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Abstract 17 

 18 

Background 19 

MYCN amplification (MNA) is the strongest indicator of poor prognosis in neuroblastoma (NB). This 20 

meta-analysis aims to determine the diagnostic accuracy of MNA analysis in circulating-free DNA 21 

(cfDNA) from advanced-stage NB patients.  22 

 23 
Methods 24 

A systematic review of electronic databases was conducted to identify studies exploring the detection 25 

of MNA in plasma/serum cfDNA from NB patients at diagnosis using PCR methodology. Pooled 26 

estimates for sensitivity, specificity and diagnostic odds ratio (DOR) were calculated by conducting a 27 

bivariate/HSROC random-effects meta-analysis.  28 

 29 

Results 30 

Seven studies, with a total of 529 advanced-stage patients, were eligible. The pooled sensitivity of 31 

cfDNA-based MNA analysis was 0.908 (95% CI, 0.818 – 0.956), the pooled specificity was 0.976 32 

(0.940 – 0.991) and the DOR was 410.0 (-103.6 – 923.7). Sub-grouped by INSS stage, the sensitivity 33 

for stage 3 and 4 patients was 0.832 (0.677 – 0.921) and 0.930 (0.834 – 0.972), respectively. The 34 

specificity was 0.999 (0.109 – 1.000) and 0.974 (0.937 – 0.990), respectively, and the DOR was 35 

7855.2 (-66267.0 – 81977.4) and 508.7 (-85.8 – 1103.2), respectively.  36 

 37 

Conclusions 38 

MNA analysis in cfDNA using PCR methodology represents a non-invasive approach to rapidly and 39 

accurately determine MNA status in patients with advanced-stage NB. Standardised methodology 40 

must be developed before this diagnostic test can enter the clinic.  41 
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 42 

 43 
Background 44 

MYCN amplification (MNA) is detected in around 20% of neuroblastoma patients (NB) (1). MNA 45 

is associated with advanced tumour stage and rapid disease progression, and it is the strongest 46 

indicator of poor prognosis for NB (2). Methods currently used to determine MNA status include 47 

interphase fluorescence in situ hybridisation (FISH), polymerase chain reaction (PCR), multiplex 48 

ligation-dependent probe amplification (MLPA) and array comparative genomic hybridisation (aCGH) 49 

on tumour material obtained via biopsy (3). While FISH has been the gold standard technique for 50 

analysis of gene dosage in cancer specimens over the past few decades, it involves subjective 51 

evaluation of images by experienced diagnosticians and requires a fluorescent microscope to assess 52 

large cell populations (4).  53 

The biopsy process required for tissue analysis is invasive, and tumours are not always 54 

accessible for genetic analysis. Moreover, analysis of biopsy material can be confounded in tumours 55 

with an abundance of non-malignant cells (5) and with heterogeneous patterns of MNA (6,7); in recent 56 

studies, intratumoural heterogeneity with respect to MNA has been estimated to occur at a frequency  57 

of 9.7 – 10.3% (8,9). An alternative approach to MNA analysis involves PCR-based analysis of MYCN 58 

copy number in circulating-free DNA (cfDNA) isolated from plasma or serum (10). This ‘liquid biopsy’ 59 

is minimally invasive and may overcome genetic heterogeneity as the method surveys aggregate 60 

tumour DNA shed into blood (11). In addition, the rapidity of blood processing and PCR analysis 61 

enables fast determination of MNA status and assignment of the appropriate therapy for critically ill 62 

patients, with a potential sample-to-result turnaround time of less than a day (12). 63 

The detection of MNA in cfDNA of NB patients was first demonstrated by Combaret and 64 

colleagues in 2002 using a simple qPCR assay targeting MYCN and a reference gene (RPPH1) (13). 65 

The authors reported high concordance of the MNA status between tumour and serum samples 66 

across all disease stages. Subsequent studies have used (q)PCR assays targeting MYCN and NAGK 67 

(also on chromosome 2p) and have consistently reported high sensitivity and specificity for MNA 68 

analysis in cfDNA of patients with advanced disease (14–19). For example, Yagyu et al. recently 69 

reported a sensitivity and specificity of 0.87 (95% CI, 0.72 – 0.96) and 0.97 (95% CI, 0.84 – 1.0) 70 

among 71 patients with stage 4 NB (17). While no clinical trials of NB have formally incorporated 71 

cfDNA-based MNA analysis, the aforementioned studies have recruited several hundred patients 72 

across multiple disease stages and used similar PCR methodology to measure MYCN copy number 73 

(14–19). Here, we perform a meta-analysis to determine the diagnostic accuracy of MNA analysis in 74 

cfDNA from patients with advanced-stage (INSS stage 3 and 4) NB.  75 

 76 
 77 
 78 
 79 
 80 
 81 
 82 
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 84 
 85 
 86 
Methods 87 

This meta-analysis was designed and executed in accordance with PRISMA-DTA reporting guidelines 88 

(20). 89 

 90 

Literature search  91 

A comprehensive literature search was undertaken to identify all published studies reporting the 92 

sensitivity and specificity of cfDNA-based MYCN analysis using PCR methodology. The following 93 

electronic databases were searched from inception to August 2019: the Cochrane Central Register of 94 

Controlled Trials (CENTRAL), EMBASE, PubMed/MEDLINE and Web of Science Conference 95 

Proceedings Citation Index – Science (CPCI-S). The search strategy comprised the terms 96 

“neuroblastoma”, “MYCN”, “circulating-free DNA” and terms synonymous with “circulating-free DNA”, 97 

including “ccfDNA”,  “cfDNA”, “ctDNA”, “cell-free DNA”, “cell free DNA”, “circulating DNA”, “circulating 98 

free DNA”, “circulating tumour DNA”, “free DNA”, “free tumour DNA”, “plasma” and “serum”. Keywords 99 

were combined using Boolean operators, translated into database-specific syntax, and searched for in 100 

the title and abstract only. The search was limited to the English language. Supplementary 101 

Information 1 details the search strings used for each database. Additional studies were identified 102 

through a manual search of bibliographies in included studies and relevant narrative reviews. Authors 103 

of the following publications were contacted by email for further information: Combaret et al. 2005, 104 

Combaret et al. 2009 and Yagyu et al. 2016.  105 

 106 

Selection criteria 107 

Studies investigating the detection of MNA in plasma or serum cfDNA of NB patients at diagnosis 108 

using PCR methodology proceeded to full-text review. The criteria for inclusion were as follows: 1) 109 

diagnosis of neuroblastoma confirmed by tumour histology; and 2) matched cfDNA and tumour biopsy 110 

material; and 3) use of PCR methodology to detect MNA. The criteria for exclusion were as follows: 1) 111 

insufficient data available to determine diagnostic accuracy using 2x2 tables (after author contact); 2) 112 

absence of disease stage data; and 3) duplicate publication. All included and excluded studies were 113 

verified for eligibility by two independent reviewers (R.M.T. and L.J.). 114 

 115 

Data extraction 116 

The following data were independently extracted into an electronic table and assessed by R.M.T. and 117 

L.J.: first author name, journal, year of publication, number of patients, baseline patient characteristics 118 

(age, gender and INSS tumour stage), blood specimen type (plasma or serum), cfDNA isolation 119 

method, MYCN PCR method, true positive (TP), false negative (FN), true negative (TN) and false 120 

positive (FP) rates.  121 

 122 
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Quality assessment 123 

The overall quality of the included studies was determined by two independent reviewers (R.M.T. and 124 

L.J.) using QUADAS-2 (21), a tool developed for the quality assessment of diagnostic accuracy 125 

studies. This tool comprises four domains: patient selection, index test, reference standard, and flow 126 

and timing, and each domain is assessed for risk of bias and applicability. 127 

 128 

Statistical analysis 129 

MNA status in biopsy tissue as determined by FISH or Southern blot was considered the reference 130 

standard. For each study and each INSS tumour stage, 2x2 contingency tables were populated with 131 

TP (MNA detected in both cfDNA and tumour tissue), FN (MNA detected in tumour tissue but not 132 

cfDNA), TN (MNA detected in neither cfDNA nor tumour tissue), and FP (MNA detected in cfDNA but 133 

not tumour tissue) data. Diagnostic odds ratio (DOR), sensitivity, specificity, positive likelihood ratio 134 

(PLR) and negative likelihood ratio (NLR) were calculated along with corresponding 95% confidence 135 

intervals (95% CI) for each study in Meta-DiSc v1.4 statistical software (22). Haldane-Anscombe 136 

correction (23,24) was used to avoid division by zero errors in contingency table data, where 137 

appropriate. 2x2 contingency data were imported into MetaDTA (25) 138 

(https://crsu.shinyapps.io/dta_ma_1_43/), a web-based application for fitting the binomial model of 139 

Chu & Cole (26). In MetaDTA, the model is fitted as a generalised linear mixed-effect model using the 140 

glmer function from the R package lme4 (27). Percentage study weights were calculated in MetaDTA 141 

based on a decomposition of Fisher’s information matrix, according to the recent methodology of 142 

Burke et al. (28) Deeks’ funnel plots were generated by plotting, for each study, the natural logarithm 143 

of the DOR against the inverse root of the effective sample size (ESS) (29). The ESS is calculated 144 

from the number of diseased (nd) and healthy (nh) subjects: (4*nd*nh)/(nd + nh). Deeks’ asymmetry test 145 

was conducted by linear regression analysis. 146 

 147 
 148 

 149 

Results 150 

 151 
Studies assessed 152 

A comprehensive search of electronic databases identified a total of 167 studies, with twelve 153 

studies reaching the initial criteria for inclusion. Studies were subsequently excluded due to the 154 

absence of data required to determine diagnostic accuracy (n = 4), absence of INSS stage data (n = 155 

4), and duplicate publication (n = 1), leaving a total of seven studies for meta-analysis (Figure 1). 156 

These studies, published between 2002 and 2016, recruited a total of 844 NB patients, most of whom 157 

were assessed for MNA status at diagnosis by FISH and/or Southern blot of biopsy tissue. All of the 158 

studies included employed qPCR (n = 6) and/or conventional PCR (n = 2) to analyse MNA in cfDNA 159 

isolated from plasma (n = 2) or serum (n = 6) using the QIAamp DNA Blood Kit (Qiagen). In 4/5 160 

studies that reported a cut-off for MYCN copy number in cfDNA, a stringent MYCN-to-reference ratio 161 
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of 5.0 could discriminate MNA+ and MNA- patients. The main characteristics of the studies included 162 

are summarised in Table 1. 163 

 164 

Diagnostic accuracy of cfDNA-based MNA analysis 165 

An initial analysis was conducted across all tumour stages (Supplementary Table 1). Since very 166 

few patients with localised (stage 1 and 2) or stage 4S disease were recruited to the seven studies, 167 

and MNA is uncommon, these patient sub-groups could not be reliably meta-analysed and were 168 

therefore excluded. Sensitivity, specificity and likelihood ratios for the remaining 529 patients with 169 

advanced-stage (stage 3 and 4) disease are reported for each study in Table 2.  170 

Further, we calculated estimated pooled data and performed sub-group analysis (Figure 2 and 3; 171 

Table 3 and 4). Specifically, using a bivariate random-effects model, the estimated pooled sensitivity 172 

of cfDNA was 0.908 (95% CI, 0.818 – 0.956) and the estimated pooled specificity was 0.976 (0.940 – 173 

0.991) (Figure 2A; Table 4). Estimates of the pooled positive and negative likelihood ratios (PLR, 174 

NLR) were 38.6 (1.8 – 75.5) and 0.094 (0.027 – 0.161), respectively. The pooled diagnostic odds ratio 175 

(DOR) was 410.0 (-103.6 – 923.7) (Table 4) and the pooled HSROC curve was calculated (Figures 176 

2B).   177 

To determine whether disease stage could significantly influence the accuracy of cfDNA-based 178 

MNA analysis, stage 3 and stage 4 patients were subjected to sub-group analyses. Per-study 179 

sensitivity, specificity and likelihood ratios for each stage are shown in Table 3. The estimated pooled 180 

sensitivity of cfDNA for patients with stage 3 and 4 disease was 0.832 (0.677 – 0.921) and 0.930 181 

(0.838 – 0.972), respectively, and the pooled specificity was 0.999 (0.109 – 1.000) and 0.974 (0.937 – 182 

0.990), respectively (Figures 3A and B; Table 4). The pooled PLR for stage 3 and 4 patients was 183 

1321.2 (-11172.2 – 13814.6) and 36.4 (3.6 – 69.3), respectively, and the pooled NLR was 0.168 184 

(0.048 – 0.288) and 0.072 (0.009 – 0.134), respectively (Table 4). The pooled DOR was 7855.2 (-185 

66267.0 – 81977.4) and 508.7 (-85.8 – 1103.2), respectively, and the pooled HSROC curves were 186 

generated (Figures 3C and D).   187 

 188 

Assessment of threshold effect and publication bias 189 

A Spearman’s correlation coefficient of -0.126 (p = 0.788) between sensitivity and 1-specificity 190 

indicated the absence of a threshold effect among the included studies. Furthermore, the ROC plane 191 

did not show a curvilinear pattern characteristic of a threshold effect (data not shown).  Further 192 

investigation of DOR revealed low heterogeneity due to non-threshold effect (data not shown). The 193 

potential for publication bias was visually assessed by Deeks’ funnel plot and statistically calculated 194 

by Deeks’ asymmetry test (29). No significant bias was found among the studies for stage 3 and 4 195 

combined (p = 0.881), stage 3 alone (p = 0.503) and stage 4 alone (p = 0.465) (Figure 4).  196 

  197 

Assessment of study quality  198 

The overall quality of the studies included in this meta-analysis was evaluated with QUADAS-2 199 

(21) (Figure 5). This tool was designed to evaluate individual studies on the basis of patient selection, 200 
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index test, reference standard, and flow and timing. Study quality was generally high with a low risk of 201 

bias and low concerns of applicability. However, none of the studies determined the MNA cut-off prior 202 

to analysis, and in three studies it was not specified whether the cfDNA analyses were conducted in a 203 

blind manner or with prior knowledge of tissue MNA status (reference standard).   204 

 205 

Discussion 206 

MNA status is a critical factor that informs the prognostic and therapeutic course of patients with 207 

NB (2). To overcome several limitations of MNA analysis in biopsy tissue at diagnosis, studies over 208 

the past two decades have investigated the utility of cfDNA in plasma or serum as a tumour surrogate 209 

(30). The aim of this meta-analysis was to determine the diagnostic accuracy of MNA analysis in 210 

cfDNA of patients with NB using FISH or Southern blot as the reference standard and a PCR method 211 

as the index test. The comprehensive search strategy identified twelve studies, of which seven were 212 

suitable for inclusion, assessing a total of 844 patients of all INSS stages. Reflecting the very low 213 

incidence of MNA in patients with stage 1, 2 and 4S disease (31–33), the seven included studies 214 

individually recruited few or no MNA-positive patients from these stage groups. Therefore, to avoid 215 

introducing significant bias to the analysis, this study did not include stage 1, 2 or 4S patients in the 216 

pooled or sub-group analyses, leaving 529 patients with advanced-stage (stage 3 and 4) disease. 217 

For patients with advanced-stage disease, pooled analysis showed that MNA status was 218 

determined with high sensitivity and almost perfect specificity (0.908 and 0.976, respectively). 219 

Consequently, the diagnostic accuracy was very high, with a DOR of 410.042. Given that the tumour-220 

derived fraction of cfDNA increases with tumour burden in many solid cancers including NB (34,35), it 221 

was considered necessary to perform a sub-group analysis on patients with stage 3 and stage 4 222 

disease. While the specificity for both patient sub-groups were 0.999 and 0.974 for stage 3 and 4, 223 

respectively, sensitivity was lower for patients with stage 3 disease relative to stage 4 (0.832 vs. 224 

0.930, respectively). This resulted in a higher global performance for metastatic disease, as expected, 225 

given the high tumour burden in these patients. It is noteworthy that while the rate of false positives in 226 

this meta-analysis was very low among stage 3 and 4 patients (2/137 and 6/392, respectively), these 227 

occurrences may be attributable to intratumoural heterogeneity with respect to MNA, leading to a 228 

negative result by FISH analysis of tissue and a positive result by PCR analysis of cfDNA. 229 

None of the included studies determined the cut-off MYCN/reference gene ratio to define MNA 230 

prior to analysis, and the implemented cut-off ratios were either wide-ranging or unreported. However, 231 

a threshold effect was ruled out by Spearman’s correlation coefficient and visual ROC plane analysis. 232 

Other aspects of study design were generally acceptable according to the QUADAS-2 framework 233 

(21). A distinct strength of this meta-analysis is the consistency in index test methodology between 234 

studies; all studies isolated cfDNA using the same commercial kit, employed a PCR technique and 235 

normalised MYCN to a single reference gene. A potential source of heterogeneity was in the use of 236 

plasma vs. serum as a source of cfDNA; whereas cfDNA in plasma is stable for several hours post-237 

venepuncture, a delay in processing of serum as well as contamination by white blood cells can result 238 
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in the release of genomic DNA into the sample, thus potentially masking detection of MYCN gene 239 

amplification by high levels of DNA from normal cells (36).  240 

The high diagnostic accuracy of cfDNA in advanced-stage patients, as demonstrated in this study, 241 

has promising implications for several clinical scenarios. In patients with surgically inaccessible 242 

tumours, or in patients who are critically unwell, a biopsy may not be possible (12), whereas blood 243 

collection is less invasive and repeatable if insufficient material is obtained at first attempt (37). 244 

Moreover, the rapidity of blood collection, automated cfDNA extraction and simple analysis enables 245 

fast determination of MNA status in patients who require immediate assignment to appropriate 246 

treatment. Analysis of cfDNA is also advantageous over tissue analysis in tumours exhibiting 247 

heterogeneous patterns of MNA (6,7); cfDNA may also have the potential to reveal MNA in patients 248 

with heterogeneity between their primary tumour and metastases (38) and provide a critical 249 

opportunity for additional therapeutic intervention. As with all technologies, there are limitations to this 250 

approach, as it requires that sufficient molecules are present in the plasma or serum at the time of 251 

collection, which may not be the case in patients with intratumoural heterogeneity and small, early-252 

stage tumours.  253 

While stage 4S disease was excluded from this meta-analysis, MNA is relativity uncommon in 254 

these patients and its prognostic significance is disputed (39–42). In contrast, MNA is firmly 255 

established as a poor prognostic indicator in patients with stage 1 and 2 disease, albeit occurring at a 256 

frequency of only 3–4% (31,32). Of the seven included studies, only four patients with MNA-positive 257 

stage 1 and 2 disease were reported. Combaret et al. (2009) reported a very low sensitivity of cfDNA 258 

analysis in stage 1 and 2 patients, with only one patient showing evidence of MNA in cfDNA among 259 

ten patients with MNA-positive tumours (43). This observation is not unexpected given evidence from 260 

other early-stage solid cancers to indicate that low tumour burden limits the detectability of tumour-261 

specific alterations in cfDNA (44,45), particularly copy number alterations due to the dilution effect of 262 

cfDNA derived from apoptosis of healthy blood cells. It is also noteworthy that genomic DNA 263 

contamination arising from lysed white blood cells with the delayed processing of serum is likely to 264 

disproportionately influence the sensitivity of MNA analysis in early-stage NB patients. Hence, future 265 

studies recruiting patients with stage 1 and 2 disease should consider plasma as the preferred 266 

specimen type.  267 

Molecular diagnostic laboratories are increasingly becoming equipped with next-generation 268 

sequencing platforms, and in the future, it may be possible to employ sequencing-based methods for 269 

analysis of MNA along with other prognostic or actionable genomic alterations in cfDNA. To this end, 270 

it has recently been shown that MNA among other alterations can be detected in the cfDNA of NB 271 

patients using shallow whole-genome/exome sequencing (46,47) and microarray methods (48). 272 

However, these studies must be replicated with larger patient cohorts in a diagnostic setting before a 273 

meta-analysis can be undertaken. 274 

 275 
Conclusion 276 
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       In conclusion, this is the first systematic review and meta-analysis of the diagnostic performance 277 

of cfDNA for the determination of MNA status in patients with advanced-stage NB. The studies 278 

assessed used simple and widely available tests (PCR or qPCR), highlighting the potential of 279 

implementing a straightforward and inexpensive blood-based diagnostic test for use in patients who 280 

are too unwell for surgery or where biopsy is not possible. Standardised methodology for cfDNA 281 

analysis should be developed and incorporated into future large-scale prospective trials for clinical 282 

validation and to determine the effects of therapy on plasma/serum MNA status. 283 
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 447 

 448 

 449 

Figures 450 

 451 

Figure 1. Flow chart for study selection based on PRISMA-DTA guidelines. 452 

 453 
Figure 2. (A) Forest plots of sensitivity and specificity of cfDNA-based MNA analysis at diagnosis in 454 

NB patients with advanced-stage disease. (B) Hierarchical Summary receiver operator characteristic 455 

(HSROC) curve analysis for patients with advanced-stage (stage 3 and 4) disease. 456 

 457 

Figure 3. (A,B) Forest plots of sensitivity and specificity of cfDNA-based MNA analysis at diagnosis in 458 

NB patients with (A) stage 3 and (B) stage 4 disease.  (C,D) Hierarchical Summary receiver operator 459 

characteristic (HSROC) curve analysis for patients with (C) stage 3 and (D) stage 4 disease. 460 

 461 

Figure 4. Deeks’ funnel plots of DOR for cfDNA-based MNA analysis in (A) stage 3 and 4, (B) stage 462 

3 and (C) stage 4 NB patients. Each point represents the natural logarithm of the DOR of a study 463 

plotted against the square root of its effective sample size (ESS).  464 

 465 

Figure 5. Quality assessment of studies by QUADAS-2. 466 

 467 

 468 

Tables 469 

 470 

Table 1. Main characteristics of included studies. FISH, fluorescence in situ hybridisation; NR, not 471 

reported; SB, Southern blot; QDB kit, QIAamp DNA Blood kit. 472 
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 473 

Table 2. Sensitivity, specificity and likelihood ratios for each study in patients with advanced-stage 474 

(stage 3 and 4) NB. 475 

 476 

Table 3. Sensitivity, specificity and likelihood ratios for each study in patients sub-grouped by stage. 477 

 478 

Table 4. Summary of the diagnostic accuracy of MNA assessment in cfDNA of patients with stage 3 479 

and/or 4 NB. 480 













 

Study Location 
Patient n by INSS stage  

(MNA+/MNA-) Reference 
standard Blood specimen cfDNA 

isolation kit 
MNA cut-

off Assay Reference 
gene 

1+2 3 4 4S 

Combaret et al. 200213 France 1/24 5/8 25/33 1/5 SB plasma/serum QDB kit NR qPCR RPPH1 

Gotoh et al. 200514 Japan 2/40 2/7 13/18 0/5 SB serum QDB kit (5 to) 10 qPCR NAGK 

Combaret et al. 200512 France, Spain 0/25 4/19 11/19 1/6 SB serum QDB kit NR PCR IL1B 

Combaret et al. 200915 Europe, USA 10/24 16/27 41/83 6/60 SB/FISH serum QDB kit 5 qPCR NAGK 

Kojima et al. 201316 Japan 0/20 2/7 14/6 0/1 SB/FISH plasma QDB kit 2-5 qPCR NAGK 

Yagyu et al. 201617 Japan, USA 6/38 12/14 38/33 1/6 SB/FISH serum QDB kit 5 qPCR NAGK 

Ma et al. 201618 South Korea 0/31 1/13 9/49 0/2 FISH serum QDB kit 1.6 PCR NAGK 
 
Table 1. Main characteristics of the included studies. FISH, fluorescence in situ hybridisation; NR, not reported; SB, Southern blot; QDB kit, QIAamp DNA 
Blood kit. 
 



 

  Study DOR (95% CI) Sens. (95% CI) Spec. (95% CI) PLR (95% CI) NLR (95% CI) 

  Combaret et al. 2002  1160.0 (69.7 – 19320.1) 0.97 (0.83 – 0.99) 0.98 (0.87 – 1.00) 39.6 (5.7 – 275.0) 0.03 (0.01 – 0.24) 

  Gotoh et al. 2005 1581.0 (29.8 – 83804.6) 1.00 (0.80 – 1.00) 1.00 (0.87 – 1.00) 50.4 (3.2 – 785.2) 0.03 (0.00 – 0.49) 

  Combaret et al. 2005  117.0 (14.9 – 918.0) 0.87 (0.62 – 0.96) 0.95 (0.83 – 0.99) 16.5 (4.2 – 64.4) 0.14 (0.04 – 0.51) 

  Combaret et al. 2009  999.8 (57.4 – 17411.0) 0.82 (0.71 – 0.90) 1.00 (0.97 – 1.00) 181.8 (11.4 – 2896.3) 0.18 (0.11 – 0.31) 

  Kojima et al. 2013 891.0 (16.6 – 7940.6) 1.00 (0.81 – 1.00) 1.00 (0.77 – 1.00) 27.2 (1.8 – 413.8) 0.03 (0.00 – 0.47) 

  Yagyu et al. 2016 107.6 (25.3 – 457.4) 0.88 (0.76 – 0.94) 0.94 (0.83 – 0.98) 13.8 (4.6 – 41.4) 0.13 (0.06 – 0.27) 

  Ma et al. 2016 270.0 (22.2 – 3291.3) 0.90 (0.60 – 0.98) 0.97 (0.89 – 0.99) 27.9 (7.0 – 110.8) 0.10 (0.02 – 0.66) 
 

Table 2. DOR, sensitivity, specificity, likelihood ratios with calculated 95% confidence intervals for each study in patients with advanced-stage (stage 3 and 4) 
NB. DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio;  Sens, sensitivity; Spec, specificity. 

  

 



Study DOR (95% CI) Sens (95% CI) Spec (95% CI) PLR (95% CI) NLR (95% CI) 

INSS stage 3      

  Combaret et al. 2002  51.0 (1.70 – 1525.8) 0.80 (0.38 – 0.96) 1.00 (0.68 – 1.00) 13.5 (0.9 – 207.6) 0.265 (0.066 – 1.068) 

  Gotoh et al. 2005 75.0 (1.16 – 4868.6) 1.00 (0.34 – 1.00) 1.00 (0.65 – 1.00) 13.3 (0.9 – 204.7) 0.178 (0.014 – 2.247) 

  Combaret et al. 2005  91.0 (3.05 – 2718.1) 0.75 (0.30 – 0.95) 1.00 (0.83 – 1.00) 28.0 (1.7 – 458.8) 0.308 (0.081 – 1.176) 

  Combaret et al. 2009  152.8 (7.60 – 3060.2) 0.75 (0.51 – 0.90) 1.00 (0.88 – 1.00) 41.2 (2.6 – 651.7) 0.270 (0.122 – 0.596) 

  Kojima et al. 2013 75.0 (1.16 – 4868.6) 1.00 (0.34 – 1.00) 1.00 (0.65 – 1.00) 13.3 (0.9 – 204.7) 0.178 (0.014 – 2.247) 

  Yagyu et al. 2016 66.0 (5.20 – 833.6) 0.92 (0.65 – 0.99) 0.86 (0.60 – 0.96) 6.4 (1.8 – 23.4) 0.097 (0.015 – 0.643) 

  Ma et al. 2016 81.0 (1.14 – 5778.7) 1.00 (0.21 – 1.00) 1.00 (0.77 – 1.00) 21.0 (1.2 – 358.4) 0.259 (0.023 – 2.865) 

INSS stage 4      

  Combaret et al. 2002  1105.0 (43.2 – 28280.7) 1.00 (0.87 – 1.00) 0.97 (0.85 – 0.99) 22.2 (4.6 – 106.4) 0.020 (0.001 – 0.313) 

  Gotoh et al. 2005 999.0 (18.63 – 53582.1) 1.00 (0.77 – 1.00) 1.00 (0.82 – 1.00) 36.6 (2.4 – 565.8) 0.037 (0.002 – 0.558) 

  Combaret et al. 2005  85.0 (6.81 – 1061.0) 0.91 (0.62 – 0.98) 0.89 (0.69 – 0.97) 8.6 (2.3 – 32.5) 0.102 (0.016 – 0.663) 

  Combaret et al. 2009  912.08 (50.0 – 16628.0) 0.85 (0.72 – 0.93) 1.00 (0.96 – 1.00) 142.0 (8.9 – 2258.4) 0.156 (0.077 – 0.316) 

  Kojima et al. 2013 377.0 (6.7 – 21160.0) 1.00 (0.78 – 1.00) 1.00 (0.61 – 1.00) 13.5 (0.9 – 195.9) 0.036 (0.002 – 0.552) 

  Yagyu et al. 2016 211.2 (23.4 – 1908.8) 0.87 (0.73 – 0.94) 0.97 (0.85 – 0.99) 28.7 (4.1 – 198.2) 0.136 (0.060 – 0.308) 

  Ma et al. 2016 188.0 (15.2 – 2324.4) 0.89 (0.57 – 0.98) 0.96 (0.86 – 0.99) 21.8 (5.5 – 86.3) 0.116 (0.018 – 0.736) 

 
Table 3. DOR, sensitivity, specificity and likelihood ratios with calculated 95% confidence intervals for each study in patients sub-grouped by INSS stage. 

DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio;  Sens, sensitivity; Spec, specificity. 

 



 
Table 4. Summary of the diagnostic accuracy of MNA assessment in cfDNA of patients with INSS stage 3 and/or 4 NB with calculated 95% confidence 

intervals. DOR, diagnostic odds ratio; NLR, negative likelihood ratio; PLR, positive likelihood ratio; Sens, sensitivity; Spec, specificity.  

 

INSS stage Sens (95% CI) Spec (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) 

3 and 4 0.908 (0.818 – 0.956) 0.976 (0.940 – 0.991) 38.6 (1.8 – 75.5) 0.094 (0.027 – 0.161) 410.0 (-103.6 – 923.7) 

3 0.832 (0.677 – 0.921) 0.999 (0.109 – 1.000) 1321.2 (-11172.2 – 13814.6) 0.168 (0.048 – 0.288) 7855.2 (-66267.0 – 81977.4) 

4 0.930 (0.838 – 0.972) 0.974 (0.937 – 0.990) 36.4 (3.6 – 69.3) 0.072 (0.009 – 0.134) 508.7 (-85.8 – 1103.2) 
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