF, which is a pruned Random Forest that possesses these features. The speed and
accuracy of the method have been demonstrated by an experimental study on three
medical data sets of three different diseases.

Keywords Random Forest · Healthcare data analytics · CLUB-DRF ·
Ensemble classification · Ensemble pruning

Mathematics Subject Classification 68T10 · 62H30

1 Introduction

Random Forest (RF) has proven its effectiveness as a classification and a regression
method in a variety of applications [10]. In [11], a new method termed CLUB-DRF
was introduced to select diverse decision trees drawn from groups of similar trees (i.e.
clusters of trees), to form a pruned Random Forest ensemble that is much smaller
than the initial and traditional RF ensemble [7], and yet, performs at least as good as
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the original ensemble. Since a well established principle in ensemble classification
and regression is that ensembles tend to perform better when the individual classifiers
in the ensemble exhibit a high level of diversity [1,8,19,31], we have adopted data
clustering [17] to inject more diversity into an RF, and to prune the RF, leading to a
faster inference. The premise is that grouping of similar classifiers in clusters according
to their classification patterns, and then choosing a representative classifier (or more)
of each cluster can result in a pruned and more diversified ensemble.

Since diversity can lead to better performance as previously described, in a nutshell,
there are two levels of diversity already applied in an RF. The first level is when each
decision tree is constructed using sampling with replacement from the training data.
The samples are likely to have some diversity among each other as they were drawn
at random. The second level is achieved by randomisation which is applied when
selecting the best node to split on. The ultimate objective of our new method is to
add a third level of diversity by injecting more diversity in an RF using clustering as
described in Sect. 3.3.

In [11],CLUB-DRF has proved its effectiveness.With at least 92%or above pruning
level, while retaining or outperforming the RF accuracy (before pruning). Since in
predictive healthcare data analytics lowaccuracy can lead to improper diagnosis,which
in turn can be both fatal and devastating, in this paper, we aim to target one domain
only, namely, the health domain. Hence, we apply our proposed method CLUB-DRF
on three medical data sets of three different diseases. It is worth noting that in this
paper, it is the first time to applyCLUB-DRF for regression. Thus, themethod has been
modified by replacing a clustering technique (k-modes) that is used for categorical data
by another that is tailored to operate on numerical data (k-means). This is due to the
replacement of the type of output between the two approaches (i.e. categorical for
classification, and numerical for regression).

This paper is organised as follows. Section 2 presents related work in the domain
of healthcare data analytics. Overview and detailed description of our proposed new
method are given in Sect. 3. Experiments and results are presented in Sect. 4. The
paper is finally concluded with a summary and pointers to future work in Sect. 6.

2 Related work

Healthcare data analytics, also known as clinical data analytics, is the gathering and
interpretation of data from a variety of sources (e.g. the electronic health record,
billing claims, cost reports, and patient satisfaction surveys) to help organisations
improve the quality of care, lower the cost of care, and enhance the patient experience.
According to [26], several researchers have conducted studies which proved that, by
utilising healthcare data analytics technologies, they were able to reduce mortality
rates, healthcare costs, and medical complications at various hospitals. Moreover,
healthcare analytics has the potential to reduce costs of treatment, avoid preventable
diseases, predict outbreaks of epidemics, avoid preventable deaths, and improve the
quality of life in general [28]. According to a recent Research andMarkets report [27],
healthcare analytics is expected to rise and reach a $34.27 billion industry by the end
of 2022. To improve healthcare as described above, healthcare analytics became a hot
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area of interest and attracted attention from diverse disciplines such as databases, data
mining, information retrieval, image processing, medical researchers, and healthcare
practitioners [26]. In this paper, we will exploit one of data mining’s tasks known as
regression to improve the performance of the traditional RF on medical data sets, both
in terms of accuracy and regression speed.

The prediction of chronic kidney diseases by usingDecision Tree (C4.5) algorithms
was investigated by [5]. In terms of accuracy and execution time, the classifier used
proved its performance. A new method that is based on linear regression to correct
Partial Volume Effects (PVE) in Arterial Spin Labeling (ASL) MRI was developed by
[3]. An online Stochastic Gradient Descent (SGD) algorithm with logistic regression
is implemented by [23] using Apache Mahout to develop the best scalable diagnosis
model. The proposed prediction model achieved 81.99% accuracy for training sample
and 81.52% accuracy for testing sample.

The prediction of three diseases, namely, leukemia, lung cancer, and heart disease
was investigated by [24]. To do this, the researchers used three different classifiers:
Naive Bayes, C4.5, and Random Forest. According to the researchers, the proposed
method has better accuracy, precision, recall and Fmeasure.

Using stepwise logistic regression models, Higdon et al. [13] developed a model
based on three different counts of medications: outpatient, inpatient drug classes, and
individual inpatient drug names. The model was used to rank the patient popula-
tion for medical complexity. Thanks to this model, based on the number and type of
medications, simple admission screens for predicting the complexity of patients were
implemented.

The approachoffered in this paper aims at applying a prunedRF regression approach
on medical data sets of different diseases. In the pruned RF ensemble produced by
our approach, clustering is used as the main diversity approach for selecting diverse
trees that form the pruned RF ensemble. The following section provides greater insight
about the proposed approach.

3 CLUB-DRF for regression

In this section, we present our CLUB-DRF approach starting with a general overview
of how itworks.After this, amore nuts-and-bolts description of themethod is presented
including the algorithm and other supporting details.

3.1 Random Forest: an overview

RandomForest (RF) is an ensemble learningmethod used for classification and regres-
sion. Developed by Breiman [7] over a decade ago, the method combines Breiman’s
bagging sampling approach [6], and the random selection of features, introduced
independently by [14,15] and Amit and Geman [2], in order to construct a collec-
tion of decision trees with controlled variation. Using bagging, each decision tree in
the ensemble is constructed using a sample with replacement from the training data.
Statistically, the sample is likely to have about 64% of instances appearing at least
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once in the sample. Instances in the sample are referred to as in-bag-instances, and
the remaining instances (about 36%), are referred to as out-of-bag (OOB) instances.

To enhance diversity, at each node in all trees, a best split feature is selected using a
goodness measure (e.g. Gini index) from a set of randomly selected features (typically√
n, where n is the total number of features). Each tree is grown to the largest extent

possible and is unpruned. A maximum depth is usually allowed to prevent trees from
growing out of memory in high dimensional data sets.

3.2 CLUB-DRF

RF algorithms tend to build between 100 and 500 trees [12]. Some empirical and
theoretical studies have also clearly demonstrated that adding more trees to an RF
beyond a certain number (i.e. 500) won’t necessarily improve the RF accuracy [4].
Our research aims at pruning RF ensembles by producing subsets of the original ones
that are significantly smaller in size and yet, have accuracy performance that is at
least as good as that of the original RF from which they were derived. In other words,
we aim at finding the optimal or near-optimal ensemble of trees that will be used to
generate an accurate RF.

As mentioned earlier, to create groups of similar trees, clustering will be used.
This novel technique has been used extensively as a diversity technique in many
applications [9,18,20,21,29,30]. Unlike classification, clustering is an unsupervised
learning technique that attempts to organise objects into clusters (groups) where the
members in one cluster are more similar to each other than those members in other
clusters. Each group is referred to as a cluster, hence, a cluster is a group of similar
objects which are dissimilar to other objects belonging to other clusters. Clustering
is considered a data exploration method as it helps to unveil the natural grouping
in a data set without a prior knowledge of the groups to be produced. One of the
earliest and most popular clustering algorithms is called K-means. It was developed
byMacQueen et al. [22] in the late sixties and despite its seniority, it is still considered
as one of the most widely used algorithms, mainly due to its simplicity, efficiency,
and empirical success [16]. We have used clustering in [11] to produce a pruned RF
classification technique for a variety of data sets from a variety of domains.

3.3 CLUB-DRF: an adaptedmethod for regression

In this section, we propose an enhancement of RF called CLUB-DRF that spawns a
child RF that is (1) much smaller in size than the parent RF and (2) has an accuracy
that is at least as good as that of the parent RF. In the remainder of this article, we will
refer to the parent/original traditional RF as simply parentRF, and refer to the resulted
child RF based on our method as CLUB-DRF.

Figure 1 shows the CLUB-DRF approach and the corresponding algorithm is dis-
played in Algorithm 1 where T refers to the training data set, and S refers to the size
of the parentRF to be created . The constant k refers to the number of clusters to be
created which we define as a multiple of 5 in the range 5–50. This way and as we shall
see in the experimental section, we can compare the performance of CLUB-DRF of
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Fig. 1 CLUB-DRF approach

different sizes with that of parentRF. As outlined in the experimental section, the size
of the parentRF to be created is 500 trees. When the number of clusters is multiple
of 5 in the range 5–50, this means the pruning levels will be in the range 99–90%
respectively, which we consider a reasonable range for extreme pruning.

Algorithm 1 CLUB-DRF Algorithm
{User Settings}
input T , S, k
{Process}
Create an empty super ordered list AllPredictions
Create an empty ordered list Tr f to represent parentRF
Create an empty ordered list Tclubdrf to represent CLUB-DRF
Using the traditional Random Forests Algorithm, create Tr f of size S
For each tree in Tr f , find its predictions on T and add it to AllPredictions
for i = 1 → S do

AllPredictions = AllPredictions ∪ R(Tr f .tree(i), T )
end for
Using K-means, cluster AllPredictions into a set of k clusters: cluster1 …clusterk clusters ←
MakeClusetrs(AllPredictions)
From each cluster, find a representative tree and add it to Tclubdrf
for i = 1 → k do

repTree ← FindRep(clusters(i))
Add repTree to Tclubdrf

end for
{Output}
An ordered list of trees Tclubdrf

As shown inAlgorithm 1, a clustering-based technique is applied to produce diverse
groups of trees in the parentRF. Assuming that the trees in the parentRF are denoted
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by the ordered list Tr f = 〈t1, t2, . . . , tn〉 (where n is number of trees in the parentRF),
and the training set is denoted by T = {r1, r2, . . . , rm}. Each tree in Tr f is used to
regress each record in the training set to determine the class label c. We use R(ti , T )
(where ti ∈ Tr f ) to denote an ordered list of continuous values obtained after having ti
regresses the training set T . That is, R(ti , T ) = 〈ci1, ci2, . . . , cim〉. The result obtained
of having each tree regress the training records will therefore be a super ordered list
AllPredictions containing ordered lists of continuous values produced by each tree.
That is,

AllPredictions = R(t1, T ) ∪ R(t2, T ) ∪ · · · R(tn, T )

This super ordered list is fed as input to a K-means clustering algorithm as shown in
Algorithm 1. When clustering is completed, we should have a set of clusters where
each cluster contains ordered lists that are similar and likely to have the least number
of discrepancies.

It is important to remember that the number of trees of the resulted CLUB-DRF is
determined by the number of clusters used. For example, if the number of the clusters
is 5, then the resulted CLUB-DRF will have 5 trees, and so on.

The final step in the algorithm is to select a representative from each cluster. To
do this, from each cluster, we pick the tree that has achieved the highest accuracy
on the training data. It is worth mentioning that this is not the only way to select a
representative. One other way is to randomly select a tree from each cluster without
using accuracy as the main selection criterion in the selection process. Yet another
method is to pick the tree that has achieved the highest performance on the out-of-bag
(OOB) instances. These are the instances that were not included in the sample with
replacement that was used to build the tree, and they account for about 36% of the
total number of instances. Using the OOB samples to evaluate a tree gives an unbiased
estimate of its predictive accuracy since, unlike training data that was seen by the tree
when it was built, OOB data was not seen and therefore, it is a more accurate measure
of the tree’s predictive accuracy. We are considering these new methods for selecting
representative selection in future research as covering these methods is beyond the
scope of this paper.

4 Experimental study and results

In this section, an experimental study of our approach on three medical regression
data sets of three different diseases will be presented. These diseases are parkinson’s,
diabetes, andbreast-cancer.Basic information about these data sets are given inTable 1.
The first data set was obtained from the University of Waikato Repository, and the last
two from the University of California, Irvine (UCI) Machine Learning Repository.
The experiments were conducted on a laptop running Windows 7 Enterprise, with a
dual processor of 2.60 Ghz and 8 GB of RAM.

The diabetes data set contains the necessary attributes to predict the dependence of
the level of serum C-peptide on the various other factors in order to understand the
patterns of residual insulin secretion. In a scale of 1–4, the attributes in the the breast-
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Table 1 Experiments data sets

Data set name Number of features Number of instances

Diabetes 3 43

Breast-cancer 11 700

Parkinson’s 26 5875

Table 2 Experiments results: diabetes data set

(CLUB-DRF)(RF) MAE MSE RMSE R2

ParentRF (500 trees) 0.64 0.62 0.78 −0.46

5 (0.42)(0.64) (0.45)(0.67) (0.66)(0.8) (−0.29)(−0.8)

10 (0.39)(0.63) (0.42)(0.64) (0.64)(0.78) (−0.2)(−0.59)

15 (0.37)(0.63) (0.4)(0.62) (0.62)(0.77) (−0.15)(−0.52)

20 (0.34)(0.63) (0.37)(0.61) (0.59)(0.77) (−0.05)(−0.48)

25 (0.33)(0.62) (0.35)(0.6) (0.58)(0.76) (−0.01)(−0.44)

30 (0.32)(0.62) (0.34)(0.6) (0.57)(0.77) (0.02)(−0.49)

35 (0.32)(0.62) (0.34)(0.6) (0.56)(0.76) (0.03)(−0.51)

40 (0.31)(0.62) (0.33)(0.6) (0.56)(0.76) (0.06)(−0.48)

45 (0.31)(0.63) (0.34)(0.61) (0.56)(0.77) (0.04)(−0.48)

50 (0.31)(0.63) (0.33)(0.62) (0.56)(0.77) (0.05)(−0.5)

cancer data set are used to predict the type of the breast-cancer. Using a scale range of
bio-medical voice measurements from 42 people with early-stage Parkinson’s disease,
the attributes in the parkinson’s data set are used to predict the clinician’s Parkinson’s
disease symptom score on the Unified Parkinson’s Disease Rating Scale (UPDRS)
scale.

To use the holdout testing method, which is the simplest type of cross validation,
each data setwas divided into sets: training and testing. Two thirds (66%)were reserved
for training and the rest (34%) for testing. The selection of the two sets was done
randomly using uniform distribution, where each instance has the same probability of
being selected. The size of the Parent Random Forest (refer back to Fig. 1), which we
called parentRF, was 500 trees; a typical setting for Random Forest [12]. This setting
was chosen for two main reasons. First, the more trees we have, the more diverse ones
we can get. Secondly, the more trees there are, the more unlikely the problem of empty
clusters [25] does not surface.

The CLUB-DRF algorithm outlined in Algorithm 1 was implemented using the
Python programming language utilising its machine learning library Scikit-learn. It
was run 10 times on each data set where a new parentRF was created in each run. The
average of the 10 runs for each resulted CLUB-DRF was calculated to produce the
average for a variety of metrics includingMeanAbsolute Error (MAE),Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and R Squared.
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Table 3 Experiments results: breast-cancer data set

((CLUB-DRF)(RF) MAE MSE RMSE R2

ParentRF (500 trees) 0.13 0.26 0.51 0.71

5 (0.04)(0.13) (0.08)(0.26) (0.28)(0.51) (0.91)(0.72)

10 (0.04)(0.13) (0.08)(0.25) (0.28)(0.5) (0.9)(0.72)

15 (0.04)(0.13) (0.08)(0.25) (0.28)(0.5) (0.91)(0.72)

20 (0.04)(0.13) (0.09)(0.26) (0.29)(0.5) (0.9)(0.72)

25 (0.04)(0.13) (0.09)(0.26) (0.30)(0.51) (0.9)(0.72)

30 (0.04)(0.13) (0.09)(0.26) (0.29)(0.51) (0.9)(0.72)

35 (0.04)(0.13) (0.09)(0.26) (0.29)(0.5) (0.9)(0.72)

40 (0.04)(0.13) (0.09)(0.26) (0.29)(0.5) (0.9)(0.72)

45 (0.04)(0.13) (0.09)(0.26) (0.3)(0.5) (0.9)(0.72)

50 (0.05)(0.13) (0.09)(0.26) (0.3)(0.51) (0.9)(0.71)

Table 4 Experiments results: parkinson’s data set

(CLUB-DRF)(RF) MAE MSE RMSE R2

ParentRF (500 trees) 0.04 0.0 0.05 0.69

5 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.69)

10 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.9)(0.69)

15 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.69)

20 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.90)(0.68)

25 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.68)

30 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.68)

35 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.68)

40 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.68)

45 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.69)

50 (0.01)(0.04) (0.0)(0.0) (0.03)(0.05) (0.89)(0.69)

Results of our experiments on the three data sets diabetes, breast-cancer, and
parkinson’s are displayed in the Tables 2, 3 and 4 respectively. In each of these
tables, the second row displays performance metrics of the parentRF. Following that,
performance metrics of CLUB-DRFs of sizes in the range 5–50, reflecting extreme
pruning levels from 99 to 90% respectively, as previously described in Sect. 3.3, are
listed. To show the effectiveness and efficiency of CLUB-DRF over the traditional RF,
we also listed performance metrics for traditional RFs in the same range that were
derived from the parentRF. Each performance metric is represented as a couple of
numbers each enclosedbetweenparentheses,where thefirst number is forCLUB-DRF,
and the second for a traditional RF. If the first number for CLUB-DRF is highlighted
in boldface, it means that CLUB-DRF outperformed its counterpart traditional RF of
the same size.
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Table 5 Inference time per instance (in µs)

(CLUB-DRF)(RF) Diabetes Breast-cancer Parkinson’s

ParentRF (500 trees) 2030.05 173.32 182.27

5 (16.67)(23.33) (2.10)(1.50) (1.50)(1.75)

10 (50.00)(80.00) (1.05)(2.10) (3.68)(3.83)

15 (33.33)(130.00) (4.20)(3.15) (4.55)(5.61)

20 (100.00)(163.33) (2.1)(6.30) (6.71)(7.18)

25 (66.67)(163.33) (14.71)(9.45) (8.41)(8.66)

30 (133.33)(180.00) (6.30)(13.66) (9.51)(10.79)

35 (150.00)(196.67) (11.55)(14.71) (11.01)(12.66)

40 (166.67)(230.01) (9.45)(16.81) (15.52)(14.67)

45 (100.00)(246.67) (14.71)(16.81) (14.37)(16.12)

50 (183.34)(246.67) (12.61)(19.96) (16.42)(17.39)

Table 5 shows the inference time per instance (ITPI) in microseconds for the three
data sets diabetes, breast-cancer, and parkinson’s. This refers to the time needed to
predict all the instances in the testing data set divided by the number of instances. As in
the previous tables, we have highlighted in boldface the first entry when CLUB-DRF
achieved less ITPI than its counterpart traditional RF.

5 Discussion

To test our CLUB-DRF method, the training and testing data sets should be prepared,
as aforementioned. The training data set is fed as input toCLUB-DRF which constructs
an initial RF of 500 trees as was outlined in Sect. 3.2. Pruned RF of sizes 5–50 are then
produced by CLUB-DRF which are then used to predict the value of the target feature
for each instance in the data set. Since CLUB-DRF generates several pruned forests
(with different sizes), and reports the performance of each forest, it is recommended
to pick the forest that has achieved the highest performance in terms of accuracy for
deployment.

As depicted in Tables 2, 3 and 4, it is obvious from the key performance indicator
MAE (Mean Absolute Error) that CLUB-DRF, regardless of its size, outperformed
not only the parentRF, but also a traditional RF of the same size. Furthermore, our
approach seems to be insensitive to the dimension and size of the data sets. As outlined
in Table 1, the 3 data sets have different dimensions and sizes and yet, CLUB-DRF
performed consistently well as was demonstrated in Tables 2, 3 and 4. An interesting
observation in these tables is that CLUB-DRF performs even better as the number of
dimensions and the data set size increase.

As for the he inference time per instance (ITPI) in Table 5, it is easy to see that in
almost all cases,CLUB-DRF has outperformed the traditionalRF.The interesting thing
is that, not only CLUB-DRF performed better accuracy-wise as was demonstrated in
Tables 2, 3 and 4, but it also achieved better ITPI as was demonstrated in Table 5.
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The results show that R Squared reached 0.9 for CLUB-DRF in both the breast-
cancer and parkinson’s data sets. This implies that 90% of the variance in the data
has been explained. Contrasting with traditional RF, the best performing RF for the
breast-cancer measured in R Squared is 0.72, and for the parkinson’s data set is 0.69.
This clearly shows the superiority of CLUB-DRF in explaining the variance in the
data. We argue that the diversity created through the clustering process is the main
reason for this performance boost up. However, for the diabetes data set, RF seems
not to be able to explain the variance in the data. For CLUB-DRF with the number
of trees greater than or equal to 30, the model is able to explain some of the variance
(6% when the number of trees is 40). It is worth noting that there are two observations
in this case: (1) the diabetes data set is small (only 43 instances); and (2) CLUB-DRF
has shown positive values for R Squared when the traditional RF was not able to show
any case of a positive value.

6 Conclusion and future work

In predictive healthcare data analytics applications, it is imperative for such appli-
cations to be as accurate as possible to minimise misdiagnosis which can be fatal
sometimes. To ensure proper diagnosis of diseases, we presented in this paper a Ran-
dom Forest regression-based prediction approach that not only is more accurate than
the traditional Random Forest, but also runs faster due to the small size of the ensem-
bles it produces. To achieve both accuracy and speed, we empirically validated the
principle that diversity in ensembles can lead to better performance. To do this, we
have used clustering as a diversity technique to further diversify the traditional RF,
resulting in CLUB-DRF. Since trees in the original ensemble (parentRF) were clus-
tered into groups of similar trees, and a representative was selected from each group,
many redundant trees were eliminated. Hence, CLUB-DRF ensembles with extreme
pruning levels reaching as high as 99% were produced. As was demonstrated in the
results obtained in Sect. 4, these CLUB-DRF ensembles not only run faster due to
their small size, but also perform at least as good as the parentRF mainly due to the
high level of diversity in their constituent trees.

As futurework, the application of the proposedmethod on other healthcare data sets
will be applied for both regression and classification problems. Also the deployment
of the pruned models on handheld devices like smartphones will be experimented.
Due to the small size and fast prediction, personalised healthcare through deployment
of these models can be an interesting prospect.
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