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Abstract 

An engineering design process as part of product development (PD) needs to satisfy ever-

changing customer demands by striking a balance between time, cost and quality. In order to 

achieve a faster lead-time, improved quality and reduced PD costs for increased profits, 

automation methods have been developed with the help of virtual engineering. There are 

various methods of achieving Design Engineering Automation (DEA) with Computer-Aided 

(CAx) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and 

Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools 

enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product 

knowledge throughout the PD lifecycle.  

Traditional automation methods are specific to individual products and are hard-coded and 

bound by the proprietary tool format. Also, existing CAx tools and PLM systems offer 

bespoke islands of automation as compared to KBE. KBE as a design method incorporates 

complete design intent by including re-usable geometric, non-geometric product knowledge 

as well as engineering process knowledge for DEA including various processes such as 

mechanical design, analysis and manufacturing.  

It has been recognised, through an extensive literature review, that a research gap exists in the 

form of a generic and structured method of knowledge modelling, both informal and formal 

modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part 

of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack 

of a structured technique for knowledge modelling, which can provide a standardised method 

to use platform independent and neutral formal standards for DEA with generative modelling 

for mechanical product design process and DFM with preserved semantics. The neutral 

formal representation through computer or machine understandable format provides open 

standard usage.  
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This thesis provides a contribution to knowledge by addressing this gap in two-steps: 

• In the first step, a coherent process model, GPM-DEA is developed as part of MBSE 

which can be used for modelling of mechanical design with manufacturing knowledge 

utilising hybrid approach, based on strengths of existing modelling standards such as 

IDEF0, UML, SysML and addition of constructs as per author’s Metamodel. The 

structured process model is highly granular with complex interdependencies such as 

activities, object, function, rule association and includes the effect of the process 

model on the product at both component and geometric attributes.  

• In the second step, a method is provided to map the schema of the process model to 

equivalent platform independent and neutral formal standards using OWL/SWRL 

ontology for system development using Protégé tool, enabling machine 

interpretability with semantic clarity for DEA with generative modelling by building 

queries and reasoning on set of generic SWRL functions developed by the author.     

Model development has been performed with the aid of literature analysis and pilot use-

cases. Experimental verification with test use-cases has confirmed the reasoning and 

querying capability on formal axioms in generating accurate results. Some of the other 

key strengths are that knowledgebase is generic, scalable and extensible, hence provides 

re-usability and wider design space exploration. The generative modelling capability 

allows the model to generate activities and objects based on functional requirements of 

the mechanical design process with DFM/DFA and rules based on logic. With the help of 

application programming interface, a platform specific DEA system such as a KBE tool 

or a CAD tool enabling GA and a web page incorporating engineering knowledge for 

decision support can consume relevant part of the knowledgebase. 

Keywords: Design engineering automation, process model, platform independent and neutral 

formal representation, knowledge modelling, semantic clarity, generative modelling    
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1 Introduction 

1.1 Research Context 

The commercial success of a manufacturing enterprise substantially depends upon the 

efficiency of product development (PD) (Ulrich and Eppinger, 2012). In order to maximise 

profits, the PD process should have an optimum balance between achieving product quality, 

cost and development time (Ulrich and Eppinger, 2012). The main task of engineers in the 

PD stage is to apply their scientific knowledge to generate solutions for technical problems 

and optimise them based on requirements and constraints such as material, functional, 

economic, legal and environmental considerations (Pahl et al., 2007).There are complex 

interdependencies between the design process and the product involved in engineering design 

(Chalupnik et al., 2006). Engineering knowledge should be efficiently captured, modelled 

and retrieved for re-use and enhancing the efficiency of the PD process. 

One of the methods to improve the efficiency of the PD process is Design Engineering 

Automation (DEA). DEA is performed in a virtual engineering environment at various stages 

of the PD lifecycle (Ovtcharova, 2010). Many tools and methods have been utilised by 

industries to address various aspects of DEA. Different Computer-Aided (CAx) tools such as 

Computer-Aided Design (CAD), Computer-Aided Engineering (CAE) and Computer-Aided 

Manufacturing (CAM) tools assist the PD process at the design and manufacturing stages of a 

PD process (Shintre and Shakir, 2011). CAD tools allow visualisation and representation of 

product’s shape and form with 2D and 3D models (Bernard, 2005). Advancements in CAD 

tools have led to DEA with parametric modelling facilities to modify the product’s shape 

with variation in dimensional parameters (Bodein et al., 2009). Knowledge intensive CAD 

(KIC) allowed representation of additional product and engineering design process 

knowledge buy restricted within a CAD architecture (Tomiyama and Hew, 2000). These can 
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be referred as Geometry Automation (GA) (Amadori, 2012). CAE tools assist in analysis of a 

product’s performance such as such as finite element analysis (FEA) and computational fluid 

dynamics (CFD) (Tyapin et al., 2012). CAM tools allow simulation of the manufacturing and 

production processes for physical realisation of the designed and analysed product (Corallo et 

al., 2009). Thus, all CAx tools address some aspects of DEA varying from parametric 

modelling to knowledge sharing with inclusion of manufacturing knowledge for product 

design. However, due to different file formats of CAx tools there is loss of knowledge while 

utilising the combined benefits of these DEA methods (Zhang et al., 2009).   

As part of virtual engineering, Product Data Management (PDM)/Product Lifecycle 

Management (PLM) systems allow storage and representation of product and design process 

knowledge and provide integration of knowledge between CAD/CAE and CAM tools 

depending upon their configuration and application. However, a major limitation of PLM 

systems is lack of representation of product’s geometric attributes within a unified knowledge 

model as they mostly link different knowledge sources from CAx tools through a common 

platform (Burkett et al., 2003).  

In order to address the limitations of these existing virtual engineering applications to address 

the needs of DEA, KBE as a design method was adopted to provide an integrated approach to 

DEA. CAx and PDM/PLM systems provide islands of automation in context to a more 

holistic approach for DEA with KBE. KBE is generally regarded as an umbrella term 

describing the application of knowledge to automate or assist in the engineering task. It can 

be applied to a wide variety of design processes (Hew et al., 2001). According to Stokes, 

Knowledge Based Engineering (KBE) can also be defined as ‘The use of advanced software 

techniques to capture and re-use product and process knowledge in an integrated way’ 

(Stokes, 2001). 
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1.2 Overview of DEA with a KBE approach 

‘KBE systems aim to capture product and process information in such a way so as to allow 

businesses to model engineering design processes, and then use the model to automate all or 

part of the process’ (Chapman and Pinfold, 1999, Pg 259). Alternatively, KBE systems can 

also be defined as ‘an evolution of knowledge based systems pertaining to the engineering 

domain’ (La Rocca, 2011; Rocca, 2012).Figure 1-1 demonstrates a reduction in the product 

design lifecycle time using KBE vs. Traditional CAD based design methodology.   

 

Figure 1-1: KBE vs. Traditional CAD (Skarka, 2007, Pg 678) 

 

The creation of an informal model is the first step in knowledge modelling of an engineering 

design process and is considered to be one of the most critical step in developing a KBE 

system (KBES) (Pinfold et al., 2008). The most integral purpose of creating the informal 

model is to formulate neutral formal representation of the knowledge model for machine 

interpretation, which can assist the designer for achieving DEA as well as the knowledge 

engineer for developing automation application using a KBES. The abstraction of 

engineering knowledge in context of KBE environment can be stated as ‘the process in which 

the engineering and design knowledge is structured and analysed for being represented in 

terms of objects and engineering rules in a computer understandable language or code’ 
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(Bermell-Garcìa et al., 2001). As KBE as a design method allows inclusion of both product’s 

geometric and non-geometric knowledge for design, analysis, manufacturing and design 

process decision making, knowledge modelling through knowledge management techniques 

constitutes a major bottleneck. The challenge is to perform the abstraction in a neutral (open 

standards) format with semantic clarity to ensure re-usability of the domain knowledge of 

engineering design process for DEA (Jubierre and Borrmann, 2015). Open standard usage 

becomes a key issue when the engineering design knowledge has to be transferred between 

different KBE applications (Bermell-garcia et al., 2007). Thus engineering design knowledge 

should be represented in open architecture as neutral representation for DEA in context to 

KBE approach (Penoyer et al., 2000; Zhang et al., 2009).  

Various methods and techniques have been used for knowledge acquisition and 

representation in context to DEA with KBE approach. Some of them are used as informal 

representation for human interpretation and exchange of design process knowledge such as 

IDEFx (Integrated Definition for Functional Modelling), Model Based Systems Engineering 

(MBSE) methods such as Unified Modelling Language (UML) and Systems Modelling 

Language (SysML) for DEA. Other techniques such as W3C standards in the form of Web 

Ontology Language (OWL), RuleML and International Standards Organization (ISO) 

standards such as Process Specification Language (PSL) have also been investigated for 

machine interpretation of design process knowledge with axioms as formal representation for 

DEA. Investigation of existing KBE methodologies such as Methodology and tools oriented 

to knowledge-based engineering applications (MOKA), Knowledge Nurture for Optimal 

Multidisciplinary Analysis and Design (KNOMAD), Knowledge Capture Methodology 

(KCM), and Knowledge Oriented Methodology for the Planning and Rapid Engineering of 

Small-Scale Applications (KOMPRESSA) has revealed a few shortcomings to address DEA. 

Some of the identified shortcomings to enable DEA with KBE as a holistic approach are 
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neutral representation techniques of an engineering design process model with uniform 

axioms and preserved semantics that will allow usage across multiple platforms with open 

standards. The next sections will discuss the aims and objectives in order to address the 

existing challenges.  

1.3 Aim and Objectives 

This aim of this research is to provide a coherent method to develop platform independent 

and neutral formal representation of an engineering process model, with focus on mechanical 

product design process with manufacturing knowledge, and semantic clarity for DEA. This 

coherent method will capture various knowledge entities and relationships such as activity, 

product attributes, rule, function and behaviour as Meta Model, identified with literature 

analysis in an informal process model (for human aid and interpretation). The 2nd step will 

provide a method to represent the schema of the structured process model in neutral formal 

representation (for machine/system interpretation) with open standards for DEA with KBE as 

a holistic approach. This will include generative modelling capability by building queries as 

per a set of generic predefined functions. It will perform DEA with effect of the process 

model on product attributes with the help of inference (automated reasoning) and querying.  

In order to achieve the aim, the following objectives have been developed– 

1. To investigate different approaches for Design Engineering Automation (DEA) 

including CAx, PLM and KBE for product and process based automation.  

2. To analyse and compare various informal and semiformal process modelling methods 

to capture various aspects of an engineering design process with focus on mechanical 

product design with design for manufacturing knowledge for automation.  

3. To analyse and compare state of the art in existing formal representation (machine 

readable) techniques and standards.  
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4. To develop and build a detailed informal/semiformal process model with explicit 

relationships between identified knowledge entities of a mechanical product design 

process with design for manufacturing knowledge. 

5. To formalise the process model in platform independent and neutral formal 

representation standards for DEA with semantic clarity. This will incorporate 

generative modelling capability by generating the activities, objects of the process and 

rules based on logic as per set of developed generic functions.    

6. To perform experiments in order to validate and verify the process based knowledge 

model with its platform independent and neutral formal representation for re-usability, 

transparency and accuracy.  

1.4 Research Method 

The research method in order to meet the aim and objectives of this research is to hypothesise 

and test. The research hypothesis is described below.   

1.4.1 Research Hypothesis 

The hypothesis of this research work is -  

“Platform independent and neutral formal representation of an engineering design  

process model with focus on mechanical product design and manufacturing knowledge 

built on standardised concepts and relationships, structured and well defined axioms 

along with semantic clarity can achieve the requirements of design engineering 

automation (DEA) enabling generative modelling and re-usability of knowledge” 

In order to test the research hypothesis a two-step strategy has been developed. The first step 

involves careful analysis of informal and semiformal modelling standards, which provide a 

coherent method of knowledge modelling of an engineering design process with focus on 

mechanical product design and manufacturing knowledge for automation. The second step 
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covers the schema mapping of the developed structured process based knowledge model, as a 

method in neutral formal representation with machine interpretable semantics enabling DEA 

with generative modelling. 

1.4.2 Research Design 

The research design consists of the following four building blocks – (1) Literature Review, 

(2) Use Case Collection and Analysis, (3) Development of process model as GPM-DEA and 

its implementation in Neutral Formal Representation Standards along with (4) Test for 

Transparency, Accuracy and Reusability of Knowledgebase. It is illustrated in Figure 1-2.  

Figure 1-2: Research Design 

In order to address the research gap, literature review and analysis, use case collection and 

analysis along with comparative analyses has been the main cornerstone for the development 

work with experimental verification of the developed process model. The literature review 

consists of broadly three topics – DEA and KBE in context to DEA with knowledge entities 
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for engineering design, informal process modelling for knowledge capture of an engineering 

design process and formal representation standards for representing an engineering process 

model at a system level for machine interpretation instead of natural text for human 

interpretation.  

Use cases 1 and 2 have been used as pilot case studies. Use cases 1 has been collected from 

the industrial partner from SILOET2 grant such that knowledge can be accessed in the form 

of engineering design intent for mechanical design and design for manufacturing (DFM) 

aspects with manufacturing guidelines of jet engine fan / compressor blades spanning 

conceptual and embodiment design stages. Due to commercial sensitivity, the analysed 

knowledge in Use-case 1 won’t be shared in detail. Use case 2 has been compiled from the 

literature review and includes jet engine fan blades conceptual design stage. All the Use cases 

have helped in the initial development of process model as GPM-DEA. Test use cases 3 and 

4 have been compiled with the help of literature review and analysis. Use case 3 has been 

devised in terms of creating a hole in a block to test the effect of GPM-DEA at product’s 

geometric attributes for virtual representation in detailed design stage. Similarly, Use case 4 

has been devised and analysed from literature review with added knowledge in terms of 

bookshelf design process as a KBE method from LinkedDesign project. Both Use case 3 and 

4 have been validated with the help of reasoner/inference and query as execution results, 

which are also compared with specific rule implementation in KBES. Targeting DEA for 

mechanical product design process with Design for Manufacturing (DFM) knowledge, GPM-

DEA through its neutral representation format will also enable generative modelling with the 

aid of developed generic functions for query and reasoning and allow for ease of exchange 

and re-usability of knowledge.    

Qualitative methods is adopted for data collection and analysis from use-cases based on 

document data in order to fully comprehend the research problem and develop an initial 
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prototype of the process model (Creswell, 2003). Comparative analysis has been performed 

for both informal (natural language) and formal (machine interpretable) standards for 

developing the process model and its implementation in neutral formal standards along with 

results from pilot use-cases (Rihoux and Ragin, 2009). The method of schema mapping of 

engineering knowledge from informal/semiformal process model to formal representation 

with preserved semantics and experimental verification to test the research hypothesis 

follows an ontology development approach by (Noy and McGuinness, 2001). The method of 

system development and experimental verification with test use cases using ontology 

development also aligns with engineering design optimisation and DEA with DFM aspects 

(Ahmed et al., 2007; Witherell et al., 2007). The proposed ontology development method 

aligns its principles with the research aims and objectives and aids in the verification by 

testing DEA capabilities with the help of supporting tools such as Protégé and Topbraid with 

assertion of axioms and reasoning / inference and query capability. 

1.5 Research Scope 

This research thesis is part of a larger research project, Platform Independent Knowledge 

Model (PIKM), where the initial case selection is based around the SILOET 2 grant as access 

to materials and experts can be built into the project. Two steps are critical in development of 

the process model in context to this research –  

1. The first step is the structured knowledge modelling of domain knowledge as informal 

process model. The scope of the knowledge modelling as part of pilot use-cases is 

mechanical design along with DFM process of the compressor blades. The knowledge 

modelling is initially performed from the existing technical documentation of the 

design intent or specification of the industrial partner such as design rules and aids 

along with materials and mechanical methods as the collated knowledge. The collated 

knowledge is the raw and unstructured informal knowledge. This is followed by the 
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breakdown of the collated knowledge as per the engineering design process knowledge 

entities comprising of activities, input and output relationships, functional requirements 

and behaviour, constraints/rules, logic and product knowledge for efficient product 

realisation in the form of topological and geometric configuration along with 

manufacturing processes and rules. This is an integral step of knowledge analysis for 

developing a generic process model.  

2. The second step is the structured method of schema mapping of the developed process 

model to platform independent and neutral formal representation. The platform 

independent and neutral representation with preserved semantics outside of a CAx 

system should enable DEA with KBE aspects such as generative modelling with the aid 

of suitable reasoning and query method. 

Thus, this constrains the focus of this research. In order to meet the aims and objectives, the 

research scope includes the following aspects –  

1.5.1 Design Engineering Automation (DEA) 

All virtual engineering approaches for DEA such as CAx tools; PDM/PLM systems, 

workflow automation and KBE have been discussed. Various knowledge entities of an 

engineering design process with focus on mechanical product design and DFM knowledge in 

context to automation have been elaborated along with knowledge modelling methods.  

1.5.2 Informal Process Modelling 

Discussion and analysis of various informal (natural language) modelling methods has been 

performed in context to knowledge modelling of engineering processes. This includes 

methods such as IDEFx series, Design Structure Matrix (DSM), Business Process Modelling 

Notation (BPMN), Signposting, Role Activity Diagram (RAD) along with semiformal 

modelling languages in the form of Model Based Systems Engineering (MBSE) standards 
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such as UML, SysML to represent complete domain knowledge of a mechanical design 

process with manufacturing knowledge for automation with KBE as a holistic approach.  

1.5.3 Formal Representation 

This includes detailed analysis of formal (machine interpretable) representation in the form of 

Frames and Frame based languages, Description Logic (DL) and First Order Logic (FOL), 

Schema based representations and Object Oriented (O-O) languages. It also include 

discussion and analysis of ontology languages such as PSL, OWL, IDEF5 and rule languages 

such as RuleML, Rule Interchange Format (RIF) and Semantic Web Rule Language (SWRL). 

The informal or semiformal process model aspects for DEA should map onto suitable formal 

standards. The formal representation framework will have well-defined syntax, axioms and 

semantics and will be compliant with International Standards for process exchange and 

product model definition (Grüninger and Menzel, 2003; Pouchard et al., 2005). The execution 

of neutral formal representation layer will be similar to the functioning of a KBES.  

1.5.4 Development of Process Model 

After careful analysis of existing knowledge modelling standards based on standardised 

engineering concepts and relationships, along with review of an integrated approach of 

existing methods with modifications, a Generative Process Model (GPM-DEA) has been 

developed. This has been developed with the aid of literature analysis, industrial and 

literature based pilot use cases and comparative analysis of informal/semiformal standards as 

per the requirements of DEA for mechanical product design process with DFM knowledge. 

This is performed using DrawIo tool, which supports UML/SysML, and IDEF0 constructs 

along with additional concepts and relationships.  

1.5.5 System Development - Neutral Formal Representation of Process Model 

The implementation of process model in platform independent and neutral representation as 

system development has been performed after comparative analysis of formal representation 
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standards based on the requirements of DEA in context to KBE. The results have shown 

OWL/SWRL as a suitable candidate. The ontology development is performed using Protégé 

(Horridge et al., 2011) which supports both OWL/SWRL and Topbraid (Composer, 2011) for 

OWL.  

1.5.6 Experimental Verification 

Experimental verification of the developed system of process model with ontologies as 

neutral formal representation has been performed with the aid of test use-cases. Important 

aspects include testing of generic working, re-usability and traceability of concepts and 

relationships such that the coherent and structured model can represent complete domain 

knowledge of a mechanical design process with DFM knowledge for automation. The other 

aspect involves the accuracy of DEA capability with generative modelling of the detailed 

process model through reasoner/inference and query results based on set of developed generic 

functions using SWRL and its comparison with specific rule implementation in platform 

specific DEA system / KBES such as Advanced Modelling Language (AML) and ParaPy.   

1.6 Thesis Structure 

Figure 1-3 illustrates the outline of the thesis. The thesis is divided in 8 chapters. Chapter 1 is 

the introduction. Chapter 2 provides existing literature review with overview of DEA and 

various methods in virtual engineering for DEA. It leads to the identification of the research 

gap, which this thesis addresses. Chapter 3 then elaborates on literature analysis with 

informal and formal standards for knowledge modelling of engineering design process. This 

leads to refinement of the research gap. Chapter 4 addresses the novel aspects of this research 

with the help of pilot use-cases collated from both industry and literature. It discusses 

experimentation of neutral formal representation languages including ontology language such 

as PSL and OWL, rule languages such as RuleML and existing MBSE languages such as 
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UML, SysML with design process knowledge entities. The generative process model for 

DEA in the form of GPM–DEA is then developed with the help of pilot use-case analysis and 

compiled requirements of DEA. Chapter 5 discusses the implementation of GPM-DEA 

schema in OWL/SWRL as the developed method of using ontologies. This is performed as 

per the comparative analysis of neutral formal representation standards against the 

requirements. Chapter 6 compiles two additional test use cases from literature for 

instantiation in GPM-DEA and in OWL/SWRL as proof of concept. Chapter 7 illustrates the 

experimental verification by testing the reasoning and inference accuracy of the developed 

system with the help of Protégé as supporting tool. The results are compared with the 

implementation results of use-case rule outputs inside platform specific DEA system such as 

AML and ParaPy. Chapter 8 presents the final conclusion based on discussion, contribution 

to knowledge, limitations and possible extensions for future research. 

 

Figure 1-3: Thesis Structure 
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2 Design Engineering Automation and KBE 

2.1 Introduction 

The goal of the Product Development (PD) process is to transform customer requirements 

into a physical product. A robust PD process needs to achieve optimum product performance 

and quality with short lead-time to market and reduced costs (Ulrich and Eppinger, 2012). 

Design Engineering Automation (DEA) techniques greatly help solve this purpose. In order 

to enhance PD efficiency with DEA, virtual engineering methods were adopted by industries 

worldwide (Bernard, 2005; Zhang et al., 2010). It consists of various domains such as CAx 

consisting of Computer Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer 

Aided Manufacturing (CAM); information systems such as Product Data Management 

(PDM)/Product Lifecycle Management (PLM), decision support tools and KBES, with all 

systems represented in heterogeneous formats. However, it was realised that interoperability 

is one of the key areas of improvement in order to prevent compatibility issues between 

different virtual engineering applications and file formats (Bernard, 2005). In order to provide 

holistic and complex DEA, the scope of neutral representation of engineering design process 

for interoperable product realisation in context to KBE has been recognised. This chapter 

provides an overview of various virtual engineering aspects as part of PD. This will lead to 

discussion on DEA and KBE with existing models for DEA.   

2.2 Engineering Design Process for Product Development 

Product Development (PD) process can be stated as ‘a sequence of activities that an 

organization follows in order to conceptualise, design and manufacture a product 

commercially’ (Ulrich and Eppinger, 2012). PD process can be divided broadly into five 

stages as per Ulrich (Ulrich and Eppinger, 2012) – ‘requirements analysis & conceptual 

design, systems development & configuration design, detailed design, testing & refinement, 
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and production’. The PD process consists of engineering design, analysis for testing and 

manufacturing which span all these five stages. The first stage of the engineering design 

process is the identification of customer requirements, which are then translated into 

functional requirements of the product as design specifications or design intent. The 

functional requirements drive the engineering design process which are used to specify 

product profiles utilising engineering knowledge and creative thinking (Chen et al., 

2008).The engineering design process is considered to be a set of comprehensive and 

knowledge intensive activities depending upon existing engineering knowledge which 

consists of bothdesign and manufacturing knowledge (Chen et al., 2008; Peng et al., 

2017).According to Pahl and Beitz (Pahl et al., 2007), engineering design is very complex 

and requires a very systematic approach. An engineering design process for PD can be 

subdivided into various categories such as conceptual design, embodiment or configuration 

design and detailed design (Pahl et al., 2007; Ullman, 2010; Zeng and Gu, 1999). All the 

stages are described as follows -   

2.2.1 Conceptual Design Stage 

The conceptual design stage encompasses high-level concepts to meet design specifications 

or design intent as requirements (Pahl et al., 2007; Zeng and Gu, 1999). Concept generation 

is very crucial at this stage (Ullman, 2010). Conceptual design process includes basic 

building of physical structure of the product guided by design specifications as functional 

requirements of the design process or product’s function (Qin et al., 2003; Viola et al., 2012). 

The analysis of functional requirements or product’ function is very crucial at this stage as 

design specifications can be highly abstract (Wang et al., 2002). Division of functions as sub 

functions can be achieved by various ways such as brainstorming (Ullman, 2010). Some 

examples of function are  - “increase pressure, transfer torque and reduce speed” (Pahl et al., 

2007, pg 31).  
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2.2.2 Embodiment Design Stage / Configuration Design Stage 

The configuration design stage or embodiment design focuses on the refinement of initial 

concepts to product configuration at the component and subcomponent levels along with the 

development of design parameters. It greatly assists the designer in concept evaluation and 

selection. It also helps in technology readiness by identifying critical parameters (Ullman, 

2010). Various methods such as Pugh’s (Pugh, 1991), decision matrix can be used at this 

stage for risk and feasibility analysis of generated concepts.  

2.2.3 Detailed Design Stage 

The detailed design stage focuses on the development of detailed parameters of the product 

architecture and structure such as form with the assistance of geometric dimensions and 

tolerances, fit as components with parts and assemblies, features and material allocation (Pahl 

et al., 2007; Zeng and Gu, 1999). Product evaluation is very critical at this stage before 

proceeding to the manufacturing stage (Ullman, 2010). Product evaluation involves 

performance analysis of product’s function such as electrical energy, mechanical energy and 

thermal energy within the prescribed boundary conditions.  

The boundary between all stages of the design process overlaps due to the iterative 

nature of the design process. Design for manufacturing (DFM) is very crucial stage of the 

design process and mainly comes under configuration or embodiment design although it can 

be considered at conceptual design and detailed design stage as well. DFM includes 

manufacturing and production feasibility, lifecycle and quality aspects (Wuest et al., 2015). 

Thus it includes manufacturing knowledge as feedback or inputs at the design stage, which 

may include manufacturing processes for example machining processes such as welding, 

drilling and processes such as moulding, casting for the product specification. Similarly, 

design for assembly (DFA), design for ergonomics, design for recycling are some of the other 

crucial aspects of the embodiment or configuration design stage (Pahl et al., 2007). All 
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techniques such as DFM, DFA, design for ergonomics, and design for recycling are part of 

DFX techniques for improved productivity of the engineering design process (Elgh, 2006).     

Collection and representation of design knowledge with the help of computing is 

crucial for all these phases. Computer based data processing in the form of Computer Aided 

Design (CAD) is very prevalent among designers. However, routine tasks should also be 

taken by a computer to allow designers to focus on new design tasks. The development of 

knowledge based systems (KBS) for engineering design can be used as a computer tool for 

knowledge modelling and retrieval, which should incorporate both design process and 

product knowledge. These systems assist the designer in analysis and optimisation of 

solutions by providing decision-making capability (Pahl et al., 2007). It is widely 

acknowledged that for knowledge storage and re-use for engineering design, capture and 

representation of abstract forms such as high level concepts and function are extremely 

beneficial for design evaluation and rapid retrieval of knowledge as query for archive designs 

as well as the complete design lifecycle from conceptual design to detailed design (Andrews 

et al., 1999; Ullman, 2002). Thus, capture, representation and querying of design intent will 

greatly improve the efficiency of the engineering design process as part of PD. Functional 

requirements are very crucial to generate artifacts for design optimisation and evaluation 

process (Roy et al., 2001). This includes non-geometric knowledge pertaining to the 

conceptual design and configuration design stage affecting the topology of the product from 

the functional requirements as goals of the design process. Thus, a suitable domain specific 

model of engineering design should link decomposed functional requirements of the 

engineering design process to the form of the product (Roy et al., 2001). 

Figure 2-1 illustrates various stages of design lifecycle with representation methods for 

engineering knowledge.  
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Figure 2-1: Stages of Engineering Design with Knowledge Representation Methods 

(Chandrasegaran et al., 2013, Pg 208) 

 

2.3 Product Development: Advancement with Virtual Engineering 

Virtual engineering helps transform the physical engineering design process in virtual system 

domain at all stages of the product lifecycle. The engineering design, analysis process and the 

manufacturing process as part of PD are realised in the virtual world with CAx tools 

(platforms) such as CAD, CAE and CAM (Frank et al., 2014; Shintre and Shakir, 2011). 

CAE generally consists of CAD and CAM tools along with analysis of CAD models such as 

structural analysis, fluid analysis, and thermal analysis depending upon product’s functional 

requirements (Ćatić and Malmqvist, 2007).  

2.3.1 CAD & Geometry Automation: Parametric Modelling 

CAD tools allow building and visualisation of product’s geometric shapes based on points, 

curves, surfaces, and volumes along with features (Bernard, 2005; Shyamsundar and Gadh, 
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2002). The underlying representation in most CAD tools is based on B-Rep and Constructive 

Solid Geometry (CSG). They also provide compilation of Engineering Drawings (ED) and 

Bill of Materials (BOM) thus illustrating the product structure (Shyamsundar and Gadh, 

2001). CAD provides support during the configuration and most importantly detailed design 

stage of the PD process. Updates and enhancements in CAD tools such as CATIA 

Knowledgeware provide Geometry Automation (GA) (Amadori, 2012) through parametric 

modelling (Bodein et al., 2009), knowledge based CAD (Nomaguchi et al., 2004) and 

Knowledge Intensive CAD (KIC) (Tomiyama and Hew, 2000). Parametric CAD systems 

utilise Geometric Constraint Solvers (CSG) for parametric modelling (Jubierre and 

Borrmann, 2015). They mainly affect geometric attributes in the form of points, lines and 

circles as constraints. This allows for modelling of intelligent automation through variant 

design in terms of product’ geometric parameters. However, the file format of these CAD 

tools enabling design engineering automation (DEA) are in proprietary formats and are still 

limited to shape and form variation (Frank et al., 2014).  

2.3.2 CAE & Analysis 

CAE tools allow the virtual simulation and analysis of 3D CAD models as geometric product 

representation (Ulrich and Eppinger, 2012). CAE includes processes such as finite element 

analysis (FEA) and computational fluid dynamics (CFD) analysis in the form of thermal 

analysis, flow analysis, stress analysis, aerodynamic analysis and kinematic analysis with 

CAD model as the master model (Tyapin et al., 2012). Some of the CAE operations include 

meshing and applying boundary conditions in order to perform accurate analysis in the form 

of preprocessing and postprocessing. CAE provides a major platform during testing and 

refinement stage of the PD process. The results of the CAE analysis models are evaluated as 

per the formulated functional requirements. However, the transition of geometric product 

model from CAD to CAE tools requires transformations due to heterogeneous file formats 
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between CAD and CAE systems (platforms) thus limiting the combined advantage (Corallo 

et al., 2009).  

2.3.3 CAM & Manufacturing 

CAM tools allow simulating and performing the production/manufacturing processes as 

physical processes for realisation of the product with the help of virtual environment (Corallo 

et al., 2009). CAM tools generally include tool paths such as CNC programming and 

machining operations, manufacturing methods, tool cutting data such as speed and feed, 

clamping, jigs and fixture strategy along with product’s physical properties such as material, 

features, tolerances and surface finish (Helgoson and Kalhori, 2012). These may include 

operations such as milling, drilling and boring. CAM provides a major platform during the 

production stage of the PD process. However, the transfer of knowledge from the CAD/CAE 

stage to CAM stage is highly complex due to variation in platform representations (Corallo et 

al., 2009; Zhang et al., 2009).  

Due to heterogeneity in CAx tools (platform) representations, there is loss of valuable 

knowledge. Thus there is a lack of coherent engineering design knowledge for PD process in 

a multidisciplinary environment, which can be re-used (Zhang et al., 2009). In order to 

overcome the loss of knowledge in CAx tools, various environments have been devised as 

part of Concurrent Engineering (CE). Concurrent Engineering (CE) provides utilisation of 

varied knowledge inputs simultaneously to speed up PD process by integrating down-stream 

processes such as analysis and manufacturing in the early stage of engineering design 

(Chapman and Pinfold, 1999). One example is Computer Integrated Manufacturing 

Environment (CIM) to overcome the loss of knowledge between CAD ad CAM systems due 

to lack of neutral formats as well as the overall content of CAD knowledge (Natekar et al., 

2004). CIM allows for feature recognition in order to convert from product form and shape in 

CAD to manufacturing process planning in CAM using a neutral format such as Initial 
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Graphics Exchange Specification (IGES). The feature recognition algorithm is written on top 

of IGES for extraction of CAD features to CAM operations. Advancements in proprietary 

systems such as Unigraphics solutions UG NX5 also provide integrated CAD, CAM and 

CAE systems as part of CE, thus providing a unified platform for engineering design with 

rich semantic product data knowledge for cross functional PD (Liu et al., 2010).       

Thus in order to facilitate efficient knowledge transfer between CAx tools, neutral formats 

such as IGES and STandard for the Exchange of Product model data (STEP) should be 

utilised. STEP retains most of the product’s model knowledge while transfer between 

different CAD platforms (Pratt, 2001). However, these neutral formats in the form of STEP 

mainly represent product’s geometric knowledge pertaining to detailed design and 

manufacturing including 3D model but don’t contain other aspects of engineering design 

process knowledge covering all aspects of product’s lifecycle (Främling et al., 2012).   

2.3.4 Product Data Management (PDM)/Product Lifecycle Management (PLM) 

Other attempts in the field of virtual engineering to overcome the loss of knowledge between 

different CAx tools are Product Data Management (PDM)/Product lifecycle Management 

(PLM) systems. According to John Stark, PLM systems can be defined as follows – ‘PLM is 

the business activity of managing a company's products all the way across their 

lifecycles,from the very first idea for a product all the way through until it is retired and 

disposed of, in the mosteffective way’ (Stark, 2011). The initial versions of PLM systems 

were generally referred as PDM systems. Generally PDM systems allow integration of 

disparate knowledge between various CAD, CAE and CAM tools (Bruun et al., 2015; Ćatić 

and Malmqvist, 2007). They consist of product geometry knowledge, assembly and 

functional relations, analysis and manufacturing knowledge depending upon their 

configuration. PLM is like an extension to PDM facilities for more comprehensive coverage 

and can also provide workflow automation. Some examples of PDM/PLM systems are 
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TeamCenter PDM, Collaborative product development (cPDM) and virtual product 

development (VPDM) (Bruun et al., 2015).  Similarly, other versions of PLM systems to 

address the needs of CE are Product Life Cycle Systems (PLCS), which provide integration 

of CAD, CAM, CAE and Product Information Management (PIM) systems thus allowing 

coherent flow of knowledge for collaborative environment (Penoyer et al., 2000).   

2.3.4.1 Workflow Automation 

Workflow automation in context to PLM systems can be performed in tools such as Isight (H 

Wenzel et al., 2011).  Workflows and their execution logic can be shared and exchanged 

between heterogeneous design platforms as platform independent representation using neutral 

format in the form of eXtensible Mark-up Language (XML). The building blocks of the 

simulated workflows are individual components such as the object parameters, sub processes 

and connected components (H. Wenzel et al., 2011).  

2.4 Design Engineering Automation - CAx, PDM/PLM 

2.4.1 Design Engineering Automation (DEA) 

As illustrated, various CAx and PDM/PLM systems fulfill automation techniques for 

engineering design process. Automation methods satisfy the following objectives as part of a 

PD process - reduce lead-time and costs, improve quality of products and provide variation in 

product design process as per changes in customer requirements (Cederfeldt and Elgh, 2005). 

Design Engineering Automation (DEA) can be defined as capturing and formalising 

engineering design knowledge consisting of a set of building blocks for automated design and 

PD processes for satisfaction of customer requirements (Frank et al., 2014). DEA provides 

added value by optimisation of PD process and incorporating all types of knowledge for 

automation including both product’s geometric knowledge as well non-geometric knowledge 

in the form of engineering design process knowledge.   
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According to work performed by Cederfeldt & Elgh, DEA refers to ‘Engineering support by 

implementation of information and knowledge in solutions,tools, or systems, that are pre-

planned for reuse and support the progress of thedesign process. The scope of the definition 

encompasses computerized automation oftasks that directly or indirectly are related to the 

design process in the range ofindividual components to complete products’ (Cederfeldt and 

Elgh, 2005, Pg 2). DEA can be categorised into two types – information handling (knowledge 

representation and retrieval with inference or automated reasoning) and knowledge 

processing (Elgh, 2008; Nan and Li, 2012).  

The purpose of DEA is to provide support in following areas (Elgh, 2008, 2007) –  

• Design synthesis - this includes optimisation of design parameters and product 

geometry and decision support for engineering design with the assistance of functional 

requirements and manufacturing constraints  

• Design analysis - this includes model analysis for testing such as finite element 

analysis, geometry preparation for analysis in the form of meshing, preprocessing and 

post processing and evaluation of design characteristics  

• Plan for manufacture – this includes manufacturing processes for physical production 

of the designed parts and components. This may include production methods, sequence 

of operations and tooling description such as fixture and jigs  

2.4.2 CAx, PDM/PLM for DEA 

All CAx tools such as CAD, CAE, CAM along with PDM/PLM systems comprise main 

virtual engineering applications for engineering design process and enabling some aspects of 

DEA (Ćatić and Malmqvist, 2007). However, there is a difference in the knowledge content 

of CAx tools such as CAD systems and PDM/PLM systems. The main strength of CAx tools 

specifically CAD systems is the representation of product’s geometric knowledge as part of 

detailed design stage which is a narrow part of PD in its proprietary platform representation 
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(Foufou et al., 2005). On the other hand, PDM/PLM systems are tailored to represent 

product’s non geometric knowledge in its proprietary format such as requirements analysis, 

product function and behaviour and are used as linking or information management system 

for product’s geometric knowledge by documenting and managing CAD files, drawings, 

CAE and CAM files along with product related documents in different computer formats 

(Bruun et al., 2015; Burkett et al., 2003). The most comprehensive usage of PDM/PLM as 

database management systems is a common platform for knowledge access and integration 

across various CAx tools and product definitions across different formats (Penoyer et al., 

2000).  

Thus, one of the limitations of this existing virtual engineering approach is lack and ease of 

integration of geometry kernels as part of CAD systems within a unified PDM/PLM system 

representation for DEA (Penoyer et al., 2000). Also, individual automation applications such 

as workflow automation using Isight and excel based macros for specific purposes are very 

rarely linked to CAx tools or PDM/PLM systems. Another cause of concern of these 

individual virtual engineering approach is that the representation of individual CAE and 

CAM tools is specific, knowledge management is very rigid with respect to the underlying 

platform along with lack of an integrated, unified and structured approach for DEA (Ćatić 

and Malmqvist, 2007). 

Another method of addressing the needs of DEA is solved through Knowledge based 

Engineering (KBE). As illustrated with the help of Fig 2-2, all CAx tools such as CAD, CAE 

and CAM along with PDM/PLM systems provide small isolated islands of DEA in context to 

a KBE approach, which provides an integrated and unified approach for DEA (Ćatić and 

Malmqvist, 2007).  
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Figure 2-2: KBE with respect to CAx, PDM/PLM (Ćatić and Malmqvist, 2007, Pg 1) 

 

2.5 Knowledge Based Engineering (KBE) 

‘Knowledge Based Engineering (KBE) represents an evolutionary step in Computer-Aided 

Engineering (CAE) and is an engineering method that represents a merging of Object-

Oriented Programming (OOP), artificial intelligence (AI) and Computer-Aided Design 

(CAD) technologies, giving benefit to customised or variant design automation solutions’ 

(Chapman and Pinfold, 2001, Pg 905). One of the main objectives of KBE systems is to 

reduce the time and cost of product design lifecycle by automating repetitive and non-

creative design tasks (Cooper and LaRocca, 2007; Sandberg, 2003).  

A few examples where usage of KBE technology has led to a decrease in product design life 

cycle time are demonstrated as follows. In the automotive domain, Chapman and Pinfold 

utilised a KBE system (KBES) in the form of Advanced Modelling Language (AML) 

(TechnoSoft Inc, 2003) for automation of geometry creation and finite element (FE) analysis 

process using meshing and applying boundary conditions (Chapman and Pinfold, 2001; 

Pinfold and Chapman, 2001). Pertaining to the aerospace domain, a KBES was employed by 

La Rocca and Van Tooren for automation and generation of blended wings and low pressure 

turbines (La Rocca and Van Tooren, 2007).  

The focus of KBE is knowledge capture and representation of both geometric and non-

geometric knowledge to enable product and process centred automation for all stages of the 

engineering design process lifecycle including conceptual design, embodiment design and 
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detailed design including the manufacturing phase (Corallo et al., 2009; Prijic et al., 2005). 

Traditionally, in design engineering the output of the preliminary and the detailed design is in 

the form of a geometric CAD model directly created from requirements or problem 

definition.KBE as a design method captures product and process-based data and helps in 

building a virtual prototype in a system which encapsulates rules, requirements, product 

attributes, features and rationale for building a geometric model along with downstream 

processes such as material selection for static and dynamic analysis, and manufacturing 

capability enabling complex design automation. It enables generative modelling along with 

feature based parametric modelling and reasoning mechanism by acting as an expert system 

(Cooper and LaRocca, 2007; La Rocca and Tooren, 2012). KBE adds a major dimension also 

referred to as product decomposition (Calkins et al., 2000) and helps in developing a 

complete repository of design engineering knowledge for efficient product design & 

realisation process.Thus it gives options to the designer to test the geometric model for 

realisation more efficiently due to the availability of a complete knowledgebase.  

A system implementation of KBE can be defined as ‘the use of dedicated software language 

tools in order to capture and re-use product and process engineering knowledge in a 

convenient and maintainable fashion’ (Cooper and LaRocca, 2007). A system implementing 

KBE is dynamic such that it offers true engineering automation including application 

development, geometric modelling, application deployment and tools integration (Calkins et 

al., 2000).  

2.5.1 KBE and CAx, PDM/PLM for DEA 

KBE as an area of artificial intelligence (AI) provides a unified and integrated approach for 

complex DEA and effectively combines CAx and PDM/PLM automation facilities along with 

assistance in knowledge re-use and decision making (Zhang et al., 2009). The formal 

representation in a KBES performs DEA with various reasoning mechanisms, which can vary 
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such as rule-based reasoning and case-based reasoning. A successful KBE implementation 

depends upon various stages – knowledge acquisition, knowledge representation and 

reasoning (Zhang et al., 2009). Thus, KBE offers enrichment of CAD models with non-

geometric knowledge and also assists knowledge management (KM) with knowledge 

acquisition and representation of engineering design knowledge (Cooper et al., 1999). One of 

the distinct advantages of KBE approach towards DEA is generative modelling capability, 

which ensure that engineering design knowledge is generated as instantiated data from 

requirements analysis by explicit declaration of codified knowledge. It also offers multiple 

view-points such as design, analysis, manufacturing, ergonomics within a unified 

environment (Bermell-garcia et al., 2007).  

Thus KBE tools capture design rules with much higher granularity in contrast to PDM/PLM 

systems as they combine the knowledge content of CAx and PDM consisting of both 

geometric and non-geometric knowledge. The most important aspect of a KBE approach for 

DEA is the integration of geometry kernel closely integrated with non-geometric knowledge 

(Bermell-garcia et al., 2007; Ćatić and Malmqvist, 2007). This includes product’s form and 

geometry in the CAD environment, topological variation in product design with both 

parametric and generative modelling and non geometrical knowledge which is generally 

contained in PDM systems thus providing a systematic approach for knowledge acquisition, 

re-use for automation and efficient decision making (Sandberg et al., 2017; Sorli et al., 2012). 

Generative modelling is one of the most important aspects of DEA with KBE 

approach. KBE as a design method not only enables generative modelling at the detailed 

design stage with GA but also at the conceptual and embodiment design stage (Isaksson, 

2003). This provides flexibility in design variation at all stages of engineering design, which 

is not possible with any CAx tool. The generative modelling capability captures both product 
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and engineering design process knowledge and can be used for DEA and design evaluation 

based on the product’s functional requirements ‘on the fly’ basis (Isaksson, 2003).  

Thus, KBE approach combines capabilities of CAx tools and PDM/PLM systems for 

complex DEA enabling knowledge re-use and decision making in a modular and integrated 

environment (Isaksson, 2003).  

2.5.2 Achieving DEA with KBE – Integral Features 

Traditional DEA approaches follow procedural style of programming where the knowledge 

or the design intent from a source is hard coded and integrated to a system or an application 

(Prasad, 2006). In procedural programming style the sequence of steps has to be explicitly 

mentioned. However, KBESoffer slightly different approach to conventional DEA. They 

follow declarative style as against a purely procedural style (Cooper and LaRocca, 2007; 

Prasad, 2006). This means that the sequence of steps for a process in the form of design intent 

doesn’t need to be explicitly mentioned during execution. The system or the application will 

automatically determine which activity to implement based on the requirements. KBES offer 

functional coding style which states that the code returns values to the user instead of simply 

modifying or updating the model (Cooper and LaRocca, 2007). KBES follow Object-

Oriented(O-O) representation with high probability of embedding LISP based dialects 

(Cooper and LaRocca, 2007; La Rocca, 2011; Rocca, 2012)along with being dynamic, which 

means the formal design intent will update, and new concepts and relationships are inferred 

as changes at runtime. Conventional DEA is not dynamic in nature.  

Some of the integral features of KBES are listed as follows -   

• Functional and declarative style as opposed to pure procedural style in conventional 

DEA – it supports both declarative and procedural paradigm 

• Dynamic data types  
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• Runtime value caching and Dependency tracking 

• Demand driven  

• Generative modelling   

• Tight linkage with geometry       

• High level indicating that a small amount of code enables manipulation of large number 

of objects as being opposed to problem specific. This enables generic and re-usable 

code with instances as compared to limited re-use of hard coded knowledge in 

conventional DEA  

• Knowledge models are enriched with process and product knowledge as compared to 

specific domain in conventional DEA    

(Cooper and LaRocca, 2007; Prasad, 2006, 2005; Rocca, 2012; Van der Velden, 2008) 

There are a lot of crucial differences between CAD centered automation applications such as 

CATIA Knowledgeware and Siemens NX Knowledge Fusion and pure KBE based DEA. 

CAD centered automation lays emphasis on alteration of product models primarily through 

geometric features based approach for pure geometry automation (GA). CAD based 

automation doesn’t include function and behaviour of the product (Kopena and Regli, 2003; 

Umeda and Tomiyama, 1997). Furthermore, the design intent in a parametric CAD for GA 

doesn’t capture the complete design intent (Ullman, 2002). This reduces the creativity for 

innovation based on ‘what-if’ analysis of the design intent (Jubierre and Borrmann, 2015). 

This differs from the pure KBE based DEA through a knowledge based approach (Colombo 

et al., 2014; Prasad, 2006)where knowledge is managed through high level of abstraction 

encapsulating engineering rules based on logic, product structure, function and behaviour. 

KBESor KBE applications can deal with both geometric and non-geometric knowledge of the 

product as part of the system and can incorporate design process knowledge (Prasad, 2006; 
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Skarka, 2007). CAD based automation applications like CATIA Knowledgeware and 

Siemens NX Knowledge Fusion do provide purely GA facilities through a platform specific 

code but don’t enable KBE features such as full generative modelling, dynamic data typing, 

run time caching and dependency tracking (Cooper and LaRocca, 2007). For example, 

CATIA v5 Knowledgeware uses C++, visual basic and component application architecture 

(CAA) language in order to provide GA facilities (Prijic et al., 2005). In the research of Lin 

(Lin et al., 2013), CATIA was used as a platform to enable parameter based design space 

exploration and automation by providing variable input parameters to the geometric form of 

the product. In case of a change of system the platform specific code will have to be re-

written, thus limiting the abstraction and re-usability of the engineering process knowledge 

along with increased maintenance (Sanya and Shehab, 2014).  

With recent advancements, web based approach has gained acceptance in the KBE 

community for information sharing and exchange (Liu and Xu, 2001). It also offers 

advantages such as open architecture, uniformity in information modeling and O-O structure 

(J Kulon et al., 2006).   

2.5.3 KBE lifecycle and Methodologies 

According to Stokes, KBE lifecycle consists of the following 6 stages(Stokes, 2001) – 

• Identify: Identification of technical and business requirements for DEA for providing an 

initial specification of a KBES 

• Justify: Assessment of existing processes for implementation of KBE for DEA benefits 

and risk analysis   

• Capture: Knowledge acquisition in the form of input of engineering design process and 

product knowledge collected from domain experts, documents such as design 

guidelines and manuals for conversion to structured formal representation. It caters to 

the needs of the domain experts for validation of domain knowledge as informal model 
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• Formalise: Development of a framework for conversion of the structured captured 

informal knowledge to a formal representation model (machine readable for system 

interpretation) with neutral semantics for interoperable usage through open standards. 

This ensures re-usability of the domain knowledge as neutral formal representation 

• Package: The neutral formal model is used for compilation and execution as the source 

code in a KBES or KBE application. This phase covers the transformation of the 

neutral formal representation to the platform specific representation inside the KBES. 

In order to validate the functioning of a KBES, running queries and reasoning as 

execution of the source code is performed to demand data from the KBES source code 

• Activation: Verification of the installation of KBES for multiple users. Documentation, 

training support and infrastructure may be provided for effective deployment within the 

organisation          

There are various methodologies for implementing KBE. A methodology termed as 

Knowledge-Oriented Methodology for the Planning and Rapid Engineering of Small-Scale 

Applications (KOMPRESSA) with its diagrammatic ways of capturing knowledge in the 

form of a component diagram was initiated for smaller KBE applications (Bancroft et al., 

2000; Chapman et al., 2007). In Knowledge Capture Methodology (KCM), capturing and 

structuring of knowledge is performed from a designer’s point of view. It breaks down the 

product knowledge into parts, assemblies, features and the relationships between the 

geometric features and the components to formulate product semantics (Chapman et al., 

2007; Terpenny et al., 2000). Both KOMPRESSA and KCM were targeted for product 

modelling and automation. Knowledge Nurture for Optimal Multidisciplinary Analysis and 

Design (KNOMAD) as a methodology laid emphasis on activity diagrams for processes and 

representation of multidisciplinary knowledge including design and manufacturing (Verhagen 

et al., 2012).  
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Methodology and Tools Oriented to Knowledge Based Engineering Applications (MOKA) 

(Skarka, 2007) as a methodology was initiated for larger applications. It encapsulated both 

product and process based modelling. Rapid Application Development (RAD) (Beynon-

Davies et al., 1999) is another methodology which directly encodes the knowledge on to an 

application with the help of packaging stage whereas other methodologies such as 

KOMPRESSA, KCM and MOKA build an independent knowledge book or the knowledge 

model external of the application and then map the knowledge model on to the KBES or a 

KBE application. This is the combination of formalise and package stage in the KBE 

lifecycle.  

Thus RAD provides a quicker way of achieving an end KBE application by directly 

packaging the captured knowledge whereas other methodologies such as KCM, 

KOMPRESSA and MOKA are slightly more time consuming as they develop anindependent 

knowledge model with the help of formalise stage and then focus on translation to the end 

KBE application or KBES in the packaging stage. However, the advantage of developing an 

independent knowledge model is the translation of the independent knowledge model to 

multiple end KBE applications through its neutral formal representation enabling re-use of 

the domain knowledge both at human and system level.  

Except for the fundamental difference between RAD and KCM, KOMPRESSA and MOKA 

which allow building of an independent knowledge model as compared to direct population 

of knowledge into the end KBE application in RAD, methods of capturing the structuring 

knowledge varies slightly between all three methodologies.Careful considerations should be 

adopted while implementing these methodologies such as the end KBE application should 

reflect continuous changes with the independent KBE model being the master model. 

Another methodology is referred as CommonKADS, which stands for Common Knowledge 

Acquisition and Documentation Structuring or Common Knowledge Acquisition and Design 
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Support (Schreiber et al., 2000). It defines six modules – organisation, task, agent, 

knowledge, communication and design models.  

All these KBE methodologiesin the form of MOKA, KNOMAD, KCM, KOMPRESSA, 

CommonKADS and RAD offered major advantage in terms of abstraction and decomposition 

of knowledge in different forms, as discussed, with the help of Table 2-1, before the end KBE 

application development and provide more functionality to knowledge management. As 

observed from Table 2-1, all the methodologies have different ways of capturing data for 

knowledge modelling and aid in process improvement through diagrammatical and visual 

ways.All of these methodologies were successful only in knowledge acquisition and analysis 

stage for engineering design process improvement.  

Table2-1: Existing KBE methodologies and area of focus 

Existing KBE Methodologies Focus for Knowledge Modelling 

 MOKA 

 

Focus on both product and process modelling. 

ICARE forms for knowledge capture and MML 

for formalised knowledge 

 KNOMAD 

 

Activity diagrams for processes and 

representation of multidisciplinary knowledge 

focusing both on product and process modelling 

KCM 

 

Product modelling in the form of parts, 

assemblies and features 

 KOMPRESSA 

 

Product modelling in the form of diagrammatic 

ways of capturing knowledge such as component 

diagrams 

RAD Product modelling and direct implementation of 

knowledge on to the application 

CommonKADS Focus on both product and process modelling 

though UML notations and diagrams 

 

MOKA, being one of the most comprehensive, lays emphasis on two stages of the KBE 

lifecycle as shown in Figure 2-3. First it captures knowledge in an informal manner in the 

form of ICARE (Illustration, Constraints, Activities, Rules and Entities) and then converts it 

to a formal manner. MOKA utilised Unified Modelling Language (UML) notation and 
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extended it to develop Moka Modelling Language (MML) as a means of producing a formal 

knowledge model (Chapman et al., 2007; Stokes, 2001).  

CommonKADS also utilises object-oriented (O-O) modelling and uses UML notations such 

as class diagrams, use-case diagrams, activity diagrams and state diagrams in order to 

represent domain knowledge (Schreiber et al., 2000). Thus both MOKA and CommonKADS 

utilise UML based notations for knowledge representation. Even CommonKADS utilised 

similar stages of developing an informal based model initially and then developing the formal 

implementation.  

 

Figure 2-3: MOKA methodology in KBE lifecycle (Lohith et al., 2013) 

 

Various tools such as PCPACK can be used which help in building inter-connected 

knowledge representation models. PCPACK supports knowledge capture, analysis and 

modelling of knowledge using both MOKA and CommonKADS methodology (La Rocca, 

2011; Nan and Li, 2012; Schreiber et al., 2000). CommonKADS offers major advantage in 
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terms of adding structure to knowledge capture and representation. However, it lacks the 

accuracy and specialisation pertaining to knowledge capture and representation for 

engineering design (Sanya and Shehab, 2014).  

In spite of strengths in managing engineering knowledge throughout the product lifecycle 

MOKA was revealed to have a few shortcomings e.g. MML did not comply with Object 

Management Group (OMG) requirements (Abdullah et al., 2005), the formal knowledge 

model could not be mapped to a KBES (KBE system) application to assist in process 

automation (Chapman et al., 2007; Prasad, 2006). 

This piece of research initially intends to bridge this gap in correct syntactical and semantic 

mapping of an informal process model capturing all knowledge types and relationships of an 

engineering design process to a platform independent and neutral (interoperable usage 

through open standards) formal representation framework. It is very important to maintain 

traceability between the informal process model with captures the engineering design 

knowledge and the formal representation of the informal model (Verhagen et al., 2012). The 

formal representation should be computer readable and understandable (Klein et al., 2014) 

and fulfill the requirements of design engineering automation (DEA) as part of this research. 

The neutral formal representation framework of the process model will enable DEA similar 

to a KBES implementation with the help of suitable inference and querying mechanism as 

execution of its code.  

2.6 Engineering Design Process Decomposition: Classification of 

Knowledge 

According to ISO 10303-49, process can be defined as ‘a particular procedure for doing 

something involving one or more steps or operations. The process may produce a product, a 

property of a product, or an aspect of a product’ (Michel, 2005). Engineering design process 
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as a part of PD can be stated as a ‘process of converting design requirements into verified 

solutions’ (Isaksson, 2003). In the context of this research the engineering design process for 

product realisation should cover all stages of its lifecycle.All concepts required for modelling 

engineering design process will be discussed in this section. The type of specific concepts of 

the design process decomposition such as activity, inputs, outputs, resources, engineering 

rule, rationale, product function and behaviour will govern the selection of suitable formal 

representation techniques for the developed process model.  

2.6.1 Engineering Design Activity 

An engineering design process consists of various activities for creation and evaluation of 

products by changing their state (Isaksson, 2003). Design process activities consume some 

inputs and produce outputs with the help of resources and methods in order to convert 

functional requirements to verified solutions(Ding et al., 2009). All design process activities 

are highly interdependent and require knowledge such as inputs, outputs, resources and 

methods in the form of rules from other dependent design activities in order to be completed 

efficiently (Zhang et al., 2013). Each activity can be associated with an ID for system 

interpretation. Inputs can be defined as any entity that are consumed or modified during an 

activity and converted to outputs. Similarly, outputs can be defined as entities produced by an 

activity (Ding et al., 2009).Resources can be defined as the entities that provide support for 

the completion of an activity (Ding et al., 2009; Zhang et al., 2013). The methods govern the 

conversion of inputs to outputs and can be represented with the help of engineering rules 

based on logic and mathematics thus governing the conversion of inputs to outputs during an 

activity.   

2.6.2 Engineering Rules 

Engineering rules containing both design and manufacturing rules are often described by 

containing two important parts: product and process knowledge (Stokes, 2001). Product rules 
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contain clauses or criteria for relationship between different components of a product. 

Process rules contain criteria for different task sequence and selection based on requirements 

or constraints.  

According to La Rocca, 5 different types of product rules can be described –  

• Logic rules: rules based on logical statements and also containing conditional ‘If-Then’ 

and ‘If-Then-Else’ expression 

• Math rules: contain mathematical formulae and comparison symbols  

• Geometry handling rules: parametric and geometry manipulation rules governing the 

dimensions as size of the product 

• Configuration selection rules: combination of logic and math rules governing the 

topology of a product. This includes the positioning of the product as position co-

ordinates and orientation vector in the virtual space  

• Communication rules: rules governing communication of system code with external 

formats            (La Rocca, 2011) 

Similarly, La Rocca describes process rules in the following ways –  

• Process sequence: rules governing process sequence steps and input-output 

relationships 

• Optimization: rules defining optimisation of process through functionality and 

constraints. This includes interdependencies between tasks    (La Rocca, 2011) 

As engineering rules are often based on logic, the type of logic will govern the suitable 

representation technique. According to logic, engineering rules can further be classified as 

one of the following types – 

• Transformation – it includes simple statements that links to other statements and may 

thus be a statement declaration  
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• Derivation – it includes infer on facts within a statement and may thus be an 

implication declaration 

• Reaction – it includes both trigger and production rule in the form of antecedent and 

consequent. Trigger rules have events in their antecedents and production rules have 

facts in their antecedents. ‘If’ part is called an antecedent and ‘Then’ part called a 

consequent and they are linked by logical operators such as ‘AND’ and ‘OR’. 

Production rules can include nested facts in both antecedent and consequent. In order 

for the consequent to be true the antecedent need to be true. This is the reason for the 

antecedent and consequent facts based statement to be named a production rule. An 

example is –  

Antecedent     Consequent  

IF (material = Aluminum) THEN (Welding method = DC welding)    

          (Reijnders, 2012) 

For this thesis with focus on DEA, the engineering rules will contain all engineering design 

rules based on logic and math along with heuristic rules, production rules and process rules. 

These may be geometry handling rules as well as configuration rules and process sequencing 

and optimization rules (Chapman and Pinfold, 1999). They can be broadly classified as – 

• Logic based Rules - rules based on engineering logic. These rules can include 

production rules, geometry rules, configuration rules and process rules. The process 

rules contain both process sequencing rules as well as optimization rules.   

• Math based Rules - rules containing mathematical symbols and formulae. These rules 

can also include of production rules, geometry rules, configuration rules as well as 

process rules containing both sequencing and optimization rules.   

• Production Rules - all statements in the form of ‘If’, ‘Then’ and ‘Else’ containing an 

antecedent and consequent linked by an operator such as ‘AND’ and ‘OR’. These can 
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be either logic based rules and math based rules. Some rules can also overlap as 

demonstrating features of geometry rules, configuration rules and even production 

rules. In fact, all production rules are either geometry and configuration rules but they 

are expressed in ‘If’, ‘Then’, ‘Else’ representation.  

• Heuristic Rules - rules not based on logic. Sometimes, engineering rules are rules of 

thumb and not based on logic statements. However, they may be geometry rules, 

configuration and even process rules based on rule of thumb. Heuristic rules are thus 

disjoint with logic rules, which means a rule can either be a heuristic rule or a logic rule 

but can’t be both.   

2.6.3 Function and Behaviour: Engineering Design Process 

In order to create an efficient DEA system, it should be able to capture and represent the 

design intent in the form of process structure, function and behaviour and in context to the 

product (Brunetti and Golob, 2000). In engineering design process, a model or a framework 

should include function, behaviour, structure (F-B-S) and all design activities for a complete 

process description (Gero and Kannengiesser, 2007a). Alternatively, in order to describe an 

engineering design process for realization of a physical product, its function, behavior and 

structure (F-B-S) need to be defined (Alvarez Cabrera et al., 2009; Tomiyama et al., 2013).  

‘Function’ is defined by an effect of a product or a component (Szykman et al., 2000a) or the 

purpose of the product or a component (Foufou et al., 2005; Patil et al., 2005). Thus 

‘Function’ can also be described as what the object is for (Gero and Kannengiesser, 2004). 

‘Behaviour’ can be described as a method of how a product or a component implements its 

function (Foufou et al., 2005; Patil et al., 2005). It can also be described as what the object 

does as deduced from its structure in the form of attributes (Gero and Kannengiesser, 2007b). 

F-B-S as function-behaviour-structure are artifacts that offer extremely high value during the 

conceptual and preliminary design phases (Erden et al., 2008). Regarding function in context 
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to engineering design process, it can be defined as a requirement that a design process is 

going to perform with the change in state of the product. Fulfilling functional requirement as 

product’s function is one of the key aspects of a product design process (Bluntzer et al., 

2009). Similarly, process behaviour can be stated as a method or utilisation of how the design 

process is going to achieve its function (Reddy et al., 2015).  

If we consider either product or process as an artifact and then define function and behaviour, 

we can state function as what the artifact is supposed to do or the satisfaction of artifact’s 

requirements. The behaviour can be stated as a method of how the artifact performs its 

function (Fenves et al., 2008). The process function can be stated equally as functional 

requirement of the design process. The function or functional requirement of a process 

governs the flow of energy, material, inputs and outputs of a process (Wang et al., 2002).Both 

function (as functional requirements) and behaviour along with product parameters and 

manufacturing knowledge have also been modelled as artefacts in context to DEA systems 

for all stages of design lifecycle from conceptual, embodiment to detailed design (Bhaskara, 

2010; Brunetti and Golob, 2000; Chulvi et al., 2007; Roy et al., 2001).  

2.6.4 Product Knowledge for Engineering Design Process 

‘Feature’ can be described as associated knowledge of a component which aids in identifying 

its function (Patil et al., 2005). Feature can also be defined as ‘an information unit 

representing a region of interest within a product (Brunetti and Golob, 2000). ‘Form’ can be 

defined as a physical layout of a component (Szykman et al., 2000a). ‘Fit’ describes the 

relationship of a component with other components and assemblies (Pinfold et al., 2008). 

Form, fit and features constitute the structure of a product. ‘Form’, ‘Fit’ and ‘Features’ entail 

rules and constraints governing product geometry, structure and material. A key 

characterization of product’s state can be stated as the change in attributes of a physical 

product (Alvarez Cabrera et al., 2009). Correlating F-B-S we can state the behaviour of the 
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object is dependent upon its attributes and helps in achieving the function of the object. 

Behaviour of the product and its function alter its attributes indicated by change of state. 

‘Rationale’ or ‘Design Rationale’ can be described as reasons behind design decisions 

(Medeiros et al., 2005). ‘Rationale’ can also be stated as the reason or explanation behind the 

design and specification of an artifact (Poorkiany et al., 2016). It includes the background 

knowledge which helps in reasoning and decision making for a particular design choice 

(Regli et al., 2000). For a process-based system, design rationale is descriptive capturing 

issues and available options illustrating design progress aiding in design process decision-

making. In this research, Design Rationale as a concept or knowledge type is captured in a 

process-oriented approach.  

2.7 Knowledge Modeling for Engineering Design Process 

Knowledge modelling as an integral part of knowledge management is a critical activity in 

development of a knowledge based system (KBS) or a framework which helps in fulfilling 

DEA through KBE(Isaksson, 2003; Milton, 2007; Schreiber et al., 2000). Knowledge 

modelling process should ensure that the complete engineering knowledge of a product 

design process is captured, represented and processed efficiently. As discussed earlier, 

knowledge acquisition will be performed with mechanical design process as the main focus 

along with inclusion of both geometric and non-geometric knowledge of the product 

including process function, behaviour and structure (F-B-S) (Tomiyama et al., 2002).      

2.7.1 Systems Engineering (SE) 

Systems engineering can be defined as a multidisciplinary approach towards system 

specification, design, validation and verification(Krasner, 2015). The function of Systems 

Engineering (SE) is to ‘guide the engineering of complex systems’ (Kossiakoff et al., 2011). 

Thus SE deals with interrelated components, subsystem and parts, which form a complex 
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system and interact with each other and external elements in order to fulfil the system 

objective.A number of lifecycle models were initially developed for systems engineering 

purposes in the form of design, development and testing of the system such as Waterfall, 

Spiral and Vee models. Waterfall and the spiral model have been extensively used with 

modifications in various software development projects whereas “Vee” models have been 

used with variations in the systems engineering and development. Most of the existing SE 

standards have evolved from Department of Defense (DoD-MIL-STD 499) (Estefan, 2007).  

2.7.2 Model Based Systems Engineering (MBSE) 

Model based systems engineering (MBSE) is a model centric approach which helps 

understand the complex system behaviour, relation of requirements to functions and provides 

a complete view of the system model with the help of formalised and semantically rich visual 

modelling languages and tools(Krasner, 2015). According to International Council on 

Systems Engineering (INCOSE), MBSE can be defined as ‘the formalized application of 

modelling to support system requirements, design, analysis, verification and validation 

activities, beginning in the conceptual design phase and continuing throughout development 

and later lifecycle phases(INCOSE, 2007). Some of the important MBSE approaches are 

Object Management Group (OMG) visual modelling languages and standards in the form of 

UML and Systems Modelling Language (SysML). SysML was developed with collaboration 

between OMG and INCOSE and derived a lot of features from UML version 2.0. INCOSE 

object-oriented systems engineering method (OOSEM) uses a top down model based 

approach based on OMG SysML standards(Estefan, 2007). Model Drive Architecture (MDA) 

was an approach initiated by OMG in order to drive interoperable and re-usable architectural 

frameworks for systems. Dov Dori’s Object-Process Methodology (OPM) is another crucial 

formal paradigm to model based systems development and support(Dori, 2002). 
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2.7.3 Utilisation of SE and MBSE for Engineering Design: Product Development 

Vee Model was utilised for knowledge capture of design process for complex product 

development by (Woestenenk et al., 2011).  It is illustrated with figure 2-4.  

 

Figure 2-4: Vee Development for Engineering Design Process (Woestenenk et al., 2011) 

 

As it can be observed, various steps include formulation of system function and requirements, 

detailed design and then verification of both systems and detailed components. The validation 

steps as testing are in synchronisation with the initial step of functional requirements analysis 

and detailed design. Some of the crucial points while following the Vee development process 

for engineering design (Woestenenk et al., 2011) are –  

• Appropriate methods and language for capture of the complete engineering design 

knowledge in terms of concepts, decomposition and relations  

• Capture and representation of functional requirements and structural decomposition for 

high level models along with inclusion of design activities, components and product 

parameters for detailed models 

• A mechanism or a method to define and populate the knowledge models indicating the 

flow of information from functional requirements through to design activities and 
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product parameters which can be applied for generic use-cases and can be tracked in 

context of wider engineering design domain  

• An equivalent machine interpretable formal representation of high level and detailed 

models for providing automation in engineering design along with a tool that can 

support the updating and modifications in the developed models  

Thus the knowledge capture and representation stage for development of process model for 

DEA with KBE approach will adopt principles of “Vee” development model stages as an 

integral part of MBSE.  

2.8 Existing Models and Frameworks for Engineering Design and 

Manufacturing Processes enabling DEA – KBE perspective 

Many frameworks and applications exist for automation purposes in PD cycle. Most of them 

focus on product modelling and generation through models and framework along with 

various specific aspects of engineering design, analysis and manufacturing processes. 

Interestingly, none of the methodology or framework provides capturing of a generic and re-

usable process and product domain knowledge, which can be utilised for developing a KBE 

application (Verhagen et al., 2012). Some of the crucial frameworks and models that have 

been developed for product development and addressed for knowledge based design and 

DEA purposes are discussed here. 

 

Table 2-2: Existing Models and Frameworks for Design Engineering Automation (DEA) 

Model / Framework - DEA Description  References 

Design and Engineering 

Engine (DEE)  

In addition to KBE methodologies in the form of MOKA 

as discussed earlier, DEE is another model, which involves 

multidisciplinary design optimization approach (MDO). It 

includes of three modules – design process optimisation 

module, multi model generator (MMG) and detailed 

analysis module. Thus, DEE provides improved facilities 

as compared to MOKA by including detailed analysis and 

MDO and laid the foundation for KNOMAD 

methodology. However, it offers some limitations by not 

(Curran et al., 2010; 

La Rocca et al., 

2002; La Rocca and 

Van Tooren, 2007; 

Reddy et al., 2015) 
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providing a method for knowledge capture and 

formalisation of captured knowledge along with its 

delivery in the mainstream processes. 

Linked knowledge in 

manufacturing, engineering 

and design for next 

generation production 

(LinkedDesign) 

Linkeddesign project focussed on both KBE and GA based 

DEA. They explored various methods of knowledge 

acquisition and codification as formal representation of 

engineering knowledge with MOKA methodology as the 

basis and UML based product representation. One of the 

key focuses was identification of neutral formal 

representation standards with preserved semantics, which 

can represent the engineering knowledge as domain 

knowledge for DEA that can be re-used by both KBE 

applications such as AML as well as CAD based GA 

applications such as Siemens NX KF and CATIA 

Knowledgeware. For knowledge codification as neutral 

formal representation, various standards were identified 

such as STEPstandard as an ISO 10303 with focus on 

Application Protocol (AP) 242, XML representation of 

AP242 and ontology / rule languages such as Web 

Ontology Language (OWL)/Semantic Web Rule Language 

(SWRL) and Rule Interchange Format (RIF). A major 

contribution of the Linkeddesign project was the 

recommendation of RIF for neutral standard representation 

and exchange of engineering rules. However, it was not 

demonstrated that an engineering design process could be 

represented in RIF and whether the process model is 

relevant for DEA along with a requirement to further 

validate RIF. OWL/SWRL was identified as a strong 

possibility of formal representation or codification of 

engineering knowledge with preserved semantics. 

(Colombo et al., 

2014; Lützenberger 

et al., 2012; Mocan 

et al., 2015; Perales 

and de la Maza, 

2015) 

Reijnders Post MOKA, another contribution was made by Rejinders 

in developing platform independent and formal 

representation of engineering design knowledge for 

aerospace industry for DEA with a KBE approach using a 

combination of OWL, RIF and MathML using a 

commercial implementation tool Allegro Graph based on 

Allegro Common Lisp platform. Although product and 

process knowledge was represented, the main focus of the 

captured and represented knowledge was based on 

engineering rules for product design. MOKA ICARE 

forms were used as informal representation with the 

corresponding platform independent formal representation 

of rules in RIF-Production Rule Dialect (PRD) and 

Content MathML. Although it offered successful 

formalisation of design knowledge, the predicates of the 

rules such as the antecedent and the consequent couldn’t 

be queried due to integration between RIF-PRD and OWL 

leading to loss of contextual relevance of rules with co-

related knowledge.  It was also recognised that single rules 

related to an object or a process were easily modelled, but 

multiple rules were difficult to implement. 

(Reijnders, 2012; 

Van Tooren et al., 

2003) 

Sanya and Shehab Following the MOKA methodology, Sanya and Shehab 

performed work for the aerospace industry for 

development of platform independent knowledge models 

using OWL/SWRL to formalise the design knowledge 

with Protégé as a tool. The building of platform 

independent knowledge models for DEA with KBE 

approach also helps in building of dynamic, portable and 

adaptable systems and supports re-usability of knowledge. 

(Sanya et al., 2011; 

Sanya and Shehab, 

2015, 2014) 
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Although the knowledge model was based on functional 

requirements as the basis, the focus was on design 

parameters, constraints and rules for specific aerospace 

components such as compressors and turbines based on 

feature and shapes such as sleeve, panel and flanges. It 

also recognised that using semantic web based languages 

such as OWL ontology for DEA with a KBE approach, 

there was a lack of standard method based on a set of 

activities which would deploy the OWL model for use in 

KBE applications with a lack of widely adopted ontology 

development for engineering design and DEA.  It was also 

recognised that there was lack of research between 

ontology development and engineering design. 

J Kulon: Hot Forging 

Process  

A KBE model for automation of hot forging process with 

focus on the product model was developed by. In order to 

include relevant product knowledge, the model included 

design rules, production rules, and material information. 

The automation application method consisted of an 

integrated relational database over the web browser with 

requirements, design rules and product modelling key 

concepts such as components, material and manufacturing 

rules and complex interdependencies within the domain 

concepts. The visualisation of the product geometry and 

structure was done over the web with the help of Virtual 

Reality Modeling Language (VRML). However, the 

design and production rules pertain to product 

functionality, structure and behaviour instead of process-

centred approach.  

(J Kulon et al., 

2006; J. Kulon et 

al., 2006; Qin et al., 

2003) 

Adaptable Methodology for 

Automation Application 

Development (AMAAD) 

A KBE system application for aerospace design and 

analysis process was developed in a commercial 

environment based on MOKA and CommonKADS 

methodology. The AMAAD methodology focused on a re-

usable, generic and high-level model. It laid emphasis on 

object-oriented (O-O) UML based notation and Integrated 

Definition for Functional Modelling (IDEF0) notation as 

part of agile development with MBSE approach. It 

involved knowledge acquisition and knowledge modelling 

after requirements specification before proceeding to 

system development and validation. The output of the 

developed system could be integrated with CAD 

architecture through platform independent and neutral 

format. However, a major limitation was it didn’t provide 

a structured method to conduct the individual and detailed 

activities along with association of these activities with 

complex system working and its attributes required to 

achieve DEA with a KBE perspective  

(Van Der Velden et 

al., 2012; Van der 

Velden, 2008) 

2.9 Synthesis and Findings of DEA Review 

MOKA methodology focused on development of neutral formal representation of the domain 

knowledge in the form of ICARE forms for the development of an independent model of the 

engineering design process knowledge at the system level or machine interpretable level for 

DEA. It recommends XML as the basis for development of neutral model for system 
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interpretation of the informal model but doesn’t provide a detailed method for developing the 

neutral model (Stokes, 2001). The neutral formal model will be the basis of the software code 

as the source code of a KBE application or tool. This is one of the research gaps that this 

research will satisfy by providing a detailed method for development of a neutral formal 

process model for DEA with MOKA methodology as the basis.    

As per Wagner (Wagner et al., 2003, 2001) the problem in knowledge acquisition and 

modelling in context to an expert system for automation, is the method of acquiring both 

structured and non structured domain knowledge for decomposition into fragments and 

representing it in the appropriate computer format for example an expert system shell. As 

KBES are expert systems with geometry kernel for the engineering domain, knowledge 

modelling is extremely critical for DEA in context to KBES.  

KBES allow integration of rule-based design, geometry manipulation and computational 

capability in the form of forward and backward chaining as inference or reasoning 

mechanism for knowledge processing, which differentiates KBES from traditional CAD and 

expert systems and allows KBES to combine their individual capabilities for complex 

problem solving (La Rocca, 2011; Rocca, 2012). As stated earlier, the main contribution of 

MOKA methodology was the capture stage through ICARE forms and formalise stage 

through MML as visual representation. It tried to address automatic generation of KBES 

source code from MML as proof of concept for preliminary analysis even though MML 

didn’t comply with OMG requirements (Abdullah et al., 2005). As PCPACK can be used for 

MOKA methodology requirements, PCPACK was used as a knowledge modelling and 

representation tool for MML diagrams and produced an internal XML representation as 

neutral formal representation for conversion to the source code in a KBES. However issues 

were encountered for mapping of the neutral formal knowledge model to a KBES such as 

lack of semantic clarity of XML, which causes multiple translators to interpret the XML 



 48 

based neutral formal knowledge model (La Rocca, 2011). Also, lack of focus on other 

knowledge representation (KR) for development of formal models was a major shortcoming 

of MOKA which can lead to knowledge accessibility and re-use issues (Curran et al., 2010; 

Verhagen et al., 2012). Thus, the formal knowledge model from MOKA as MML was unable 

to assist in DEA using KBE methodology and application (Chapman et al., 2007).      

KNOMAD as a methodology tried to integrate multidisciplinary knowledge for design 

optimisation and DEA (Curran et al., 2010). The various steps include – (K)nowledge 

Capture, (N)ormalisation, (O)rganisation, (M)odelling, (A)nalysis, (D)elivery. For the 

(M)odelling stage, it adopted the MMG approach by DEE and built upon it to provide a 

structured methodology for DEA through KBE. It provided tools such as Protégé to support 

ontology construction using Web Ontology Language (OWL) for both products and 

processes allowing for knowledge traceability and application deployment. However, various 

areas of improvement were identified such as a clear, structured and concise knowledge 

modelling and analysis approach or method along with the validation of the method with 

original case studies (Curran et al., 2010).  

Thus, it is identified from the literature that most of the KBE methodologies including 

KNOMAD and MOKA being the most comprehensive, there is a lack of process oriented 

approach to capture engineering design with manufacturing knowledge for representation in a 

platform independent and neutral formal manner with preserved semantics (Chapman et al., 

2007; Rocca, 2012; Verhagen et al., 2012). Most applications developed, as KBES are case 

based and ad-hoc with no adherence to existing structured methodologies (Rocca, 2012; 

Phillip Sainter et al., 2000). Also most of the applications developed are black box, with lack 

of knowledge transparency and traceability issues for DEA (Ammar-Khodja et al., 2008; J 

Kulon et al., 2006; J. Kulon et al., 2006). This includes lack of semantic clarity in the design 

intent for example engineering rules and their relevance to the product and process 
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knowledge. The knowledge is decoupled from original context, documentation is not 

explicitly stated with their clear semantics such as co-relation of engineering rules in the form 

of formulas and equations. This leads to lack of knowledge sharing, traceability and re-use as 

well which is enhanced by the difficulty of knowledge sharing across different proprietary 

platform specific KBES or KBE applications (Verhagen and Curran, 2010; Verhagen et al., 

2012). Formalisation is the key to enhance re-usability and sharing and address the needs of 

DEA with application development. However, the key problem is an unstructured knowledge 

modelling process, which leads to unstructured knowledge codification as formal 

representation (Klein et al., 2014).  

There is a lack of capture and representation of non geometric knowledge in most KBE 

applications for re-use such as project constraint reasoning, problem solving methods and 

solution strategies as part of design intent (Baxter et al., 2007). As stated by Pablo Bermell-

Garcia, ‘using current data exchange standards, it is only possible to transfer an instance of 

the design and not the knowledge embodied to generate it’ (Bermell-Garcia, 2007). Thus new 

knowledge bases should ensure knowledge sharing across different platforms with neutral 

usage through open standards. They should be flexible and user friendly as well for effective 

sharing, re-use and maintenance with semantic clarity of design intent (Verhagen et al., 

2012).  

Similarly, the source code in a KBES for a particular function for product parameters doesn’t 

reflect the stage of the design process such as conceptual design or detailed design phase. The 

implementation of the function varies from stages of the design lifecycle such as conceptual 

and detailed design. Thus, a suitable method for knowledge modelling for DEA using KBE 

approach should incorporate the relevant aspects of engineering design and development 

process such as mechanical design with DFM. Also, the neutral formal standard should 

ideally provide visualisation support for codified domain knowledge for direct consumption 
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by design engineers (Klein et al., 2015). According to Jubierre and Borrman (Jubierre and 

Borrmann, 2015), it is crucial to achieve high abstraction of engineering knowledge 

consisting of technical guidelines and standards for DEA using KBE approach. The 

knowledge base should have high level of abstraction with a logical modelling approach for 

development of a neutral formal representation layer for automation with generative 

modelling capabilities.    

In order to address the current limitations such as those by Linkeddesign, Sanya/Shehab, 

Reijnders, DEE and others, this research aims to bridge these identified gaps by providing a 

structured method for process based knowledge modelling in concurrency with MBSE 

approach, its formal representation and its verification with test use-cases as corresponding 

analysis. This method of schema mapping will also provide transparency and traceability 

with semantic clarity in the developed process knowledge model with both geometric and 

non-geometric knowledge for re-use as part of product development. This research will also 

provide mapping of engineering design aspects with focus on mechanical design and DFM 

for DEA and re-usable ontology development method with multiple rules and generative 

modelling capability.  

2.10 Summary 

This chapter discusses various aspects of DEA with virtual engineering. It also discusses all 

knowledge entities required to model as part of systems engineering and MBSE with an 

MDA approach for DEA such as process description, engineering rules, function and 

behaviour. Through a detailed analysis of existing DEA techniques various gaps were 

recognised such as a detailed and structured method for development of neutral formal 

representation of an engineering process model with focus on mechanical design and DFM 

with both geometric and non-geometric knowledge for traceability, transparency and 

semantic clarity with contextual relevance as none of the existing KBE methodologies were 
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successful in achieving DEA from an independent neutral formal representation of a process 

model for engineering design (Elgh and Johansson, 2014). This is further enhanced by lack of 

open standard usage, documentation for knowledge modelling and knowledge re-use. This 

research will bridge these gaps by providing a structured and detailed method in the form 

of a re-usable process model for capturing the activities of the mechanical design process 

with DFM/DFA and their corresponding neutral formal representation with preserved 

semantics for DEA with generative modelling. KBE based approach for DEA will be 

primarily adopted along with GA in order to develop a knowledgebase with both geometric 

and non-geometric knowledge for automation with primary focus on the mechanical design 

process with manufacturing knowledge. The developed process model will be generic, 

expandable both as informal and formal representation to enable re-usability. This will 

include design process, rules based on logic, process function and behaviour with product 

knowledge as F-B-S. In order to develop this model an understanding of existing informal 

and formal representation standards for knowledge modelling of mechanical design process 

with activity decomposition and inter-dependencies between knowledge is required which are 

discussed in the next chapter.  
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3 Informal and Formal Modelling of Engineering Processes 

3.1 Introduction 

Chapter 2 provided an overview of design engineering automation (DEA) methods and 

techniques for mechanical design process as part of product development (PD). Various 

knowledge types as design decomposition features were described as integral constituents. 

This chapter will initially discuss existing informal and semiformal modelling standards for 

knowledge modelling of mechanical design processes with DFM for DEA along with their 

comparative analysis. The later part will elaborate on the formal representation standards, 

which will ensure mapping of the concepts of the informal model to the neutral formal 

representation with preserved semantics. 

3.2 Process Modelling for Design Engineering Automation 

‘Process modelling is an activity set to be followed to create one or more models of a process 

for a certain purpose, usually the representation, explanation, design, specification, analysis, 

or control of a given process’ (Amigo et al., 2013, Pg 169).According to the National 

Institute of Standards and Technology (NIST), a ‘process model for product realisation is 

defined as a computer–interpretable representation of human and machine activities and their 

interactions required for realisation of a product. This may include early concept and 

configuration design activities, detailed design, prototyping, testing, tooling, fabrication, 

assembly and other activities within the scope of the realisation process’ (Lyons et al., 1995).  

There are many methods of capturing and representing knowledge for a DEA or a KBE 

system. The approach that will be followed as part of this research aligns its concepts to 

object process methodology(OPM) whose feature is that it breaks down the knowledge into 

three types of entities: objects, processes, and states with objects and processes being higher 

level building blocks (Dori, 2002). OPM is also recognized as an International Standards 



 53 

Organization (ISO) standard in the form of ISO/PRF PAS19450 (Dori, 2002).The OPM 

methodology keeps systems as the viewpoint and enables merger of object-oriented and 

process-oriented modelling. The states are indicated by links, which exist as both structural 

and procedural links representing the static and dynamic behavior of objects in a system. 

OPM allows for features such as inheritance, and aggregation of objects and their properties. 

It offers object-process language (OPL) and object-process diagram (OPD) as a means of 

formal representation of the informal representation (Dori et al., 2003; 2010). The OPL 

enables java code generation and automatic generation of UML diagrams and natural text 

output. Pertaining to this research, the formal representation of the entire process model 

should enable code generation for fulfilling the purpose of process automation. 

There are many governing factors for selecting a process modelling technique. Some of the 

existing purposes are task scheduling, resource allocation, cost-quality-time trade-offs and 

process improvement in terms of design-to-market lead time (Smith and Morrow, 1999). In 

order for a process-based model to be interpreted by KBE systems to achieve automation of 

processes, the process modelling technique should broadly satisfy the following functions–  

• Inter - dependencies between tasks to enable flow of information such as inputs, 

outputs, enablers, mechanisms into multiple tasks which will enable dependency 

backtracking in the formal representation in the system 

• Design process decomposition to the highest level of abstraction of artefacts, which 

includes all features such as function, attributes of a process and product with states and 

behaviour along with resources and requirements. This also includes control 

mechanisms and enablers for a process for failure modes through existing rules, 

constraints and logic for successful process adherence and completion. These may be in 

the form of geometrical tolerances, manufacturing constraints or material selection 

information for a design process 
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• Object-process relationship by breakdown of the knowledge content primarily in the 

form of objects and simultaneous representation of governing processes altering the 

state and behaviour of the object     

• Computational capability indicating that all aspects of the process model can be 

mapped to a software system or formally stored in a system with well-defined syntax 

and axioms which can then be queried and inferred (reasoning) to achieve DEA in 

terms of process automation  

The requirements as functions have been deduced with the help of the following sources 

(Calkins et al., 2000; Chapman and Pinfold, 1999, 2001; Chapman et al., 2007; COLOMBO 

et al., 2005; Cooper and LaRocca, 2007; Lohith et al., 2013; Prasad, 2006; Skarka, 2007) 

The process modelling techniques discussed will be analysed for various functions as 

described below -  

• Task scheduling and sequential planning 

• Cost/time/quality trade-off  

• Inter - dependencies between tasks  

• Design process decomposition 

• Object-process relationship   

• Computational capability  

Thus techniques, which satisfy the stated criteria out of all described functions, will be 

carried forward for formal representation.   

3.3 Informal Modelling Techniques for Engineering Processes 

Standards such as Design Structure Matrix (DSM), IDEFX suite, Petrinet, Signposting, Role 

Activity Diagram (RAD), MBSE based UML/SysML and Business Process Modelling 
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Notation (BPMN) will be discussed and analysed for capturing engineering design process 

knowledge to enable design automation in this section. 

A process modelling technique based on a matrix structure for sequencing and scheduling is a 

design structure matrix (DSM) (Eppinger et al., 1994). DSM lays emphasis on activity 

dependencies and can focus on complicated processes with more than 100 tasks (Smith and 

Morrow, 1999). It helps in assessment of risks throughout the design process along with 

failure modes (Amigo et al., 2013). DSM as a technique also helps in implementing 

concurrent engineering, which is a major advantage when cost is considered an important 

parameter. It also helps in generating key performance indicators (KPI) to show status of an 

activity (Amigo et al., 2013). However, one of the limitations of DSM is the lack of ability to 

manage tasks within an iterative group. Work Transformation Matrix (WTM) is a process 

modelling method which helps in decomposition of a larger task into small processes (Smith 

and Eppinger, 1997). It is derived from DSM with a modification that the non-diagonal 

elements in the matrix are represented by re-work quantity. However, a major shortcoming of 

WTM modelling is the assumption of computation of re-work as a linear function of work 

from a previous iteration, which is not true in all cases. Both the techniques including DSM 

and WTM have strengths in modelling interdependencies of tasks along with process 

planning and improvement but fail to capture all of the necessary design decomposition 

features along with lack of focus on object-process relationship.  

Modelling techniques such as Petrinet and Event Process Chain Diagram (EPC) fulfill the 

purpose of measurement of productivity of a process and work flow modelling (Amigo et al., 

2013). Petrinet is based on nodes and arcs to represent information (Murata, 1989) and most 

importantly consists of two kinds of nodes in the form of places and transitions. One of the 

limitations of Petrinet is its inability to consider time as a process variable (Browning et al., 

2006). Petrinet uses tokens as activity inputs to determine the activity’s state in order to 
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execute the activity (Knutilla et al., 1998). Petrinet fails to capture contextual information 

although it can be used for modelling of interdependencies of tasks (Stacey et al., 2000). To 

capture contextual information, modifications can be made to Petrinet. For example, NIST 

researchers used Modified Petrinet (MPN) in an object-oriented methodology to include 

additional information such as mechanisms and rules for governing failure modes along with 

resources in the form of people, machines and tools in order to implement computer aided 

concurrent engineering (CACE) (Lyons et al., 1995). Thus MPN can be used to indicate 

inter-dependencies within a process along with design decomposition features. An Event 

Process Chain diagram(EPC) helps in generating tools for benchmarking along with 

documentation of design data (Amigo et al., 2013; Browning, 2009). Both EPC and Petrinet 

techniques can be used for simulation of design process, which indicates the behaviour of the 

process in different scenarios. EPC fails to capture design decomposition features but MPN 

allows the capturing of design decomposition features along with focus on object-process 

relationship.  

A modelling method, initially for representing manufacturing systems, but which progressed 

to the design process is Integrated Definition for Functional Modelling (IDEF0) (Colquhoun 

et al., 1993; FIPS PUBS, 1993). It was derived from Structured Analysis and Design 

Technique (SADT).  An IDEF0 model comprises of a set of activity boxes referred as ICOM 

(Input, Control, Output, and Mechanism). The top level box is the highest fidelity model and 

can be represented elaborately in more detail using lower fidelity models (Colquhoun et al., 

1993; Gingele et al., 2002). The ICOM activity box for IDEF0 is illustrated with the help of 

Figure 3-1. Based on MOKA methodology, IDEFO was used with control and resources by 

developing Onto-Process for the production design domain in context to ICARE forms for 

automation with a KBE perspective (Martínez-Pellitero et al., 2011). PC-PACK was used as a 

knowledge acquisition tool for knowledge capture of inspection planning process. IDEF0 was 
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also used by (Gómez et al., 2013) along with UML notation as an information model for 

conceptual assembly design and its process automation with a KBE perspective.  

 

Figure 3-1: IDEF0 higher fidelity activity box with an example (PUBs, F.I.P.S, 1993) 

 

Although IDEF0 was found to be a very detailed graphical representation of the processes 

(Al-Ahmari and Ridgway, 1999) with all the control parameters, it was considered to be time 

consuming. A major shortcoming of the IDEF0 approach was its lack of consideration of 

time as a variable. IDEF1 was introduced after IDEF0 and was based on information 

modelling instead of IDEF0 functional modelling. It shows the relation between constraints 

and is based on entity relationships (Lyons et al., 1995; Mayer, 1992). IDEF1 lays emphasis 

on representing information based on a class of entities with attributes to define their 

behaviour (Lingzhi et al., 1996). Thus it can be used to model real world objects as well as 

information required to manage an enterprise. IDEF2 was introduced to address a major 

shortcoming of earlier IDEFX versions for their lack of inclusion of time. It was supposed to 

be dynamic but was not successfully implemented in commercial systems (Lyons et al., 

1995). IDEF3 shows the relation and logical flow of activities within a process(Mayer et al., 

1995). It is referred to as a process description capture method with time-based behaviour of 

activities. Another advantage of IDEF3 was that it can show two views of the process, one 

termed Process Flow Network (PFN) which lays emphasis on activity and the other Object 

State Transition Network (OSTN) which allows an object – centered view (Knutilla et al., 
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1998; Plaia and Carrie, 1995). The IDEF3 process description method lays emphasis on the 

flow of junctions, which embeds the time varying behaviour of activities.  

IDEF4 is an object-oriented (O-O) design process description and broadly consists of two 

models –class and method sub-models with diagrams such as protocol, inheritance and 

taxonomy diagrams which can be interlinked and sufficiently capture all intricate parts of a 

process (Mayer et al., 1992). The complete IDEF suite, however, adopts slightly different 

methods to capture process information, as illustrated. IDEF0 focusses on function 

modelling, IDEF1 focusses on information modelling, IDEF2 on simulation modelling, 

IDEF3 on detailed flow of junctions in a process flow, IDEF4 on O-O design and IDEF5 on 

ontology-based description (Plaia and Carrie, 1995). IDEF4 will be discussed in detail in the 

next section on ‘semi-formal modelling methods and languages’ to verify whether it satisfies 

the requirements for design process automation. IDEF5 will be discussed under ‘formal 

representation methods’.  

A Role Activity Diagram (RAD) enables a graphic view of the process with interactions 

between various processes. It allows an object-oriented (O-O) view of the process with 

changes in behaviour of the object with activities (Aguilar-Saven and Ruth, 2004). However, 

one of the limitations of RAD is its inability to decompose the high level processes to lower 

levels of process with precise details. RAD can be used to model workflows for 

improvement. RAD can be visualised through MS Visio (Shukla et al., 2014) but it captures 

high level aspects with activities assigned to roles for a particular system but doesn’t capture 

design decomposition features as stated in the requirements for design automation.   

A Data Flow Diagram (DFD) shows the flow of process data and information graphically. It 

enables decomposition of the process to a lower level of detail (Aguilar-Saven and Ruth, 

2004)  in contrast to RAD. It allows functional modelling and thus has conceptual similarities 

to IDEF0.  However, it fails to capture all design decomposition features.  
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Business Process Modelling Notation (BPMN) is an object-oriented (O-O) modelling method 

and is a recognised standard of the Object Modelling Group (OMG) (Sharma et al., 2014). It 

includes swim-lanes to show the roles of actors in a system. In this way, it has similarities 

with the RAD. BPMN can be used to describe activities with the flow of information similar 

to RAD, Unified Modelling Language (UML) activity diagram and EPC. BPMN can be 

enhanced to show activities, events, decision nodes, and activity along with actors and roles. 

BPMN defines 50 constructs and attributes, which can be grouped together in four categories 

– flow objects, connecting objects, swim lanes and artefacts (Muehlen and Recker, 2008). 

Flow objects are the most basic constructs and consist of events, activities and gateways. 

Connecting objects show interdependencies through arrows and links. Swim lanes can be 

used for categorization of activities. Artefacts can be used to add contextual information to 

the model. BPMN can be used to model both functional and non-functional requirements 

(Heidari et al., 2013), improve business processes in terms of lead time to market for 

products, and in the visualisation of processes. However, it fails to capture all of the design 

decomposition features to enable design process automation.  

The Signposting model is a task-based modelling method. It is based on three core elements – 

tasks, states and ‘signposting parameters’, offering three views – task level, process level and 

the parameter level (Clarkson and Hamilton, 2000). Depending upon the confidence of the 

parameters, a relationship between tasks is constructed. Thus it enables modelling of the 

interrelationships between tasks and can also be modelled as a DSM approach. Signposting is 

very useful for modelling uncertainty in the design process which is a critical feature 

(O’Donovan et al., 2003). It also offers inclusion of additional text information in its core 

constructs which can include requirements (Stacey et al., 2000). It allows for the capture of 

design decomposition features through the addition of contextual information along with 

interdependencies. It is illustrated with the help of Figure 3-2. Power and rigid body are tasks 
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to be performed. L, M and H are low, medium and high confidence rating of the parameters 

such as blade-loads and engine power. After the total confidence of the task is performed 

based on these parameters, it is used to determine whether the task will be successfully 

completed. Thus task status is derived from confidence mapping of parameters. 

 

Figure 3-2:Using Signposting to derive task status from confidence mapping of parameters 

(Clarkson and Hamilton, 2000) 

 

3.4 Semi-formal Modelling Methods and Languages for Engineering 

Processes (Light weight formalisms) 

As per the context of a formal representation of an informal process model to enable DEA, 

there exists a boundary between informal and formal modelling. All the informal process 

modelling techniques can be used to capture process-based data in a human readable form or 

natural text output form. Similarly, languages like UML and SysML can be used both to 

capture data and represent it formally using tools. Alternatively, any informal method of 

capturing data can be converted into XML serialisation, which then becomes a formal 

representation. A formal representation is a low level machine-readable format, which may or 

may not be easy to understand by humans as against a natural text output, but offers ease of 
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processing by machines. XML is a data modelling language, which can be used for 

representing information as tags and exchanging between different applications (Chung and 

Lee, 2002). XML as a basic language consists of a prolog, elements and an optional epilog 

(Antoniou and Van Harmelen, 2004). The prolog consists of an XML declaration.   

‘UML is a language for specifying, visualizing, constructing and documenting the artifacts of 

software systems, as well as for business modelling and other non-software systems’ 

(Aguilar-Saven and Ruth, 2004).UML version 1.4.2 is considered as an international standard 

as specified by the OMG in the form of ISO/IEC 19501 (ISO, 2005; Weilkiens, 2007). 

Various versions of UML exist, starting from OMG recognition of version 1.3 in 2000 to 

version 1.4 in 2001 to version 2.5 in June 2015 (OMG, 2016). UML version 2 is defined by 

ISO 19505 (ISO, 2012). 

UML is an MBSE approach and utilises object-oriented techniques and nine types of 

diagrams to model and exhibit information in the form of: class, object, state-chart, activity, 

sequence, collaboration, use-case, component and deployment diagrams (Aguilar-Saven and 

Ruth, 2004). UML 2.0 illustrates both structural and behavioural aspects of a system. 

According to Tim Weilkiens, it illustrates structural aspects through class diagram, 

component diagram, object diagram, composite structure diagram, deployment diagram and 

package diagram and behavioural aspects through activity diagram, use case diagram, state 

machine diagram, sequence diagram, communication diagram, timing diagram and 

interaction overview diagram (Weilkiens, 2007). There are three main modelling viewpoints 

in UML – use-case, static and dynamic models (Kim et al., 2003). The use case models 

define the generic processes that the system should handle. They provide a graphical 

description and although offer a very brief description, they are similar in principle to IDEF 

as a means of communication through graphical display. The static view includes class 

diagrams, which enable a static view in terms of objects and relationships within objects of a 
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class. The dynamic modelling view enables communication between the system objects. For 

dynamic modelling UML utilises four types of diagram- state, sequence, collaboration and 

activity diagrams (Kim et al., 2003). UML can be used as an informal modelling technique 

and then maps to a formal representation through a final diagrammatic layer known as 

implementation diagrams.  

Systems modelling language (SysML) was derived from UML as part of MBSE for the 

modelling of complex systems involving real life objects (Weilkiens, 2007). SysML inherits a 

lot of properties from UML with the addition of two types of diagram – requirement and 

parametric diagrams. It has minor variations on UML. Blocks in SysML replace UML 

classes. The class diagram in UML is replaced by a block definition diagram in SysML and 

the composite structure diagram in UML is replaced by an internal block diagram in SysML 

(Weilkiens, 2007). A very important point about SysML is that the models can be exchanged 

via a neutral format in the form of ISO AP233 (discussed later). Both UML and SysML with 

multiple viewpoints can exhibit and represent design decomposition features along with 

interdependencies of tasks.   

IDEF4 as a derivation of IDEF features but with a focus on object-oriented technique and is 

similar to UML in terms of layering and process views. Both are object-oriented modelling 

techniques, which are necessary for capturing processes and representing in a neutral format 

for process automation. ‘IDEF4 is an object-oriented design method for developing 

component - based client server systems. It has been designed to support smooth transition 

from the application domain and requirements analysis models to the design and to actual 

source code generation’ (Mayer et al., 1992).  IDEF4 provides three layers – system design, 

application design and low-level design. Thus it decomposes design into higher level of 

abstraction. Along with the three design models, IDEF4 includes a design rationale 

component. In IDEF4, symbols such as O, R, L, M, A, E are used to denote objects, relations, 
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links, methods, attributes and events respectively (Mayer et al., 1992). Thus its concepts 

become similar to UML by focusing on object-oriented modelling and by providing multiple 

layers of the design process. However, the design rationale component in IDEF4 is an 

additional feature and provides the designer with a wider view of the design data. This makes 

IDEF4 suitable for capturing all of the design decomposition features required for process 

automation. It also enables inter-dependencies between tasks along with illustrating changes 

in the state of an object with governing processes propagating throughout the model with 

object-oriented (O-O) modelling.     

3.5 Comparative analysis of informal and semiformal modelling methods 

and languages for knowledge modelling of an engineering process 

As stated earlier, the majority of process modelling techniques for knowledge acquisition or 

capturing can be visualized or edited with the help of existing tools. Some examples are – use 

of SIMAN / ARENA tool for simulation of IDEF0 (Al-Ahmari and Ridgway, 1999), ProCAP 

for  IDEF3 (Grüninger, 2009), and CAM for construction and visualisation of Signposting 

(Wynn et al., 2010). Thus computational capability will be excluded from the criteria in the 

analysis table as any process-based method of capture can be converted into XML syntax and 

stored in a system with a formal representation. The other three criteria i.e. inter - 

dependencies between tasks, design process decomposition and object-process relationship 

will be the most important functions in evaluating whether a process model can broadly 

capture enough information which when mapped onto a formal representation can achieve 

process automation. The analysis is shown in Table 3-1 
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Table3-1: Analysis of informal and semiformal modelling methods and languages for 

capturing engineering process knowledge to enable design process automation 

Modelling 

Methods & 

Languages 

 

Functions 

References 
  

Required for mapping to formal representation 

to enable design process automation 

Task 

Scheduling / 

Sequential 

Planning 

Cost / 

Time / 

Quality 

Trade-off 

Interdepende

ncies between 

tasks 

Design Process 

Decomposition 

Object-

Process 

Relationship 

DSM ✓ ✓ ✓   

(Amigo et al., 2013; 

Browning, 2009; 

Eppinger et al., 1994; 

Smith and Morrow, 

1999; Wang et al., 

2002) 

WTM ✓ ✓ ✓   

(Amigo et al., 2013; 

Smith and Eppinger, 

1997; Smith and 

Morrow, 1999) 

Petrinet ✓  ✓   

(Amigo et al., 2013; 

Browning et al., 2006; 

Grüninger and Menzel, 

2003; Knutilla et al., 

1998; Lyons et al., 

1995; Wang et al., 

2002) 

MPN (e.g. 

Coloured 

Petrinet, 

Timed 

Petrinet) 

✓  ✓ ✓ ✓ 

(Aguilar-Saven and 

Ruth, 2004; Amigo et 

al., 2013; Browning et 

al., 2006; Knutilla et al., 

1998; Lyons et al., 

1995) 

EPC ✓  ✓   
(Amigo et al., 2013; 

Browning, 2009) 

IDEF0,1,2,3,4,

5 
✓  ✓ ✓ ✓ 

(Aguilar-Saven and 

Ruth, 2004; Al-Ahmari 

and Ridgway, 1999; 

Amigo et al., 2013; 

Browning, 2009; 

Colquhoun et al., 1993; 

FIPS PUBS, 1993; 

Gingele et al., 2002; 

Grüninger and Menzel, 

2003; Klein et al., 2014; 

Knutilla et al., 1998; 

Lyons et al., 1995; 

Mayer et al., 1995, 

1992; Plaia and Carrie, 

1995; Wang et al., 

2002) 

RAD ✓  ✓  ✓ 

(Aguilar-Saven and 

Ruth, 2004; Badica and 

Badica, 2011; Badica et 

al., 2005, 2003; Holt et 

al., 1983; Shukla et al., 

2014) 

DFD ✓  ✓   

(Aguilar-Saven and 

Ruth, 2004; Al-Ahmari 

and Ridgway, 1999; 

Amigo et al., 2013; 

Colquhoun et al., 1993) 
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Signposting ✓ ✓ ✓ ✓ ✓ 

(Amigo et al., 2013; 

Baxter et al., 2007; 

Browning, 2002; 

Browning et al., 2006; 

Clarkson and Hamilton, 

2000; O’Donovan et al., 

2003; Stacey et al., 

2000; Wynn et al., 

2010) 

UML, SysML ✓  ✓ ✓ ✓ 

(Badica and Badica, 

2011; Booch et al., 

1999; Chen and Chen, 

2005; Kim et al., 2003; 

Klein et al., 2014; Nan 

and Li, 2012; Plateaux 

et al., 2009; Pooley and 

King, 1999; Sharma et 

al., 2014; Vernadat, 

2002; Weilkiens, 2007) 

BPMN ✓  ✓  ✓ 

(Amigo et al., 2013; 

Badica and Badica, 

2011; Heidari et al., 

2013; Scheuerlein et al., 

2012; Sharma et al., 

2014) 

 

3.6 Formal modelling and representation techniques for engineering 

processes and DEA 

In order to perform DEA from the process model, the focus of representation should be on 

low level machine interpretation instead of natural language (Patil, 2005; Szykman et al., 

2000b). This clarifies that the modelling techniques should enable computational reasoning as 

just opposed to modelling techniques for human aid (Hsu and Woon, 1998). There are many 

existing formal representations, which can be used for representing engineering process 

models.  

3.6.1 Classification of Formal Representation Standards 

Existing process descriptions and process ontologies not based on formal logic provide 

inadequate semantics for computational support in context to achieving granular DEA at an 

informal/semiformal layer (Gero and Kannengiesser, 2007a; Patil, 2005). The formal 

representation standards for process models for DEA can be divided as – 
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1. Semiformal/Formal and graphical representations (Non logic based) – these can be 

further subdivided into two categories –  

a. Semiformal/lightweight formalisms that support graphical representation – 

UML/SysML, OPM.  

b. Formal representations that support graphical representation and support 

reasoning - frames and semantic networks 

2. Logic based and ontology languages – Knowledge Interchange Format (KIF), Common 

Logic (CL) that are semantically based on formal logic. Ontology based languages as 

devised or encoded from formal logic also belong to this category. These include 

ontologies encrypted with both Description Logic (DL) and First Order Logic (FOL) 

based semantics such as Web Ontology Language (OWL) based on DL, Process 

Specification Language (PSL) and IDEF5 based on FOL and rule languages such as 

RuleML, RIF based on horn logic semantics. SWRL is an example of hybrid 

representation standard as derived from logic-based approach. Ontology language such 

as Gellish in the form of STEPlib is not based on formal logic. Although not officially 

from the logic paradigm, production rules can be considered as knowledge 

representation (KR) where production rule dialects have been devised for both RIF and 

RuleML.      

3. Schema based representations – STEP schemas modelled and represented in EXPRESS 

language, RDF/RDFS with XML serialisation 

4. O-O (Object-oriented) programming languages – examples are LISP, Java and C/C++ 

as programming languages, which can be used to implement schemas and models for 

machine interpretation such as UML/SysML models as well. They use classes and 

methods to represent the behaviour of the objects. The attributes are encoded in the 

class description. They are also used to embed design automation facilities for e.g. 
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proprietary CAD enabled automation such as CATIA knowledgeware uses C++ and 

AML as a proprietary KBE system (TechnoSoft Inc, 2003) is based on a different and 

much more dynamic language in the form of LISP thus making it generative and 

demand driven along with enabling dependency backtracking. A lot of other proprietary 

KBE systems such as GenDL are also based on dialects of LISP originated languages. 

LISP embeds multi-paradigm programming features on top of O-O programming.  

3.6.2 Reasoning: DEA 

Reasoning techniques for DEA systems or pertaining to knowledge based engineering 

representation can be broadly classified as follows – rule based (forward chaining and 

backward chaining), case based and model based (Van der Velden, 2008). There are other 

reasoning techniques such as fuzzy logic and neural networks. Reasoning can be classified as 

monotonic reasoning and non-monotonic reasoning. Monotonic reasoning indicates that a 

conclusion once inferred from the knowledge base can’t be altered if new knowledge entered 

is related to the conclusion. On the other hand, non-monotonic reasoning allows conclusion 

once inferred from the knowledge base to be altered if new knowledge entered is related to 

the query (Ivanov et al., 2015; Olivetti, 2011; Poole and Mackworth, 2010). Thus non-

monotonic reasoning adopts closed world assumption (CWA) in the sense unless new 

information is added, the knowledge base assumes the knowledge base is complete. As and 

when the new information is added the generated results can be altered. For example, 

production rules follow CWA. On the other hand, monotonic reasoning follows open world 

assumption (OWA) in which even after new information is added, the results generated by 

the reasoning engine don’t change. DL support monotonic reasoning and follow OWA. Thus 

languages such as OWL based on DL support monotonic reasoning following OWA.  

There is always a trade-off between reasoning and expressive power of a formal 

representation standard (Yahia et al., 2012). Thus the relationship between expressiveness 
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and reasoning is inverse, the more expressive the language its decidability or efficiency of 

reasoning decreases. Although FOL offers more expressiveness as compared to DL, it does 

so at the expense of computational efficiency in reasoning.  

3.7 Description of formal representation standards 

Process models can be shared across multiple domains using different representation 

formalisms but this may have problems due to syntax, semantics and axioms. The objective 

of the following section is to discuss and narrow down a few existing neutral formal 

representation techniques of the informal/semiformal model in terms of these issues that 

should help integration with multiple platforms and provide interoperability. The explanation 

will be performed in accordance with the classification of formal representation standards in 

section 3.6.1.    

3.7.1 Object Oriented (O-O) modelling standards – UML and SysML 

Both MBSE languages in the form of UML and SysML as O-O modelling languages have 

been discussed in section 3.4. They can also be referred as lightweight formalisms or 

semiformal representations. UML uses Object Constraint Language (OCL) in order to define 

rules and constraints for consistency checking across models (Vaziri and Jackson, 2000). 

UML data models follow CWA (Hennig et al., 2015). SysML is a language that can be used 

for capturing and representing of process-based data for a complex system and can be viewed 

as a formal representation with the help of tools such as visual paradigm. SysML models, 

once created, can be exchanged via ISO AP 233 of STEP(Weilkiens, 2007). Some of the 

important APs of STEP for consideration are AP233, AP213, Part49 and AP242 for formal 

storage of informal process models. However, both UML / SysML can capture process and 

product semantics in a lightweight formalism approach which needs to be transformed to a 

formal layer, which ensures common semantics through its axioms (Chungoora et al., 2013a).  
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Researchers based at NIST have used UML based lightweight neutral representations 

for product knowledge such as form, function and behaviour along with design rationale for 

developing Core Product Model (CPM) and product assembly features such as tolerances, 

kinematics at system level for Open Assembly Model (OAM) (Fenves et al., 2008; J. H. Lee 

et al., 2010; Rachuri et al., 2006; Sudarsan et al., 2005). There are other concepts related to 

product structure such as part/assembly and extensible geometrical knowledge such as 

features, tolerance, material and manufacturing process as well. Along with these product 

structure and manufacturing concepts, function, behaviour and design rationale have been 

represented for knowledge sharing using UML class based representation in CPM/OAM for 

product knowledge in context to PLM systems (Jae H. Lee et al., 2010; Jae Hyun. Lee et al., 

2010; Rachuri et al., 2005; Sudarsan et al., 2005).UML and SysML based representation such 

as class diagram, block diagram, parametric diagram have been used for functional and 

behavioural representation of mechatronic products (Alvarez Cabrera et al., 2009; 

Woestenenk et al., 2010). Design rationale has been discussed as the decision making reasons 

for engineering design and manufacturing activities and has been represented using UML 

based lightweight notation in context to CAD systems with interaction through an application 

programming interface (API) (Poorkiany et al., 2016) and generic product models as part of 

PD (Medeiros et al., 2005; Nomaguchi and Fujita, 2013). Design rationale was successfully 

captured using Design Rationale Editor (DRed 2.0) utilising UML class diagram with object 

classes and relationships based on an initial version of DRed with functional analysis in 

collaboration with Rolls Royce for turbine blades in context to PLM systems (Bracewell et 

al., 2009a, 2009b, 2004). DRed/DRed 2.0 as graphical representation were developed after 

the limitations of a previous informal representation for design rationale in the form of Issue 

Based Information System (IBIS) was realised (Eng et al., 2011).       
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3.7.2 Object – Process Methodology (OPM) 

As discussed earlier, OPM as a methodology enables formal representation in the form of 

Object Process Diagrams (OPD) and Object Process Language (OPL) (Dori et al., 2010). 

OPM models can be converted to other modelling languages and notations such as BPMN, 

UML/SysML as well (Grobshtein and Dori, 2011). However, it uses RDF/XML based 

representation of its unified object-process viewpoint of a system (Dori, 2004). Following the 

model based system paradigm (MBSE), Tesperanto language was developed as a next layer 

to OPL as an enhancement. It is also referred as ‘Technical Esperanto’. The main purpose of 

Tesperanto both as a methodology and language is to improve the quality of technical 

knowledge in a document following the structure of OPM methodology (Blekhman et al., 

2015; Blekhman and Dori, 2013). One of the very important criteria here is that OPL is 

suitable as a low level language for machine readability and code generation but not very 

clear and concise for human interpretation. Tesperanto as an enhancement on top of OPL 

makes it more human readable. Tesperanto enables both model to text generation and text to 

model generation (Blekhman et al., 2015; Blekhman and Dori, 2013). Thus, in-spite of this 

strength, this research would be deviating away from Tesperanto as it is more focussed on 

high level representation of knowledge from a technical document whereas OPL is more 

focussed on low level machine interpretation. 

3.7.3 Frames and Semantic Networks 

Frames are a formal method of representing an entity and its associated attributes and values 

(Minsky et al., 1975). They consist of data structures in the form of slots for allocating the 

attributes and values for a particular object (La Rocca, 2011; Obitko, 2007a; Prasad, 2006; 

Robin, 2013). The slots can have both values as attributes as well as encode methods or rules. 

They can also encode process knowledge or a production rule. Frames provide encapsulation 

and inheritance of object properties through slots, so in this manner provide similarities with 
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O-O paradigm. Through inheritance they can show interdependencies between object 

properties. Frames can exhibit declarative knowledge through attributes and procedural 

knowledge through methods (Negnevitsky, 2005). Models can be built using frames referred 

as frame based models or systems (Obitko, 2007a; Wang et al., 2006). These models use 

inheritance of slot values and attributes for marking interdependencies between various 

frames. An example of a frame-based model is Open Knowledge Base Connectivity (OKBC). 

OKBC can use frames properties to create various instances of a class and follows the O-O 

paradigm. Frames allow reasoning through two methods in the form of when-needed and 

when-changed (La Rocca, 2011). For ‘when-needed’ the system executes and generates the 

value of a slot when demanded by a user. For ‘when-changed’, often referred as demons, the 

system executes and generates the value of a slot as soon as the user makes any change.    

Semantic networks (Semantic nets) were introduced by Margaret Masterman in 1961 (Sowa, 

2008a). Semantic nets, also referred as concept network, is a graphical representation which 

uses vertices or nodes to illustrate concepts and edges to illustrate relations between the 

concepts (Obitko, 2007b). Semantic nets are mostly used for representing propositional 

information (Robin, 2013) and thus are also referred as propositional net. The vertices can 

represent physical objects or concepts. Semantic nets also support automated systems for 

reasoning on the knowledge represented (Sowa, 2015).    

3.7.4 Ontology Languages 

Various ontology languages can be devised from DL and FOL. As stated in section 3.6, PSL, 

OWL and IDEF5 are ontology-based representations. An ontology-based approach helps 

formalise the concepts and provides axioms as a formal means of constraining the meaning of 

the concepts in the language. Ontology is defined as the taxonomy of concepts and their 

definitions supported by a logical theory. Ontology defines a set of terms, entities and 

objects, classes and relationships along with formal definitions and axioms to constrain the 
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meaning of terms (Pouchard et al., 2000). Ontology can also be defined as ‘a requirement for 

conceptualization and illustrates a set of representation primitives with which a domain of 

knowledge can be modeled’. It provides machine-readable syntax for a domain knowledge 

(Mizoguchi, 2003). Using ontology, declarative formalism is used to represent domain 

knowledge as a set of objects. This set of objects represented is referred as universe of 

discourse (UoD) (Gruber, 1995). Thus ontology enables interoperability and re-usability of 

the data using common semantics of modeled information.  

All ontology languages don’t offer same expressivity. The level of expressivity of an 

ontology language is governed by its mathematical foundation in the form of logic (Dartigues 

et al., 2007). Logic can be defined as a precise and accurate notation for expressing and 

representing statements that can be judged whether true or false (Sowa, 2007).The use of 

mathematical logic supports automated reasoning. Some ontology languages are based on DL 

such as OWL whereas some ontology languages are based on FOL in the form of predicate 

logic such as PSL, IDEF5. DL can be considered as a subset or a decidable fragment of FOL 

(Obitko, 2007c). According to NIST, ontology languages can be classified as frame based, 

description logic, predicate logic and hybrid (Barkmeyer et al., 2003).    

Some of the other ontology-based representations not based on formal logic, are Core Plan 

Representation (CPR), Workflow Process Definition Language (WPDL), and Planning 

Domain Definition Language (PDDL). The ontologies for WPDL and PDDL do provide 

common semantics but are unable to provide axioms as a formal means of maintaining the 

semantics in the language (Gruninger, 2004).CPR (Pease, 1998) was initiated by the Defense 

Advanced Research Projects Agency (DARPA)-sponsored Object Model Working Group 

(OMWG). The basic concepts in CPR are action resource, actor, and objective with 

additional concepts such as plan and time point. However CPR as a language does not enable 

representation of all design decomposition features through its ontology.   
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3.7.5 Description Logic Based Languages 

Description logic (DL) is a knowledge representation (KR) formalism that evolved from 

semantic networks and frames but was considered as a subset or fragment of first order 

predicate logic (FOPL) (Baader et al., 2003; Wang et al., 2004). DL is primarily used for 

representing formal description of concepts and relations (Obitko, 2007d). A knowledgebase 

formalised by DL illustrates two components – ‘TBox’ and an ‘ABox’ (Baader et al., 2003). 

TBox exhibits intensional knowledge through terminology that is the concepts and their roles. 

ABox illustrates extensional knowledge also referred as assertional knowledge, which is 

relevant to the individuals for a particular domain of discourse. Thus DL based 

representations represent domain knowledge by first defining relevant concepts of the domain 

in the form of terminology and then using the concepts to specify the properties of objects 

and individuals in the domain. Pertaining to this research, the domain is the engineering 

design process for DEA. Languages based on DL support automated reasoning.  

3.7.5.1 Web Ontology Language (OWL) 

OWL is a web ontology language based on DL for creating and sharing ontologies on the 

World Wide Web and is regarded as a W3C recommendation (Bechhofer, 2009). OWL was 

developed as an extension of the Resource Description Framework (RDF) and is derived 

from the (DAML + OIL) ontology. OWL has three variants – OWL Lite, OWL DL and OWL 

Full(Wang et al., 2006, 2004). OWL lite offers ease of implementation but offers the least of 

the OWL constructs. It is based on description logic SHIF. OWL DL is based on descriptive 

logic and offers more constructs and, more importantly, reasoning ability. It is based on 

description logic SHOIN. OWL Full offers the most comprehensive constructs but deviates 

from reasoning ability and offers less ease of computation compared to OWL DL (Obitko, 

2007e). OWL-S, as a semantic markup for web services built on OWL, enables viewing of 

process with inputs, outputs, parameters, precondition and results (Martin et al., 2004). Thus 
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selection of a particular OWL Language is critical in order to represent design decomposition 

features (Bechhofer, 2009; W3C, 2012). OWL is built upon RDF/XML and RDFS supports 

interoperable ontological representation of concepts over the semantic web and enables 

automated reasoning (Bechhofer, 2009; Hay, 2006; W3C, 2012). It follows OWA (Hennig et 

al., 2015). It imposes cardinality upon its classes and properties. OWL adds properties such 

as relations between classes for e.g. disjointness, cardinality of properties, transitivity as 

compared to RDF Schema (RDFS)(Zhao and Liu, 2008a). 

3.7.5.2 Usage of OWL in Engineering Design, Manufacturing and DEA 

OWL ontology models for detailed product models including assembly features such as 

tolerances, kinematics at system level in OAM along with function and behaviour in 

CPM/OAM as abstract concepts have also been developed for usage in PLM systems 

(Fiorentini et al., 2007; Sarigecili et al., 2014). OWL ontology has been demonstrated for 

manufacturing domain for extensive usage with all machining processes for example 

MASON and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012). 

OWL ontology has been used for modelling and formal representation of design rationale for 

product knowledge (Li et al., 2014) and also in context to CAD systems (Witherell et al., 

2007). Ontology based representation for function and behaviour representation for various 

products such as gears, shafts and conveyors with focus on knowledge management has been 

performed with querying on the ontology models (Kitamura, 2006; Kitamura and Mizoguchi, 

2004). The advancement of DRed 2.0 for knowledge modelling of design rationale for 

turbine blades design in the context of PLM systems utilising UML class diagrams was 

formally represented using OWL/SWRL ontology for computational and system processing 

of the information (Bracewell et al., 2009a).  

Product semantic representation language (PSRL) is another ontology-based language, which 

is based on (DAML + OIL) and enables open standard usage. It focuses on neutral 
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representation of product data. Various concepts of non-geometric information such as design 

rationale, function, behaviour and part dependencies form an integral part of product data 

(Patil et al., 2005). PSRL based on DL with its syntax based on RDF/XML can be used for 

product data modelling and computer aided process planning (Liu et al., 2010).  

Work has been performed to develop semantic product models with geometric kernels using 

OWL/SWRL ontology across heterogeneous CAD systems with various product features and 

shapes such as surfaces, faces, edges, vertices, product parameters, datum planes and axis of 

rotation (Dartigues et al., 2007; Lu et al., 2016; Noh and Suh, 2008; Qin et al., 2016; Tessier 

and Wang, 2013; Zhan et al., 2010). Similarly, OWL has been used as neutral formal logic 

representation language with automated reasoning in context to consistency checking and 

reducing redundancies during design stage for product models with geometric representations 

as per heterogeneous CAD and PLM systems (Franke et al., 2011). 

The use of OWL ontology with formal data structures for engineering design knowledge 

management with design process functional requirements, manufacturing processes, material 

selection for representation along with inference and querying for automation has been 

performed (Kitamura and Mizoguchi, 2004; Li et al., 2009; Li and Ramani, 2007; Mehrpoor 

et al., 2013). The role of OWL ontology in the context of DEA with a KBE approach has 

been adopted and verified (El Kadiri et al., 2015; Furini et al., 2016; Kitamura and 

Mizoguchi, 2013). 

3.7.6 First-Order Logic Based Languages 

First order logic (FOL) is commonly used as a basis for KR enabling automated theorem 

proving and usage across the semantic web (Gruninger et al., 2013). FOL extends the 

expressiveness of propositional logic by adding quantifiers and variables to the existing 

propositional connectives of conjunction, disjunction, negation, implication and bi-

conditional. A universal quantifier expresses that a relation holds true for all instances of a 
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variable whereas an existential quantifier expresses that a relation holds true for some 

specified instances of a variable (Gruninger et al., 2013). DL acts as a subset of FOL.     

A graphical representation based on semantic nets and existential graphs is Conceptual 

Graphs (CG’s). CG’s provides a logic formalism to illustrate classes, relations, individuals 

and quantifiers (Obitko, 2007f; Sowa, 2008a). The simple version of CG’s is referred as Core 

CG’s and evolved from simple existential graphs developed by Charles Sanders Peirce. 

Extended CG’s provide a superset of the core CG’s (Sowa, 2008a). Although the graphical 

representation of CG’s in its linear form (Conceptual Graph Display Form) evolves from 

semantic nets but the CG’s express same semantics as FOL based on predicate calculus also 

referred as first order predicate logic (FOPL). The instances of concepts are represented in 

rectangle and relations between concepts as ellipse or circle. Some of the logical operators 

used by Conceptual Graph Display Form are conjunction and existential quantifier in order to 

translate the natural language to logic formalism. The formal representation of CG’s is 

referred as Conceptual Graph Interchange Format (CGIF) is a part of Common Logic (CL) in 

the form of ISO 24707 (Sowa, 2011). CL referred as ISO/IEC 24707 was developed as a 

framework for a family of logic based languages to allow information sharing and exchange 

with standardised syntax and semantics (Gruninger et al., 2013; Sowa, 2008b). CL evolved 

from both CG’s and KIF to be built into single ISO project in the form of ISO/IEC 24707 

(Sowa, 2008a). CL offers three dialects –  

• Common Logic Interchange Format (CLIF) 

• Conceptual Graph Interchange Format (CGIF) 

• XCL – XML based notation for Common Logic   

(Obitko, 2007g; Sowa, 2011, 2008a, 2008b) 

CGIF also exists in two forms – core CGIF and extended CGIF (Sowa, 2008a). Core CGIF 

expresses full semantics of CL. Its dialect maps to Pierce’s existential graphs. Core CGIF 
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uses primitives such as conjunction, negation and existential quantifier. Extended CGIF adds 

universal quantifier, type labels for restricting the range of quantifiers, Boolean contexts with 

type labels such as - If, Then, Either, Or, Equivalence, and Iff, and the option of importing 

external text into any CGIF text (Sowa, 2008a). Thus CL can be used as a logic based 

formalism for representing knowledge and allowing automated reasoning. It can be used as a 

neutral representation of knowledge allowing re-usability (Gruninger et al., 2013).     

KIF (Genesereth et al., 1992) as a computer-oriented language was developed by the 

Interlingua Working Group of the DARPA knowledge sharing effort (Knutilla et al., 1998). 

KIF as a language expresses its semantics in first order predicate logic and is syntactically 

based on LISP (Hayes and Menzel, 2001; Obitko, 2007h). It has formally defined semantics 

and breaks down knowledge into the form of objects with related attributes, processes and 

functions. Thus it aligns its methodology with OPM (Dori, 2002) and solves a major issue of 

pre-defined formal semantics. As stated earlier, OPM as ISO 19450 forms a part of ISO TC 

184 / SC5 (ISO, 2015). ISO TC 184 is managed by the International Standards Organization 

(ISO) and covers “Standardization in the field of industrial automation and integration 

concerning discrete part manufacturing and encompassing the applications of multiple 

technologies, i.e. information systems, machines and equipment and telecommunications” 

(Pouchard et al., 2005). 

3.7.6.1 Process Specification Language (PSL) 

To address the shortcoming of formulating common semantics and as a standard for the 

exchange of process specification, PSL was designed to facilitate correct and complete 

exchange of process information among manufacturing systems, such as scheduling, process 

modeling, process planning, production planning, simulation, project management, work flow 

and business process re-engineering (Grüninger and Menzel, 2003). A major purpose of PSL 

was to enable interoperability of processes utilising different process models and process 
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representations (Pouchard et al., 2005). PSL ontology is written in KIF format and forms ISO 

18629 as an integral part of ISO TC 184 (Pouchard et al., 2005). PSL ontology is based on 

FOL(Pouchard et al., 2000). Ontologies based on FOL exhibit more expressiveness compared 

to DL and can run inference on the modelled information. KIF exists as a predecessor to 

CLIF (Gruninger et al., 2013). Thus PSL can be considered as a process ontology language 

based on CLIF (Gruninger et al., 2013; NIST, 2008, 2007). PSL architecture consists of two 

parts – PSL Core (Foundation theories) and a set of extensions which can be mapped to 

EXPRESS schemas, UML and XML (Gruninger and Cutting-Decelle, 2000; Pouchard et al., 

2005).  

PSL ontology is divided into the following four theories – Core theories, Duration and 

ordering theories, Resource theories and Actor and agent theories (Gruninger, 2004). The 

PSL core provides four kinds of elements as primitive classes – object, activity, activity 

occurrence and time point. Within PSL ontology, ‘activity’ can be stated as ‘a repeatable 

pattern of behaviour’ and ‘activity occurrence’ can be stated as ‘concrete instantiation of this 

pattern’ (Grüninger, 2009). A crucial difference between activity occurrence and time point is 

that activity occurrence have preconditions and effects in the form of postconditions whereas 

time point just follow linear ordering of time and don’t have any preconditions and 

postconditions. The three relations in the PSL core are – before, occurrence_of and 

participates_in and the two functions are beginof and endof (NIST, 2004). To represent an 

activity-based description, PSL uses an activity role declaration (ARD) along with object 

declarations to describe objects being affected by the activities of the process (Grüninger and 

Menzel, 2003). The extensions allow for temporal relations between activities. Thus the use 

of extensions with experimentation may be used for representing design decomposition 

features other than the core theory. As PSL deals with standardized syntax and semantic 

sharing of modeled information, it is consistent with ISO 10303, ISO 13584 (PLIB) and ISO 
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15531 (MANDATE) (Gruninger and Cutting-Decelle, 2000). PSL axioms can represent 

inputs, outputs and parameters at both activity and the activity occurrence level but mainly 

focus on process specifications as opposed to process execution at run time (Bock and 

Gruninger, 2004). An external automated theorem prover is required for execution of PSL 

specifications as inference (Bock and Gruninger, 2005).  

3.7.6.2 Usage of PSL in Engineering - Manufacturing and Production  

PSL core through its object and activity description can represent object material and 

resources as inputs and outputs for product realisation along with activity interdependency in 

complex manufacturing processes (Qiao et al., 2011). PSL extensions allow for sequencing 

and ordering of activities including OR, AND relations and inclusion of sub activities thus 

allowing process logic. PSL extensions can also represent object features and form such as 

planes, edges and surfaces in correlation to activity flow from a manufacturing point of view 

for example machining activities such as milling, drilling, reaming, turning, boring and 

grinding. It represents the knowledge in concise neutral formal semantics for interoperable 

machine interpretation (Qiao et al., 2011). 

For the aerospace industry, process ontologies such as PSL have been used and validated for 

knowledge sharing and decision-making for PD but mainly for manufacturing and production 

domain with knowledge sharing across product design such as those developed by (Usman, 

2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et al., 2013a). Work performed 

by both Usman and Chungoora focussed on machining processes and the knowledge 

accessibility with engineering design. Min_precedes as a PSL axiom was extensively used to 

model manufacturing process flow and sequencing by (Usman, 2012). Min_precedes is 

transitive which can be accessed during inference. However, their applicability has been 

demonstrated for wide usage in PLM Systems. PSL has been demonstrated for process 

modelling for paint and dry manufacturing process with focus on activity inputs and outputs 
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along with object description (Grüninger and Menzel, 2003). PSL has also been used for 

process specification for cutting process by (Deshayes et al., 2005).  PSL was effectively 

used as a neutral representation of process specification for exchange between heterogeneous 

manufacturing software applications such as process planning, scheduling and workflow 

execution (Schlenoff et al., 1999).     

IDEF5 is another ontology-based formal representation based on the basic concepts of 

IDEFX series. It is also written in KIF format and is based on FOL (Benjamin et al., 1994). 

The IDEF5 ontology language comprises two languages: the IDEF5 Schematic Language and 

the IDEF5 elaboration language. The schematic language is a graphical language that allows 

input of information through an automated ontology capture tool. The elaboration language is 

a structured text language with full expressive power of FOL which allows input of 

information with detailed context (Benjamin et al., 1994). It enables storage and 

representation of classes, kinds and first and second order relations as well through the 

ontology. Both PSL and IDEF5 as ontology representations based on FOL initially evolved 

from KIF format, which originated in LISP application.  

3.7.7 Gellish 

Gellish is a neutral ontology called STEPlib, although not based on formal logic. Gellish is 

extensible and includes concepts from ISO 15926 and ISO 10303 (Van Renssen, 2003, 2005). 

Gellish is fact oriented instead of being purely O-O and can represent relations between two 

objects with preserved semantics. Some of the basic concepts in Gellish are – anything, role, 

relations such as plays role & requires role, individual things, kind of things along with single 

and multiple things with specialisation of classes. Gellish models can be exchanged by 

different application domains using XML (Van Renssen, 2003). It can be used for 

representing both product knowledge as well as design process knowledge including function 

and behaviour of an artefact.   
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3.7.8 Rule Languages (Logic based) 

Rule Markup Language (RuleML) is a format or a language for representing and sharing of 

rules on the World Wide Web. It is based upon XML, RDF and OWL (Boley et al., 2005). 

RuleML also offers 2 modular sublanguages – Derivation RuleML and Production Rule (PR) 

RuleML (Hirtle et al., 2006). RuleML has 3 parts as different specifications – Deliberation 

RuleML, Consumer RuleML and Reaction RuleML(Boley et al., 2016a, 2016b, 2016c).   

Another language in the form of Rule Interchange Format (RIF) offers a neutral 

representation language for representing rules, logic and constraints. RIF offers 3 dialects – 

Core, BLD (Basic Logic Dialect) and PRD (Production Rules Dialect)(Feigenbaum et al., 

2013; Kifer and Boley, 2010; Morgenstern et al., 2012). RIF core is the basic language and 

offers the least constructs or expressiveness. It is also based on XML format similar to 

RuleML. RIF BLD offers logic functions along with equality and built-ins as per positive 

horn logic. RIF PRD adds forward chaining of rules to RIF BLD (Feigenbaum et al., 2013). 

RIF offers a major advantage as it can be expressed in both XML-based syntax and more 

importantly can be extended to AP242 of STEP(Lützenberger et al., 2012). It can integrate 

with any platform or a CAD/PDM platform (Colombo et al., 2014). 

Semantic Web Rule Language (SWRL) combines OWL DL constructs with Unary/Binary 

Datalog subset of RuleML (Horrocks et al., 2004; Kuba, 2012) . Thus it allows horn logic 

rules to be expressed in addition to OWL concepts(Glimm et al., 2009; Zhao and Liu, 2008a). 

SWRL includes basic functions such as comparison, boolean, strings and math such as 

multiply, divide, sin, tan, pow (Golbreich, 2004). Semantic Web Services Language (SWSL) 

as a language consists of two languages – SWSL-FOL as a first order logic based language 

for defining formal ontology for process models and SWSL-Rules as a rule based language 

(Battle et al., 2005).  
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Reasoning on the rule is performed in many ways. Forward reasoning and backward 

reasoning are some of them. Forward reasoning is referred as data driven or eager approach 

whereas backward reasoning is referred as goal driven or lazy approach (Negnevitsky, 2005). 

In forward reasoning, the system matches the statement against and existing rule and 

generates all results, which match the statement. In backward reasoning, the statement is 

allocated, as hypothetical goal and the rule will be generated which matches the goal 

statement. Backward reasoning takes less time as compared to forward reasoning and only 

provides specific solutions whereas forward reasoning generates all possible solutions and 

takes more time.  

Ontologies have been implemented using OWL for engineering design knowledge primarily 

including product model and engineering rules using SWRL on top of OWL for DEA (Sanya 

and Shehab, 2015, 2014). Similarly, engineering rules have also been formalised using RIF-

PRD and Content MathML on top of OWL for DEA by (Reijnders, 2012) and RIF for 

LinkedDesign project by (Colombo et al., 2014; Klein et al., 2014). MathML is also based on 

XML syntax and provides 2 versions for representation of math based rules – Presentation 

and Content MathML (Ausbrooks et al., 2014). Presentation MathML provides an inbuilt 

library of about 30 elements and Content MathML is more exhaustive with an inbuilt library 

of 120 elements with functions for complex equations such as partial differentiation and 

matrix on top of basic functions (Bos et al., 2011; W3C, 2016).  

3.7.9 Schema based Languages – STEP and VRML 

Another important ISO standard for product data exchange is STEP which is also regarded as 

ISO 10303 (Pratt, 2001; Zha and Du, 2002). STEP is widely used in industry for representing 

and exchanging CAD data in a neutral format (H. Wenzel et al., 2011). STEP not only covers 

exchange of geometric information between different CAD formats but includes all product 

data throughout the lifecycle (Lützenberger et al., 2012; Tang et al., 2001). STEP uses 
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EXPRESS (ISO, 2004) as a modelling language to represent objects with related attributes 

and properties and adopts features from O-O modelling approach (Krima et al., 2009; Peak et 

al., 2004). EXPRESS provides inheritance of objects with data types to represent complex 

relationships. Although EXPRESS is machine-readable it can represent only static knowledge 

and cannot be executed in its original form (Dong et al., 1997; Tang et al., 2001). The 

semantics of the product data in EXPRESS schema is not explicitly specified (Krima et al., 

2009; Sarigecili et al., 2014).    

STEP allows various formats for product data representation. Some examples are – ISO 

10303-21 for text format, ISO 10303-28 for XML serialization, ISO 10303-22 for API, ISO 

10303-41 for product identification and product configuration and ISO 10303-46 for visual 

representation (Weilkiens, 2007). STEP, UML, Parts library (PLIB), PSL, Manufacturing 

Management Data Exchange (MANDATE) are examples of standardized exchange 

specifications for sharing of product and process information in industrial data 

(Chandrasegaran et al., 2013). STEP as ISO 10303, PSL as ISO 18629 along with 

MANDATE as ISO 15531 all comprise part of ISO TC 184/SC4. 

Many conversion mechanisms have been devised from STEP to OWL/SWRL in context to 

engineering design. Work has been performed to convert STEP EXPRESS schemas to 

OWL/SWRL models for development of detailed neutral and interoperable product models 

with geometric knowledge for visual display (Zhao and Liu, 2008a, 2008b). Similar work has 

been performed to integrate STEP schemas such as Application Protocol (AP) 203 and Part 

21 using EXPRESS schemas to OWL/SWRL based ontologies in order to develop 

interoperable product models with geometric knowledge such as Onto-STEP and ONTO-

PDM (Barbau et al., 2012; Krima et al., 2009; Panetto et al., 2012).  

Virtual Reality Modeling Language (VRML) is a neutral format for 3D rendering of 

geometry and allows exchange of product’s geometric intent and knowledge (Hartman and 
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Wernecke, 1996; Qin et al., 2003; Web3D, 2017). It offers ease of sharing over the web as 

compared to STEP, whichdoesn’t support integration over the web for e.g. STEP AP 203. 

However, VRML doesn’t successfully render complete geometric information and retain all 

intricate features as compared to STEP for efficient product realisation (Cooper and LaRocca, 

2007; Szykman et al., 2000a). X3D, which is XML, based for 3D models also offers ease of 

sharing over the web(Web3D, 2017).It is a successor to VRML and is more comprehensive. 

3.7.10 Schema based languages - Semantic Web Base Standards 

RDF offers representation of information over the World Wide Web and is regarded as a 

W3C recommendation (Klyne et al., 2004; Manola et al., 2004). The syntax of RDF describes 

information by breaking it into a triple form consisting of subject, object and predicate. It also 

offers a formal graphical syntax in the form of an RDF Graph. The Uniform Resource 

Identifier (URI) is an id, which locates the address of the information over the web. The most 

critical aspect of RDF is that it uses XML-based syntax and schema (Klyne et al., 2004).RDF 

as a data model for objects and relations provide a simple semantics. RDF schema (RDFS) 

provides generalisation of classes and properties (Dean et al., 2004; Mcguinness and Van 

Harmelen, 2004). XML can be defined as a universal metalanguage for defining markup and 

allows interchange of data between various disparate applications (Antoniou and Van 

Harmelen, 2004). XML provides a formal neutral machine interpretable syntax for data. 

XML uses a tagging based approach similar to HTML and can be used for various purposes 

like marking information in design documents, process information and product models. 

However, a shortcoming of XML based representation or tagged information is that it doesn’t 

provide clear semantics to the data (Antoniou and Van Harmelen, 2004). This indicates that 

the meaning of the information can’t be constrained as sematic clarity and is thus open to 

interpretation.  
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An example of a format for requirements for automotive products based on XML schema as 

open standard is Requirements Interchange Format (ReqIF) (OMG, 2013). Similar to UML, 

ReqIF is an OMG specification format and provides neutral representation for requirements 

such as functional requirements between proprietary tools thus enabling open standards usage 

and providing interoperability.   

3.7.11 Object-Oriented (O-O) programming languages 

Object-Oriented (O-O) programming languages such as LISP, Java, C/C++, Smalltalk, 

Python can be considered as formal representation or knowledge representation standards (La 

Rocca, 2011). O-O techniques vary from modelling methods or standards such as UML, 

SysML and programming languages, which are executable and dynamic as opposed to 

UML/SysML, which are static in nature.  

As an O-O language, Java can be defined as ‘A simple, object-oriented, network-savvy, 

interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded, 

dynamic language’ (Toussaint and Cheng, 2002, Pg 335). Java is increasingly used for 

developing client-server applications especially over the web. It allows for calling of 

information over databases and ontology models as knowledge base enabling automation and 

offers cross platform usage with its source code for e.g. through an API such as Apache Jena 

Framework (Toussaint and Cheng, 2002). Work performed for DEA using OWL/SWRL 

ontologies was converted for visualisation using Java by (Sanya and Shehab, 2015, 2014). 

Java enables cross-platform usage as it supports network programming, as compared to other 

programming languages such as C/C++ for which explicit codes need to be written to enable 

its cross platform usage (Reilly, 2006). Java code also allows for interaction with neutral 

format product models such as VRML which can be shared over the web (Qin et al., 2003; 

Zeng et al., 2003). Java can also be used for generating code from O-O modelling methods 

such as UML (France et al., 2006). Java, C++ and Python are all high level programming 
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languages (La Rocca, 2011). Even C++ code can be generated from domain models 

maintained for design automation applications (Bermell-Garcia, 2007). Both python and C++ 

codes were used to perform DEA in context to OWL ontologies by (Reijnders, 2012).   

LISP is also a high level programming language and stands for LISt processing (Foderaro, 

1991). LISP supports declarative approach as well along with procedural approach as 

compared to basic O-O programming languages such as C, which are purely procedural in 

nature. Thus along with defining LISP allows for change of its own source code thus 

allowing extensions to its own syntax and create supersets (Lützenberger et al., 2012), which 

result in languages such as Common LISP. Thus Common LISP follows a multi-paradigm 

approach by supporting both declarative approach and procedural programming as it evolved 

primarily from O-O approach (Evenson et al., 2015).  KBE applications vary from most O-O 

languages in the sense that they imbibe declarative nature along with the facility of 

procedural programming as opposed to purely procedural nature of basic O-O languages 

(Prasad, 2006). Because of the advantages of LISP as compared to other O-O languages such 

as Java, C++ in the form of being declarative in nature and allowing extensions in its own 

syntax thus creating supersets of its own syntax in the form of Common LISP as a superset of 

LISP, its various dialects are used for creating and building KBE automation applications 

(Lützenberger et al., 2012; Phillip Sainter et al., 2000).  

Some of the existing proprietary KBE applications such as Adaptive Modelling Language 

(AML) from Technosoft is based on O-O techniques (TechnoSoft Inc, 2003). AML is 

primarily based on LISP dialect (Preston et al., 2004; Rocca, 2012) but also uses C++ and 

Fortran codes (TechnoSoft Inc, 2003). AML focuses on automation of product design 

throughout product lifecycle. From AML’s perspective, capturing knowledge in the form of 

objects and properties is critical. AML performs this by defining class definitions for similar 

objects and properties in the methods. It also supports class-subclass relation and is dynamic 
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in nature. It supports constraint mechanism in product alteration by making interdependencies 

or dependency backtracking in the unified model along with relation to parameters. It also 

invokes events. ICAD is based on ICAD Design Language (IDL), which being a proprietary 

KBE application is based on a superset of LISP code in the form of ACL LISP 

implementation allowing for declarative nature (Bermell-Garcia, 2007; Bermell-García and 

Fan, 2002; La Rocca et al., 2002). Similarly, General Purpose Declarative Language (GDL) 

from Genworks as a proprietary KBE language is also based on ANSI standard version of 

Common Lisp and uses Common Lisp Object System (CLOS) allowing for declarative 

paradigm (J Kulon et al., 2006; La Rocca, 2011; Rocca, 2012).  

Frameworks such as Apache Jena provide interface to the OWL/SWRL representation and 

support Pellet reasoner for queries and inference results (Chan, 2013; Zhang et al., 2015). 

Proprietary DEA applications such as AML, ParaPy are based on O-O programming which 

also forms the basis of representation of geometry kernels such as LISP, Java, C/C++. O-O 

programming offers few similarities to ontology-based representation in terms of object and 

class definition with attributes, encapsulation and inheritance.  

DEA in context to KBE is driven highly by engineering rules and thus KBES select 

production rule formalism in conjunction with O-O paradigm as KR for achieving DEA. 

Table 3-2 illustrates the available formal representation methods for representation of various 

design decomposition features as discussed in section 2.6. 
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Table 3-2: Formal representation methods & techniques available for representing design 

decomposition features to enable design process automation 

Design Decomposition 

Features 

Formal Representation 

Methods & Techniques 
References 

Process – Inputs, Outputs 

and Parameters 

PSL, IDEF5, OWL DL, 

OWL-S, 

(Bechhofer, 2009; Benjamin et al., 1994; Bock and Gruninger, 

2004; Chen and Chen, 2005; Fellmann et al., 2013; Gruninger, 

2004; Grüninger, 2009; Gruninger and Cutting-Decelle, 2000; 

Grüninger and Menzel, 2003; Martin et al., 2004; Pouchard et 

al., 2000, 2005; Schlenoff et al., 2000b; W3C, 2012) 

Engineering Rules, 

Logic, Constraints, 

Rationale 

RuleML, Rule Interchange 

Format (RIF), SWRL with 

OWL DL 

(Bechhofer, 2009; Boley et al., 2005; Colombo et al., 2014; 

Fellmann et al., 2013; Lützenberger et al., 2012; Lützenberger 

et al., 2012; W3C, 2012) 

Functional Requirements 

Requirements Interchange 

Format (ReqIF), SysML 

Requirements Diagram 

(Colombo et al., 2014; Fellmann et al., 2013; Lützenberger et 

al., 2012; Lützenberger et al., 2012; OMG, 2013; Weilkiens, 

2007) 

 

3.8 Analysis of Informal/Semiformal and Formal Process Modelling 

Standards for DEA 

From the observations of comparative analysis of informal/semiformal modelling standards 

in context to knowledge capture for achieving design automation in Table 3-1, IDEF suite 

with main emphasis on IDEF0/IDEF4, UML/SysML, Modified Petrinet, and signposting 

satisfy the criteria as they successfully capture necessary design decomposition features on a 

higher level. Petrinet is considered to be one of the methods for process modelling and 

representation techniques. Although in its original form, it does not enable design 

decomposition to the required level for process automation, MPN can capture design 

decomposition features. However, it fails to utilise common semantics and uniformity in 

axioms (Grüninger and Menzel, 2003). This highly inhibits its use in a neutral representation 

for achieving automation. Also, Petrinets and MPN have their strength in modelling the 

synchronisation of concurrent processes, cause and effect relationships between events and 

states along with evaluation of modelled systems based on precedence of activities (Bock and 
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Gruninger, 2005; Peleg and Dori, 1999; Zhang et al., 2013). Similarly, although Signposting 

as a modelling method is successfully able to represent product parameters, the confidence 

mapping of parameters is not a requirement for DEA as observed from Table 3-1. Also, the 

confidence mapping of parameters is upon the discretion of the engineer and is not 

standardised. Thus both Petrinet/MPN and Signposting are unable to capture complex 

interdependencies of a process model with emphasis on flow of information of design 

decomposition features such as activity inputs, outputs, rules, function and behaviour in 

context to achieving DEA.   

Final selection of an informal model would be suggested after experimentation on formal 

representation of the informal model, as all of the necessary design decomposition features in 

the form of parameters, inputs and outputs, rationale, logic, rules, constraints, attributes, and 

requirements will need to be formally represented. Existing process modelling techniques are 

able to represent the design process knowledge at a high level granularity instead of low level 

granularity with detailed attributes and complex interdependencies of knowledge required for 

DEA (Ding et al., 2009). Integration of all the concepts of engineering design process as 

design decomposition features with the complete effect of a re-usable and robust process 

model on the product attributes is required before its implementation to a formal 

representation framework (Chalupnik et al., 2006).   

Engineering rules can be represented in IDEF0 through control component as functional 

modelling method and represented formally in rule languages such as RuleML, RIF and as 

production rules. In the work of Skarka, using OWL, rules are represented textually, but not 

as executable formal representation with link to product attributes which can return values 

during reasoning and querying. The reasoner doesn’t perform reasoning on rdfs:comment in 

the model (Skarka, 2007). Process flow can be successfully represented in IDEF3 diagram 

and UML activity diagrams. Product model can be successfully represented through object 
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diagrams in IDEF4, UML class diagram, OPM object diagram and even in PSL formal 

ontology object instantiation. Resources can be represented in IDEF0 as mechanisms. 

Parameters can be successfully represented in signposting and even in PSL formal ontology 

with extensions. PSL as a language can be used for process and activity description including 

inputs, outputs and parameters from the process model with extensions along with 

representing a product description. In order to enable DEA, the formal representation should 

enable automated reasoning or inference as execution of its axioms. PSL is similar in 

representation to a low level assembly language and needs a compiler to convert its 

representation to a high level language such as C or Fortran (Schlenoff et al., 2000a).  

The family of IDEFx series has been very successful at systems modelling (Ciocoiu et al., 

2001; Reeker, 1994). IDEF4 design rationale component can provide for design rules under 

the design rationale component as partitions (Mayer et al., 1992) but engineering rules can’t 

be explicitly stated and with contextual relevance to engineering design process. Design 

rationale can be represented as an integral component in IDEF4 standard and DRed tool as 

UML class diagram along with formal representation using OWL ontology. UML has been 

widely adopted as O-O modelling for software systems (Siricharoen, 2007).UML/SysML 

diagrams have also been very successful at modelling and representation of function, 

behaviour and structural aspects of engineering systems with complex interaction along with 

exchange of knowledge to be consumed with KBE applications (Plateaux et al., 2009).  

The results indicate that methods and languages such as the IDEF suite and UML/SysML 

informally capture most design decomposition features such as objects, processes with inputs, 

outputs along with resources, attributes, requirements, rules, logic, constraints, and rationale 

for design process automation. The formal representation framework aims to achieve process 

automation by representing all design decomposition features dynamically in a knowledge 

model and then running a query and inference as automated reasoning.  
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Thus design decomposition features are individually supported through existing 

informal/semiformal and formal modelling standards. However, as none of the existing 

methods is successfully able to capture and represent the complete functional, behavioural 

and structural (F-B-S) aspects of engineering design process knowledge, a novel process 

model utilising strengths of the existing informal/semiformal standards needs to be 

developed. The schema of the novel process model as developed will provide a method to 

effectively utilise existing platform independent and neutral formal representation standards 

for DEA. The basis of the process model will be analysis of functional requirements for 

generative modelling along with the effect of the process model on product’s geometric 

attributes.  

3.9 Summary 

This chapter discusses informal/semiformal and formal standards in order to capture and 

represent all design decomposition features as F-B-S aspects of a mechanical design process 

with DFM for DEA. The findings have revealed that none of the existing modelling methods 

are able to capture the complete mechanical design process knowledge with complex 

interdependencies with product attributes at an informal/semiformal level. Thus a hybrid 

approach will be adopted to develop a highly granular and integrated novel process model 

based on IDEF0/IDEF4 and UML/SysML for DEA based on the findings. The platform 

independent and neutral formal representation framework of the process model enabling 

DEA with generative modelling has to satisfy the requirements at an implementation level for 

the axioms and semantic clarity. In order to recommend the method of schema mapping of 

the proposed hybrid process model to neutral formal representation with preserved semantics 

in order to fulfill the primary aim of this research, key concepts and relationships of process 

model as part of the design decomposition features will be identified for development of 

Meta model along with experimentation aspects with pilot use-cases. Requirements will be 
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formulated for the implementation of the Meta model in neutral formal (machine or system 

interpretable) representation with preserved semantics. The identification of these key 

concepts and relationships for Meta model along with pilot use case investigation along with 

compilation of requirements and comparative analysis of formal representation standards will 

be discussed in the next chapter as part of research design.  
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4 Key Concepts and Relationships of Engineering Processes for 

Formalisation with Pilot Use Cases 

4.1 Introduction 

Chapter 3 elaborated on the existing informal and formal modelling standards, which can 

capture and represent the mechanical design process with DFM knowledge for DEA. The 

results of the comparative analysis for informal/semiformal modelling standards suggested 

that none of the existing standards could fully capture the complete domain knowledge of 

mechanical design process with DFM for DEA in context to KBE. In order to address the 

research gap identified in chapter 2 and based on the findings of chapter 3, this chapter will 

identify key concepts and relations of the process model from design decomposition features 

for DEA with a KBE approach and formulate the requirements for the platform independent 

formalisation of the Meta model based on these concepts and relationships with neutral 

semantics. It will also discuss the pilot use-cases for experimentation with existing formal 

standards. The comparative analysis of existing neutral formal representation standards as per 

the compiled requirements will yield the implementation method of the schema of the Meta 

model based on identified concepts and relationships of the process model.   

4.2 A Generic Process Model for DEA with Neutral Formal Representation 

Process models can be considered as abstractions of a real process with ambiguity depending 

upon the level of granularity required for different purposes such as the engineering design 

process for DEA (Eckert et al., 2015; Maier et al., 2017). As per the domain of engineering 

design process, both process model and product model are modelled separately but also 

require integration (Maier et al., 2017). Thus the process model developed for DEA as part of 

this research provides high granularity and integration with the product knowledge with the 

behavioural effect of the process model on the change in product’s state in terms of its 
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geometric attributes. The model driven approach adopted for identifying the key concepts and 

relationships of the process model with its neutral formal representation utilises 3 stages is 

illustrated with the help of Figure 4-1.   

 

Figure 4-1: Model Driven Approach for Knowledge Modelling and its Equivalent Neutral 

Formal Representation for DEA 

 

The working of the process model in this research can be divided into 3 steps – Phase 1, 

Phase 2 and Phase 3. Phase 1 refers to informal/semiformal modelling of engineering design 

process with focus on mechanical design and DFM for knowledge modelling of all concepts 

and relationships. This focuses on visual representation using graphical modelling standards. 

The findings of chapter 3 have revealed that a hybrid approach using existing standards such 

as IDEF0/IDEF4 and UML/SysML as the basis. Phase 2 refers to equivalent representation of 

the informal model with platform independent and neutral formal representation as machine 

or system interpretable axioms using existing standards. This will be continued in the next 

sections with experimentation with pilot use-cases and requirements analysis for 
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formalisation for DEA. Phase 3 refers to the automation layer with the help of querying and 

inference as reasoning mechanism on the formal axioms as part of the verification for the 

method of schema mapping. The method for developing and testing of the process model is 

defined in Figure 4-2.    

Figure 4-2: Working of the process model for DEA 

4.2.1 Phase 1 

Firstly domain knowledge of the mechanical product design process with DFM is captured 

using a model driven approach as a generic process model with concepts and relations with 

high abstraction. The domain knowledge describes the static information and knowledge 

objects in an application domain (Schreiber et al., 2000, pg 91). Pertaining to this thesis, the 

domain knowledge comprises of the mechanical design process and DFM/DFA with 

activities consisting of inputs, outputs, rules and resources along with process function and 

behaviour in context to the product attributes.  

4.2.2 Phase 2 

The process model is finalised in terms of its Meta model based on concepts and relationships 

before its implementation in platform independent and neutral formal representation 

standards. The domain schema contains all the concepts and relationships of mechanical 

design process with DFM/DFA. A domain schema can be defined as ‘a schematic description 
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of the domain-specific knowledge and information through a number of type definitions’ 

(Schreiber et al., 2000, pg 91). Population of the schema level model or domain schema with 

instances leads to development of the knowledge base. According to Schreiber, ‘a knowledge 

base contains instances of the types specified in a domain schema’ (Schreiber et al., 2000, pg 

91). Thus the knowledge base will contain population of the mechanical design with 

inclusion of DFM aspects as domain schema with instances from all 4 Use cases for 

experimentation as neutral formal representation standards. Reasoning and querying can be 

performed as execution of the underlying axioms.  

4.2.3 Phase 3 

This phase focuses on the accuracy of the reasoning mechanism as inference and querying 

over the axioms of the knowledgebase along with the completeness of knowledgebase. The 

reasoning mechanism helps in deduction of new knowledge based on existing axioms; returns 

answers to the user based on multiple scenarios and provide consistency checking. These are 

matched to the implementation in a DEA system such as a KBES to verify the correctness of 

the reasoner in terms of values generated. The values generated will only match correctly if 

the method of population of schema with instances of the process model to its neutral formal 

representation is appropriate.  

 Thus the novel aspect of the solution as part of the research gap is to initially define a 

core set of mechanical design process Meta model based on concepts and relationships with 

inclusion of manufacturing knowledge as DFM based on the identified design decomposition 

features in section 2.6 and findings in section 3.8. These are discussed in the next section 4.3. 

The other main aspect as the primary aim of this research is the method of schema mapping 

of the Meta model based on identified concepts and relationships to neutral formal 

representation with semantic clarity to constrain the meaning of concepts as part of model 

driven formalisation. For this purpose, the experimentation with pilot use cases for key 
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concepts is performed in section 4.4 and 4.5. The compilation of the requirements for 

formalisation is performed in section 4.7 and the comparative analysis for the finalisation of 

the representation is performed in section 4.8 and 4.9. Another key aspect which is to test the 

automation (DEA) capability of the formalised model using a series of steps for accuracy of 

the reasoner and query with the supporting tool. The results of section 4.8 and 4.9 will 

contribute to the testing mechanism for DEA.   

4.3 Key concepts and relationships of the Process Model 

Figure 4-3 illustrates all the high level, intermediate and low level concepts as F-B-S aspects 

of the process model for DEA as a Meta Model developed as part of this research. Inputs and 

outputs are adopted from the definition  - entities consumed and modified during an activity 

with engineering rules controlling the behaviour as methods with conversion of inputs to 

outputs along with resources which may be a design tool or a physical resource (Ding et al., 

2009). Engineering rules have been modelled for engineering design process knowledge as 

part of DEA to control the effect of design variations on product parameters (Bermell-García 

and Fan, 2002; Calkins et al., 2000). Product function and behaviour in context to 

engineering design process have been modelled as concepts and relationships for 

interoperable knowledge sharing using Core Product Model 2 (CPM2) and Open assembly 

Model (OAM) (Fenves, 2001; Fenves et al., 2008; Szykman et al., 2001, 2000a, 2000b). 

However, very important contributions of process adding semantics to product function and 

behaviour throughout the product lifecycle as part of engineering design process have been 

made by Frederic Noel (Noel, 2006) and John Gero (Gero and Kannengiesser, 2007a).  
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Figure 4-3: Concepts for the required Process Model for DEA – Meta Model 

 

The high level concepts formulated by the author are described as follows –  

• Process description with activities, inputs, outputs, resources and activity id 

• Process inputs & outputs as product geometric attributes 

• Engineering rules based on math and logic 

• Process functional requirement / function 

• Process behaviour 

 Thus the following set of research questions arise -  

I. How can the mechanical product design process with inclusion of manufacturing 

knowledge (DFM/DFA) based on various entities such as activities, rules, logic, 

function and behaviour for product realisation as per author’s Meta model, be 

captured in a generic and re-usable process model as a model driven approach with 

structured knowledge model for automation in a virtual engineering environment?  
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II. How can the developed process model in line with author’s Meta model be then 

formally represented for machine interpretation in platform independent and neutral 

representation standards with semantic clarity (clear meaning of concepts) for Design 

Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE 

approach through open standards?  

A 3rd question also arises as a consequence of the 2nd question 

III. Can the formalised process model enable automation with generative modelling from 

the functional requirements generated at the initiation of the design process as the 

design intent with queries and reasoning on developed generic functions? 

As observed from the findings in section 3.8, PSL ontology can represent activity with inputs, 

outputs and object along with resources from the identified core concepts. Similarly, RuleML 

and RIF can both represent math and logic rules. OWL ontology can represent concepts and 

binary relationships. All of them have been extensively used in the engineering domain. The 

next section will discuss the experimentation of the high level concepts of the process model 

with languages such as PSL, RuleML and OWL to demonstrate the effectiveness of these 

formal representation languages for DEA in context to KBE.  

4.4 Pilot Use Case 1 – Precision Forging of Aero Fan/Compressor Blades as 

Design for Manufacturing (DFM) 

4.4.1 Preliminary Knowledge Analysis 

An informal process has been devised for DFM of aero fan blades by the author as illustrated 

in Fig 4-2. The process is precision forging of compressor blades as method of 

manufacturing. The activities can be broken down mainly as – ‘Extrusion’, ‘Heading’ and 

‘Stamping’. All the detailed knowledge cannot be shown here due to copyright issues as per 

the intellectual property rights of the industrial partner.  
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Figure 4-4: Use Case 1 - Example of a precision forging process of a compressor blade 

As observed from Figure 4-4, the process map illustrates inputs, functional requirement, 

behaviour and rules along with sub-processes of major activities in the form of extrusion, 

heading and stamping. The inputs required for extrusion are material data – billet & dies, 

geometries – billet (without glass coating), tongs, dies (Nominal) & punch, temperature to 

which the workpiece is heated up in the furnace prior to extrusion, furnace transfer duration, 

duration for which the workpiece rests on the die, die temperature, press characterisation 

and punch stopping position.  

4.4.2 Mapping of Informal Process Model Concepts to Formal Representation 

Standards: PSL, RuleML, SysML 

The formal representation framework is based on the discussion for representing process 

information along with other design decomposition features such as rules, logic and 

requirements along with flow of information in the form of inputs and outputs. 
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4.4.2.1 Activities with Inputs & Outputs and Objects: Process Specification 

Language (PSL)  

The PSL syntax illustrating the flow of information along with extensions to illustrate inputs 

and outputs is shown as follows. The inputs and sub-activities are only shown for the 

extrusion process in the PSL syntax using the core theories and extensions –  

(define-parameter  

:variable ?cb 

:constraints (compressor blade ?cb)) 

(define-activity-role 

:id s1 

:name Extrusion 

:successors 2 

:preconditions (not extruded ?cb (beginof ?occ)) 

:postconditions (extruded stem of ?cb(endof ?occ)))  

(define-activity-role) 

:id s2 

:name Heading 

:successors 3 

:preconditions (extruded stem of ?cb(beginof ?occ)) 

      x:postconditions (headed shape of ?cb endof ?occ))) 

(define-activity-role) 

:id s3 

:name Stamping 

:successors 4 

:preconditions (headed shape of ?cb (beginof ?occ)) 

:postconditions (stamped ?cb (endof ?occ))) 

(forall (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2) 

(implies (= ?s1 extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)) 

(and (activity_occurrence ?s1 

(Material data – Billet & Dies ?m) 

(Geometries – Billet (without glass coating), Tongs, Dies(Nominal) & Punch ?g) 

(temperature to which the workpiece is heated up in the furnace prior to extrusion ?t1) 

(Furnace Transfer Duration ?t2) 

(Duration for which the workpiece rests on the die ?t3) 

(Die Temperature ?t4) 

(Press Characterisation ?p1) 

(Punch stopping position ?p2)))) 

(forall (?cb ?s1) 



 102 

(implies (or (occurrence-input ?cb ?s1) 

(occurrence-output ?cb ?s1) 

(and   (object ?cb) 

(not (state ?cb)) 

(activity_occurrence ?s1)))) 

(forall (?cb ?s1) 

(iff (participant ?cb ?s1) 

(exists (?t) 

(participates_in ?cb ?s1 ?t)))  

(forall (?cb ?s1) 

(implies (or (occurrence-input ?cb ?s1) 

(occurrence-output ?cb ?s1)) 

(participant ?cb ?s1)))   

(exists (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2) 

(and (occurrence_of ?s1 Extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)   

(occurrence-input ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2) 

(occurrence-output ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2))) 

(forall (?cb ?s1 ?f) 

(implies (or (input-state ?cb ?s1 ?f) 

(output-state ?cb ?s1 ?f) 

(and (object ?cb) 

(not (state ?x) 

(activity_occurrence ?s1) 

(state ?f)))) 

(forall (?cb ?s1 ?f) 

(implies (input-state ?cb ?s1 ?f) 

(and (occurrence-input ?cb ?s1) 

(prior ?f ?s1) 

(exists_at ?cb (begin_of ?s1))))) 

(forall (?cb ?s1 ?f) 

(implies (output-state ?cb ?s1 ?f) 

(and (occurrence-output ?cb ?s1) 

(achieved ?f ?s1) 

(exists_at ?cb (end_of ?s1)))) 

subactivity(Furnace Transfer, Extrusion) 

subactivity(Dwell on Die, Extrusion) 

subactivity(Extrusion, Extrusion) 

subactivity(Air Cooling, Extrusion) 
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4.4.2.2 Engineering Rules: RuleML 

The rule that governs the extrusion process as ExtrusionRule1 is - A short extruded stem left 

behind after stamping would cause problems in handling the part while a long stem would 

result in excessive material use & high costs. 

 

ExtrusionRule1 is represented in RuleML(Boley et al., 2005) as follows -  

<Implies> 

<head> 

<Atom> 

<Rel>stamping</Rel> 

<Ind>short extruded stem</Ind> 

<Var>problems in handling</Var> 

</Atom> 

</head> 

<body> 

<And> 

<Atom> 

<Rel>stamping</Rel> 

<Ind>long stem</Ind> 

<Var>excessive material use</Var> 

</Atom> 

<Atom> 

<Rel>stamping</Rel>> 

<Ind>long stem</Ind> 

<Var>high costs</Var> 

</Atom> 

</And> 

</body> 

</Implies> 

 

4.4.2.3 Functional Requirements: SysML Requirement Diagram  

The functional requirement of the overall precision forging process is – ‘achieve an accuracy 

of +/-2mm in shape prediction, as shape prediction accounts for a bulk of the manufacture 

objectives’.The functional requirement for extrusion is - ‘the objective of extrusion modelling 

is to ensure that the extruded stem is long enough for the part to be handled in subsequent 

operations. The base of the extruded part also needs to have enough material for subsequent 
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heading, which can be estimated using its length’.The functional requirement of each activity 

is captured and represented in SysML requirement diagram as shown below. The underlying 

schema of the requirement as illustrated in the Figure 4-5 is the text of the requirement, 

identifier, source, kind, method, risk and status. The model can be exchanged via AP233 as 

well as discussed in the earlier section. 

 

Figure 4-5: Use Case 1 - SysML Requirement Diagram for capturing functional and 

performance based requirements of the precision forging manufacturing method 

 

4.5 Pilot Use Case 2 – Conceptual Design of Aero Fan Blades 

4.5.1 Preliminary Knowledge Analysis 

The case study discusses design aspects of fan blades (Amoo, 2013). An informal process 

capturing design aspects of fan blades has been derived and compiled by the author in a 

process map illustrating inputs, enablers, parameters, requirements, rules, logic, behavior, and 

attributes along with the object primarily defined as a blade (Amoo, 2013). The blade can be 

a fan blade, compressor blade or a turbine blade, which makes the process model generic for 

reusability. The process map captures all aspects of a process which IDEF4 captures but does 
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not demonstrate the IDEF4 syntax in the form of a static, dynamic, and behavioural models in 

the present shape. The activities or events are broken down into three basic steps:blade 

geometryoptimisation, dovetail attachment and material selection as shown in Fig. 4-6 along 

with other design decomposition features. Fig. 4-7 illustrates the object box for the blade. 

 

 

Figure 4-6: Use Case 2 - An informal process capturing design aspects of a fan blade 

 

 

 

 

 

 

Figure 4-7: Use Case 2 - The object box as per IDEF4 methodology 
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4.5.2 Mapping of Informal Process Model Concepts to Formal Representation 

Standards: PSL, RuleML, SysML 

The formal representation framework is based on the discussion for representing process 

information along with other design decomposition features such as rules, logic and 

requirements along with flow of information in the form of inputs and outputs.  

4.5.2.1 Activities and Objects: Process Specification Language (PSL) 

PSL activity role declaration (ARD) and object declaration syntax is explained as follows: 

(define-activity-role 

:id <number>*  

:name <string> 

:successors <number>*  

:preconditions <PSL sentence>*  

:postconditions <PSL sentence>*)                    

(define-object 

:name <KIF constant> 

:constraints <PSL sentence>*)                                          

(define-parameter 

:variable <KIF variable> 

:constraints <PSL sentence>*)                                         (Grüninger and Menzel, 2003) 

The object declaration can be a constant as shown in the first object declaration or a variable 

as shown in the next object declaration. The PSL syntax illustrating the flow of information 

along with extensions to illustrate parameters along with inputs and outputs is shown as 

follows, but only for blade geometry optimisation. 

(define-parameter  

:variable ?fb 

:constraints (fan blade ?fb))  

(define-activity-role 

:id s1 

:name Blade geometry optimisation  

:successors 2 

:preconditions (existing design of ?fb(beginof ?occ)) 

:postconditions (preliminary optimal geometric design features of ?fb(endof ?occ))) 
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(define-activity-role) 

      :id s2 

      :name Dovetail attachment 

      :successors 3 

      :preconditions (preliminary optimal geometric design features of ?fb(beginof ?occ)) 

      :postconditions (attached dovetail design features to the design of ?fb endof ?occ))) 

(define-activity-role) 

:id s3 

:name Material selection 

:successors 4 

:preconditions (attached dovetail design features to the design of ?fb (beginof ?occ)) 

:postconditions (material allocated to the preliminary design of ?fb (endof ?occ))) 

 

4.5.2.2 Activity Inputs and Outputs: PSL 

The parameters and inputs for blade geometry optimisation are broken down informally as: 

Parameters: incremental lift created by each blade, ideal power and proper airfoil section, 

twist, chord, and pitch angle for optimal thrust distribution. Inputs: aerodynamic forces 

acting on a local airfoil and global changes in momentum along with rate of air intake 

(Amoo, 2013).  

 

The formal syntax in PSL incorporating extensions is as follows: 

(forall (?s1 ?l ?p ?t ?fm ?r) 

(implies (= ?s1 Blade geometry optimization(?l ?p ?t ?fm ?r)) 

(and (activity_occurrence ?s1 

(Incremental Lift created by each blade ?l) 

(Ideal power ?p) 

(Proper airfoil section, twist, chord, and pitch angle for optimal thrust distribution ?t) 

(Aerodynamic forces acting on a local airfoil and global changes in momentum ?fm) 

(Rate of air intake ?r))))    

(forall (?fb ?s1) 

(implies (or (occurrence-input ?fb ?s1) 

(occurrence-output ?fb ?s1) 

(and   (object ?fb) 

(not (state ?fb)) 

(activity_occurrence ?s1)))))  

(forall (?fb ?s1) 

(iff (participant ?fb ?s1) 

(exists (?t) 
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(participates_in ?fb ?s1 ?t)))) 

(forall (?fb ?s1) 

(implies (or (occurrence-input ?fb ?s1) 

(occurrence-output ?fb ?s1)) 

(participant ?fb ?s1)))   

(exists (?s1 ?l ?p ?t ?fm ?r) 

(and (occurrence_of ?s1 Blade geometry optimisation(?l ?p ?t ?fm ?r)   

(occurrence-input ?fm ?r ?s1) 

(occurrence-output ?fm ?r ?s1)))  

(forall (?fb ?s1 ?f) 

(implies (or (input-state ?fb ?s1 ?f) 

(output-state ?fb ?s1 ?f) 

(and (object ?fb) 

(not (state ?fb) 

(activity_occurrence ?s1) 

(state ?f))))))    

(forall (?fb ?s1 ?f) 

(implies (input-state ?fb ?s1 ?f) 

(and (occurrence-input ?fb ?s1) 

(prior ?f ?s1) 

(exists_at ?fb (begin_of ?s1)))))   

(forall (?fb ?s1 ?f) 

(implies (output-state ?fb ?s1 ?f) 

(and (occurrence-output ?fb ?s1) 

(achieved ?f ?s1) 

(exists_at ?fb (end_of ?s1))))) 

4.5.2.3 Engineering Rules: RuleML 

A few examples of the design rules to be followed during the blade geometry optimisation 

process are represented in RuleML (Boley et al., 2005) as follows: 

BladeGeometryOptimisationRule1:a 30% hollowing in a hollow fan blade results in about a 

13%–16% decrease in torsional rigidity compared to a solid blade design (Amoo, 2013). 

 

rule ml declaration (implication) 

<Implies> 

<head> 

<Atom> 

<Rel>hollowing</Rel> 

<Ind>30%</Ind> 
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<Var>hollow fan blade</Var> 

<Rel>compared to a solid blade design</Rel> 

</Atom> 

</head> 

<body> 

<Atom> 

<Rel>decrease</Rel> 

<Ind>13-16%</Ind> 

<Var>torsional rigidity</Var> 

</Atom> 

</body> 

</Implies> 

 

BladeGeometryOptimisationRule2: The rate of air intake varies and is dictated by factors 

such as airfoil geometry, angle of attack, air density, and the speed at which the airfoil moves 

through the air (Amoo, 2013).  

 

rule ml declaration (statement) 

<Atom> 

<Var>rate of air intake</Var> 

<Rel>dictated by factors such as</Rel> 

<Var>airfoil geometry</Var> 

<Var>angle of attack</Var> 

<Var>air density</Var> 

<Var>speed at which the airfoil moves through the air</Var> 

</Atom> 

4.5.2.4 Functional Requirements: SysML Requirement Diagram  

The functional requirement as derived from the process for blade geometry optimisation is 

that– ‘the fan blades spin to accelerate a mass of air into the engine to generate thrust that 

propels the aircraft forward. Approximately 80% of the thrust produced by a modern jet 

engine is delivered by the fan’. ‘Fan blades also function to reduce total engine damage from 

the ingestion of various foreign objects such as birds by radially deflecting outward such 

objects rather than passing them through to the core parts of the engine’ (Amoo, 2013). The 

functional requirements of the process are captured and represented in a SysML requirement 

diagram as shown in Fig. 4-8. The underlying schema of the requirement as illustrated in the 
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figure is the textual requirement, identifier, source, kind, method, risk, and status. The model 

can be exchanged via AP233 of STEP. 

Figure 4-8: Use Case 2 - SysML requirement diagram for representing functional 

requirements of the design aspects of the fan blades process 

 

4.5.3 Mapping of Informal Process Model Concepts to Formal Representation 

Standards: OWL 

As part of this research, for the initial process model affecting the product at part level, text 

based instances were created for all classes using Use-case 1, 2 & 3 by the author. Initial 

naming convention for all instances follows the pattern – 

ProcessModel:ActivityNameClassNameNo. For example, the function of the fan blade 

exhibited during the activity BladeGeometryOptimisation – ‘The fan blades spin to accelerate 

a mass of air into the engine to generate thrust that propels the aircraft forward. 

Approximately 80% of the thrust produced by a modern jet engine is delivered by the fan’ is 

named as ProcessModel:BladeGeometryOptimisationFunctionalRequirement1. 

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name 

and no. is 1. The other function of the fan blade exhibited during the activity 
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BladeGeometryOptimisation – ‘Fan blades also function to reduce total engine damage from 

the ingestion of various foreign objects such as birds by radially deflecting outward such 

objects rather than passing them through to the core parts of the engine’ is named as 

ProcessModel:BladeGeometryOptimisationFunctionalRequirement2. 

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name 

and no. is 2.All instances will satisfy the class description and properties. SPARQL query is a 

method of querying the RDF graph (Composer, 2011). In Topbraid, in the SPARQL tab 

queries are run over the asserted triples in the ontology. In order to run the query over both 

the asserted and the inferred triples, inference needs to be executed on the model. For this 

SPIN rules through OWL 2 RL need to be activated. Only then, the inference window 

produces the inferred triples from the ontology model. Performing query in the SPARQL tab 

will now perform query over both the asserted triples and inferred triples in the standard 

edition of Topbraid. The syntax of SPARQL query is illustrated as follows – 

SELECT * 

WHERE { 

?subject rdfs:subClassOf ?object . 

} 

 

SELECT * selects the complete ontology model, subject and object correspond to classes and 

individuals, rdfs:subClassOf is the predicate. Using the properties created in the model and 

putting them as predicate between classes and instances of the model, objects and subjects 

can be retrieved in the SPARQL query tab. Thus although concepts like rationale, function 

and behaviour of the process have presently been implemented as literals (datatype 

properties) in context to the design process, running a SPARQL query through the property 

returns the function and name of rules associated with the activity. For example, 

SELECT * 

WHERE { 

ProcessModel:BladeGeometryOptimisation 
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ProcessModel:exhibitsFunctionalRequirement ?object . } 

 

Running this query yields the results as 

ProcessModel:BladeGeometryOptimisationFunctionalRequirement1  and 

ProcessModel:BladeGeometryOptimisationFunctionalRequirement2 as the objects. Clicking 

on these specified instances yields other linked properties such as 

ProcessModel:hasmethodasBehaviour and the stated functional requirement as a literal with 

the help of datatype property in the form of ProcessModel:isdescribedby. The domain of the 

property ProcessModel:isdescribedby is defined as FunctionalRequirement class and the 

range as a string. The illustration for this query is shown in the Figure 4-9.  

Another example of SPARQL query -  

SELECT * 

WHERE { 

        ProcessModel:BladeGeometryOptimisation ProcessModel:followsRule ?object . 

} 

 

ProcessModel:BladeGeometryOptimisation is the subject in the query, 

ProcessModel:followsRule is the property or the predicate in the query and object needs to be 

returned. Running the above query yields the results as 

ProcessModel:BladeGeometryOptimisationRule1 and 

ProcessModel:BladeGeometryOptimisationRule2 as objects through the property 

ProcessModel:followsRule linking the domain and the range. 
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Figure 4-9: SPARQL Query Illustration: Activity and Functional Requirement 

 

As illustrated, the limitation of SPARQL query is that it only infers the name of the rules as 

text. To formally represent rules, they need to be embedded in the model with rule language 

such as RuleML, RIF or SWRL formalism on top of OWL2 as shown in section 4.4.1.2.3. 

For this reason along with the requirement of the process model to affect product attributes at 

the highest level of granularity for DEA, use case 4 and use case 5 have been used to refine 

and validate the process model. Use cases 4 and 5 will be discussed in Chapter 5 in detail. 

Use case 4 involves making a hole in the block with drilling as the manufacturing process. 

Use case 5 includes design of bookshelf implemented in AML as a KBE tool and Siemens 

NX, CATIA Knowledgeware as parametric CAD systems from MOKA ICARE forms.  
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4.6 Findings and Analysis – Pilot Use Case Experimentation 

With the help of Use Case 1 & 2, it has been illustrated that PSL enables process 

representation with parameters, inputs, and outputs using core theory and extensions in the 

ontology(Bock and Gruninger, 2004). It needs more experimentation to illustrate 

representation of other design decomposition features such as constraints and attributes. 

RuleML (Boley et al., 2005) can be implemented to exhibit for textual rules. Similarly 

SysML can exhibit requirements. The formal representation framework will need integration 

for simultaneous application. PSL can be directly mapped to UML and hence to the SysML 

requirement diagram. RuleML and PSL can be integrated and shared via XML schemas. 

Similarly, all formats and languages to be experimented for representing other design 

decomposition features will need integration.  

4.7 Requirements for a process model for implementation in neutral 

formal representation enabling design engineering automation (DEA) 

The author has compiled the requirements for a generic process model enabling DEA through 

neutral formal representation. The requirements are an amalgamation of 2 sets –1) 

requirements for a process model to capture mechanical design domain concepts and 

relationships in a unified and integrated model and 2) requirements of the knowledge 

representation (KR) or knowledgebase (formal representation of process model) for DEA.  

Some of the requirements for KBE methodologies enabling automation can be classified as 

flexibility, extensibility, scalability and integration (Colledani et al., 2008). This means that 

the process model must be generic and widely applicable to various product design systems, 

must be extensible to add both product and process knowledge, and provide all relationships 

as interdependencies. Thus some of the key characteristics, which can be deduced as 

requirements for process model for mapping to formal representation model, are 
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encapsulation of concepts and relationships with high level of knowledge abstraction for re-

use. Even as per KNOMAD methodology enabling DEA, the knowledge model needs to 

follows these steps although the implementation can vary. These steps as summarised by 

Pinto and Martins (Pinto and Martins, 2004) can be stated as  

I. Specification – identification of scope of knowledge model 

II. Conceptualisation – identification of domain concepts and relationships  

III. Formalisation – organising domain concepts in class hierarchies and completion of 

axioms to formally model relationships  

IV. Implementation – codification of class hierarchies and axioms in a suitable formal 

knowledge representation language 

V. Maintenance  - updating and maintenance of the implemented knowledge model 

These steps are critical even though the representations may vary. Some representations have 

been implemented as ontologies by Noy & McGuiness as seven-step method (Noy and 

McGuinness, 2001), METHONTOLOGY (Fernández-López et al., 1997) and six-stage 

methodology (Ahmed et al., 2007).  

4.7.1 Requirements for an unified / integrated process model ready for 

implementation as formal representation to enable DEA in context of KBE 

Thus, some of the key requirements have been deduced by the author for the process model 

ready for implementation as formal representation to enable DEA in context of KBE. 

I. Modelling of the Meta model based on domain concepts and relationships of the 

process model - This includes design process activities, activity inputs & outputs as 

product geometric attributes, resources, engineering rules based on logic as well as 

mathematics in relation to the design process as well as product geometric attributes for 

change of product’s state. This also includes interdependencies between sub-functions 



 116 

corresponding to activities, products and the design process functional requirements 

and process behaviour. It should also be able to represent an interface between the 

process model and aspects of product model such as assembly & part structures, 

feature, form and fit   

II. The modularity of engineering design intent with concise classification of concepts 

and relationships and the ability to instantiate - This will enable high re-usability of 

the developed process model as high abstraction  

III. Suitable axioms for constraining the domain concepts and relationships in a 

suitable formal representation language for execution in the form of reasoning and 

querying - It should be ensured that there is optimal syntactic and semantic mapping 

of the informal/semiformal model to formal model. This was stated as computational 

capability in section 3.2 

The requirements have been jointly formulated and compiled as per these sources (Colledani 

et al., 2008; Danjou et al., 2008; Frank et al., 2014; Klein et al., 2015, 2014; J Kulon et al., 

2006; J. Kulon et al., 2006; Lützenberger et al., 2012; Nomaguchi et al., 2002; Pinto and 

Martins, 2004; Rezayat, 2000; Ríos et al., 2005; Tomiyama et al., 2002).  

Thus the next steps are to formulate requirements for axiom selection and formal 

representation enabling DEA.  

4.7.2 Requirements for a knowledge representation system (knowledge base) 

enabling DEA 

A knowledge representation system (KRS) generally consists of a knowledge representation 

(KR) formalism with well-defined syntax and additionally if possible, semantics preserved, 

as symbolically encoded knowledge (Shehab and Abdalla, 2002, 2006). The symbolically 

encoded knowledge is crucial in making the knowledge representation layer machine 

readable or computer readable (Patil, 2005). The symbolically encoded knowledge of the 



 117 

engineering design process model domain concepts and relationships refers to formal 

representation in the context of this thesis. It also contains an inference engine, which means 

reasoning mechanism closely built in with the representation layer or language for deducing 

queries and consistency checking ensuring the representation is dynamic in nature as opposed 

to just a static representation (Davis et al., 1993; Johansson, 2011; Tomiyama et al., 2002). It 

may also contain a front-end environment for visualisation and possibly knowledge editing 

and debugging (Bullinaria, 2005; Clark, 1996; La Rocca, 2011). The front-end environment 

for visualisation is out of scope for this research. 

The compiled requirements by the author for KRS enabling DEA in context of KBE can be 

classified as follows -  

I. Expressiveness – it means the expressive capability of the language to exhibit domain 

knowledge of all classifications. In this case, it means representation of engineering 

design knowledge as a unified process model with class-subclass relationship, 

properties, logical rules, mathematical rules and functional knowledge   

II. Inference adequacy and efficiency as execution of its code – the formal 

representation system or KRS should be able to perform inference as reasoning and 

queries as execution of its code with minimum degree of incompleteness. The system 

should enable maximum time and memory efficiency while performing the inference 

or execution of its code so that it returns the answer to the user in reasonable amount 

of time along with correctness of the answer. This is the layer that adds dynamic 

nature to the static representation 

III. Explanation for inference – ideally, along with an inference, a system representation 

should also be able to tell the reason for selecting an answer through inference 

IV. Semantic clarity – additionally if possible, the language should offer well defined 

semantics or meaning of terms through its axioms  
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V. Acquisition efficiency - the efficiency and naturalness of input of domain knowledge 

by the knowledge engineer. This indicates syntactic friendliness of the representation 

or knowledge base along with graphical display and convenience. It supports 

structured and modular knowledgebase 

VI. Feedback during knowledge input - the system should not be static. It should be 

dynamic and warn of inconsistencies if the axioms entered are incorrect. This is 

tangible to consistency checking paradigm 

VII. Extensibility and scalability - the system should offer ease of adding new information 

to the existing knowledge base. As the size of the knowledge base increases, the 

system performance should still function within a reasonable time and performance 

shouldn’t degrade quickly 

VIII. System Interface to external applications – the system should atleast provide 

mechanism to link to other database or application (DEA application including KBE 

application in this case). The linkage to an external system won’t be addresses as part 

of this thesis 

IX. Robustness, portability and ease of integration – the system should offer least bugs 

as possible or no bugs at all in an ideal situation. The system should not be too 

difficult while transferring its representation to other platforms. In this case, the 

neutral representation should enable open standard usage.   

The requirements have been jointly formulated and compiled as per these sources (Bullinaria, 

2005; Clark, 1996; Colledani et al., 2008; Davis et al., 1993; Frank et al., 2014; Johansson, 

2015, 2011, 2008; La Rocca, 2011; Ríos et al., 2005; Rocca, 2012; TechnoSoft Inc, 2003; 

Tomiyama et al., 2002; Tomiyama and Hew, 2000; Tor et al., 2008; Van Der Velden et al., 

2012; Van der Velden, 2008) 
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4.7.3 Compiled requirements for a process model for implementation in neutral 

formal representation enabling DEA in context of KBE 

Combining both the sets of requirements in a concise manner yields the requirements for a 

process model to enable DEA through neutral formal representation in context of KBE -  

I. Expressive capability of language to exhibit domain knowledge for the mechanical  

design process in the form of Meta model based on domain concepts and 

relationships of process model- This should include all entities such as design process 

activities with inputs & outputs as product’s geometric attributes, resources, 

engineering rules based on logic and math, function, behaviour and interface with 

product model as identified in section 4.3 in a unified and integrated approach. It 

should support the class-subclass relationship between the concepts and represent all 

relationships. Product parameters as object inputs are crucial in product design 

process and thus form a critical part of the design process knowledge at the detailed 

design stage.  

II. Inference (reasoning) and querying with optimum adequacy and efficiency as 

execution of its code – the system should allow for deduction of new information 

from static domain knowledge through inference making the system dynamic in 

nature. It should perform reasoning or execution of its code with optimum 

performance between time and memory efficiency and degree of completeness. If 

possible, the representation should support consistency checking.    

III. Semantic clarity – additionally if possible, the axioms of the language should 

constrain the interpretation of domain concepts and relationships 

IV. Modularity in the knowledge representation system (KRS) with precise axioms for 

domain concepts and relationships - This will ensure structuring of the 

knowledgebase along with the ability to instantiate enabling high re-usability     
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V. Extensibility and scalability - optimum system performance in accordance with 

addition of new domain knowledge in the form of concepts, relations and instances of 

the engineering design process 

VI. Neutral representation - adopted from robustness and portability. Pertaining to this 

research, the formal representation should enable open standard usage.  

4.8 Basic Comparison of Formal Representation Standards 

A brief comparison of formal representation standards is explained before detailed 

comparison for implementation of all aspects of the process model in neutral formal 

representation.       

4.8.1 STEP vs. Ontology Based Approach 

STEP based on EXPRESS (ISO 10303-11) (ISO, 2004)provides a schema for product data 

model throughout its lifecycle (Zhao and Liu, 2008a). However, it differs from ontology-

based approach in various ways. All ontological languages formalised over various logic 

which may be OWL based on DL or PSL based on FOL support automated reasoning (Hay, 

2006; NIST, 2008; W3C, 2012). They can deduce new knowledge from the existing 

knowledgebase with the help of an inference engine, making the representation dynamic in 

nature. STEP based on EXPRESS schema is static in nature as it can’t execute (Dong et al., 

1997; Tang et al., 2001) and doesn’t possess reasoning capability (Qin et al., 2017). However, 

the procedural knowledge contained inside class descriptions of EXPRESS can be extended 

and merged with external systems and even programming languages such as Java/C++ to 

enable execution of the statements (Zha and Du, 2002; Zhao and Liu, 2008a). The execution 

of the procedural knowledge inside the EXPRESS schema with the help of externally 

integrated systems will make the representation dynamic in nature.  
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4.8.2 UML/SysML vs. OPM 

UML and SysML allow visual representation of an engineering system through multiple 

diagrams whereas OPM allows visual representation of an engineering system through an 

integrated approach in the form of OPD and OPL which is an added advantage (Reinhartz-

Berger and Dori, 2004). Thus OPM is more favourable for modelling engineering systems at 

a higher level such as the conceptual or class and schema level as it doesn’t model the 

individual activities of a process. Although, OPM goes to various levels of abstraction to 

represent the complete F-B-S of a system, it provides very less relation between the 

individual activities of a process and its implementation as formal representation (Subahi, 

2015). If the abstraction of knowledge is required at product attribute level, UML class 

diagram or SysML Block diagram (Graves, 2009) are more comprehensive in expressing 

product model with all its geometric attributes. OPCAT as a tool for OPM allows direct 

export of XML information from the OPD and OPL, which form a machine-readable formal 

representation. However, a shortcoming of XML based representation is that it only covers 

the syntax level and doesn’t impose any constraints on the semantics, hence is open to 

interpretation, and also doesn’t provide support for reasoning (Antoniou and Van Harmelen, 

2004; Ray and Jones, 2006; Yahia et al., 2012). In order to overcome this shortcoming and 

address DEA, formal representation framework beneath the graphical representation will 

need to preserve semantic clarity and allow reasoning or inference capability.  

4.8.3 Ontology vs. Systems modelling approach as UML/SysML and OPM 

Ontology is different from object oriented (O-O) modelling such as UML and object process 

methodology (OPM) in various ways. One of the most crucial differences is ontology 

modelling is based on logic (Siricharoen, 2007) and allows for automated reasoning or 

inference resulting in generation of new knowledge which are not supported by either 

languages such as UML/SysML and OPM. According to (Graves, 2009; Graves and 
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Horrocks, 2008), current systems modelling approaches such as OPM, UML/SysML are 

unable to provide formal semantics to the knowledge expressed and represented. UML is 

good for graphical display of the ontology but without the logic layer (Zhu et al., 2009). This 

is the reason UML can be considered as semiformal representation or light weight formalism 

(Chungoora et al., 2013a). Another difference is the built in of properties in ontologies which 

are marked at the same level as classes which means object properties can be defined 

between classes. O-O modelling limits the relationship between classes to superclass-subclass 

relationship (Siricharoen, 2007). Ontology modelling also adds relationships to properties in 

the form of symmetric, inverse and transitive, which can be accessed in the reasoning as 

against O-O modelling which doesn’t support these features. Ontology modelling supports 

multiple inheritance exhibiting complex relationships whereas O-O modelling such as 

UML/SysML only allow for single inheritance. Ontology modelling also provides restrictions 

for class definition in the form of allvaluesfrom, somevaluesfrom (Zhu et al., 2009). Thus in 

spite of various differences in the underlying philosophy of UML/SysML and OPM with 

OPM focussing on object and process as kinds instead of UML/SysML on objects/blocks, 

both don’t support logic for ontology and relations.  

As OWL ontology provides formal semantics to the knowledge represented, it can act as 

semantic integration standard (Graves and Horrocks, 2008). Ontologies are thus good for 

defining metadata and providing semantic clarity and can be used as a basis of knowledge 

representation (KR) or defining metadata for building software and system engineering 

applications. Pertaining to this research, ontology encoded in OWL2 can be used as a 

backbone (semantic metadata) for DEA applications. As compared to O-O modelling 

techniques such as UML/SysML and even OPM for modelling systems, ontology modelling 

provides better support for exchange of knowledge across heterogeneous multiple platforms 
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by offering additional semantic clarity through reasoning mechanisms (Zhu et al., 2009). 

Figure 4-10 illustrates the classification of formal logic for knowledge representation.  

 

Figure 4-10: Formal Logic for Knowledge Representation (Grosof et al., 2010) 

4.9 Comparative Analysis of Formal Representation Standards 

The comparative analysis of the above mentioned formal representation standards as per the 

requirements for a process model enabling DEA, performed as part of this research is shown 

in Table 4-1. 
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Table4-1: Comparative Analysis of Formal Representation Standards 

Classification 

of formal 

representation 

standards and 

languages 

Requirements for a generic process model for DEA in context of KBE 

References 

Expressive 

capability to 

represent all 

concepts and 

relationships 

 

Inference 

(automated 

reasoning), 

querying as 

execution 

of its code 

Semantic 

clarity 

 

Modularity 

with 

instantiatio

n for high 

re-usability 

Extensibility 

and 

Scalability 

Neutral 

Representation 

(Open 

standards) 

Semi-formal 

and graphical 

(non-logic 

based) 

without 

reasoning e.g. 

UML/SysML, 

OPM 

Can represent 

most of the 

concepts and 

relationships 

including 

product and 

process 

knowledge 

with inputs, 

outputs and 

resources 

efficiently but 

not complete 

domain 

knowledge as 

a unified and 

granular 

process model 

Don’t 

support 

inference. 

However, 

the models 

can be 

executed 

with the 

help of 

programmin

g languages 

such as 

Java/C++  

Yes  Yes Yes Available open 

source tools 

such as visual 

paradigm, 

OPCAT provide 

neutral 

representation 

(Blekhman and 

Dori, 2013; 

Dori, 2004, 

2002; Foufou et 

al., 2005; 

Graves, 2009; 

Grobshtein and 

Dori, 2011; 

Hart, 2015; 

Mordecai et al., 

2016; 

Siricharoen, 

2007; 

Vanderperren et 

al., 2008; 

Weilkiens, 

2007) 

Formal and 

graphical 

(non-logic 

based) with 

reasoning e.g. 

frames, 

semantic 

networks 

 

Represent 

some concepts 

and 

relationships 

but not all 

concepts and 

relationships 

as complete 

domain 

knowledge of 

the process 

model  

Support 

inference 

Not 

explicit  

Yes, but 

lack of 

contextual 

relevance  

Yes Only open 

source tools 

may provide 

neutral 

representation 

(Davis et al., 

1993; La Rocca, 

2011; Minsky et 

al., 1975; 

Obitko, 2007a, 

2007b; Prasad, 

2006; Robin, 

2013; Sowa, 

2015, 2008a; 

Wang et al., 

2006) 

Schema based 

representation 

in the form of 

STEP 

(EXPRESS 

Schema)  

Represent 

some concepts 

and 

relationships 

such as 

product model 

with 

extremely 

high 

efficiency but 

not all 

concepts and 

relationships 

as complete 

domain 

knowledge of 

the process 

model 

Don’t 

support 

inference. 

However, 

the 

EXPRESS 

schema can 

be 

integrated 

with 

external 

systems and 

programmin

g languages 

such as 

Java/C++ 

for 

execution of 

statements 

as inference 

Not 

explicit 

Yes, but 

lack of 

contextual 

relevance 

Yes EXPRESS 

schemas are 

available as 

neutral 

representation 

(Barbau et al., 

2012; 

Chandrasegaran 

et al., 2013; 

Dong et al., 

1997; Krima et 

al., 2009; Lu et 

al., 2016; 

Lützenberger et 

al., 2012; Peak 

et al., 2004; 

Pratt, 2001; Qin 

et al., 2017; 

Sarigecili et al., 

2014; Tang et 

al., 2001; Zhao 

and Liu, 2008b) 

Schema based 

representation 

in the form of 

RDF/RDFS 

Represent 

some concepts 

and 

relationships 

but not 

complete 

Support 

inference 

and query in 

the form of 

SPARQL 

Yes  Yes, but 

lack of 

contextual 

relevance 

Yes Open source 

tools such as 

Protégé, 

Topbraid 

provide neutral 

representation 

(Beckett and 

McBride, 2004; 

Bruijn and 

Welty, 2013; 

Dean et al., 

2004; Hay, 
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domain 

knowledge of 

the process 

model 

2006; Klyne et 

al., 2004; 

Manola et al., 

2004; 

Mcguinness and 

Van Harmelen, 

2004) 

Formal logic 

based 

languages in 

the form of 

KIF, CG’s, 

CLIF 

Represent 

most concepts 

and 

relationships 

but not 

complete 

domain 

knowledge of 

a unified and 

granular 

process model  

Support 

inference 

with logic 

based 

theorem 

provers 

Yes Yes Yes Only open 

source tools 

supporting logic 

paradigm may 

provide neutral 

representation 

(Genesereth et 

al., 1992; 

Gruninger et al., 

2013; Hayes 

and Menzel, 

2001; Knutilla 

et al., 1998; 

Obitko, 2007f, 

2007g, 2007h; 

Schlenoff et al., 

2000a; Sowa, 

2008b, 2011, 

2008a) 

Ontology 

languages 

based on 

formal logic 

such as OWL, 

process 

ontology as 

PSL and non-

formal logic 

based such as 

Gellish 

Individual 

language such 

as OWL2 and 

Gellish can 

represent most 

of the 

concepts but 

not rules, PSL 

can represent 

process 

specification 

with inputs, 

outputs, 

parameters 

but not 

complete 

domain 

knowledge as 

a unified and 

granular 

process model  

Support 

inference or 

execution 

and 

querying 

with logic 

based 

reasoners 

for OWL2 

and PSL  

Yes Yes Yes Open source 

tools supporting 

logic paradigm 

provide neutral 

representation 

for e.g. Protégé 

/Topbraid for 

OWL2 

(Bechhofer, 

2009; Bock and 

Gruninger, 

2005, 2004; 

Chungoora et 

al., 2013a; 

Grüninger, 

2009; Grüninger 

and Menzel, 

2003; Hay, 

2006; Hennig et 

al., 2016; 

Mcguinness and 

Van Harmelen, 

2004; NIST, 

2008; Obitko, 

2007e; Pereira 

et al., 2011; 

Pouchard et al., 

2000, 2005; 

Siricharoen, 

2007; Van 

Renssen, 2003, 

2005, Wang et 

al., 2006, 2004) 

Rule 

languages 

based on 

formal logic 

such as 

RuleML, RIF 

and 

production 

rules 

Rule 

languages can 

represent 

logical rules 

and basic 

mathematical 

rules but need 

to be linked to 

other logic 

based 

representation

s for complete 

domain 

knowledge as 

a unified and 

granular 

process model 

Support 

inference 

and 

querying 

with logic 

based 

reasoners 

Yes Yes Yes Open source 

tools supporting 

logic paradigm 

provide neutral 

representation 

(Boley et al., 

2016a, 2016b, 

2005; Davis et 

al., 1993; 

Feigenbaum et 

al., 2013; Hirtle 

et al., 2006; 

Kifer and 

Boley, 2010; La 

Rocca, 2011; 

Morgenstern et 

al., 2012; 

Pugliese and 

Colombo, 2014) 

Object 

Oriented and 

multi-

Can represent 

all concepts 

and 

Support 

dynamic 

inference or 

Yes, but 

proper 

and 

Yes Yes  Original scripts 

available as 

languages, not 

(Bermell-

Garcia, 2007; 

Bermell-García 
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paradigm 

dynamic 

programming 

language in 

the form of 

LISP and 

LISP dialects 

such as 

Common Lisp 

(KBE systems 

are based on 

proprietary 

LISP dialects)  

 

 

relationships 

of the domain 

knowledge as 

a unified and 

granular 

process model 

execution 

by adding 

new code, 

object 

definitions 

at runtime. 

Support 

querying 

through 

methods 

efficient 

execution 

required 

for 

precise 

semantics 

as neutral 

representation 

standards. 

Automation 

applications 

developed are 

not available as 

neutral 

representation 

and Fan, 2002; 

Cooper and 

LaRocca, 2007; 

Evenson et al., 

2015; Foderaro, 

1991; 

Kaufmann and 

Moore, 1997; 

La Rocca, 2011; 

La Rocca and 

Van Tooren, 

2010; Lassila, 

1990; 

Lützenberger et 

al., 2012; 

Preston et al., 

2004; Rocca, 

2012; P Sainter 

et al., 2000) 

Object 

Oriented 

programming 

based 

languages in 

the form of 

Java, C/C++, 

Smalltalk, 

Ruby, Python, 

Fortran 

Can represent 

all concepts 

and 

relationships 

of the domain 

knowledge as 

a unified and 

granular 

process 

model  

Support 

inference or 

execution 

but not as 

dynamic as 

LISP, as 

they don’t 

add new 

code, object 

definitions 

at runtime. 

Support 

querying 

through 

methods  

Not 

explicit 

 

Yes Yes  Java scripts are 

available as 

cross-platform 

language, not as 

neutral 

representation 

standards; for 

C/C++ explicit 

codes need to be 

specified to 

enable cross-

platform usage 

but still not as 

neutral 

representation 

standard. 

Automation 

applications 

developed are 

not available as 

neutral 

representation 

(Barkmeyer et 

al., 2003; 

Bermell-Garcia, 

2007; Goldberg 

and Robson, 

1983; La 

Rocca, 2011; 

La Rocca and 

van Tooren, 

2007; Reilly, 

2006; Schlenoff 

et al., 2000a; 

TechnoSoft Inc, 

2003; Toussaint 

and Cheng, 

2002; Zeng et 

al., 2003; Zhao 

and Liu, 2008a) 

 

4.9.1 Results and Discussion 

As per the results of the Table 4-1, logic based languages seem to be the appropriate 

standards. O-O languages specially LISP oriented and combined with other O-O languages 

satisfy every criterion for DEA but not in open standards. In the context of this thesis, open 

standards enable neutral representation with semantics preserved (Peak et al., 2004; Usman et 

al., 2011).   

As an open standard logic based language, CLIF, as ISO 24707 is extremely powerful 

knowledge representation paradigm with automated theorem prover. However several errors 
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were identified in 1st edition of CLIF as ISO 24707 (Gruninger et al., 2013) where the authors 

recommend the development of 2nd  edition of CLIF as ISO 24707. The 2nd edition of CLIF 

(ISO, 2017) is under development in the present stage as compared to the 1st edition (ISO, 

2007) published in 2007.Thus pertaining to open standard logic based language framework, 

integration of multiple languages is required from the observations in Table 4-1.  

OWL is an extremely powerful semantic mediator for integration of concepts of the domain 

knowledge with contextual reference to be represented formally (Danjou et al., 2008; Graves 

and Horrocks, 2008). The formal DL logic as basis of OWL provides open standard usage 

enabling interoperability as compared to bespoke platform specific automation (Alexandrou 

et al., 2013).  

Similar to OWL, the limitation of Gellish in context to the needs of DEA is representation 

and codification of engineering rules as multiple ary predicates. For inclusion of engineering 

rules, executable languages such as RuleML and RIF have been experimented with use-case 

examples.  

PSL is the most comprehensive language for representing manufacturing knowledge with 

preserved semantics (Cochrane et al., 2009; Zhan et al., 2010). The execution of PSL can be 

achieved by either implementing them as methods in an O-O language such as Java/C++ 

(Cochrane et al., 2009) or with a theorem prover as inference or reasoning (Bock, 2006; Bock 

and Gruninger, 2005; Das et al., 2007). As experimented with Use Case 1, 2 and 3, PSL is 

very capable to represent process specifications with activity inputs, outputs as parameters 

(Bock and Gruninger, 2004). It is limited in representing product’s geometric attributes with 

duration along with the actual state of the object in activity occurrence. However, it has been 

illustrated that along with binary change of state, change of product’s geometric attributes as 

input and output states in activity occurrences can be achieved in PSL. However, it was 

identified to incorporate additional non-PSL based axioms in order to fully represent 
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relationship of product geometric attributes with specific integer and float values as units in 

context to DFM for design systems (Cochrane et al., 2009).It was also identified that a more 

detailed knowledge based system validation methodology is still required for development of 

design support systems with inclusion of manufacturing knowledge as DFM (Cochrane et al., 

2009). The inclusion of change of product’s geometric attributes as states linked to all design 

activities including the boolean operations on solid product profiles is extremely crucial for 

representing a process model for DEA specifically at detailed design stages.  

In order to address the needs of DEA, formal representation of process function and 

behaviour are also very crucial as they form an integral part of the engineering design process 

specially the early stages such as preliminary and conceptual design. It was found out that the 

inclusion of engineering process function, behaviour and rationale in context to product 

model attributes has not been integrated in PSL with extensions (Zhan et al., 2010).PSL is 

still limited to define objects and concepts needed for finer details for DEA (Niles and Pease, 

2001; Schlenoff et al., 2000b). Although it can represent some aspects object model 

knowledge such as form and features in terms of activity flow, it is restricted in 

representation of inputs and outputs of the process in terms of detailed object model 

knowledge such as form, fit and features (Young et al., 2007).  

An important factor for DEA is the consideration of the equivalent representation of both 

virtual process for design and the corresponding physical process of manufacturing. The 

representation of the semantics of virtual process is very crucial for representing the design 

process for example; representation of removal of material in the form of hole is an boolean 

subtraction activity (extrusion or pocket) as virtual process and different forms of 

manufacturing methods such as drilling, reaming, boring as physical process. Similarly, 

representation of addition of material is a boolean addition activity (protrusion) as virtual 

process and different forms of manufacturing methods such as welding, joining or advanced 
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methods such as additive manufacturing as physical process. PSL has high representation 

capability of a physical process of design in terms of neutral formal representation of 

extremely complex manufacturing process with preserved semantics through neutral 

standards (Qiao et al., 2011). However, in its present state, PSL does not fully allow the 

representation of the equivalent virtual process with preserved semantics through its axioms. 

4.9.2 Comparison of Neutral Formal Representation Standards for Mapping of 

Key Concepts and Relationships 

Table 4-2, compiled as part of this research, will yield the complete framework of individual 

neutral representation standards that will represent the syntactic and semantic mapping of the 

identified key concepts and relationships as F-B-S aspects of an informal/semiformal process 

model as a formal model that intends to achieve DEA by performing execution of its code as 

inference and querying on axioms, similar to a DEA system or a KBES (KBE system).  

 

 

 

 

 

 

 

 

 

 

 



 130 

Table4-2: Mapping of Identified Concepts and Relationships to Neutral Formal 

Representation Standards 

Neutral 

formal 

representation 

standards and 

languages 

Concepts and relationships for automation in context to DEA system functionality as executable 

representation  

References 

Process 

description 

with 

activities, 

inputs, 

outputs, 

resources 

and activity 

id 

Process 

inputs & 

outputs as 

product 

geometric 

attributes 

Engineering 

rules based 

on math 

Engineering 

rules based 

on logic 

Process 

functional 

requirement / 

function 

Process 

behaviour 

PSL Can represent 

activity 

inputs, 

outputs and 

resources as 

parameters as 

well as 

activity id 

Can represent 

activity 

occurrence 

inputs and 

outputs as 

product’s 

geometric 

attributes to 

some extent. 

Need 

extensions for 

full 

representation 

and validation 

Can represent 

manufacturing 

flow and 

sequencing 

operations as 

process rules. 

However, 

cannot 

comprehensiv

ely represent 

rules with 

process and 

product 

knowledge 

with variable 

geometric 

attributes and 

nesting of 

math 

conditions 

Can represent 

manufacturing 

flow and 

sequencing 

operations as 

process rules.  

However, 

cannot 

comprehensiv

ely represent 

rules with 

process and 

product 

knowledge 

with variable 

geometric 

attributes and 

nesting of 

logic 

conditions 

No, cannot 

represent 

design process 

function with 

respect to 

product  

Can represent 

behaviour of 

manufacturing 

process 

models. 

However, 

cannot 

represent 

complete 

design process 

behaviour 

with respect to 

product 

attributes 

(Bock, 2006; 

Bock and 

Gruninger, 

2005, 2004; 

Chungoora 

and Young, 

2011; 

Cochrane et 

al., 2009; Das 

et al., 2007; 

Usman et al., 

2013; Young 

et al., 2007; 

Zhan et al., 

2010) 

OWL Can represent 

activity with 

inputs, 

outputs, 

resources and 

activity id if a 

structured 

methodology 

is provided 

Can represent 

activity inputs 

and outputs as 

product’s 

geometric 

attributes if a 

structured 

methodology 

is provided 

No, cannot 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules based on 

math 

No, cannot 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules based on 

logic 

Can represent 

design process 

function with 

respect to 

product if 

structured 

methodology 

is provided  

Can represent 

design process 

behaviour 

with respect to 

product if 

structured 

methodology 

is provided  

(Golbreich et 

al., 2012; 

Graves and 

Horrocks, 

2008; 

Horridge and 

Patel-

Schneider, 

2012; 

Mcguinness 

and Van 

Harmelen, 

2004; Motik 

et al., 2012; 

Siricharoen, 

2007; W3C, 

2012; Wang 

et al., 2006, 

2004) 

Rule ML No, cannot 

represent 

taxonomic 

relations with 

activity 

inputs, 

outputs, 

resources and 

activity id 

No, cannot 

represent 

activity 

inputs, 

outputs with 

product’s 

geometric 

attributes  

Yes, can 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules with 

basic math 

built-ins  

Yes, can 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules with 

horn logic 

No, cannot 

represent 

process 

function with 

respect to 

product  

No, cannot 

represent 

process 

behaviour 

with respect to 

product 

(Ball et al., 

2005; Boley 

et al., 2016a, 

2016b, 2016c, 

2005; 

Golbreich, 

2004; Hirtle et 

al., 2006) 

RIF No, cannot 

represent 

taxonomic 

No, cannot 

represent 

activity 

Yes, can 

represent 

engineering 

Yes, can 

represent 

engineering 

No, cannot 

represent 

process 

No, cannot 

represent 

process 

(Boley and 

Kifer, 2013; 

Feigenbaum 
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relations with 

activity 

inputs, 

outputs, 

resources and 

activity id  

inputs, 

outputs with 

product’s 

geometric 

attributes  

rules such as 

design and 

manufacturing 

rules with 

basic math 

built-ins  

rules such as 

design and 

manufacturing 

rules with 

horn logic  

function with 

respect to 

product 

behaviour 

with respect to 

product  

et al., 2013; 

Kifer and 

Boley, 2010; 

Morgenstern 

et al., 2012) 

OWL / SWRL 

(OWL DL+ 

Unary /Binary 

Datalog 

RuleML) 

Can represent 

activity with 

inputs, 

outputs, 

resources and 

activity id if a 

structured 

methodology 

is provided  

Can represent 

activity inputs 

and outputs as 

product’s 

geometric 

attributes if a 

structured 

methodology 

is provided  

Yes, can 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules with 

basic math 

built-ins  

Yes, can 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules with 

horn logic  

Can represent 

design process 

function with 

respect to 

product if 

structured 

methodology 

is provided  

Can represent 

design process 

behaviour 

with respect to 

product if 

structured 

methodology 

is provided  

(Glimm et al., 

2009; 

Golbreich and 

Imai, 2004; 

Horrocks et 

al., 2004; 

Kuba, 2012; 

Noh and Suh, 

2008; Qin et 

al., 2016; 

Sarigecili et 

al., 2014; 

Tessier and 

Wang, 2013) 

Gellish  Can represent 

activity with 

inputs, 

outputs, 

resources and 

activity id if a 

structured 

methodology 

is provided  

Can represent 

activity inputs 

and outputs as 

product’s 

geometric 

attributes if a 

structured 

methodology 

is provided  

No, cannot 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules based on 

math  

No, cannot 

represent 

engineering 

rules such as 

design and 

manufacturing 

rules based on 

logic  

Can represent 

design process 

function with 

respect to 

product if 

structured 

methodology 

is provided  

Can represent 

design process 

behaviour 

with respect to 

product if 

structured 

methodology 

is provided  

(Braaksma et 

al., 2011; 

Frisch, 2007; 

Hennig et al., 

2016, 2015; 

Pereira et al., 

2011; Van 

Renssen, 

2003, 2005) 

 

4.10 Analysis of Findings 

Thus, from the results of Table 4-2, OWL/SWRL is a good candidate for representing all 

identified key concepts and relationships as unary and binary predicates in the form of classes 

and properties of PM-DEA for achieving DEA. Due to the limitation of ontologies based on 

OWL2 in representing engineering rules, another formal standard needs to be incorporated to 

represent engineering rules with n-ary relationships, which can be based on logic as well as 

maths. Similar to OWL, the limitation of Gellish in context to the needs of DEA is 

representation and codification of engineering rules as multiple ary predicates.  

Engineering rules can be represented either in RuleML or RIF. Both RuleML and RIF are 

based on horn logic semantics and have various versions. For example, some aspects of 

Datalog RuleML can be mapped to RIF Core Dialect, Derivation RuleML to RIF Basic Logic 

Dialect (RIF BLD) and production rule sublanguage of reaction RuleML to RIF Production 
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Rule Dialect (RIF PRD) (Feigenbaum et al., 2013). Both RuleML and RIF have data types 

and built-ins in the form of logical operators for comparison such as greater than, less than 

and basic mathematical built-ins such as multiply, divide along with logical operators for 

strings and boolean value operations (Horrocks et al., 2004; Polleres et al., 2013). Datalog 

RuleML as integrated with OWL becomes SWRL (OWL DL & Unary/Binary Datalog 

RuleML). Thus SWRL is a purposeful extension to OWL and covers most of the features of 

RIF BLD. Although RIF was although originally designed for exchange of knowledge 

between rule languages such as RuleML and SWRL, it can also be considered as a rule 

language. However, there are a few differences between RIF and SWRL. As compared to 

SWRL, RIF BLD offers a few advantages such as provision of multiple-ary predicates as 

properties as compared to unary/binary predicates as properties in SWRL. Also, RIF BLD 

has more built in functions as compared to SWRL (Feigenbaum et al., 2013). However, this 

problem can be avoided by incorporating additional predicates as properties in SWRL. The 

major advantage of SWRL is ease of integration with OWL2 formalism along with the 

reasoners which support both DL reasoning and Horn Logic reasoning with separate 

reasoners such as Pellet, Racer for DL reasoning and Jess, Drools for Horn Logic reasoning, 

within a single integrated development environment (IDE) such as Protégé (Golbreich and 

Imai, 2004). Protégé editor also provides both Sematic Query-Enhanced Web Rule Language 

(SQWRL) and SPARQL Protocol and RDF Query Language (SPARQL) for querying SWRL 

rules and OWL knowledgebase with RDF/XML representation respectively.As OWL/SWRL 

is one of the candidates for investigation for formal representation of knowledge in context to 

DEA systems (Lützenberger et al., 2012) and in spite of a few limitations such as 

unary/binary predicates, SWRL provides ease of integration with OWL.  

OWL/SWRL or OWL/RIF as a combined representation come close to the expressivity of 

PSL as a single language, although the method of using OWL/SWRL should be precise. Thus 
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although PSL is more expressive than OWL/SWRL, due to the limitations of PSL for 

knowledge representation of design systems and in compliance with the research design 

requirement of availability of supporting tool for experimental verification of formal axioms, 

OWL/SWRL formalism has been selected within protégé environment with Pellet for DL 

reasoning and Drools for Horn Logic reasoning. However, a careful consideration for 

implementation of SWRL on top of OWL is that the variables, relations and individuals in 

Datalog RuleML as SWRL should consist of OWL ontology elements in the form of classes, 

properties and instances. Thus, modelling of the OWL ontology needs to be accurate in order 

for SWRL rules to include ontology elements and reasoning to provide accurate results. 

4.11 Summary 

This chapter has identified the Meta model based on key concepts and relationships as F-B-S 

aspects of the process model for DEA as part of the novel aspect of this research. The 

experimentation of these concepts was performed using existing platform independent and 

neutral formal representation standards such as PSL, RuleML, OWL and SysML. 

Requirements were compiled for the formalised representation to enable DEA for all the 

specified concepts and relationships. The results of the comparative analysis along with the 

research design for a supporting tool to test the axioms for a KR language revealed 

OWL/SWRL to be a suitable candidate. Both these tasks will address the other primary novel 

aspect of this research by providing a method for ontology development of identified 

concepts and relationships in OWL/SWRL as neutral formal representation with inference 

and reasoning and semantic clarity. The next chapter will address these aspects by utilising 

the high level, intermediate and low level concepts as the Meta model for development of a 

generic process model for DEA. The model schema will provide the method for populating 

OWL/SWRL as a suitable ontology for DEA with neutral formal semantics.  



 134 

5 Development and Implementation of Process Model for Design 

Engineering Automation: Ontology Based Approach 

5.1 Introduction 

Chapter 4 identified the key concepts and relationships as Meta model with F-B-S aspects for 

development of a generic process model for DEA for mechanical design with DFM. It also 

discussed experimentation of the Meta model aspects with neutral formal representation 

standards and their comparative analysis as per compiled requirements. This chapter will 

initially discuss the development of a generic process model, which is named in the thesis as 

“Generative Process Model for Design Engineering Automation (GPM-DEA)” based on the 

high level; intermediate and low level concepts as the Author’s Meta model. The second half 

will elaborate on the method of the schema mapping of GPM-DEA knowledge model for 

mechanical design process with DFM to OWL/SWRL ontology. The ontology development 

methodology is in line with the approach discussed in research design in section 1.4.2. It is 

claimed that the ontology representation will achieve the requirements of DEA for 

mechanical design with DFM process with generative modelling capability as per KBE 

perspective based on functional requirements, and with the effect of unified/integrated 

process model on product’s geometric attributes. For this purpose, Use case 3 and 4 will be 

discussed for system development and experimental verification of the claim in the next 

chapters. This will be performed with the assistance of inference results on neutral formal 

representation as the use of ontologies, with the help of reasoning and query mechanism on 

author developed set of predefined generic functions with semantic clarity.    

5.2 Initial Process Model for Design Engineering Automation 

An initial process model was developed by the author, with the literature review findings on 

knowledge entities of mechanical design process with DFM for formulation of key concepts 
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and relationships as Meta model, strengths and weaknesses of existing informal/semiformal 

and formal modelling standards for their knowledge modelling and experimentation of the 

Author’s Meta model concepts and relationships with neutral formal representation standards 

based on pilot use-cases. This is illustrated with the help of Figure 5-1.  

 

Figure 5-1: Initial Process Model for DEA as Informal / Semiformal Representation 

 

As it is observed, that although existing modelling standards such as IDEF0, IDEF4, UML, 

SysML can capture most high level identified concepts and relationships of the author’s 

metamodel of the process model informally but to capture all the aspects requires merging of 

existing standards utilising a hybrid approach and modifications for amendments. Thus the 

initial version of an instance of the process model consists of these concepts (Meta model) – 

design process, activity, product, rule, logic, inputs, outputs, resources, functional 
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requirements-function, behaviour, state and condition. However, in compliance with the 

requirements formulated from a process model for implementation in neutral formal 

representation for DEA in context to KBE in section 4.7.1, condition and state classes are not 

required as the design process can take multiple routes within a process and just needs to 

reflect its output in terms of product’s geometric attributes. These geometric attributes can be 

used across different bespoke DEA systems in the form of parametric CAD systems such as 

Siemens NX Fusion, CATIA Knowledgeware enabling GA, CAM systems and KBEs such as 

AML and ParaPy. In order to further refine the process model and its ontology system 

development, Use case 4 and 5 will be instantiated in order to refine the process model and 

verify the effect of GPM –DEA on the product’s attributes. A revised version is illustrated in 

Figure 5-2.  

 

 

Figure 5-2: Revised Process Model for DEA as Informal / Semiformal Representation 

IDEF0 ICOM – Activity 

SysML Requirement Diagram 

UML Class Diagram 
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However, as per the combination of critical analysis of literature review and experimentation 

with pilot use-cases, the process model based on the F-B-S aspects of the Meta model was 

revised with alterations in order to fully address the needs of DEA system. The formulation 

of final version of the process model developed by this research is illustrated as follows. 

5.3 Development of final version of GPM-DEA – Relationships of 

MetaModel 

The purpose of the product design process is to satisfy a set of functional requirements (Chen 

et al., 2008). IDEF0 with its syntax is used to describe the structural (S) effect of a process 

with functional modelling approach (Chang et al., 2008). This is due to the fact that IDEF0 

enables functional modelling. 

As developed and refined by author, the one to many relationships for the activity as the 

primary concept of the process model with F-B-S aspects for DEA is described as follows –  

1. Activity satisfies a function which is a sub-function of the design process functional 

requirements (SysML Requirement Diagram) 

2. Activity requires inputs for conversion to outputs which are described in terms of 

product specific attributes or parameters (UML Class Diagram) as well as 

independent re-usable objects 

3. Activity is controlled by engineering rule, which may be a design or a manufacturing 

rule, which control its completion. There are various types of rules such as process, 

logic, heuristic, geometry, math, production and configuration rule. These also 

include the trade-offs between design and manufacturing constraints  

4. Activity requires resources which may physical elements such as fixture, jig for 

manufacturing process and virtual elements such as CAx tool for the design process 
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5. Activity is described by an integer id, Activity has sub-activity  

6. Activity is followed by (successor) an activity 

Detailed analysis by author has revealed the following key observations of existing modelling 

standards which satisfy few aspects of the Metamodel developed by author to target DEA 

with focus on mechanical design with DFM process –  

• Strength of IDEF0 is capturing of all points except 1, which shows the simultaneous 

function as a sub-function of the design process functional requirements and 6, which 

allows for process logic. Thus, these 2 relationships are added to IDEF0 for activity 

completion in context to the needs of activity knowledge capture for DEA, which is 

elaborated in section 5.3.  

• Strength of MBSE language diagrams such as UML class diagram or SysML block 

definition diagram is they are able to capture static aspects of product attributes. 

Similarly, SysML requirement diagram is able to capture functions of a process in 

context to the product for DEA (Finance, 2010). Thus UML class diagram is used to 

represent the object attributes and the SysML requirement diagram for functional 

requirements. It is important to notice that although UML and SysML activity 

diagram are also successful in capturing activities with inputs and outputs (Weilkiens, 

2007), thus fulfilling points 2 and 5 of activity relationships but are not able to fulfill 

points 3 and 4 as they can’t incorporate resources and rule in the same diagram. This 

is the reason for selecting IDEF0 for activities and UML class diagram and SysML 

requirement diagram for product model and functional requirements respectively in 

context to the needs of DEA.  

• Strength of UML class diagram is it can represent engineering rules as methods to 

convert activity inputs to activity outputs in terms of product attributes. This 

eliminates the need to use the SysML parametric diagram separately for 
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representation of rules. Both IDEF0 and UML have been used as knowledge objects 

for modelling of conceptual design of aerospace assembly processes (Mas et al., 

2013).  

The author has added UML condition link on top of IDEF0 to successfully model process 

rules for controlling the sequence of individual IDEF0 activities as a red link. Similarly, blue 

link is added to represent the sub-activities of individual activities. The author has also added 

the behaviour concept separately as a knowledge object to the activity, object and function 

thus completing the function-behaviour and structural (F-B-S) aspects of the process model 

for DEA. The author has also added a relationship (as an arrow) between IDEF0 ICOM 

activity box and its functional mapping to SysML requirement diagram in green borderline 

as individual sub-functions with a pink link. An instance of this is illustrated in Figure 5-3.  
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Figure 5-3: Instance of Generative Process Model for Design Engineering Automation 

(GPM-DEA) as Informal / Semiformal Representation – Developed by Author 

IDEF0 ICOM – Activity 

SysML Requirement Diagram UML Class Diagram 

–  

Product 



 141 

5.4 Functioning of GPM-DEA – Coherent Process Knowledge Model  

This research has developed a generative process model for design engineering automation 

(GPM-DEA), which is dynamic in nature through its ontological neutral formal 

representation. It is explained in detail in this section.  

5.4.1 Workability 

The working of GPM-DEA as developed in this research is shown in Figure 5-4. The 

functional requirement of the design process is broken down into sub functions, which are 

represented using SysML requirement diagram. SysML requirement diagram is used for 

illustrating functional requirements of engineering design process in context to the product as 

the primary object (Weilkiens, 2007). In order to generate activities and objects as generative 

modelling capabilities developed in this research, the sub functions are matched to activities 

and objects, which fulfill the same functions. However, this can only be achieved during 

representation of GPM-DEA in formal standards.  

The product in initial state is assessed and then its geometric attributes are marked as activity 

inputs and outputs. Activity description is captured using an IDEF0 notation. IDEF0 has 

inputs, controls, outputs, and mechanisms (ICOM) as described in context to engineering 

design processes (Pugliese and Colombo, 2014). Controls can be entities or laws guiding the 

process, which in this case become the engineering rules based on logic and maths. 

Mechanisms are synonymous to resources, which are used but not consumed or transformed 

directly during an activity. 

Thus in the developed process model, IDEF0 illustrates design process activities with inputs, 

outputs, rules as controls and resources as mechanisms. There are various subclasses of rules 

- process rules, logic rules, heuristic rules, math rules, geometry rules, production rules and 

configuration rules.  
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Figure 5-4: Working of Generative Process Model for Design Engineering Automation 

(GPM-DEA) – Developed by Author 

 

As IDEF0 corresponds to functional modelling, all design activities satisfy a function. GPM-

DEA, based on IDEF0 for activities, is based on dependency modelling for analytical 

purposes in the form of DEA (Wynn and Clarkson, 2017). Process rules for sequencing and 

optimisation are represented with UML condition links.  

Process adding semantics to product function and behaviour has been imperative in 

incorporating both function (functional requirement) and behaviour in respect to process 

modelling approach of this research. Similarly, a crucial point is to capture the relationship of 

the process function and behaviour in context to the change of state of product through its 
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attributes as one of the key artefacts especially during the conceptual and preliminary design 

phase. Thus, in GPM-DEA process has function & behaviour and structure in terms of an 

ICOM box with all aspects in relation to product geometric attributes.  

As stated earlier in the thesis, the process model developed by the author also adopts basic 

principles of OPM as ISO/PRF PAS 19450 with the change of state of the product from 

initial state to final state in context to process execution. However, it was mentioned in 

section 4.8.2 that although, OPM goes to various levels of abstraction to represent the 

complete F-B-S of a system, it doesn’t fully model the individual activities of a process 

model and provides very less relation between the activities and its implementation as formal 

representation. This is the reason that OPM notation has not been utilised for 

informal/semiformal representation for the activity and related concepts of the process model 

developed by the author.   

The change of state of product from initial state to final state upon acted upon by a process is 

reflected by change in its attributes as also adopted from IDEF3 and IDEF4 methodology. In 

order to reflect the effect of process model on product geometric attributes in this work, UML 

class diagram is used for product model with attributes and engineering rules as methods.    

Interface of the process model with product model is illustrated in Figure 5-4 where, UML 

class diagram can represent parts and assembly relations with composition links and also 

parent child relations for the product. 

Thus GPM-DEA is built upon existing standards such as IDEF0, UML and SysML and 

incorporates additional constructs such as sequencing and flow of activities based on 

process rules, automatic generation of activities and objects based on function matching for 

complete Function-Behaviour-Structure (FBS) representation in order to address the needs of 

DEA. As GPM-DEA model has various sub-levels, an instance of GPM-DEA is illustrated in 

Figure 5-3 at its highest level of abstraction. 
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5.4.2 Pilot Use Cases - Function Structure Matching: Basis of Generating 

Activities and Objects of GPM-DEA 

The instance of GPM-DEA as shown in Figure 5-4 is a graphical representation 

corresponding to the knowledgebase consisting of all concepts for FBS representation of the 

engineering design process. Figure 5-5 shows the knowledgebase compiled in this work, 

where various design processes exist with their functional requirement, which is broken down 

into sub functions. 

 

Figure 5-3: Example of Engineering Design Process with corresponding Functional 

Requirement and Sub-Functions: Knowledgebase 

 

An example of both design processes and activities from Use Case 1 & 3, which includes 

physical, informatical and virtual activities with their corresponding sub-functions as 

functional requirements, is illustrated with Figure 5-5 and Figure 5-6 respectively. 
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Figure 5-4: Example of Engineering Design Process Activities with corresponding Functional 

Requirement as Sub-Functions: Knowledgebase 

 

Thus, from Figure 5-5, the engineering design process – Conceptual Design1 Fan blades has 

4 sub-functions – ‘generate thrust’,  ‘reduce total engine damage from the ingestion of 

various foreign objects such as birds’, ‘secure the blades to the hub or disk’ and ‘allocate 

material with high damage tolerance, ductility, high cycle fatigue (HCF) strength and yield 

strength’.  From Figure 5-6, activity ‘Blade Geometry Optimisation’ satisfies the 2 of these 

sub-functions - ‘generate thrust’, ‘reduce total engine damage from the ingestion of various 

foreign objects such as birds’. Similarly, the activity ‘Dovetail Attachment’ satisfies the 

function – ‘secure the blades to the hub or disk’ and the activity ‘Material Selection’ satisfies 

– ‘allocate material with high damage tolerance, ductility, high cycle fatigue (HCF) strength 

and yield strength’. Thus, the design process - conceptual design1 fan blades should consist 

of these 3 activities - ‘Blade Geometry Optimisation’, ‘Dovetail Attachment’ and ‘Material 

Selection’.  
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Similarly, ‘Precision forging1’ as a DFM process satisfies 2 sub-functions – ‘Achieve an 

accuracy of +/-2mm’ and ‘shape prediction’. All the existing activities in the knowledgebase, 

which fulfill a subset of these functions are - ‘Extrusion’, ‘Heading’ and ‘Stamping’. Thus 

‘Precision forging1’ should consist of these 3 activities as ‘Extrusion’, ‘Heading’ and 

‘Stamping’. All the activities with their inputs, outputs, controls as rules and mechanisms as 

resources along with participating objects as inputs is shown in Figure 5-7. Their 

corresponding graphical representation is an ICOM box of IDEF0 standard in GPM-DEA. 

 

Figure 5-5: Example of Engineering Design Process Activities with Inputs, Outputs, Rules 

and Resources with Objects: Knowledgebase 

 

A snapshot of the rule description controlling the activities is shown in Figure 5-8.  

 Figure 5-6: Example of Engineering Rules controlling the Design Process Activities: 

Knowledgebase 
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5.4.3 Types of Engineering Design Process with Variable Concepts: Function and 

Objects 

All the sub-classes of the design process cannot be illustrated here in the Figure, as we need 

to go to sublevels. For example, the design process for this thesis has to cover conceptual / 

preliminary design, embodiment / configuration design, detailed design and other crucial 

aspects such as DFM, DFA as part of embodiment design. The detailed hierarchy of 

engineering design process, which can be implemented in DEA systems, needs to cover all 

aspects of the design process with high level, intermediate and low level concepts identified 

in this thesis such as design for assembly (DFA), design for manufacturing (DFM), fluid flow 

analysis, structural analysis, thermal analysis, stress analysis, detailed design process aspects 

such as form, features and fit with 3D modelling, computer aided engineering (CAE) analysis 

process such as computational fluid dynamic (CFD) analysis, finite element analysis (FEA) 

analysis, pre-processing, post-processing, computer aided manufacturing (CAM) process 

such as casting, joining, machining and so on. In order for function matching to work, which 

will be illustrated later, sub functions are classified in this work as – geometric 3d shaping / 

sizing, manufacturing feasibility such as attach / connect & positioning, output electrical 

magnetic performance such as capacitance, electric field, voltage, energy, power, work, 

output mechanical performance such as acceleration, fatigue, force, hardness, momentum, 

stiffness, strain, strength, torque, velocity and output thermodynamic performance such as 

compression, expansion, flow, foreign object damage, heat, pressure and vibration. The 

complete list of both design process and function subclasses are illustrated later.  

Pertaining to this research, as the process model has the effect on object attributes used across 

DEA systems applications, the object model including the product knowledge needs to cover 

basic aspects such as feature, form, fit and material. There is an interface between the process 

model and product model as observed from Figure 5-3. The product model can be expanded 
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to include detailed product knowledge. As part of this research, the following aspects are 

included which can be further extended as integration to the product model. Features include 

depression / extrusion features such as hole, notch, pocket, slot and protrusion features such 

as block, shaft. Fit includes part and assembly relationships. Form is broken down as edge, 

face, surface and volume. Edge is further broken down as chamfer, fillet and line. Similarly, 

face is broken down as circle, ellipse, hyperbola, parabola and polygon with variable sides. 

Surface is broken down as Bézier and Non-uniform rational basis spline (NURBS). Volume 

is broken down as box, cone, cylinder, ellipsoid, hyperboloid, paraboloid, polygon volume 

and sphere. Material is further classified as alloys, ceramics, composites, ferrous metal, non-

ferrous metal and polymer. Alloys are classified as brass, bronze, duralumin, inconel, 

nimonic and manganin. Ceramics are broken down as boron carbide, boron oxide, silicon 

carbide and silicon nitride. Composites are broken down as glass fiber, carbon fiber and so 

on, ferrous metal as carbon steel, cast iron, mild steel and so on, non-ferrous metal as 

aluminium, copper, lead, nickel, tin, titanium, zinc and so on. Similarly, polymers are further 

classified as neoprene, plastic, polyethylene, polypropylene and so on.         

Product has been divided into two main classes – product_initial and product_final.  The 

product_initial indicates the state of the product at the beginning of the design process; 

product_final indicates the state of the product at the end of the design process.  

5.5 Synthesis of GPM-DEA 

In order to address the needs of DEA, integration of various engineering design concepts and 

relationships with focus on mechanical product design process with DFM knowledge has 

been achieved by developing GPM-DEA in this research. GPM-DEA provides a coherent 

method to build structured knowledge model and enables automation with generative 

modelling by automatic generation of activities and objects by matching the functions as 

functional requirements of the design process with corresponding functions of activities and 
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objects. GPM-DEA includes all concepts of the Author’s Meta model in context to process 

modelling for DEA with focus on mechanical design with DFM knowledge, and preserved 

semantics based on knowledge entities such as activity, function, behaviour, object and its 

attributes as structure being affected by rules and logic in a coherent and structured manner. It 

provides categorisation for sub-functions and object knowledge model with geometric 

attributes along with integration facilities to the product model. This allows for an 

unified/integrated and highly granular process model ready for implementation in a neutral 

(open standards) formal representation framework for DEA ensuring correct syntactic and 

semantic mapping of the informal/semiformal model to the formal model.  

5.5.1 GPM-DEA – Hybrid Representation of Existing Modelling Standards 

Thus, in order to develop a coherent and structured process based knowledge model, the 

author has exploited the strengths of the existing modelling standards and added the 

constructs on top of the integration. The working of the developed process model, GPM-DEA 

as informal/semiformal representation for visual display by the author can be summed up as – 

1. IDEFO ICOM box for activity description with inputs and outputs in terms of 

product attributes along with links to rules as controls and resources 

2. UML class diagram for product knowledge with engineering rules as methods 

3. SysML requirement diagram for functional requirements 

4. UML condition link for process rules and flow  

5. Bi-directional relations between function, process links, objects, activity description 

behaviour for complete F-B-S of a process model  

Thus the author has combined the strengths of IDEF0, UML and SysML and added 

constructs on top to develop a hybrid representation of GPM-DEA. Some of the few critical 

aspects of a process model for DEA using a KBE approach is generative modelling 

capabilities which means that the individual activities should not be static and must be 
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generated from the initial specification or the design intent in the form of functional 

requirement classification. In context of this research, as the design process satisfies a 

functional requirement, all the activities, which fulfill functions, as part of the design process 

should be automatically generated. Thus in compliance with function structure, the functional 

requirements of the design process as captured in SysML requirement diagram are broken 

down into sub-functions. All the activities, which match the individual sub-function 

instances, should be automatically generated for DEA.  

5.5.2 GPM-DEA - Generative Modelling Aspects 

The following are the crucial aspects of generative modelling of GPM-DEA, which have 

been embedded by the author in formal OWL ontology representation with the help of 

predefined set of generic functions in context to DEA with a KBE approach -  

1. Generation of activities based on sub-functions as functional requirements 

2. Generation of objects based on sub-functions as functional requirements 

3. Generation of engineering rules for activities based on logic as the basis of rules 

4. Assessment of initial product to generate the initial activity of the process model 

5. Virtual and physical activity functional equivalence 

These will be elaborated in the next section 5.6 which explains OWL ontology development 

based on the schema of GPM-DEA. GPM-DEA has been developed with assistance of pilot 

use cases and the requirements formulated for DEA. It has been further refined with the usage 

of test use-cases, discussed in the next chapter for refinement of Meta model concepts and 

relationships to incorporate product’s geometric attributes and further system development. 

The results of comparative analysis of available formal standards as per the formulated 

requirements for a KRS to enable DEA as discussed and analysed in section 4.9, has 
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recommended OWL/SWRL as a suitable ontological neutral formal representation 

framework of GPM-DEA with semantic clarity.    

5.6 Implementation of GPM-DEA in OWL/SWRL Ontology and Rule 

Representation: Neutral Formal Representation 

This research thesis has developed an ontology for the mechanical design process with design 

for manufacturing (DFM)/ design for assembly (DFA) based on the schema of the structured 

GPM-DEA knowledge model. The ontology has been developed using Topbraid Composer 

FE (Composer, 2011) and Protégé (Horridge et al., 2011) with formal representation standard 

as OWL2 (Golbreich et al., 2012; Hitzler et al., 2012; Horridge and Patel-Schneider, 2012; 

Motik et al., 2012) as the basis for axioms. OWL2 is based on formal logic SROIQ (Krötzsch 

et al., 2012). The main focus of this work is to develop ontology of the mechanical product 

design process for DEA with the effect of the process model on the change of state of the 

product in terms of its geometric attributes.  

As explained in the earlier sections, engineering rules form a very integral and crucial part of 

an engineering design process for DEA and have been extensively formalised. However, a 

limitation of binding engineering rules to a process based approach has been a major 

limitation as engineering rules have been purely associated with product geometry and 

features in DEA systems. It was also observed that function, behaviour have been 

individually modelled in context in product modelling and implemented in ontology encoded 

in OWL.  

The ontology model as OWL/SWRL developed as part of this research constrains the 

interpretation of the knowledge base through its axioms and allows for subsumption relation 

validation (class-subclass relationship) and reasoning.    
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5.6.1 Ontology Development in OWL: Classes, Properties and Restrictions 

For OWL/SWRL as ontology implementation of GPM-DEA, the master class under Thing as 

described in OWL2 is the design process with subclasses as activity and product as one of the 

underlying main classes. Under the Design Process with activity and product being the main 

classes of focus, all the other concepts including rule, logic, resources, function or functional 

requirements and behaviour have been assigned as classes in the developed GPM-DEA. 

Design process function and behaviour are very crucial to GPM-DEA with function class 

allowing for generative modelling capabilities using SWRL. Subclasses have been clearly 

assigned to master classes for example; product_initial and product_final as initial and final 

state respectively are subclasses of the product class.Similarly, the rule class has different 

types of engineering design rules classified as production rules in the form of ‘If-Then’ and 

‘If-Then-Else’ construct, process rules, logic rules, math rules, geometry rules, configuration 

rules and heuristic rules as its subclasses. Many rules can be classified under multiple 

subclasses as various classes share common characteristics. However, the heuristic rules are 

disjoint with logic rules as a member of one class cannot be a member of the other class. 

Figure 5-9 illustrates the OWL implementation of GPM-DEA with classes and properties. 

The activity description concepts have been adopted from (Ding et al., 2009; Zhang et al., 

2013) including inputs, outputs, resources, activity id and description along with methods as 

transformation of inputs to outputs. The methods become synonymous to engineering rules 

and logic in the engineering design process. They have been implemented with the help of all 

use cases examples. Inputs, outputs of activity and other specified relationships as arrows 

between classes in GPM-DEA have been clearly assigned as properties in OWL2 formalism. 

Properties have been created between concepts as classes and classified as either object or 

datatype properties.  
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Figure 5-7: OWL implementation of GPM-DEA developed by this research: Classes and 

Properties 
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OWL2 allows object properties between individuals of classes and datatype properties 

between individuals and values such as string, integer, and float. Properties link individuals 

from domain to range. Thus relationships such as design process satisfies functional 

requirement (ProcessModel:satisfiesFunctionalRequirement), activity controlled by rule 

(ProcessModel:controlledbyRule), activity requires resources 

(ProcessModel:requiresResources) have been implemented as object properties. The 

rdfs:domain of the property becomes the initial class and the rdfs:range of the property 

becomes the second class.For example, (ProcessModel:satisfiesFunctionalRequirement) 

property has been created for which rdfs:domain is the Design_Process class and the 

rdfs:range becomes the FunctionalRequirement class.Similarly, 

(ProcessModel:controlledbyRule) property has rdfs:domain as Activity class and rdfs:range 

as Rule class. This has been illustrated with the help of query in earlier versions of GPM-

DEA with Use Case 3 in Section 4.5.3 in Chapter 4. To model the sequencing and 

optimisation of activities an object property called (ProcessModel:has_Sucessors) has been 

created with both rdfs:domain and rdfs:range set as Activity class.  

Datatype properties have been created such as to model activity has inputs and outputs in 

terms of object attributes(ProcessModel:has_Inputs), (ProcessModel:has_Outputs); activity 

has id (ProcessModel:has_ID). Both (ProcessModel:has_Inputs)  and 

(ProcessModel:has_Outputs) have domain as Activity class and range as xsd:float. For 

example (ProcessModel:has_Object_Size) has been created as a sub property of 

(ProcessModel:has_Attributes) in GPM-DEA.(ProcessModel:has_Attributes) has domain as 

Product and Object class and range as xsd:float. (ProcessModel:has_Object_Size) can be 

marked as a sub property of (ProcessModel:has_Inputs)under which dimensions of objects 

can be assigned values as sub properties of activity inputs. Similarly, 

(ProcessModel:has_Object_Position_Coordinates) has been created as a sub property of 
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(ProcessModel:has_Attributes) to allocate positioning of the parts and assemblies with all 3 

co-ordinates as X, Y and Z. (ProcessModel:has_Object_Position_Coordinates) can also be 

marked as a sub property of (ProcessModel:has_Inputs) under which position coordinates of 

objects can be assigned values as sub properties of activity inputs.Similarly, the datatype 

property (ProcessModel:has_Object_Orientation_Angle) created as a sub property of 

(ProcessModel:has_Attributes) allows allocation of orientation angle of all parts and 

assemblies with respect to X, Y and Z co-ordinates. 

(ProcessModel:has_Object_Orientation_Angle) can also be marked as a sub property of 

(ProcessModel:has_Inputs) under which orientation angle of objectscan be assigned values as 

sub properties of activity inputs.The datatype property (ProcessModel:has_ID) with domain 

as Activity class and range as xsd:integer means each activity has an integer id.  

OWL2 supports the following types of properties – asymmetric property, symmetric 

property, functional property, inverse functional property, reflexive property, irreflexive 

property and transitive property. Functional property can be both datatype and object 

property whereas inverse functional can only be an object property. Functional property 

means that the individual from a class can only be associated with one value. Thus 

(ProcessModel:has_ID) property created in the model is a functional property as it can only 

be associated with one integer as a datatype property. An inverse functional property means 

that the inverse of a property is functional and can only be associated with one value but is 

always an object property.  

All the other properties are classified under object properties as well.Reflexive property 

allows an individual from a class to relate to itself using the property. Any property, which 

doesn’t allow individual from a class to relate to itself, becomes an irreflexive property. 

Symmetric property means that if the property relates individuals from class A to class B then 

the individuals from class B are related to the individuals from class A with the same 
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property. Property, which doesn’t relate back individuals from different classes with the same 

property, is referred as asymmetric property. Transitive property indicates that if a property 

relates individuals from class A to class B and also individuals from class B to class C then 

the property holds true for individuals from class A to class C. All individuals created as 

instances of these classes will follow these properties as relationships. 

Restrictions are axioms that constrain class descriptions in OWL. Following restrictions are 

supported by OWL2 – quantifier restrictions in the form of existential and universal 

restriction, cardinality restrictions in the form of minimum, maximum and exact cardinality 

and hasValue restriction. Existential restriction or existential quantifier is referred as 

someValuesFrom (some) and may also be denoted as ∃. Universal restriction is referred as 

allValuesFrom (only) and may also be denoted as ∀.Existential restriction means that the 

individuals from a class must hold the property with atleast one individual from the filler 

class or datatype.  

For example, in GPM-DEA ontology model developed by this work, activity class has been 

created with an existential restriction in the form of (ProcessModel:has_Successors some 

ProcessModel:Activity), (ProcessModel:has_Inputs some xsd:float). These axiom in the form 

of existential restriction (some) means that all individuals from Activity class will need to 

hold (ProcessModel:has_Successors) object property with rdfs:domain set as Activity and 

rdfs:range set as Activity with atleast one individual from the filler class Activity. In natural 

language, it indicates that all instances of activity will need successor activities in order to 

describe them for a DEA system. Similarly, the existential restriction in the form of 

(ProcessModel:has_Inputs some xsd:float) constrains that all individuals of the Activity class 

must hold (ProcessModel:has_Inputs) datatype property with rdfs:domain set as Activity and 

rdfs:range set as xsd:float with atleast one individual from the filler datatype float.In natural 
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language, it indicates that all instances of activity will need inputs as object attribute float 

values in order to describe them for a DEA system.Similarly, an existential restriction has 

been created on the Activity class with another datatype property in the form of 

(ProcessModel:has_ID). The restriction is stated as (ProcessModel:has_ID some xsd:integer) 

which indicates that all instances of Activity class will hold (ProcessModel:has_ID) property 

with the filler as an integer datatype. In natural language it indicates that all activities will 

hold an ID in order to describe them for a DEA system.The existential restrictions on activity 

class along with subclasses of Rule are shown in the Figure 5-10. 

 

Figure 5-8: Axioms for Restrictions on Activity Class 

SPARQL query will generate the classes and relationships based on the defined process 

model as GPM-DEA.  

5.6.2 Function Structures, Design Process and Objects: Class Specification 

The engineering design process covers a wide lifecycle from conceptual design to the 

detailed design stage as discussed in literature review in Chapter 2 and development of GPM-

DEA. As elaborated in section 5.3.3, the various types of engineering design process with 
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their stages in class hierarchy in OWL representation are illustrated with the help of Figure 5-

11. 

 

Figure 5-9: Types of Design Processes: Class Hierarchy 

 

Similarly, for function structure, the highest level of class-subclass relationship of functional 

requirements for engineering design process, activities and objects has been broken down in 

this thesis for representation in OWL2. It is represented with the help of Figure 5-12 and 5-

13.   

Similarly, the object knowledge is represented as an interface to the process model with 

limited aspects, which can be extended further. The complete object model is illustrated with 

the help of Figure 5-14 and Figure 5-15.  
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Figure 5-10: Function Structure Classification: Class Hierarchy 

 

 

Figure 5-11: Function Structure Classification: Class Hierarchy Continued 
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Figure 5-12: Object Model Classification: Class Hierarchy 

 

 

Figure 5-13: Object Model Classification: Class Hierarchy Continued 

 

As explained earlier in section 5.3.3, in the present state of this work, the object knowledge 

consists of high-level classes such as features, form, fit and material selection with further 

sub classification as shown in Figure 5-14 and Figure 5-15.  
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5.6.3 Generative Modelling: Function Structure Matching using SWRL – Based on 

Function Structures, Design Process and Objects  

In order to satisfy the generative modelling capability of DEA as summarised in section 

5.5.2, following functions have been added as part of this research using SWRL for 

formalisation.    

1. Generation of activities based on sub-functions as functional requirements 

2. Generation of objects based on sub-functions as functional requirements 

3. Generation of engineering rules for activities based on logic as the basis of rules 

4. Assessment of initial product to generate the initial activity of the process model 

5. Virtual and physical activity functional equivalence 

The following functions represented in SWRL on top of OWL, fulfil these 5 predefined set of 

generic functions to generate query and reasoning results on various instances for DEA for 

mechanical design with DFM process with semantic clarity and generative modelling.     

4. Assessment of initial product to generate the initial activity of the process model   

Function1: Generating 1st Activity (Physical): SWRL 

Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Physical-Activity(?pa) ^ 

has_Function(?pa, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?pa) 

 

Function2: Generating 1st Activity (Informatical): SWRL  

Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Informatical-Activity(?ia) ^ 

has_Function(?ia, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?ia) 

 

Function3: Generating 1st Activity (Virtual): SWRL 
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Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Virtual-Activity(?va) ^ 

has_Function(?va, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?va) 

 

1. Generation of activities based on sub-functions as functional requirements 

Function 4: Generating other Physical Activities: SWRL  

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Physical-Activity(?pa) ^ 

has_Function(?pa, ?f) -> consists_of_Activity(?dp, ?pa) 

 

Function 5: Generating other Informatical Activities: SWRL 

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Informatical-

Activity(?ia) ^ has_Function(?ia, ?f) -> consists_of_Activity(?dp, ?ia 

 

Function 6: Generating other Virtual Activities: SWRL  

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Virtual-Activity(?va) ^ 

has_Function(?va, ?f) -> consists_of_Activity(?dp, ?va) 

 

5. Virtual and physical activity functional equivalence 

Function 7: Physical and Virtual Activities Equivalent Function: SWRL 

Physical-Activity(?pa) ^ has_Function(?pa, ?f) ^ Virtual-Activity(?va) ^ equivalent_to(?pa, 

?va) -> has_Function(?va, ?f) 

 

2. Generation of objects based on sub-functions as functional requirements 

Function 8: Generating Objects: SWRL 

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Object(?o) ^ 

fulfills_Function(?o, ?f) -> consists_of_Object(?dp, ?o) 

 

Function 9: Generating Object Features: SWRL 
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Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Feature(?fe) ^ 

fulfills_Function(?fe, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^ 

Product_Final(?pf) -> has_Feature(?pf, ?fe) ^ produces_Product_Final(?dp, ?pf) 

 

 

Function 10: Generating Object Form: SWRL 

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Form(?fo) ^ 

fulfills_Function(?fo, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^ 

Product_Final(?pf) -> has_Form(?pf, ?fo) ^ produces_Product_Final(?dp, ?pf) 

 

 

Function 11: Generating Object Fit: SWRL 

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Fit(?fi) ^ 

fulfills_Function(?fi, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^ 

Product_Final(?pf) -> has_Fit(?pf, ?fi) ^ produces_Product_Final(?dp, ?pf) 

 

3. Generation of engineering rules for activities based on logic as the basis of rules  

Function 12: Generating Rules controlling Physical Activities: SWRL   

Physical-Activity(?pa) ^ affectedbyLogic(?pa, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) -> 

controlled_by_Rule(?pa, ?r) 

 

Function 13: Generating Rules controlling Informatical Activities: SWRL 

Informatical-Activity(?ia) ^ affectedbyLogic(?ia, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) -> 

controlled_by_Rule(?ia, ?r) 

 

Function 14: Generating Rules controlling Virtual Activities: SWRL 

Virtual-Activity(?va) ^ affectedbyLogic(?va, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) -> 

controlled_by_Rule(?va, ?r) 

 

Function 15: Physical and Virtual Activities Logic Equivalence: SWRL 
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Physical-Activity(?pa) ^ affectedbyLogic(?pa, ?l) ^ Virtual-Activity(?va) ^ 

equivalent_to(?pa, ?va) -> affectedbyLogic(?va, ?l) 

 

5.7 Summary 

This chapter discusses the development of Generative Process Model for Design 

Engineering Automation (GPM-DEA) as a hybrid approach of IDEF0, UML, SysML 

individual diagrams and addition of constructs as in informal/semiformal process model for 

DEA. The complete working of the model incorporates generative modelling to generate the 

activities, objects based on functional requirements and engineering rules based on logic 

for a KBE perspective. This leads to the formalisation of GPM-DEA in OWL/SWRL 

ontology based on formal logic based on the method as schema mapping thus providing a 

method to use ontologies as neutral formal representation for DEA for mechanical design and 

DFM/DFA with preserved semantics. The usage of OWL/SWRL syntax and semantics 

constrains the meaning of its concepts and relationships through the axioms. GPM-DEA 

provides mechanical product design ontology with inclusion of manufacturing knowledge for 

DEA with a KBE approach through open standards based on the Meta model developed by 

the author. It can be further extended to incorporate other phases of PD such as operations 

and maintenance and wider aspects of DEA such as thermal design, structural design. The 

next chapter will discuss the test use-cases to further enhance the ontology system 

development for experimental verification in chapter 7.        
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6 Development of Knowledge Representation System with Test 

UseCases 

6.1 Introduction 

This chapter elaborates on the system development and test use-cases in the form of creating 

a hole in a block with the drilling process and bookshelf design process collated from 

literature. The use cases have been devised to provide a proof of concept working of GPM-

DEA and its formal ontology implementation in OWL/SWRL as described in the previous 

chapters. They have been formulated around the research hypothesis as described in chapter 1 

to target the DEA needs with a KBE approach. Both the use-cases have been implemented in 

a proprietary DEA system such as AML, ParaPy and GA based CATIA Knowledgeware and 

Siemens NX KF. The instantiation of GPM-DEA with its implementation in OWL/SWRL 

ontology for both these use-cases will be discussed in this chapter. 

6.2 Overview of Use Case 3 & 4 

In this thesis, concepts from Pilot Use Case 1 and 2 as Meta model partially led to the 

development of GPM-DEA and its system development in OWL/SWRL ontology for 

platform independent and neutral formal representation to enable DEA with semantic clarity 

for mechanical design with DFM/DFA. The automation capability includes a set of geometric 

and non-geometric knowledge as F-B-S aspects of mechanical design process with 

DFM/DFA for automation. GPM-DEA as a coherent and structured process based knowledge 

model provides a schema or a method as a Meta model for ontology development as neutral 

formal representation for DEA. 

The test use-cases compiled and analysed in this work are targeted to refine the 

implementation of GPM-DEA in OWL/SWRL ontology for incorporation of product’s 

geometric attributes with numeric values. The working of GPM-DEA with functional 
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requirements as the basis for generative modelling has been discussed in section 5.5.2 and its 

method of implementation in ontologies in section 5.6.3. The automation capability varies 

from sub-function structures at conceptual design stage to generation of activities, objects and 

engineering rules to show the effect of the process model on the product’s geometric 

attributes at the detailed design stage.   

As the pilot use cases with experimentation for formalisation as discussed in section 4.4 and 

4.5 catered primarily to the conceptual and configuration / embodiment design stage with 

DFM, the test use-cases in the next section have been developed to target the detailed design 

stage with inclusion of DFM as manufacturing knowledge with datatype float numeric values 

for product’s attributes. Both the test use-cases have been devised and implemented in 

OWL/SWRL ontology with the method of schema mapping as developed in section 5.5 in 

this work. The allocation of use-case is illustrated in Figure 6-1.   

 

Figure 6-1: Use Case Allocation – Created by Author 
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Use Case 3, as compiled by the author focusses on creating a hole in a block with drilling 

process such that the block can be described with numeric values of geometric features. It 

will be used for system development on OWL/SWRL ontology as per the devised GPM-DEA 

schema or Meta model and is implemented in ParaPy as a KBE based DEA tool. Similarly, 

Use Case 4 is based on a bookshelf design process with numeric values to geometric features. 

This will be instantiated in GPM-DEA for formalisation in OWL/SWRL ontology. This has 

also been implemented in AML, CATIA knowledgeware and Siemens NX KF. Both the use 

– cases have been implemented in ontology as per the ontology development methodology 

discussed in research design in section 1.4.2. Use case 3 has been devised with motivation 

from (Hunter et al., 2005; Monfared, 2000) and the understanding of the research scope. Use 

Case 4 has been devised and adopted from (Lützenberger et al., 2012) from the LinkedDesign 

project whose focus is on KBE based automation with platform independent and neutral 

formal representation of engineering design knowledge. Knowledge has been added to the 

Use Case 4 by the author in terms of functions for individual activities and logic description 

for rules such that the generative modelling capability developed as part of this research can 

be illustrated.   

6.3 Test Use Case 3: Creating a Hole in a Block with Drilling Process 

The aim of this use case is to refine the system development as OWL/SWRL using the GPM-

DEA schema as Meta Model and at the instance level with incorporation of product 

geometric accessible attributes as block dimensions in this work. The DEA process initiates 

from the sub-function structures and function mapping of activities and objects to that of the 

engineering design process through to the generation of rules to control the drilling process 

with its effect on block attributes. The following questions arise which will be verified in the 

next chapter –  
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1. Can the instances of drilling process in a block for creating a hole be automatically 

generated based on function structures of individual activities such as drilling, 

reaming along with objects such as drill bit and engineering rules for controlling the 

effect on geometric attributes of the block? 

2. Can the implementation (ontology and rule representation) of the generated activities, 

objects and rules generate appropriate and accurate numeric values to block 

attributes thus successfully enabling DEA with a KBE approach?  

The instantiation of GPM-DEA as informal/semiformal knowledge capture with Use case 3 

with its formalisation in OWL/SWRL ontology as system development for formal 

representation is discussed in this section.  

6.3.1 Function Structure Matching 

As observed from Figure 6-2, the drilling process1 has 2 sub-functions – ‘Cut hole of circular 

cross section’ and ‘Precision of hole dimensions’. It can be observed from Figure 6-3, all 

activities such as drill hole, ream hole, bore hole and punch hole satisfy function – ‘Cut hole 

of circular cross section’. Similarly, the activity ‘Set requirements of hole’ satisfies the 

function – ‘Precision of hole dimensions’. Thus drilling process1 can have all of these 

activities in the form of drill hole, ream hole, bore hole and punch hole along with ‘Set 

requirements of hole’.   

 

Figure 6-2: Drilling Process Functional Requirements & Sub Functions: Knowledgebase 
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Figure 6-3: Activities with Functions & Sub Functions: Knowledgebase 

 

All the activities with their inputs, outputs, controls as rules and mechanisms as resources 

along with participating objects as inputs is shown in Figure 6-4. Their corresponding 

graphical representation is an ICOM box of IDEF0 standard in GPM-DEA as illustrated in 

next section 6.3.2. A snapshot of the rules controlling the activities is shown in Figure 6-5. 

 

Figure 6-4: Activities with Inputs, Outputs, Rules and Resources with Objects for Drilling 

Process: Knowledgebase 
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Figure 6-5: Engineering Rules controlling the Design Process Activities for Drilling Process: 

Knowledgebase 

 

6.3.2 Informal / Semiformal Representation: GPM-DEA 

The author has devised and instantiated an instance of drilling process in GPM-DEA as 

informal / semiformal representation as shown in Figure 6-6. Both physical and virtual 

activities are modelled as equivalent activities. For example physical activity ‘Assess block 

(workpiece)’ is equivalent to the virtual activity ‘Assess Protruded block (workpiece)’. 

Similarly, ‘Drill hole’ as a physical activity is equivalent to virtual activities – ‘Create hole’ 

and ‘Subtract hole’. As all activities are represented using IDEF0 notation for functional 

modelling, equivalent activities correspond to same function. The SWRL Function 4 

developed in this work, discussed in section 5.5.3, executes the equivalency as neutral formal 

representation.  

All activities are represented with inputs, controls as rules, outputs and mechanisms as 

resources (ICOM). The process rule for selection between drilling and reaming process based 

on tolerance of hole is represented with UML condition link. Thus process-sequencing 

options are represented with red links with UML condition link for multiple ‘what-if’ 

scenarios. Sub-activity in the form of selection and positioning of drill bit as represented 

using blue link. The product model representing the initial and the final state as block and 

block with hole respectively is represented using UML class diagram with attributes and 
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engineering rules as methods affecting the attributes. UML class diagram has been used for 

representing all participating objects in the form of drill bit. SysML requirement diagram is 

used for representing the functional requirements of the drilling process as sub functions in 

context to the block and the drill bit as objects. 

Figure 6-7 shows a snapshot of function matching of individual activities as function 

structures of drilling process functional requirements with links to rules in ICOM box. Figure 

6-8 shows a snapshot of product as block in initial state and final state as block with hole with 

UML class diagram along with function matching of these objects. As it can be observed, 

various engineering rules such as ‘dimension, depth, material, hole depth and hole diameter 

rule’ are informally represented as methods inside UML class diagram along with attributes 

by the author. It also shows the interface of the process model to the product model.     
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Figure 6-6: An Instance of Drilling Process in GPM-DEA: Informal / Semiformal 

Representation 

IDEF0  

UML Condition link 

UML Class Diagram 
SysML Requirement 

Diagram 



 173 

 

Figure 6-7: Function Structure Matching – Drilling Process Activities with Links to Rules 

 

 

 

Figure 6-8: Product in Initial and Final State and Function Matching - Drilling Process Objects with 

Description of Rules 

UML Class Diagram 

IDEF0  

SysML Requirement 

Diagram 
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6.3.3 Formal Representation: OWL/SWRL 

The instantiated GPM-DEA model for drilling process has been then represented in 

OWL/SWRL ontology as neutral formal representation by the author. The activities of the 

drilling process in GPM-DEA corresponding to the graphical representation in Figure 6-6and 

6-7 as IDEF0 ICOM box are represented formally in OWL2 with associated id, inputs, 

outputs, resources and linkage to engineering rules using classes and properties. All the 

activities interlinked with product structure with attributes, function as sub-functions and 

behaviour corresponding to UML class diagram and SysML requirement diagram are also 

represented using OWL2 using classes and properties as illustrated in Figure 6-9. 

 

Figure 6-9: Drilling Process in OWL: TopBraid Composer FE 

 

As observed from Figure 6-9, only OWL2 representation is utilised in Topbraid. All the 

classes with class-subclass relationship can be observed on the left. All the properties for 

inputs, outputs and other relationships marked as arrows in Fig 6-6and 6-7 are represented on 

the right under the properties tab in Figure 6-9. Instances have been produced on the bottom 
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and all the relationships between instances can be observed in the resource form in the centre 

tab. As also observed from Figure 6-9, the drill hole instance of activity tab illustrates its ID 

as 3, is controlled by rules such as Drill_Diameter_Rule, Drill_Length_Rule and 

Hole_Diameter_Rule. The equivalent activities and functions are also asserted using 

specified property in the form of ‘has_Function’.   

For the product attributes in UML class diagram as activity inputs and outputs as IDEF0 

ICOM, in context to GPM-DEA, datatype properties have been created and instantiated in 

this work. As explained in section 5.5.1, (ProcessModel:has_Inputs) and 

(ProcessModel:has_Outputs) are the datatype properties created in GPM-DEA to assert 

activity inputs and outputs in terms of object attributes. All sub-properties of 

(ProcessModel:has_Attributes) such as (ProcessModel:has_Object_Size), 

(ProcessModel:has_Object_Position_Coordinates) and 

(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted 

as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As 

observed from Figure 6-9, following properties as sub properties of 

(ProcessModel:has_Attributes) have been classified as sub properties of 

(ProcessModel:has_Inputs) as activity inputs –  

I. ProcessModel:has_Object_Depth 

II. ProcessModel:has_Object_Diameter 

III. ProcessModel:has_Object_Height 

IV. ProcessModel:has_Object_Width 

V. ProcessModel:has_Object_X_Coordinate 

VI. ProcessModel:has_Object_Y_Coordinate 

VII. ProcessModel:has_Object_Z_Coordinate 
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Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have 

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs –  

I. ProcessModel:has_Object_Depth 

II. ProcessModel:has_Volume 

It can be observed that the same property (ProcessModel:has_Object_Depth) has been 

classified under both (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) thus 

making the model flexible. UML class diagram attributes can thus be neutrally represented 

using OWL2 datatype properties. As illustrated in Figure 6-9, all the properties can be 

observed on the right tab.   

However, as explained earlier, due to the limitations of OWL in representing n-ary 

relationships, generative modelling capabilities of GPM-DEA based on the functional 

requirements as sub function structures along withthe methods in UML class diagram as 

engineering rules based on logic and math the can’t be represented using OWL2. These have 

been formally represented using SWRL in this research.  

In GPM-DEA, it has been illustrated that IDEFO activities have function. Similarly, an object 

fulfills a function, and the design process satisfies functional requirement in the form of 

product function. As per the class-subclass relationship of function structures discussed in 

section 6.3.1, the sub function - ‘Cut hole of circular cross section’ is an instance of class 

‘Remove_Solid_as_Subtracted_Volume_Boolean’ as a subclass of 

‘Geometric_3D_Modelling’. It further becomes an instance of class 

‘Subtract_Cylinder_Volume’ at the lowest level. The sub function  - ‘Precision of hole 

dimensions’ is an instance of class ‘Precision_Accuracy’ as a subclass of ‘Quality_Control’, 

which further is a subclass of ‘Manufacturing_Feasibility’. Various instances of functions are 

shown with the help of Figure 6-10.  
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Other functions such as – ‘Enlarge_hole’ and ‘High_surface_finish’ have been allocated as 

instances of function-sub function class hierarchy as shown in Figure 6-10. 

The SWRL functions for generative modelling capabilities of GPM-DEA using function 

structure matching in this research have been illustrated in section 5.5.3.Protégé offers a built 

in plugin for SWRL. 

 

Figure 6-10: Instances of Functions – Drilling: Topbraid 

 

The implementation of the SWRL generative modelling functions for drilling is illustrated 

with the help of Figure 6-11. The URI in the form of ProcessModel: was removed 

automatically while importing the turtle (.ttl) file from Topbraid to Protégé.  
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Figure 6-11: SWRL Functions - Generative Modelling in Drilling: Protégé 

 

It is important to note that Function 10 has been specifically added and tailored to the drilling 

process to reflect the change in state of block through extrusion as subtracted volume with a 

constraint on created ontology that if the volume subtracted is a cylinder than the face of the 

block should be circular. Figure 6-11 illustrates the representation or codification of 

functions, which allow GPM-DEA to generate activities and objects based on the sub 

functions of each activity and the object along with rules based on logic. 

The verification of the generative modelling capability of GPM-DEA through drilling use-

case will be discussed in next chapter by testing the reasoning capability of the drools 

reasoner on SWRL axioms and SQWRL query language. For the instantiated drilling use case 

example in GPM-DEA, the initial product is the block and the final product is block with 

hole as feature after the drilling process has been performed. Multiple holes can be created as 

instances of Hole class as a subclass of Depression_Extrusion feature. SPARQL query for 

activity to function mapping for ‘Drill_hole’ and ‘Ream_hole’ activities is illustrated with 

Figure 6-12 and 6-13.  
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Figure 6-12: SPARQL Query Result: Activity to Function Mapping – Drill hole 

 

 

Figure 6-13: SPARQL Query result: Activity to Function Mapping – Ream hole 
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The function – ‘Cut_hole_of_circular_cross_section’ is a function of type 

‘Subtract_Cylinder_Volume’, ‘Enlarge_hole’ belongs to Function of type 

‘Manufacturing_Feasibility’ and ‘High_surface_finish’ is a function of type 

‘Precision_Accuracy’. All the function structures of GPM-DEA have been elaborated in 

Figure 5-12 and 5-13 in section 5.5.2.  

Similarly, SPARQL query for object to function mapping for physical objects – ‘Drill Bit’ and 

‘Reamer’ is shown with Figure 6-14 and rule to logic description mapping with Figure 6-15.  

 

Figure 6-14: SPARQL Query Result – Object to Function Mapping – Drill bit and Reamer 

 

 

Figure 6-15: SPARQL Query Result – Rule to Logic Mapping – Drilling Process 
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The engineering rules represented informally in GPM-DEA as methods in UML have also 

been codified using SWRL as neutral formal representation in this research. From the 

knowledgebase, shown in Figure 6-5, consisting of engineering rules for the drilling use case, 

all the rules in SWRL axioms are illustrated as follows –  

1. SWRL Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm, 

H>=50 mm, D>=50mm) 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ 

swrlb:greaterThanOrEqual(?w, "50.0"^^xsd:float) ^ hasHeight(?p, ?h) ^ 

swrlb:greaterThanOrEqual(?h, "50.0"^^xsd:float) ^ hasDepth(?p, ?d) ^ 

swrlb:greaterThanOrEqual(?d, "50.0"^^xsd:float) -> sqwrl:select("Block adheres to 

dimensions") 

 

2. SWRL Depth Rule - D=W*1.5 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:multiply(?x, ?w, 

"1.5"^^xsd:float) -> hasDepth(?p, ?x) 

 

3. SWRL Material Rule - If W>100 Then M = Metallic_Aluminium) 

 

SWRL Representation - Product(Block) ^ hasWidth(Block, ?w) ^ 

swrlb:greaterThan(?w, "100.0"^^xsd:float) -> hasMaterial(Block, 

Metallic_Aluminium) 

 

4. SWRL Volume Rule - V1=W*H*D 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ hasHeight(?p, ?h) ^ 

hasDepth(?p, ?d) ^ swrlb:multiply(?v, ?w, ?h, ?d) -> hasVolume(?p, ?v) 

 

5. SWRL Hole Depth Rule - Hole depth should be less than or equal to depth of block, 

HD2<=D 

 

SWRL Representation - Product(?p) ^ hasDepth(?p, ?d) ^ Hole(?h) ^ hasDepth(?h, 

?d2) ^ swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select(("Hole adheres to 

dimensions") 

   Else 

Product(?p) ^ hasDepth(?p, ?y) ^ Hole(?h) ^ hasDepth(?h, ?z) ^swrlb:greaterThan(?z, 

?y) -> sqwrl:select("Hole can't be created") 
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6. SWRL Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?a) ^ hasHeight(?p, ?b) ^ 

Hole(?h) ^ hasDiameter(?h, ?c) ^swrlb:multiply(?d, ?c, "1.25"^^xsd:float) ^ 

swrlb:lessThan(?d, ?a) ^ swrlb:lessThan(?d, ?b) ->sqwrl:select("Hole adheres to 

dimensions") 

   Else 

Product(?p) ^ hasWidth(?p, ?e) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, 

?g, "1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?e) -> sqwrl:select("Hole can't 

be created") 

   Else 

Product(?p) ^ hasHeight(?p, ?f) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, 

?g, "1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't 

be created") 

 

7. SWRL Hole Volume Rule - Volume of Hole (VH) = [(3.14*HD1*HD1)/4]*HD2)] 

 

SWRL Representation - Hole(?h) ^ hasDiameter(?h, ?hd1) ^ hasDepth(?h, ?hd2) ^ 

swrlb:multiply(?x, "3.14"^^xsd:float, ?hd1, ?hd1, ?hd2) ^ swrlb:divide(?vh, ?x, 

"4.0"^^xsd:float) -> hasVolume(?h, ?vh) 

 

8. SWRL Volume2 Rule - Final Volume (V2) = V1-HV) 

SWRL Representation - Product_Initial(?p) ^ hasVolume(?p, ?v1) ^ Product_Final(?p2) ^ 

hasFeature(?p2, ?i) ^ Depression(?i) ^ hasVolume(?i, ?v2) ^ swrlb:subtract(?j, ?v1, ?v2) -> 

hasVolume(?p2, ?j) 

 

9. SWRL Process Rule1 - If <Tolerance of the hole is less than 0.2 mm for high 

accuracy>perform reaming else drilling 

 

SWRL Representation - Activity(Set_requirements_of_hole) ^ Hole(?h) ^ 

has_Tolerance(?h, ?t) ^ swrlb:lessThan(?t, "0.2"^^xsd:float) -> 

has_Successors(Set_requirements_of_hole, ReamingProcess) 

Else  

Activity(Set_requirements_of_hole) ^ Hole(?h) ^ has_Tolerance(?h, ?t) ^ 

swrlb:greaterThan(?t, "0.2"^^xsd:float) -> has_Successors(Set_requirements_of_hole, 

Drill_hole) 
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Figure 6-16, Figure 6-17 and Figure 6-18 illustrate the SWRL representation of engineering 

rules for the drilling use case in Protégé IDE.  

Figure 6-16: Engineering Rules – Drilling Process: Protégé 

 

 

 

Figure 6-17: Engineering Rules 2 – Drilling Process: Protégé 
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Figure 6-18: Engineering Rules 3 – Drilling Process: Protégé 

 

6.4 Test Use Case 4: Designing a bookshelf (KBE and Neutral Formal 

Representation with MOKA methodology): Adapted from 

LinkedDesign 

Pertaining to this research, the aim of this use case is to further refine and verify the system 

development as OWL/SWRL using the GPM-DEA schema as Meta Model and at the 

instance level with incorporation of product geometric accessible attributes as bookshelf 

dimensions and illustrate wider applicability. The DEA process initiates from the sub-

function structures and function mapping of activities and objects to that of the engineering 

design process through to the generation of rules to control the bookshelf design process with 

its effect on bookshelf attributes. The following questions arise which will be verified in the 

next chapter –  

1. Can the instances of bookshelf design process be automatically generated based on 

function structures of individual activities along with objects and engineering rules 

for controlling the effect on geometric attributes of the bookshelf? 
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2. Can the implementation (ontology and rule representation) of the generated activities, 

objects and rules generate appropriate and accurate numeric values to bookshelf 

attributes thus successfully enabling DEA with a KBE approach?  

The instantiation of GPM-DEA with Use case 4 with its formalisation in OWL/SWRL as 

system development is discussed in this section.  

6.4.1 Function Structure Matching 

As observed from Figure 6-19, the bookshelf design process has 3 sub-functions – 

‘Detailed_design_3D_model_bookshelf’, ‘Variable_input_output_parameters’ and 

‘Virtual_positioning’. It can be observed from Figure 6-20, activity ‘Input bookshelf 

parameters’ satisfies function – ‘Detailed_design_3D_model_bookshelf’. Similarly, activities 

such as ‘Compute parameters NDW, NSH’ and ‘Compute parameters SHL, WAL, 

SHS’satisfy function – ‘Variable_input_output_parameters’. Similarly, the activity 

‘Positioning of the bookshelf’ satisfies the function – ‘Virtual_positioning’. Thus from the 

activity knowledgebase, bookshelf design processshould have all of the above mentioned four 

activities.   

 

Figure 6-19: Bookshelf Design Process Functional Requirements & Sub Functions: 

Knowledgebase 
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Figure 6-20: Activities with Functions & Sub Functions: Knowledgebase 

 

All the activities with their inputs, outputs, controls as rules and mechanisms as resources 

along with participating objects as inputs is shown in Figure 6-21. Their corresponding 

graphical representation is an ICOM box of IDEF0 standard in GPM-DEA as illustrated in 

next section 6.4.2. A snapshot of the rules controlling the activities is shown in Figure 6-22. 

 

Figure 6-21: Activities with Inputs, Outputs, Rules and Resources with Objects for Bookshelf 

Design Process: Knowledgebase 
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Figure 6-22: Engineering Rules controlling the Design Process Activities for Bookshelf 

Design Process: Knowledgebase 

 

6.4.2 Informal / Semiformal Representation: GPM-DEA 

An instance of bookshelf design process has been devised and instantiated in GPM-DEA as 

informal / semiformal representation as shown in Figure 6-23. All activities are virtual 

activities in context to the bookshelf design process as the process is realised at the detailed 

design stage in the form of geometric modelling. For example ‘input bookshelf parameters’ 

will allow user to enter input values to bookshelf geometric attributes such as Width (W), 

Height (H), Depth (T) and other attributes. All activities are represented using IDEF0 

notation for functional modelling, and satisfy a function. As explained in the working of 

GPM-DEA in section 5.3.1 with the help of Figure 5-3, if the functions of activities are not 

available in the knowledgebase as inputs then the user will need to enter the functions of 

activities and objects to successfully enable generative modelling capability of the model.  

All activities are represented with inputs, controls as rules, outputs and mechanisms as 

resources (ICOM).  

The process-sequencing options are represented with red links as UML condition link for 

multiple ‘what-if’ scenarios. Sub-activities can be represented using blue link. The product 

model representing the initial and the final state as bookshelf design parameter values and the 
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designed bookshelf in virtual 3d model representation is represented using UML class 

diagram with attributes and engineering rules as methods affecting the attributes. As 

explained in Chapter 4 and 5, UML class diagram is used for representing all participating 

objects in the engineering design process. Similarly, SysML requirement diagram is used for 

representing the functional requirements of the bookshelf design process as sub functions in 

context to the bookshelf as product. 

Figure 6-24 shows a snapshot of function matching of individual activities as function 

structures of bookshelf design process functional requirements with links to rules in ICOM 

box.  

Figure 6-25 shows a snapshot of product as bookshelf in initial and final state with UML 

class diagram along with function matching of these objects. As it can be observed, various 

engineering rules such as dividing walls, shelves, side and dividing walls, sidewall position 

and topshelf position rules are informally represented as methods inside UML class diagram 

along with attributes in this research. It also shows the interface of the process model to the 

product model with part and assembly features of the bookshelf such as shelf, frame and 

dividing walls using UML composition and aggregation structural links. 
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Figure 6-23: An Instance of Bookshelf Design Process in GPM-DEA: Informal / Semiformal 

Representation 

IDEF0  

UML Class Diagram 
SysML Requirement 

Diagram 

UML Composition and 

Aggregation Links  
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Figure 6-24: Function Structure Matching – Bookshelf Design Process Activities with Links 

to Rules 

 

Figure 6-25: Product in Initial and Final State and Function Matching – Bookshelf Design 

Process Objects with Description of Rules 

 

SysML Requirement 

Diagram 

IDEF0  

UML Class Diagram 

UML Composition and 

Aggregation Links  
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6.4.3 Formal Representation: OWL/SWRL 

The instantiated GPM-DEA model for bookshelf design process has been then represented in 

OWL/SWRL as neutral formal representation in this research. The activities of the bookshelf 

design process in GPM-DEA corresponding to the graphical representation in Figure 6-23 

and 6-24 as IDEF0 ICOM box are represented formally in OWL2 with associated id, inputs, 

outputs, resources and linkage to engineering rules using classes and properties. All the 

activities interlinked with product structure with attributes, function as sub-functions and 

behaviour corresponding to UML class diagram and SysML requirement diagram are also 

represented using OWL2 using classes and properties as illustrated in Figure 6-26. 

 

Figure 6-26: Bookshelf Design Process in OWL: TopBraid Composer FE 

 

As observed from Figure 6-26, only OWL2 representation is utilised in Topbraid. All the 

classes with class-subclass relationship can be observed on the left. All the properties for 

inputs, outputs and other relationships marked as arrows in Fig 6-23 and 6-24 is represented 
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on the right under the properties tab in Figure 6-26. Instances have been produced on the 

bottom and all the relationships between instances can be observed in the resource form in 

the centre tab. As also observed from Figure 6-26, the ‘input bookshelf parameters’ instance 

of activity tab illustrates its ID as 1, allows user to enter input values to this activity in terms 

of bookshelf geometric attributes as object attributes such as Object_Height_H being given 

value 5000 mm, Object_Horizontal_length_1_shelf_HS being given value 1000 mm. The 

equivalent activities and functions are also asserted using specified property in the form of 

‘has_Function’.    

For the product attributes in UML class diagram as activity inputs and outputs as IDEF0 

ICOM, in context to GPM-DEA, datatype properties have been created and instantiated. As 

explained in section 5.5.1, (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) are 

the datatype properties created in GPM-DEA to assert activity inputs and outputs in terms of 

object attributes. All sub-properties of (ProcessModel:has_Attributes) such as 

(ProcessModel:has_Object_Size), (ProcessModel:has_Object_Position_Coordinates) and 

(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted 

as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As 

observed from Figure 6-22, following properties as sub properties of 

(ProcessModel:has_Attributes) have been classified as sub properties of 

(ProcessModel:has_Inputs) as activity inputs – 

I. ProcessModel:has_Object_Depth_T 

II. ProcessModel:has_Object_Height_H 

III. ProcessModel:has_Object_Horizontal_length_1_shelf_HS 

IV. ProcessModel:has_Object_Thickness_bottom_shelf_TB 

V. ProcessModel:has_Object_Thickness_dividing_walls_TD 

VI. ProcessModel:has_Object_Thickness_inner_shelf_TSH 
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VII. ProcessModel:has_Object_Thickness_side_walls_TS 

VIII. ProcessModel:has_Object_Thickness_top_shelf_TT 

IX. ProcessModel:has_Object_Vertical_length_1_shelf_VS 

X. ProcessModel:has_Object_Width_W 

Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have 

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs –  

I. ProcessModel:has_Object_Length_of_side_and_dividing_walls_WAL 

II. ProcessModel:has_Object_No_dividing_walls_NDW 

III. ProcessModel:has_Object_No_shelves_NSH 

IV. ProcessModel:has_Object_Shelf_length_SHL 

V. ProcessModel:has_Object_Vertical_space_between_shelves_SHS 

VI. ProcessModel:has_Object_X_Coordinate 

VII. ProcessModel:has_Object_Y_Coordinate 

VIII. ProcessModel:has_Object_Z_Coordinate 

UML class diagram attributes can thus be neutrally represented using OWL2 datatype 

properties. All the properties can be observed in Figure 6-26 on the right tab. 

As per the class-subclass relationship of function structures discussed in section 6.4.1, the sub 

function - ‘Detailed_design_3D_model_bookshelf’ is an instance of class 

‘Geometric_3D_Modelling’. The sub functions  - ‘Variable_input_output_parameters’ and 

‘Virtual_positioning’ are also instances of class ‘Geometric_3D_Modelling’. Various 

instances of functions are shown with the help of Figure 6-27.  



 194 

 

Figure 6-27: Instances of Functions – Bookshelf Design Process: Topbraid 

 

The implementation of the SWRL generative modelling functions for bookshelf design 

process is illustrated with the help of Figure 6-28. 

 

Figure 6-28: SWRL Functions - Generative Modelling in Bookshelf Design: Protégé 
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Figure 6-28 illustrates the representation or codification of functions developed in this work, 

which allow GPM-DEA to generate activities and objects based on the sub functions of each 

activity and the object along with rules based on logic. The verification of the generative 

modelling capability of GPM-DEA through bookshelf design use-case will be discussed in 

next chapter by testing the reasoning capability of the drools reasoner on SWRL axioms and 

SQWRL query language.  

For the instantiated bookshelf design use case example in GPM-DEA, the final product is the 

virtual representation of bookshelf as 3D model.The fit class becomes the most crucial class 

in representing the part and assembly relations of the bookshelf. As illustrated with the help 

of Figure 6-23 and 6-25, there are 6 parts of the bookshelf – dividing walls, frame, shelves, 

bottom shelf, side walls and top shelf along with bookshelf and frame as assembly. All the 

parent child relationships are shown graphically in the informal/semiformal model. The 

assembly parts relations of the bookshelf are shown in OWL2 with the help of Figure 6-29.  

 

Figure 6-29: Fit: Assembly and Part Relations for Bookshelf: Topbraid Composer FE 
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The assembly relationships can be queried in the SPARQL query tab to generate the results 

required from the user. These queries results are illustrated with the help of Figure 6-30. 

 

Figure 6-30: SPARQL Query Result: Bookshelf Part and Assembly Relations 

 

 

Figure 6-31: SPARQL Query Result – Activity Function Mapping – Bookshelf Design 
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Similarly, to illustrate the SPARQL query for activity-function mapping for the activity - 

‘Input bookshelf parameters’ is illustrated with Figure 6-31. 

SPARQL query for illustrating the rule to logic mapping for bookshelf design process with a 

few examples is shown in Figure 6-32. 

 

Figure 6-32: SPARQL Query Result: Rule to Logic Mapping – Bookshelf Design Process 

 

The engineering rules represented informally in GPM-DEA as methods in UML are also 

codified using SWRL as neutral formal representation in this work. From the knowledgebase, 

shown in Figure 6-22, consisting of engineering rules for the bookshelf design use case, all 

the rules in SWRL axioms are illustrated as follows –  

1. SWRL Dividing Walls Rule– NDW is based on HS and W, If (W<0.5*HS, 

"ERROR") elseif (W<=HS, NDW=0) else (NDW=Int(W/HS)-1) 

 

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, 

"0.5"^^xsd:float, ?hs) ^ swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow 

for a bookshelf") 

 And 

Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, 

"0.5"^^xsd:float, ?hs) ^ swrlb:greaterThan(?w, ?x) ^ swrlb:lessThanOrEqual(?w, ?hs) 

-> has_Object_No_dividing_walls_NDW(?p, "0.0"^^xsd:float) 

And  

Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:greaterThan(?w, ?hs) ^ 
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swrlb:divide(?y, ?w, ?hs) ^ swrlb:subtract(?z, ?y, "1.0"^^xsd:float) -> 

has_Object_No_dividing_walls_NDW(?p, ?z) 

 

2. SWRL Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif 

(2*VS>H, NSH=0) else (NSH=Int((H/VS)-1)) 

 

SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^ 

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:greaterThan(?vs, ?h) -> 

sqwrl:select("Error - Too low for even one space in the bookshelf") 

  And 

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ 

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:lessThan(?vs, ?h) ^ 

swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^ swrlb:greaterThan(?a, ?h) -> 

has_Object_No_shelves_NSH(?p, "0.0"^^xsd:float) 

  And 

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ 

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:multiply(?a, 

"2.0"^^xsd:float, ?vs) ^ swrlb:lessThan(?a, ?h) ^ swrlb:divide(?b, ?h, ?vs) ^ 

swrlb:subtract(?c, ?b, "1.0"^^xsd:float) -> has_Object_No_shelves_NSH(?p, ?c) 

 

3. SWRL Shelf Length Rule - (SHL=(W-(2*TS + TD*NDW))/(NDW+1)) 

 

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ 

has_Object_Thickness_dividing_walls_TD(?p, ?td) ^ 

has_Object_No_dividing_walls_NDW(?p, ?ndw) ^ swrlb:multiply(?a1, 

"2.0"^^xsd:float, ?ts) ^ swrlb:multiply(?b1, ?td, ?ndw) ^ swrlb:add(?c1, ?ndw, 

"1.0"^^xsd:float) ^ swrlb:add(?d1, ?a1, ?b1) ^ swrlb:subtract(?e1, ?w, ?d1) ^ 

swrlb:divide(?f1, ?e1, ?c1) -> has_Object_Shelf_length_SHL(?p, ?f1) 

 

4. SWRL Side and Dividing Walls Rule - (WAL=H-(TB +TT)) 

 

SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^ 

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ 

has_Object_Thickness_top_shelf_TT(?p, ?tt) ^ swrlb:add(?d, ?tb, ?tt) ^ 

swrlb:subtract(?e, ?h, ?d) -> 

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?e) 

 

5. SWRL Vertical Space Rule - (SHS=(WAL-NSH*TSH)/NSH) 

 

SWRL Representation - Product(?p) ^ 

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?wal) ^ 

has_Object_No_shelves_NSH(?p, ?nsh) ^ 

has_Object_Thickness_inner_shelf_TSH(?p, ?tsh) ^ swrlb:multiply(?f, ?nsh, ?tsh) ^ 
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swrlb:subtract(?g, ?wal, ?f) ^ swrlb:divide(?h, ?g, ?nsh) -> 

has_Object_Vertical_space_between_shelves_SHS(?p, ?h) 

 

6. SWRL Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0) 

 

SWRL Representation - Part(Dividing_Walls1) ^ Product(?p) ^ 

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ has_Object_Shelf_length_SHL(?p, 

?shl) ^ has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ swrlb:add(?i, ?ts, ?shl) -> 

has_Object_X_Coordinate(Dividing_Walls1, ?i) ^ 

has_Object_Y_Coordinate(Dividing_Walls1, ?tb) ^ 

has_Object_Z_Coordinate(Dividing_Walls1, "0.0"^^xsd:float) 

 

7. SWRL Shelf Position Rule - (X3=TS,Y3=TB-TSH,Z3=0) 

 

SWRL Representation - Part(Shelves1) ^ Product(?p) ^ 

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ 

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ 

has_Object_Thickness_inner_shelf_TSH(?p, ?tsh) ^swrlb:subtract(?j, ?tb, ?tsh) -> 

has_Object_X_Coordinate(Shelves1, ?ts) ^ has_Object_Y_Coordinate(Shelves1, ?j) ^ 

has_Object_Z_Coordinate(Shelves1, "0.0"^^xsd:float) 

 

8. SWRL Side Walls Position Rule - (X5=0,Y5=TB,Z5=0) 

 

SWRL Representation - Part(Side_Walls1) ^ Product(?p) ^ 

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) -> 

has_Object_X_Coordinate(Side_Walls1, "0.0"^^xsd:float) ^ 

has_Object_Y_Coordinate(Side_Walls1, ?tb) ^ 

has_Object_Z_Coordinate(Side_Walls1, "0.0"^^xsd:float) 

 

9. SWRL Top Shelf Position Rule - (X7=0,Y7=TB+WAL,Z7=0) 

 

SWRL Representation - Part(Top_Shelf1) ^ Product(?p) ^ 

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ 

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?wal) ^ swrlb:add(?k, ?tb, 

?wal) -> has_Object_X_Coordinate(Top_Shelf1, "0.0"^^xsd:float) ^ 

has_Object_Y_Coordinate(Top_Shelf1,?k) ^ has_Object_Z_Coordinate(Top_Shelf1, 

"0.0"^^xsd:float)   

  

Figure 6-33 illustrates all the SWRL rules for the bookshelf use case implemented in protégé 

SWRL tab.   
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Figure 6-33: Engineering Rules – Bookshelf Design Process: Protégé 

 

6.5 Summary 

This chapter has discussed and elaborated on the 2 test use-cases for system development and 

verification of GPM-DEA in OWL/SWRL ontology and rule representation for DEA with a 

KBE approach with the effect of the process model on product’s geometric attributes. The 

product’s attributes can be accessed at the detailed design stage across proprietary platform 

specific DEA applications such as AML, ParaPy, CATIA Knowledgeware and Siemens NX 

KF. Both these use-cases follow the method of GPM-DEA schema mapping at the Meta 

model level and the instance level, developed as part of this research based on pilot use-cases 

and literature analysis, where the initial product is assessed at the beginning and the product 

with final state is produced at the completion of the process. The next chapter is going to 

perform experiments on these use-cases with appropriate reasoning and query mechanism 

and semantic clarity to test and verify the accuracy of the results produced from ontology and 

rule representation.     
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7 Experimental Verification of Knowledge Representation System 

7.1 Introduction 

This chapter elaborates on working and experimentation of the developed system with test 

use-cases in order to explore various aspects of GPM-DEA implementation in ontology and 

rule representation. It will provide experimental verification of the research hypothesis in 

order to satisfy and provide proof of the novelty of this research work. Test use-cases in the 

form of drilling a hole in a block and bookshelf design process collated from literature have 

been instantiated in GPM-DEA and then formalised in OWL/SWRL as platform independent 

and neutral representation as described in chapter 6 for system development. Aspects of both 

these use-cases such as rules with links to activities and objects generated from functional 

requirements, with their effect on product’s geometric attributes have been implemented in 

proprietary platform specific DEA system applications such as AML, ParaPy with KBE 

functionalities and CATIA Knowledgeware, Siemens NX KF with parametric modelling 

providing GA. The comparison of the results generated from formal representation semantics 

of GPM-DEA in OWL/SWRL will also be performed with corresponding rule 

implementations in platform specific DEA systems. 

7.2 Overview of the process model 

Some of the critical aspects developed by this research that were discussed in section 5.5.2 

are re-instated here as follows. These are considered to be an integral part for OWL/SWRL 

ontology implementation using GPM-DEA method or schema as the basis for DEA with a 

KBE approach for generative modelling as discussed in section 5.6.3. These would target 

engineering design with focus on mechanical design and DFM/DFA with inclusion of both 

geometric and non-geometric knowledge thus incorporating F-B-S aspects of a process model 

for DEA.   
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1. Generation of activities based on sub-functions as functional requirements 

2. Generation of objects based on sub-functions as functional requirements 

3. Generation of engineering rules for activities based on logic as the basis of rules 

4. Assessment of initial product to generate the initial activity of the process model 

5. Virtual and physical activity functional equivalence 

To test the above formulated criteria, experimental system verification should satisfy the 

following points in a nutshell – 

I. Generative Modelling - The formal system should generate activities and objects of 

the engineering design process based on the devised function structures as part of 

functional requirements. It should also generate rules for activities based on logic. For 

a generic process an initial step should be assessment of an object as product initial. 

Also, for a DFM process with manufacturing knowledge, both the physical and virtual 

representation of a product should be incorporated.  

II. SWRL Rules - The engineering rules that are generated can incorporate product 

knowledge such as configuration and attributes which can be accessed during detailed 

geometric modelling such as features, parts, assemblies, location and orientation 

inside a virtual environment 

III. Output - The output of SWRL rules as platform independent and neutral 

representation through reasoning and query should produce accurate results, which 

should match the values upon execution of these rules inside platform specific DEA 

systems. This will ensure the robustness and reusability of loaded ontology, as the 

SWRL rules will only produce accurate results if the class hierarchy and properties of 

ontology with instances has been modelled correctly. If the results of the SWRL rules 

controlling the product parameters and configuration match to the specific rule 

outputs inside platform specific DEA systems such as AML, ParaPy and GA based 
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CATIA Knowledgeware and Siemens NX KF; this will prove that the ontology and 

rule representation works appropriately.  

This will satisfy the aims and objectives by verifying the working of GPM-DEA, which 

provides the method through schema to use ontologies as platform independent and neutral 

representation in context of DEA with a KBE approach with semantic clarity, traceability and 

transparency of concepts and relationships. This will ensure re-usability of modelled 

knowledge as well.     

7.3 Design of the Experimental System 

Figure 7-1 illustrates the method of experimental system verification adopted by the author. 

The first stage consists of the process knowledgebase consisting of mechanical design 

process with DFM knowledge as high level intermediate and low level concepts formulated 

as part of this research in section 4.3 of chapter 4. The second stage leads to formulation of 

GPM-DEA based on the Author’s Metamodel as per developed concepts and relationships 

with generative modelling capabilities for generation of activities and objects based on 

functional requirements along with rules controlling the product’s attributes based on logic 

and assessment of initial product. This is in line with the development and working of GPM-

DEA as described in section 5.3 of chapter 5. The mapping of the various concepts and 

relationships as shown in Figure 7-1 is described in section 5.2 and 5.3. GPM-DEA is 

described using a graphical representation as lightweight formalism using DrawIo. This is 

saved as an XML file. The method of development of GPM-DEA along with its neutral 

formal representation semantics in this research has been based on the findings of chapter 4 

and described in detail in chapter 5. The third stage is the platform independent and neutral 

formal representation of GPM-DEA using OWL/SWRL formalism as a .ttl file. The 

equivalent implementation of GPM-DEA in OWL/SWRL as ontology and rule representation 

is described in section 5.5 of chapter 5 thus providing a method to use ontologies in the 
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context of DEA. Test use-cases have been elaborated with their formalisation as per the 

developed GPM-DEA schema or method in chapter 6. Their inference and query results as 

part of experimental verification of the developed system are discussed here.   

 

Figure 7-1: Overview of Formalisation of GPM-DEA & Experimental System Investigation 

 

Protégé is a tool that enables an integration of OWL2 ontology and SWRL as a rule language 

through an in-built interface. This is the most important stage for experimental system 

investigation and verification in this research. The generative capability of GPM-DEA has 

been represented using SWRL functions as explained in section 5.5.3 in chapter 5. This is 
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based on function structures described in section 5.5.2. Similarly, the engineering rules have 

also been represented using SWRL functions. Querying and inference (automated reasoning) 

is performed on the integrated knowledgebase as OWL/SWRL with preserved semantics 

using SQWRL and Drools reasoner on top of SPARQL and Pellet reasoner enabling DEA 

and exploration. The reasoning results and the query results are added as axioms in the 

existing knowledgebase and can be saved as new .ttl file. If there are any conflicts in results, 

modifications can be made in the classes and properties with instances for both text and 

values such that the reasoner and query can then generate accurate results. All assertions and 

queries with Pellet reasoner and SPARQL query on OWL2 ontology, Drools reasoner and 

SQWRL on SWRL rule language have been tested and verified. 

7.4 Illustration of Experiments 

The following structured experiments have been devised to test and verify various research 

aspects of this thesis. These will be tested with the drilling process and bookshelf design 

process ontology and rule representation along with the discussion on results.  

1. Generative Modelling Capability - Do the SWRL functions represented through the 

inbuilt plugin enable generative modelling byautomatically generating activities and 

objects that fulfil the same sub-functions as functional requirement of the design 

process along with assessment of the initial product? This includes virtual and physical 

activity functional equivalence and generation of engineering rules for activities based 

on logic as the basis of rules.  

2. SWRL Rules with Variation in Values - Do the SWRL engineering rules represented 

through the inbuilt plugin add axioms on to the existing knowledgebase with both 

object and datatype properties with real and float values to product attributes? How 

does the system handle variation in values assigned? 
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3. SQWRL Query with Violation in Asserted Values- Does the SQWRL return the correct 

result while querying the knowledgebase? How does the system handle the violations in 

assertions against the engineering rules? 

4. Comparison of SWRL and SQWRL Rule Outputs to Platform Specific DEA Systems- 

Does the SWRL/SQWRL outputs match to the outputs of axioms inside a DEA system? 

7.5 Use Case 3: Experimentation 

The first step in the experimental verification of the developed GPM-DEA in OWL/SWRL 

for design process of drilling a hole in a block is the deployment of the instantiated model. As 

observed from Figure 6-11 in section 6.3.3 in chapter 6, the generative modelling functions 

for drilling use case have been represented using SWRL. Figure 7-2 shows the loaded 

ontology in Protégé where the drilling process has 3 functional requirements with the axiom – 

satisfies_Functional_Requirement (section E).  

 

Figure 7-2: Drilling Process Ontology: Protégé 
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All the classes with hierarchical structure (section A) and binary relationships of GPM-DEA 

for drilling process as properties have been instantiated (section B) and populated in the IDE 

as axioms. It illustrates both physical and virtual view of drilling process by allocating it as a 

subclass of extrusion process as well (section D). Text annotation properties (section C) 

provide semantic clarity to the axioms. Using this standardised tab, other instances can be 

populated in the corresponding tabs in protégé IDE. All the experiments for drilling process 

in a block are discussed in this section.  

7.5.1 Experiment 1 – Generative Modelling Capability 

Figure 7-3 shows a snapshot where assertions have been made for ‘drill hole’ and ‘assess 

block’ activity as marked in red rectangles. Assertions have been made for the functional 

requirements as sub functions of the activity, which will be tested in this section. The first 

step is to activate the Pellet Reasoner followed by the Drools reasoner. Figure 7-4 illustrates 

the tab that enables this functionality in the protégé IDE.  

 

Figure 7-3: Axioms assertion for Drill Hole and Assess Block Activity with Sub-functions 
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Figure 7-4: Activating the Pellet and Drools Reasoner 

 

It can be observed from section E of Figure 7-2 and Figure 7-3 assertions, both the activities 

in the form of – ‘assess block’ and ‘drill hole’ satisfy sub-functions, which are equivalent to 

the function structures as part of functional requirements of the drilling process. As observed 

from Figure 7-5, upon activating both Pellet and Drools reasoners, all the activities in the 

knowledgebase which match the drilling process functional requirements have been added as 

axioms due to the SWRL generative modelling functions developed in this research. As per 

the assessment of the block as the initial product, the axiom – ‘Starts_with_Activity’ 

indicates that the drilling process for block needs to start with the activity ‘Assess block’, 

which has an equivalent virtual representation in the form of ‘Assess protruded block’.  
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Figure 7-5: Generative Modelling Capability - SWRL functions activated for drilling process ontology 

for Block 

 

It is important to notice that ‘Drill hole’ is a physical activity, which also has equivalent 

virtual activities in the form of –‘Create hole’ and ‘Subtract hole’, which are realised in the 

virtual engineering environment. These activities fulfil the same functions due to the SWRL 

Function 7 stated in section 5.5.3 in chapter 5 and implemented for drilling process for block 

in section 6.3.3 in chapter 6. As observed from Figure 7-5, these virtual activities are also 

automatically generated for drilling process due to the inference on generative modelling 

functions. Thus GPM-DEA provides both physical and the virtual representation of the 

drilling process in terms of design process and manufacturing process requirements with the 

SWRL functions developed as part of this research. Figure 7-6 illustrates inferred knowledge 

with Pellet reasoner for ‘Assess block’ and equivalent ‘Assess protruded block’ as initial 

activities as well as ‘Drill hole’ and other activities of the drilling process for block. The 

SWRL functions are illustrated in section 5.5.3 in chapter 5 and implemented for this use-



 210 

case in section 6.3.3 in chapter 6. Some engineering rules are governed by logic such as 

Dimension, Material, Hole Depth, Hole Diameter Rule and others in this case. Heuristic rules 

are not governed by logic and are disjoint from this relation.  

 

 

Figure 7-6: Inferred knowledge – Drilling Process Activities 

 

7.5.2 Experiment 2 – SWRL Rules with Variation in Values 

As observed from inferred knowledge in Figure 7-6, ‘Assess block’ activity is controlled by 

the following rules – ‘Dimension, Material’ due to logic relation. However, as observed from 

the graphical representation of Drilling process1 in Figure 6-6 in chapter 6, ‘Assess block’ 

activity is also controlled by the Depth rule. This relation was not inferred, as Depth rule is 

not associated with logic in the knowledgebase. ‘Assess block’ activity has equivalent virtual 
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activity – ‘Assess protruded block’ which is also controlled by ‘Volume rule’, as the block 

occupies 3D volume in a virtual domain. Figure 7-7 illustrates the loaded block and hole 

attribute values along with its position coordinates as the initial product for the drilling 

process.   

 

 

Figure 7-7: Asserted and Inferred values to Block and Hole attributes - Drilling Process 

Ontology / SWRL Rules for Block 

 

As also observed from inferred knowledge in Figure 7-6, some of the rules that control the 

‘Drill hole’ activity are Hole Depth and Hole Diameter Rule. All these rules are explained in 

section 6.3.3 in chapter 6. Figure 6-16 and 6-17 shows the SWRL representation of these 

engineering rules for the drilling process ontology.  
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Figure 7-7 also illustrates the inferred knowledge in the form of Block Depth and Volume 

along with Volume of Hole when the Drools reasoner is activated for the SWRL rules. As the 

asserted width of the block is less than 100.00 mm, no material is allocated to the block as per 

the Material Rule. Upon changing values of Block and Hole in terms of its size and 

coordinates using datatype properties, changes in output values to Block Depth, Volume and 

Hole Volume can be observed from Figure 7-8. 

 

Figure 7-8: Modification in Asserted Values with Variation in Output Values - Drilling 

Process Ontology / SWRL Rules for Block 

 

Figure 7-9 shows the implementation of Process Rule1 based on the Tolerance of hole as 

asserted value. According to the semantics of the Process Rule shown in Figure 6-18 in 

chapter 6, if the tolerance of the hole is less than 0.2mm reaming should be performed, else 

drilling should be performed.  
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Figure 7-9: Process Rule1: Drilling Process SWRL 

 

7.5.3 Experiment 3 – SQWRL Query with Violation in Asserted Values 

The SQWRL runs the query on the OWL knowledgebase as the SWRL API supports an 

OWL profile as OWL 2 RL based reasoner in the form of drools (Horridge et al., 2011; Kuba, 

2012). For the asserted value to block and hole attributes in Figure 7-7, the query results for 

all the 3 rules are illustrated with the help of Figure 7-10. All the results are satisfied as none 

of the asserted values violate any of the engineering rules as represented in SWRL.  
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Figure 7-10: Query Results: SQWRL Rules 

 

‘Assess block’ activity is controlled by Dimension rule whereas ‘Drill hole’ activity is 

controlled by Hole Depth rule. A few violations in terms of block width value 49.0 mm 

(<50.0 mm as per dimension rule) and hole depth value 76.0 mm (>{1.5*50}=75.0 mm 

[block depth]) are asserted as shown in Figure 7-11. As illustrated, the activity – ‘Drill hole’ 
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is also controlled by Hole Diameter rule. A violation is asserted to hole attributes in terms of 

hole diameter 50.0 mm ({50*1.25}=62.5>60.0 mm [block width]) as shown in Figure 7-11. 

All the SQWRL query results are illustrated in accordance with violation of Dimension, Hole 

Depth and Hole Diameter Rule in line with semantic clarity.     

 

 

 

Figure 7-11: Violation of Asserted Axioms against Dimension Rule, Hole Depth Rule and 

Hole Diameter Rule – OWL/SWRL 
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7.5.4 Experiment 4 – Comparison of SWRL and SQWRL Rule Outputs to Platform 

Specific DEA Systems 

An instance of the rules of the drilling process for block have been represented and codified 

inside ParaPy as a platform specific DEA system by the author. Similar variations to values 

as OWL/SWRL have been performed inside ParaPy and the results have been compared in 

this section. It is important to note that ParaPy is based on inbuilt classes and has a built in 

Graphical User Interface (GUI) geometry modeller to reflect the changes in product’s state 

whereas the present OWL/SWRL representation reflects the changes in the query (SQWRL) 

and reasoning (SWRL) tab without the visual representation of product’s geometric state. As 

observed from Figure 7-7 in section 7.5.2, same values have been instantiated for both block 

and hole inside ParaPy as observed from Figure 7-12 and 7-13. The representation of 

engineering rules follows O-O representation in the form of a method.     
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Figure 7-12: Inputs and Evaluated values inside ParaPy: Drilling Process – Block 
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Figure 7-13: Inputs and Evaluated values with modifications to asserted values inside ParaPy: 

Drilling Process – Block 

 

It can be observed that the calculated and evaluated values for block and hole attributes are 

same as the values inside OWL/SWRL (platform independent and neutral representation) 

inferred knowledge in Protégé IDE. Similarly, upon modifications in the asserted values to 

hole attributes, which are same as those in OWL/SWRL representation of drilling process in 

Figure 7-8, same values are evaluated inside ParaPy as a platform specific DEA system as 

observed from bottom Figure 7-13. However, there is a slight difference in the volume of the 
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hole as calculated in SWRL as 28260.0 mm3 and 44156.25 mm3 as observed from Figure 7-

7and 7-8 against the calculated value of 28274.33 mm3 and 44178.64 mm3 as observed from 

Figure 7-12 and 7-13. This is due to the fact that a value of 3.14 is used in SWRL rule, which 

is rounded up to two decimal places against the actual value of π (3.141592653589793238) 

inside ParaPy. A few violations are introduced for the block attributes (Block Width=49.0 

mm< 50.0 mm as per Dimension Rule), hole attributes (Hole Depth=76.0 

mm>{1.5*50}=75.0 mm [Block Depth] as per Hole Depth Rule), Hole Diameter (Hole 

Radius=25.0 mm {2.5*25}=62.5>60.0 mm Block Width), all of which are of same value in 

OWL/SWRL in Figure 7-11.  

 

Figure 7-14: Violation of Asserted Axioms against Dimension Rule - ParaPy 
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Figure 7-15: Violation of Asserted Axioms against Hole Depth and Hole Diameter Rule – 

ParaPy 
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Figure 7-14 illustrates the output in ParaPy as no block is created in the graphical user 

interface (GUI) for violation of Dimension rule. Similarly, as observed from Figure 7-15, no 

hole is created in GUI for violation of Hole Depth and Hole Diameter Rule. The text in the 

run and compiler window also indicates that it could not bind the value to the Block Width, 

Hole Height (Depth) and Hole Radius respectively, which are the same results in the query 

tab in SQWRL in Figure 7-11. 

7.6 Use Case 4: Experimentation 

This use-case has been derived from the LinkedDesign project (Lützenberger et al., 2012) as 

illustrated in chapter 6 with addition of knowledge to develop a more comprehensive 

knowledgebase for this research. The main purpose of this use-case is to ensure the proposed 

working of GPM-DEA through its OWL/SWRL representation for a bookshelf design 

process, which varies from the design process of drilling a hole in a block and thus creates a 

different product. Similar steps and experiments have been conducted for this use-case to 

illustrate the generic and uniform working of the developed process model GPM-DEA 

enabling DEA through its neutral formal representation. This further strengthens the research 

hypothesis and provides verification to the research objectives.  

The first step in the experimental verification is the deployment of the instantiated model. As 

observed from Figure 6-28 in chapter 6, the generative modelling functions for bookshelf 

design processuse case have been represented using SWRL. Figure 7-16 shows the loaded 

ontology in Protégé where the bookshelf design process has 3 functional requirements with 

the axiom – satisfies_Functional_Requirement (section E). 

All the classes (section A), binary relationships of GPM-DEA and text annotation properties 

(section C) for bookshelf design process as properties (section B) have been instantiated and 
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populated in the IDE as axioms. All the experiments for bookshelf design process are 

discussed in this section.  

 

Figure 7-16: Bookshelf Design Process: Ontology 

 

7.6.1 Experiment 1 – Generative Modelling Capability 

Figure 7-17 illustrates the asserted axioms for activities such as ‘Input bookshelf parameters’, 

‘Compute parameters NDW NSH’ and ‘Positioning of the bookshelf’. Sub-functions for these 

activities have been instantiated using object property – ‘has_Function’ and bookshelf 

attributes have been allocated using datatype properties as a subclass of – ‘has_Inputs’ as 

explained in section 6.2.2.3 in chapter 6.  
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Figure 7-17: Axiom Assertions for Activities: Object and Datatype properties 

 

Generative modelling capabilities of this research are illustrated with the help of Figure 7-18. 

Upon activating the Pellet and Drools reasoner, all the activities are inferred as the individual 

activity sub-functions match the functional requirements of the bookshelf design process. As 

per the assessment of initial product based on SWRL functions, ‘Starts with activity’ axiom is 

also inferred. Similarly, engineering rules such as ‘Dividing walls Rule’, ‘Shelves Rule’, 

‘Side walls position Rule’ are governed by logic, which is represented as text under ‘Logic’ 
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class. As individual activities are also affected by this logic, SWRL functions infer the rules 

controlling the individual activities.  

 

Figure 7-18: Generative Modelling and Inferred Knowledge – Bookshelf design process – 

SWRL functions 

 

7.6.2 Experiment 2 - SWRL Rules with Variation in Values 

As observed from Figure 7-18, the rules controlling the activities based on logic are inferred. 

Values are asserted to bookshelf attributes using inputs property as shown in Figure 7-19. 

The SWRL rules for the bookshelf are represented in the SWRL tab as illustrated in Figure 6-
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33 in chapter 6. Upon activating the pellet and drools reasoner and addition of axioms to the 

knowledgebase enables deduction of other attributes based on all the generated rules at 

specified asserted values, which are inferred as shown in Figure 7-19 along with other rules 

which are not based on logic.   

 

Figure 7-19: Asserted and Inferred values to Bookshelf Attributes: SWRL Rules 

 

Similarly, the asserted and inferred values to subassembly components of Bookshelf such as 

the Dividing walls, Shelves and Frames are also shown in Figure 7-19. All the corresponding 

informal part and assembly relations of the bookshelf are illustrated in Figure 6-23 and 6-25 

in chapter 6.  
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Figure 7-20: Asserted and Inferred value to Bookshelf Sub-assembly: SWRL Rules 

 

To illustrate changes in the inferred values as per changes in asserted value of the bookshelf 

and its subassembly attributes, as per the SWRL engineering rules, a few dimensions are 

altered as shown in Figure 7-21. The changes in asserted values are illustrated with the help 

of Figure 7-22. 

 

Figure 7-21: Modifications in asserted values – Bookshelf and subassembly attributes 
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Figure 7-22: Changes in Inferred Values: Bookshelf and Subassembly attributes 

 

As, it can be observed by comparison of Figures 7-19, 7-20, 7-21 and 7-22, in spite of the fact 

that the value of Thickness of inner shelf (TSH) is kept at the same value of 20.0 mm, the 

position co-ordinates of the shelves in the virtual space still change as inferred values as they 

are dependent upon other attributes such as Thickness of side walls (TS) and Thickness of 

bottom shelf (TB) along with TSH as per the Shelves Position SWRL rule. All the other 

attributes such as No. of dividing walls (NDW), No. of shelves (NSH), Vertical 



 228 

spacebetweenShelves (SHS), Shelf Length (SHL) and Length of Side and Dividing walls 

(WAL) are altered as per their corresponding SWRL rules such as Dividing walls rule, 

Shelves, Shelf Length, Side and Dividing Walls along with Vertical Space Shelves rule.   

Similarly, the position coordinates of the Dividing walls, Shelves, Top shelf and Side walls 

are also altered as per the SWRL positioning rules such as Dividing walls Position rule, 

Topshelf position and Side Walls position rule.  

7.6.3 Experiment 3 – SQWRL Query with Violation in Asserted Values 

A few violations are asserted as per the Dividing walls rule and Shelves rule to calculate the 

No. of Dividing walls and Shelves. As per the semantics and the SWRL representation, 

violations to bookshelf attributes are illustrated with the help of Figure 7-23.  

Figure 7-23: Violations of assertions and SQWRL Query Results – Dividing walls and Shelves Rule 
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As per the semantics of Dividing walls rule, If (W<HS*0.5), then its an error as no dividing 

wall can be created. Thus as per assertion in figure 7-23, W=2000.0 mm, HS=4200.0 mm and 

hence the initial clause is correct. The SQWRL query returns the result ‘ERROR- Too narrow 

for a bookshelf’ as illustrated. Similarly, as per the Shelves rule, If (VS>H), then no shelf can 

be created. Thus as per asserted values in Figure 7-23, VS = 2500.0 mm, H=2000.0 mm and 

thus the SQWRL query returns ‘ERROR – Too low for even one space in the bookshelf’.  

Same values to W=8000.0 mm, HS=2000.0 mm, VS=2000.0 mm and H=7000.0 mm are 

asserted to bookshelf in Figure 7-24 and 7-21. As observed from Figure 7-22, NDW is 

inferred at value 3.0, the query result of Dividing walls rule1 clause should not return 

‘ERROR’. 

 

Figure 7-24: Modifications to Asserted Values and Change in SQWRL Query Results – 

Dividing walls and Shelves Rule 
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Similarly, as observed from Figure 7-22, NSH is inferred at 2.5, the query result of Shelves 

rule1 clause should not return ‘ERROR’. As can be observed from Figure 7-22, the SQWRL 

result are not generated which is in line with the semantic clarity of the represented SWRL 

syntax of the represented rules. 

7.6.4 Experiment 4 - Comparison of SWRL and SQWRL Rule Outputs to Platform 

Specific DEA Systems 

This section has elaborated upon the comparison of testing to attributes of bookshelf in GPM-

DEA with OWL/SWRL and its implementation inside proprietary DEA systems such as 

AML, Siemens NX Knowledge Fusion (KF) and CATIA Knowledgeware as part of this 

thesis. Although the bookshelf has been implemented in all three DEA systems, the method 

of implementation varies as AML is a true KBE system and enables generative modelling 

through functional requirements but GA based CAD systems such as Siemens NX KF and 

CATIA knowledgeware enable parametric modelling but don’t enable generative modelling. 

Thus the knowledge analysis is performed after the geometric design stage in Siemens NX 

KF and CATIA knowledgeware whereas the knowledge analysis is done prior to the 

geometric design stage in DEA through a KBE approach, which is the adopted method in this 

research. 
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Figure 7-25: Input values to bookshelf attributes – Siemens NX Expression Window 

(Lützenberger et al., 2012, Pg 39) 

 

For experimental verification of the implementation, the same values are instantiated to 

bookshelf attributes in the developed ontology as shown in Figure 7-19 and 7-20 as compared 

to the implementation in Siemens NX expression window in Figure 7-25. The output values 

of attributes based on rules inside the expression windows are illustrated with Figure 7-26.  
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Figure 7-26: Output values to bookshelf attributes – Siemens NX Expression Window 

(Lützenberger et al., 2012, Pg 40, 41, 43) 

 

On comparison of the inferred values for the bookshelf design in OWL/SWRL in Figure 7-19 

and 7-20 to the attributes inside Siemens NX Expression Window in Figure 7-26, it can be 

observed that the values are exactly the same such as NDW=9, NSH=4, SHL=983 mm, 

WAL=4920 mm, Topshelf position coordinates as (0,4970,0) and Dividing Walls position 

coordinates as (1023, 50, 0).  

An anomaly is also compared in both OWL/SWRL and AML as a violation of assertion. 

Figure 7-27 illustrates the specified incorrect value to asserted parameters – Bookshelf height 

(H) as 2.5 m and Vertical spacing between shelves (VS) as 2.6 m inside AML. 
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Figure 7-27: Incorrect value to H and VS parameters inside AML – Bookshelf Design 

Process (Lützenberger et al., 2012, Pg 73) 

 

It is important to note the difference in units in AML, which is in Meters (m) and Siemens 

NX Expression window and OWL/SWRL (Protégé) in Millimeters (mm). Upon assertion of 

the same set of values to H and VS and all the other bookshelf attributes in OWL/SWRL 

model in this research as shown in Figure 7-28, the query result of the shelves rule1 clause 

shows “Error – Too low for even one space in the bookshelf” which offers the same result as 

the output message inside AML in Figure 7-27.  

The AML code for the rules for the bookshelf design is shown in Appendix. 
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Figure 7-28: Incorrect value to H and VS parameters in OWL/SWRL – Bookshelf Design 

Process 

 

7.7 Discussion of the experimentation results 

The results of the Use Case 3 & 4 experiment prove that the inference and query mechanism 

in OWL/SWRL for GPM-DEA enables DEA in a virtual environment with both design and 

manufacturing knowledge by providing accurate results with transparency of knowledge. It is 

important to state platform specific DEA systems such as ParaPy, Siemens NX and AML 

have an inbuilt GUI to show the effect of assertions and violations directly on the product’s 

visual form through an inbuilt geometry modeller but without any semantic clarity, which is 

open to interpretation by engineers. The OWL/SWRL representation formulated in this 

research doesn’t provide a GUI interface through incorporation of an inbuilt product 

geometry modeller to show the effect of GPM-DEA on the product’s visual form in the 

present stage. However, the inference and query results with variation in assertions and 

violations are created as text and numerical values to show the effect of the process model on 

product’s attributes and provide much more semantic clarity as compared to ParaPy, AML as 

a DEA system. Thus the GPM-DEA schema, developed by this research, provides a method 

to use ontologies with rule representation in context to achieving DEA with a KBE approach 
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with semantic clarity, transparency, traceability and re-usability of developed Meta model in 

this research. GPM-DEA provides a robust, structured and coherent method to build 

knowledge model with usage of formal OWL/SWRL ontologies as knowledge 

representation (KR) in context to achieving KBE based DEA. The ontology and rule based 

OWL/SWRL representation adopted by the author successfully represents the equivalent 

platform independent and neutral formal representation.   

7.8 Summary 

This chapter has provided experimental verification of various research aspects of this 

thesis with the testing of the functionality of GPM-DEA implemented in OWL/SWRL 

ontology and rule representation as formal logic based neutral representation. Thus it has 

been proven that the GPM-DEA in its informal /semiformal representation, through 

OWL/SWRL as platform independent and neutral formal representation enables DEA with 

generative modelling catering to multiple mechanical design with DFM/DFA cases and 

provides accurate results similar to a platform specific DEA system. The experimentation 

with both Use Case scenarios provides proof of generic working of GPM-DEA with both re-

usable and product specific knowledge. An important point of consideration is the fact that 

the first step of representing the informal / semiformal knowledge is manually represented in 

OWL/SWRL as platform independent and neutral formal representation with accurate 

semantics. The inference (automated reasoning) and the query mechanism on the formally 

represented OWL/SWRL knowledge returns accurate results with varied generic and product 

specific concepts and relations of the process model with semantic clarity for DEA with both 

design and manufacturing viewpoints during the design stage. The inference and query 

results are shown as text and numerical values to product’s attributes as compared to the 

product’s geometric form with GUI inside a proprietary DEA system.     
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8 Conclusion 

8.1 Introduction 

The research work discussed in this thesis has developed a Generative Process Model for 

Design Engineering Automation (GPM-DEA) with neutral formal semantics utilising 

OWL/SWRL ontology and rule representation formalism for DEA with a KBE approach. 

GPM-DEA built on the author’s Meta model provides a model driven approach utilising 

strengths of existing modelling standards such as UML/SysML and IDEFO for building 

structured knowledge models of mechanical design process with DFM knowledge for human 

access and aid as an informal/semiformal representation. It provides a method to use formal 

OWL/SWRL ontologies through its schema for the use of DEA with a KBE perspective with 

generative modelling based on generic SWRL functions developed by the author for queries 

and reasoning. With experimental system development and verification through 2 test use-

cases, it has been demonstrated that the corresponding platform independent and neutral 

formal representation of GPM-DEA, for machine interpretation, using OWL/SWRL enables 

DEA for mechanical product design process with DFM/DFA with preserved semantics within 

a virtual engineering environment and with generative modelling capabilities using the 

SWRL functions developed in this research as explained in section 5.6.3. This chapter 

compiles the discussion, provides conclusion from the results and suggests some future work 

based on the research work completed in this thesis.  

8.2 Summary of Thesis and Discussion 

The current research has introduced a novel Generative Process Model for Design 

Engineering Automation (GPM-DEA) with exploration of formal representation with 

machine interpretation. The schema of the process knowledge model provides a method to 

use formal logic based ontology representation to achieve DEA with a KBE perspective with 
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generative modelling. Various concepts and relations of mechanical design process with 

manufacturing knowledge based on the authors Meta Model have been informally captured in 

GPM-DEA as a process model and then formally represented in OWL/SWRL as platform 

independent and neutral formal representation with preserved semantics to address the needs 

of DEA with a KBE approach. The research work satisfies the aim and objectives stated in 

section 1.3, which helped raise a few research questions in section 4.3. This research is based 

on the shortcomings of KBE methodologies such as MOKA being a comprehensive one, 

others such as KNOMAD and CommonKADS, in order to target the needs of DEA.  

‘This aim of this research is to provide a coherent method to develop platform independent 

and neutral formal representation of an engineering process model, with focus on 

mechanical product design process with manufacturing knowledge, and semantic clarity for 

DEA. This coherent method will capture various knowledge entities and relationships such as 

activity, product attributes, rule, function and behaviour as Meta Model, identified with 

literature analysis in an informal process model (for human aid and interpretation). The 2nd 

step will provide a method to represent the schema of the structured process model in neutral 

formal representation (for machine/system interpretation) with open standards for DEA with 

KBE as a holistic approach. This will include generative modelling capability by building 

queries as per a set of generic predefined functions. It will perform DEA with effect of the 

process model on product attributes with the help of inference (automated reasoning) and 

querying’   

Post MOKA, Systems engineering approach such as Model Based Systems Engineering 

(MBSE) based UML/SysML have been used by academics and researchers to capture 

knowledge with a model driven approach along with formal logic based ontology languages 

to formally represent engineering design knowledge for machine interpretation with neutral 

semantics. Chapter 2 described DEA with various perspectives such as CAx 
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(CAD/CAE/CAM), PDM/PLM and KBE where it was identified that KBE as a design 

method provides a more holistic automation enabling generative modelling and with a 

process oriented approach. This provided accomplishment of research objective 1 –  

1. To investigate different approaches for Design Engineering Automation (DEA) 

including CAx, PLM and KBE for product and process based automation    

Under the KBE umbrella with a focus on platform independent and neutral knowledge 

models for design automation, crucial work has been performed by (Sanya and Shehab, 2015, 

2014) for usage of OWL/SWRL ontologies, utilisation of OWL/RIF/MathML based ontology 

representation by (Reijnders, 2012) and RIF for product design engineering rules by 

(Colombo et al., 2014; Lützenberger et al., 2012). An application was also developed in the 

form of Design and Engineering Engine (DEE) by (Curran et al., 2010). However, some of 

the shortcomings that were identified were a structured knowledge modelling method for 

engineering design with focus on mechanical design and DFM/DFA by developing a process 

model whose schema can be utilised to effectively use formal ontologies such as OWL based 

languages to address the needs of DEA in a standardised way. The platform independent and 

neutral model developed should provide re-usability, transparency, traceability of concepts 

and relationships based on Meta Model analysis and provide generative modelling. The 

knowledge should include both geometric and non-geometric knowledge with Function-

Behaviour-Structural (F-B-S) aspects such that the developed system can enable rule based 

modelling and geometry automation (GA) along with wider design space exploration with 

functional requirements with reasoning and query mechanism on the formal axioms thus 

targeting DEA for mechanical product design process with DFM/DFA aspects.    

The compliance of the outcomes of this research work as per the set objectives, identified 

research gap along with critical analysis of the developed process model with the ontology 

system development and its experimental verification is presented in this section.  
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8.2.1 Development and Formulation of GPM-DEA model 

Research Question 1 in section 4.3 is stated as -  

I. ‘How can the mechanical product design process with inclusion of manufacturing 

knowledge (DFM/DFA) based on various entities such as activities, rules, logic, 

function and behaviour for product realisation as per author’s Meta model, be 

captured in a generic and re-usable process model as a model driven approach with 

structured knowledge model for automation in a virtual engineering environment?’    

The answer to this question caters to research objectives 2 and 4 in section 1.3 which are 

stated again as – 

2. To analyse and compare various informal and semiformal process modelling methods 

to capture various aspects of an engineering design process with focus on mechanical 

product design with design for manufacturing knowledge for automation  

4. To develop and build a detailed informal/semiformal process model with explicit 

relationships between identified knowledge entities of a mechanical product design 

process with design for manufacturing knowledge. 

After careful assessment of existing literature for addressing the needs of DEA with KBE as a 

holistic approach, requirements were formulated for informal/semiformal modelling methods 

for knowledge modelling of various mechanical design process with manufacturing 

knowledge concepts such as activities with inputs, outputs, engineering rules, resources, 

function, behaviour and its effect on the product in section 3.2. Comparative analysis of 

informal/semiformal modelling methods was performed against the formulated requirements 

in section 3.5. The results in section 3.8 indicated that, individual modelling methods are 

able to informally capture certain aspects for mechanical design knowledge with 

manufacturing aspects such as IDEF0 for process knowledge with inputs, outputs, links to 

rules as controls and resources and UML and SysML for product knowledge with 
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attributes and methods. However, none of the modelling methods are able to capture all 

aspects in a unified process model, with its effect on product attributes. This includes 

function, behaviour and structure (F-B-S) in context to the process model.  

The findings of careful literature analysis in chapter 3 for research question 1, demonstrate 

that a hybrid approach needs to be adopted for knowledge modelling of a complete 

mechanical design process knowledge covering manufacturing aspects. GPM-DEA is 

developed by this research which can informally capture all the aspects of mechanical 

design process with inclusion of manufacturing knowledge as DFM/DFA based on the 

authors Meta model utilising a hybrid approach of existing modelling standards along with 

addition of new knowledge objects. It achieves this by integration of existing modelling 

methods such as IDEF0-based function modelling of activities, UML class diagram, UML 

condition link, SysML requirement diagram and the addition of constructs on top of this to 

demonstrate behaviour such as bidirectional arrows as properties between IDEF0 

activities, SysML requirement diagram and UML class diagram. The activities include 

inputs and outputs in terms of product geometric attributes as parameters with float values, 

engineering rules based on both text and math along with resources. The engineering rules 

vary from purely process rules to an integrated product specific and process knowledge. 

Process rules are represented with UML condition links to control the sequence of 

activities. Engineering rules controlling the topology of the product are represented using 

UML class diagram methods. 

Thus, GPM-DEA provides a model-driven approach for knowledge modelling of mechanical 

design processes for DEA. The breakdown of the design process functional requirements into 

sub-functions for various stages of the design process along with objects has been explained 

in section 5.3.1 and 5.3.2 along with the integration of the process model with its interface to 

the detailed product model in UML class diagram. The complete functioning of GPM-DEA 
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with generative modelling capability for DEA with KBE approach has been explained with 

Figure 5-4 in section 5.4 and section 5.5, which satisfies research objectives 2 and 4 and 

provides the answer to research question 1. Along with literature analysis, the development of 

GPM-DEA has been completed in compliance with the results of the comparative analysis in 

section 4.8 and 4.9, and in-line with the research methodology in section 1.4.2.   

8.2.2 Neutral formal representation of GPM-DEA in OWL/SWRL ontology and 

rule representation 

Research question 2 in section 4.3 is stated as - 

II. ‘How can the developed process model in line with author’s Meta model be then 

formally represented for machine interpretation in platform independent and neutral 

representation standards with semantic clarity (clear meaning of concepts) for Design 

Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE 

approach through open standards?’ 

The answer to this question satisfies the needs of research objectives 3 and 5 in section 1.3 

which have been stated as  

3. To analyse and compare state of the art in existing formal representation (machine 

readable) techniques and standards.  

5. To formalise the process model in platform independent and neutral formal 

representation standards for DEA with semantic clarity. This will incorporate 

generative modelling capability by generating the activities, objects of the process 

and rules based on logic as per set of developed generic functions. 

GPM-DEA is built as a process model for knowledge modelling of mechanical design 

process with DFM knowledge for DEA with MOKA as the basis for knowledge modelling 

and formalisation. Section 2.5.3 discussed various KBE methodologies such as 
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KOMPRESSA, KCM, CommonKADS, MOKA and KNOMAD. MOKA methodology is one 

of the most comprehensive and is focussed on the product design process. Section 2.5.3 

showed that the MOKA formal knowledge model in the form of MML wasn’t successful in 

achieving DEA with its formal representation. It was verified that UML/SysML based 

notation as an MBSE language lacks formal semantics and is suitable as semiformal or 

lightweight formal representation for visual display (Chungoora et al., 2013a, 2013b; Graves, 

2009). Thus in order to represent all formulated concepts and relations of GPM-DEA with 

neutral formal semantics, knowledge representation (KR) languages such as PSL, OWL, 

RuleML and RIF were considered. Requirements for a generic and re-usable process model 

for DEA with neutral formal representation with semantic clarity have been compiled in 

section 4.7. The comparative analysis of formal representation standards against the compiled 

requirements has been performed in section 4.8 and 4.9.  

The results indicate that all the concepts and one-to-many relations of GPM-DEA as 

described in section 5.2 in chapter 5, cannot be semantically mapped to a single existing 

neutral formal representation language such as OWL, PSL, RuleML, RIF and MathML. 

Thus, as discussed in section 4.9.1, PSL comes across as a very capable ontology for neutral 

formal process descriptions for manufacturing and production operations. Although OWL is 

less expressive than PSL, it provides a neutral platform to formally represent concepts and 

binary relations of GPM-DEA for mechanical design processes with both design and 

manufacturing knowledge. Rule language is required to formally represent the rules 

represented in UML class diagram with its interdependency on IDEF0 rules to activities such 

as RuleML, RIF and MathML. Thus integration of ontology with rule language is mandatory 

to fully represent the GPM-DEA with its F-B-S on neutral formal representation. The final 

results concluded that OWL/SWRL as a combination of both ontology and rule language is a 

suitable candidate for the semantic mapping of GPM-DEA concepts and relations.  
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According to the research methodology in section 1.4.2, the ontology development 

methodology (Noy and McGuinness, 2001) for GPM-DEA needs to be experimentally 

verified to show the effectiveness of its working. In spite of the fact that process model 

aspects as part of pilot use-cases have been experimented with PSL syntax in section 4.4, due 

to the lack of availability of tools for experimental verification of formal axioms with PSL 

along with its limitation to represent knowledge for design systems, OWL with its ease of 

integration with Datalog dialect of RuleML as OWL/SWRL within Protégé IDE (Horridge et 

al., 2011) as the editing tool was finalised. The GPM-DEA is saved as an XML file using 

DrawIo tool before being manually mapped to OWL/SWRL ontology.  

8.2.3 Functioning of OWL/SWRL system 

Research question 3 in section 4.3 is stated as –  

III. ‘Can the formalised process model enable automation with generative modelling from 

the functional requirements generated at the initiation of the design process as the 

design intent with queries and reasoning on developed generic functions?’ 

The answer to this question satisfies the needs of research objectives 5 and 6 in section 1.3 

which are stated again as – 

5. To formalise the process model in platform independent and neutral formal 

representation standards for DEA with semantic clarity. This will incorporate 

generative modelling capability by generating the activities, objects of the process and 

rules based on logic as per set of developed generic functions. 

6. To perform experiments in order to validate and verify the process based knowledge 

model with its platform independent and neutral formal representation for re-usability, 

transparency and accuracy.   

The OWL/SWRL representation for GPM-DEA is illustrated in section 5.5. The generative 

modelling capability of GPM-DEA has been added as a very crucial part of this research 
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with the help of SWRL functions on top of OWL ontology and has been demonstrated in 

section 5.6.3 and validated with experimental verification of test use-cases in chapter 7. It 

is based on function structures of design process with activities and objects functional 

requirements as illustrated in section 5.5.2. All the knowledge objects such as activity, rules, 

resources, function have been created as classes within OWL ontology whereas inputs and 

outputs for activities have been created as datatype properties as binary relations between 

classes and float values. This is explained in section 5.5.1. The engineering rules as methods 

in the UML class diagram are also represented using SWRL formalism. All the class types, 

properties and restrictions for the OWL/SWRL are illustrated in section 5.5.  

The application of the complete OWL/SWRL model for GPM-DEA as Knowledge 

Representation (KR) system development has been elaborated in detail in chapter 6 using test 

use-cases as Use Case 3 and 4. Use-case 3 is an instance of drilling as a design process in a 

block as a product. The initial task is to break down the function structures of various 

activities such as drilling, reaming, boring which all can achieve the desired functional 

requirement of creating a hole along with the assessment of the initial product as block. This 

has been discussed in section 6.3.1. An instance has been visually represented using GPM-

DEA concepts and relations with the Figure 6-6, 6-7 and 6-8 as informal/semiformal 

representation in section 6.3.2. The corresponding OWL model with classes, properties, 

restrictions, SWRL rules and the SWRL generative modelling functions for the instance of 

the drilling process in the plug-in have been explained in section 6.3.3.   

The wider applicability and re-usability of this work is proven with the experimentation with 

another test use-case (Use Case 4), which includes designing a bookshelf. The application of 

GPM-DEA and its neutral formal representation in OWL/SWRL follows a similar approach 

to the instance of drilling and is described in section 6.4. The initial step is breaking down of 

the function structures for bookshelf design process activities and objects along with 
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assessment of the initial product as described in section 6.4.1. The informal/semiformal 

representation is illustrated in section 6.4.2 with the OWL/SWRL as neutral formal 

equivalent representation in section 6.4.3. This includes all the classes, properties, 

restrictions, SWRL rules and the SWRL generative modelling functions based on existing 

classes and properties in the OWL model.  

8.2.4 Reasoning and querying on OWL/SWRL model 

Research question 2 and 3 also provide answer to the research objective 6 in section 1.3. The 

OWL/SWRL provides a platform independent and neutral representation to the coherent 

model driven GPM-DEA thus providing DEA for mechanical design process and DFM with 

generative modelling based on authors set of generic SWRL functions. The OWL/SWRL 

model has been populated with test use-cases to demonstrate generic working, re-usability 

and traceability of Meta model concepts along with the effect of the process model from 

functional requirements analysis to inclusion of product parameters. The rule outputs from 

both these use-cases have been validated inside proprietary platform specific DEA systems 

such as KBE based AML, ParaPy and GA based parametric CAD based Siemens NX KF and 

CATIA Knowledgeware. The reasoning and querying on the OWL/SWRL knowledge model 

has been performed with the rule outputs being compared with corresponding implementation 

inside DEA systems to test the accuracy of reasoning and querying with semantic clarity.  

Various experiments were designed as described in section 7.3 to experimentally test and 

verify the reasoning capability of OWL/SWRL for both test use-cases. Section 7.7 discusses 

the results, which indicate that the generative modelling functions generate appropriate 

results for activities and objects based on functional requirements along with rule 

generation based on logic and initial assessment of product. The input of the model is a 

product in initial state and the output of the model is a product in final state where state is 

indicated by product attributes. The SWRL rules also provide accuracy in float value with 
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variation in both datatype and object properties based on engineering rules. The SQWRL 

query also returns appropriate results with preserved semantics based on variation in values 

and violation of asserted rule axioms. The SQWRL results are text based, which provide 

semantic clarity. However, they can incorporate float and integer values as well in the query 

tab. The comparison of both SWRL reasoning and SQWRL query results as rule outputs 

match to the values of the rule outputs for product configuration inside ParaPy, AML as a 

KBE based DEA system and Siemens NX KF and CATIA Knowledgeware as GA for 

parametric modelling based which proves that the inference with Pellet and Drools reasoner 

is accurate for the equivalent OWL/SWRL model of GPM-DEA schema.   

However, a limitation of the OWL/SWRL model in this research is the generation of text 

and numerical based results with reasoning and querying which provide semantic clarity 

but are unable to show the exact effect on product attributes with the help of GUI to show 

the results on product’s visual form as a product model with an inbuilt geometry modeller. 

8.3 Applicability and Effectiveness of the Research Outputs 

GPM-DEA was developed with generic and re-usable engineering concepts such as activity, 

product attributes, rule, function-functional requirements, behaviour based on authors Meta 

model for knowledge modelling with a model driven approach (MDA). The MDA approach 

led to the development of GPM-DEA with functional modelling as the basis, as the purpose 

of the engineering mechanical design process is to satisfy a set of functional requirements in 

context to a product (Chen et al., 2008). After experimental verification of the OWL/SWRL 

as system development based on GPM-DEA schema, the concepts and relations of GPM-

DEA have been proven effective for generic and product specific design processes with 

concepts and relations such as activity with inputs and outputs, engineering rules comprising 

of both design and manufacturing constraints, function and product architecture covering a 

wide array of cases. GPM-DEA contains both declarative and procedural design process 
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knowledge with more focus on declarative knowledge to satisfy the needs of DEA with a 

KBE approach as against purely procedural approach for DEA with other virtual engineering 

approaches such as CAx tools and PDM/PLM systems (Cooper and LaRocca, 2007; Prasad, 

2006). The use of OWL ontology and SWRL rules as a platform independent and neutral 

knowledge model for DEA supports both representation of declarative and procedural 

knowledge, supports modularity and re-usability (Siricharoen, 2007).  

8.3.1 Positioning of the Model in Comparison to Related Work 

Work performed by (Usman, 2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et 

al., 2013a) has elaborated on the usage of Common Logic based PSL ontology as neutral 

formalised semantics for equivalent UML based lightweight formal representation for 

machining processes with knowledge sharing and access across product design. Their work 

caters to the needs of PLM systems and can also be used for automation purposes specially 

manufacturing and production automation. However, as discussed, pertaining to the 

engineering design domain, due to the lack of formal axioms for design systems such as 

functional requirements analysis and finer product attributes with form, fit and features 

(Cochrane et al., 2009; Young et al., 2007; Zhan et al., 2010) along with the lack of 

supporting tools for PSL in accordance with research design, OWL/SWRL based ontology 

has been adopted in line for the needs of developing neutral knowledge models for DEA.  

Work has been performed in developing neutral knowledge model for DEA in context to a 

KBE approach specifically for the aerospace industry (Sanya and Shehab, 2015, 2014). 

Following the MOKA methodology and formulation of platform independent models for 

ensuring high abstraction, modularity and re-usability of represented knowledge, 

OWL/SWRL as a combination of semantic web representation language was chosen to 

formalise the design knowledge with Protégé as a tool. Although the knowledge model was 

based on functional requirements as the basis, more focus was laid on design intent in the 
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form of design parameters, constraints and rules for specific aerospace components such as 

compressors and turbines based on feature and shapes such as sleeve, panel and flanges as 

compared to the more generic and re-usable process oriented approach as part of this 

research. GPM-DEA developed as part of this research has been validated for wider 

applicability with use-cases from aerospace components with pilot use-cases, DFM aspect 

with drilling process and bookshelf design process. It was also recognised that using semantic 

web based languages such as OWL ontology for DEA with a KBE approach, there was a lack 

of common model based on a set of activities which would deploy the OWL based model for 

use in KBE applications with a lack of widely adopted ontology development for engineering 

design and DEA (Sanya and Shehab, 2014). This research bridges this gap by not only using 

OWL/SWRL as a platform independent and neutral representation of mechanical design 

knowledge with DFM for DEA in a KBE environment, but also providing clear and concise 

method of modelling of the knowledge into ontology development with reusable classes and 

properties in OWL using concepts and relationships in the structured knowledgebase as 

formulation of GPM-DEA schema. The population of GPM-DEA with multiple use-cases as 

instances verifies the effective working of the process model. The work carried out by Sanya 

and Shehab focussed on the usage of BPMN along with UML for process modelling on 

context to DEA as informal representation. Contrary to this approach, research work in this 

thesis has elaborated on the usage of IDEF0 and UML/SysML as the basis and then 

addition of concepts and relationships as illustrated in section 8.2.1 to formulate a more 

comprehensive informal process model with generative modelling capability with initial 

assessment of product as GPM-DEA. It was also recognised that there was lack of research 

between ontology development and engineering design (Sanya and Shehab, 2015). This 

research also bridges this gap by merging and mapping engineering design aspects for DEA 

and ontology development using OWL/SWRL.  
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Post MOKA, another contribution was made by (Reijnders, 2012) in developing platform 

independent and formal representation of engineering design knowledge for aerospace 

industry for DEA with a KBE approach using a combination of OWL, RIF Production Rule 

Dialect (PRD) and Content MathML using a commercial implementation tool AllegroGraph 

based on Allegro Common Lisp platform. Although both product and process knowledge was 

represented, the main focus of the captured and represented knowledge was based on 

engineering rules for product design as compared to a process based approach performed in 

this thesis. MOKA ICARE forms were used as informal representation with the 

corresponding platform independent formal representation of rules in RIF-PRD and Content 

MathML (Reijnders, 2012). As explained earlier, this research has developed an advanced 

process model GPM-DEA that is much more comprehensive than MOKA ICARE forms for 

knowledge modelling or informal representation for mechanical design. In Reijnders work, 

although the forward reasoning works on the rules leading to the successful implementation 

of design knowledge, the predicates of the rules such as the antecedent and the consequent 

couldn’t be queried due to integration between RIF-PRD and OWL leading to loss of 

contextual relevance of rules with co-related knowledge. On the contrary, this research has 

used SWRL, which offers ease of integration with OWL making the query on the internal 

predicates of the rules relatively easier thus also preserving the semantic clarity of the 

represented knowledge of GPM-DEA. Also, it was stated that single rules related to an object 

or a process were easily modelled, but multiple rules were difficult to implement. However, 

in this research multiple rules related to an object or a process have been modelled at the 

same level as a singular rule within the SWRL tab with the same ease of implementation for 

inference and querying.      

Other work that was also similar in developing platform independent and neutral knowledge 

models for DEA with a KBE perspective was performed by (Lützenberger et al., 2012; 
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Pardalis and Kadiri, 2014; Pugliese and Colombo, 2014), where the authors recommended 

the usage of RIF, as the focus was purely on formal representation of engineering rules. The 

investigation of OWL/SWRL as the potential for representation of neutral knowledge models 

for DEA with a KBE perspective was recognised which is discussed in Table 2-3 in section 

2.8 of Chapter 2. This research has bridged this gap by potential investigation of 

OWL/SWRL for knowledge representation for DEA based on the developed model GPM-

DEA, along with Use Case 4 adopted from this project and verified by experimentation that 

OWL/SWRL as ontology and rule representation is successful as platform independent and 

neutral formal representation of mechanical design knowledge for automation.  

Also, as compared to AMAAD (Van Der Velden et al., 2012) for DEA with a KBE 

perspective, this research has successfully provided a structured method to perform detailed 

activities with product architecture knowledge. This research has also provided the 

association of the activities of the process model with the working of the developed 

OWL/SWRL system attributes, which is explained in chapter 5.  

Thus, as compared to the previous work by Sanya, Rejinders and LinkedDesign project, 

GPM-DEA provides a method to describe mechanical design process models with DFM in  

platform independent and neutral formal representation as OWL/SWRL enabling DEA with 

generative modelling capabilities and preserved semantics, with a KBE approach. The 

working of the GPM-DEA model in OWL/SWRL proves that logic based formalisms such as 

OWL based on DL and SWRL based on Horn Logic do have the potential capability as 

knowledge representation formalisms for DEA.  

8.3.2 Integration and Extension of the Model to other Engineering Applications 

The GPM-DEA working has been validated with multiple use cases varying from aerospace 

components such as compressor and fan blades design and manufacturing processes at a 

preliminary level to a simpler drilling process and bookshelf design process at the detailed 
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product attribute level. Even though the ontology model contains extensive manufacturing 

aspects, the verification of the model has not been performed for all complete 

manufacturing domains with tooling for e.g. additive manufacturing. Although the model 

provides the sub-functions as functional requirements of various CAE analysis processes, 

the testing and verification of the model with CAE analysis processes such as stress 

analysis, structural analysis and thermal analysis has not been performed. Thus the model 

may need extensions in its classes and relationships along with SWRL rules to fully cover 

the CAE analysis process lifecycle along with wider manufacturing domain with newer 

methods.   

In its present stage, the testing and verification of the model has proved that it is 

comprehensive for mechanical design, manufacturing and design for manufacturing 

(DFM)/design for assembly (DFA) stages of the product development lifecycle based on the 

functional requirements. The current model has proven to be generic and high level for a 

mechanical design process with manufacturing knowledge for DEA. The implementation of 

the model in OWL/SWRL can be extended for detailed manufacturing and production 

processes domain along with Design for Manufacturing (DFM) ontologies such as MASON 

and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012).   

As the main strength and applicability of GPM-DEA is a process modelling approach with its 

effect on product attributes with an interface to the product model, its corresponding 

implementation in OWL/SWRL also provides compatibility with detailed product models 

with geometry kernels for visualisation, for DEA. This research provides scope of integration 

with previous work in developing semantic product models with geometric kernels using 

OWL/SWRL ontology across heterogeneous CAD systems with various product attributes as 

parameters, features and shapes such as surfaces, faces, edges (Lu et al., 2016; Qin et al., 

2016; Tessier and Wang, 2013) which have been included in this research to show the effect 
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of the process model on product geometric attributes with an interface. This also includes 

features such as holes, extrusion and chamfering with Boolean representations, which have 

been embedded in this research with SWRL, making this directly compatible as a KR 

language for integration with GPM-DEA as a process model for DEA.  

This work can also be integrated with non-geometric product models. An example as 

illustrated in section 3.7.5.2, an ontology was developed for UML based CPM/OAM product 

model with both non-geometric and geometric attributes along with function and behaviour, 

although it was not fully validated for visual display using geometry kernel as it was targeted 

for PLM systems (Fiorentini et al., 2007). Other work for integration to the process model in 

this research are ontology based neutral product models for visual display with geometry 

kernels across CAx systems, which have been developed. These include mapping of STEP 

based EXPRESS schemas to OWL/SWRL based ontologies in order to develop neutral 

product models with geometric knowledge such as Onto-STEP and ONTO-PDM (Barbau et 

al., 2012; Krima et al., 2009; Zhao and Liu, 2008a, 2008b). The reason for conversion of 

OWL ontology to STEP schemas for product models for geometric representation is that 

STEP is the current widely adopted neutral product model representation across various CAx 

and DEA systems. Thus, the OWL/SWRL process model of GPM-DEA provides a good 

foundation as KR formalism with automated reasoning to integrate with detailed platform 

independent and neutral product models with geometric kernels for DEA. As stated in section 

3.7.1 and 3.7.5.2, work has been performed for capturing design rationale with the help of 

DRed (Design Rationale editor) and DRed 2.0 based on both UML/SysML and OWL/SWRL 

based ontology as formal representation for access in PLM systems and also across CAD 

applications (Bracewell et al., 2009a, 2009b; Eng et al., 2011). Although, GPM-DEA in the 

present stage doesn’t include the Rationale class as rationale in not a necessary 

requirement for DEA, it can be added both informally based on UML notation and its 
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corresponding ontological representation in OWL/SWRL. Thus GPM-DEA as a 

knowledgebase can be extended with rationale for mechanical design process. Similarly, 

although presently, GPM-DEA is quite exhaustive for function and behaviour as FBS for a 

mechanical design process with manufacturing knowledge for DEA, it can be extended and 

merged with functional and behavioural aspect of other engineering processes and products 

both informally and with ontologies as formal representation. The working of the 

OWL/SWRL model with drilling a hole in a block and bookshelf design process has been 

validated inside platform specific DEA systems such as KBE based AML, ParaPy and GA 

based parametric CAD applications such as CATIA Knowledgeware and Siemens NX KF at 

the product geometric attribute level. Thus the OWL/SWRL model of GPM-DEA with its 

interface to the product model to illustrate the effect of mechanical design process on the 

geometric attributes of the product, can be used as a basis for integrating with a product 

model in neutral format using a front-end visual DEA application with product form, shapes 

and features using X3D (Web3D, 2017) based geometry kernels. Along with extension to 

wider domain such as design rationale, function and behaviour of engineering design and 

manufacturing, it can also be used as a back end platform for visualisation of queries and 

inference results to the design engineer for decision support and DEA with the support of 

semantic web pages. This visualisation of automation results over the semantic web pages 

can be achieved with the help of an API written on OWL/SWRL with languages such as Java 

such as those supported by Apache Jena framework.     

8.4 Contributions to Knowledge 

a. This research has developed a standardised and coherent method to use ontology 

based structured knowledge model as formal representation to address Design 

Engineering Automation (DEA) for mechanical design and DFM process with a KBE 
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perspective with semantic clarity and generative modelling by building queries and 

reasoning on author’s set of generic SWRL functions.  

b. The method to use OWL/SWRL ontology is based on the schema of developed 

informal/semiformal model GPM-DEA as a structured knowledge modelling method, 

based on author’s Meta model which is built on strengths of IDEF0, UML/SysML and 

addition of modelling constructs by the author. 

The main strengths and contribution of this research work are -   

8.4.1 Model Driven Approach for Knowledge Modelling and Automation for 

Mechanical Design Process with DFM  

The knowledge modelling method through GPM-DEA with an MBSE approach provides a 

generic, re-usable process model with transparency and traceability of concepts and 

relationships as per author’s Meta model based on activity, product attributes, rules and logic, 

function-functional requirements, behaviour for mechanical design processes with DFM. It is 

based on F-B-S based modelling and includes functional requirements analysis, activity-

object-rule association and an interface to the product model with geometric attributes and 

form-features-fit, thus including both geometric and non-geometric knowledge to cover and 

address automation for mechanical product design process with DFM/DFA. Thus the 

knowledgebase acts as superset of platform specific DEA applications.  

8.4.2 Utilisation of Formal Logic for Implementation of a Process Model for DEA 

The successful implementation of GPM-DEA with OWL/SWRL ontology and rule 

representation proves that formal logic is able to capture the semantic meaning of various 

mechanical design process concepts and properties with inclusion of manufacturing 

knowledge. Thus it provides a suitable machine interpretation of mechanical design 

knowledge for DEA with its automated reasoning on the formal axioms as syntax with depth 

of meaning of classes and relationships as concepts and bi-directional properties with OWL 
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(DL) and addition of forward chaining reasoning capability on classes and properties using 

SWRL (Horn logic) with math, boolean and comparison built-ins. The inclusion of float 

datatype properties ensures that product parameters as geometric attributes can be included in 

the model although it depends upon careful execution of the OWL/SWRL model.    

8.4.3 Neutral (Open Standard) Usage of the Ontology Knowledge Model across 

Platform Specific DEA Systems with Semantic Clarity 

The developed process model GPM-DEA with its mapping to equivalent OWL/SWRL 

representation as platform independent formal representation with semantic clarity provides a 

structured method to use formal ontologies for DEA with a KBE perspective within a virtual 

engineering environment. Ontology provides open standard usage and provides neutral 

knowledge model outside of platform specific DEA applications such as KBE based AML, 

ParaPy and GA based CATIA Knowledgeware, Siemens NX KF.  

8.4.4 Extensibility and Scalability of the Knowledge Base 

The model offers ease of extensibility with the aid of formal OWL/SWRL representation. 

Ontology based on formal logic with semantic clarity provides scalability with addition of 

classes, properties and instances. The model can be extended to cover other aspects of 

engineering knowledge depending upon the end user such as design rationale, function-

behaviour and product data models, advanced and detailed manufacturing, maintenance 

and operations for production including tooling. The new knowledge objects can be easily 

integrated or merged in the OWL/SWRL ontology representation to cater to specific 

engineering requirements.    

8.4.5 Web Based Decision Support for Engineering Applications 

The knowledge within the platform independent and neutral model can be extracted to 

platform specific DEA applications or web pages to provide decision support for a wider 

design space exploration for the designer by developing an API on the OWL/SWRL model. 
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These can be developed using languages such as Java. Ontology models can be directly 

exported to Java code within Protégé IDE. Methods have been devised to map OWL/SWRL 

ontology methods to O-O programming which can pave the way for retrieving the knowledge 

in neutral file format, developed as part of this research, for direct utilisation inside the 

proprietary DEA applications.  

8.4.6 Integration of Generative Modelling Capability within Process Model 

The developed formal model enables generative modelling capabilities by building queries 

and reasoning on author’s generic set of SWRL functions by automatically generating the 

activities and objects based on the functional requirements as sub-function structures of the 

mechanical design process with DFM along with process sequencing. It also provides initial 

assessment of a product to adapt and provide re-usability of processes and activities for 

different products. The automatic generation of the activities, objects based on matching the 

functional requirements as sub-function structures to those of the mechanical design process 

along with the initial assessment of product is achieved with implementation of developed 

SWRL functions as part of this research. For engineering rules based on logic, the rules are 

automatically generated based on SWRL functions by matching the engineering logic 

structures developed as part of this research. All the SWRL inference and query results have 

been validated during experimentation including the execution of generic and product 

specific engineering rules for block and bookshelf usage as test use-cases.      

8.4.7 Ontology Representation of Design and Manufacturing Knowledge within a 

Unified Process Model 

The process model includes manufacturing knowledge and DFM/DFA aspects during the 

mechanical design stage and represents both physical and virtual representation of the 

products in context to mechanical product design with DFM processes. Both design and 

manufacturing requirements have been included in the functional requirements (equivalent to 
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function) class and sub-class as function structures with instantiation. The individual 

activities can be classified as physical, virtual and informatical and the equivalence between 

physical and virtual representation is achieved with the SWRL functions developed as part of 

this research. 

8.5 Limitations 

Although the research contributes to the body of scientific knowledge by satisfying the aim 

and objectives thus verifying the research hypothesis, there are a few limitations due to the 

scope and the context in which the results are valid.  

Firstly, the focus of both pilot and test use-cases collected from industrial partner and 

literature is on mechanical design, DFM with manufacturing processes as part of product 

development cycle. Although the ontology model is quite exhaustive, it has not been verified 

through use cases for all aspects of manufacturing/production methods with tooling such as 

additive manufacturing. Although CAE analysis process concepts such as stress analysis, 

thermal analysis, structural analysis have been included as subclasses in the OWL/SWRL 

model for GPM-DEA, the model has not been instantiated or populated and verified with 

analysis process use-cases to validate the implementation results. Also, the complexity of the 

model based on Meta model concepts such as activity, product attributes, rule and logic, 

function-functional requirements and behaviour may need extension to cover these other 

engineering processes not covered in this research. Secondly, the reasoning results of GPM-

DEA as a process model with an interface to the product model on OWL/SWRL as formal 

logic based representation generates both text and numeric values for product parameters as 

geometric attributes as described within a CAx virtual platform. However it doesn’t 

incorporate the visual representation of product form, shape and features through its 

geometry kernels. In spite of the limitations, the model is widely applicable to mechanical 

design and manufacturing along with DEA both within a KBE context and GA based 
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parametric CAD automation, which proves that GPM-DEA is robust, structured, generic and 

re-usable as extensions can be applied within a specific domain for highly granular 

capabilities within the mechanical design space. 

8.6 Recommendations for Future Work 

Based on the results of this research work, further work can be conducted in the following 

areas for the applicability of this research to a wider problem domain -   

• The integration of geometry kernels for detailed product model visual representation 

through a GUI in terms of its form, features and shapes using neutral format such as 

X3D for DEA. This will help the designer visualise the direct impact of the process 

model on the geometry with open standards. This can cover different kernels such as 

NURBS, splines and closed profiles for surface along with extrusion, pockets, notch for 

volume representation as part of neutral product model 

• The mapping or equivalent formal representation of GPM-DEA in OWL/SWRL 

ontology as a proof–of-concept follows a manual approach in accordance with research 

design to ensure the correctness of formal syntax, preserved semantics and detailed 

implementation for accurate reasoning results. Although the inference and query results 

are found accurate for the test use-cases during experimentation, the process of 

populating the knowledgebase is slightly time consuming. In order to reduce the 

translation time for high volume use-cases and industrial implementation, automatic 

mapping can be addressed to a certain extent from GPM-DEA schema as 

informal/semiformal process model to OWL/SWRL knowledge model  

• For platform independent and neutral formal representation of mathematical rules with 

complex equations currently not supported by built-in SWRL plugins, MathML with 

various dialects such as Presentation MathML with focus on Content MathML can be 

investigated for integration on top of OWL/SWRL as an additional layer.  
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8.7 Closing Summary 

GPM-DEA is a process model with F-B-S modelling, based on authors Meta model, as an 

MBSE approach and its effect on the product parameters as geometric attributes with form-

features-fit through an interface. It combines the strengths of UML/SysML and IDEF0 and 

addition on authors constructs, is a high level, generic, re-usable and extensible process 

model for knowledge modelling of mechanical design processes with incorporation of 

DFM/DFA as manufacturing knowledge. The model enables DEA through OWL/SWRL as a 

platform independent and neutral formal representation with generative modelling based on 

generic SWRL functions developed by the author. The development of GPM-DEA follows a 

model driven approach with equivalent ontology and rule representation as neutral standards 

with open standard usage. OWL/SWRL provides combination of DL and horn logic based 

formal logic representation with automated reasoning capabilities for the developed process 

model GPM-DEA to satisfy the needs of DEA. The inference and query results on 

OWL/SWRL have been experimentally verified at generic as well as product specific level 

for mechanical design, manufacturing and DFM as part of engineering processes. GPM-DEA 

can be extended or merged with other function-behaviour, rationale, product data models and 

integrate with manufacturing and production domain both at the informal level and at the 

OWL/SWRL as formal model. Thus a contribution to knowledge has been made in terms of 

fulfilment of aim and objectives, which verifies the research hypothesis and can be stated as-  

“Platform independent and neutral formal representation of an engineering design  

process model with focus on mechanical product design and manufacturing knowledge 

built on standardised concepts and relationships, structured and well defined axioms 

along with semantic clarity can achieve the requirements of design engineering 

automation (DEA) enabling generative modelling and re-usability of knowledge” 
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Appendix 1: Ontology Development Methodology 

A. Introduction 

Ontology is a formal explicitdescription of concepts in a domain of discourse (classes 

(referred as concepts)),properties of each concept describing various features and attributes of 

the concept (slots(referred as roles or properties)), and restrictions on slots (facets (referred as 

role restrictions)). Ontology together with a set of individual instances of classesconstitutes a 

knowledge base(Noy and McGuinness, 2001). Ontologies have been used in engineering 

applications as part of artificial intelligence and can be used for various purposes such as 

those of CAD systems, PLM systems and KBE applications along with adopted as part of 

model driven approach for interoperability. They have been used for product and process 

model and structure, design automation, requirements engineering, manufacturing and 

production processes for exchange of knowledge and automation (El Kadiri et al., 2015; El 

Kadiri and Kiritsis, 2015).  

B. Steps adopted to create an Ontology for Design Engineering Automation 

In order to create an ontology to address Design Engineering Automation (DEA) with 

inclusion of manufacturing knowledge, high-level ontology development methodology has 

been adopted from (Noy and McGuinness, 2001) as shown in Figure A 1. Specifically 

catering to engineering design domain with manufacturing knowledge for optimisation, 

ontology development methodology has been also adopted from (Ahmed et al., 2007; 

Witherell et al., 2007) as shown in Figure A 2.   
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Figure A 1: Ontology Development Methodology [Adopted from (Noy and McGuinness, 

2001)] 

 

Figure A 2: Ontology Development Approach for Engineering Design Optimisation with 

DFM [Adopted from (Ahmed et al., 2007; Witherell et al., 2007)] 

 

As observed from Figure A 1 and A 2, the various steps include –  

• Define the scope of the problem domain – Engineering knowledge capture based on a model 

driven approach with focus on re-usable and generic processes wit their effect on product 

attributes 
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• Formulating the problem domain with knowledge entities such as activities, object, rule, 

logic, function and behaviour as high-level concepts. The complete 3 level description of 

concepts has been illustrated in Figure 4-3 in Chapter 4 

• The optimisation method should involve inference and query supporting OWL/SWRL as an 

integrated layer based on description logic and fragment of horn logic. The optimisation 

should generate both text based description as string type and product attributes as float type 

• Define the class hierarchy, properties with data typing as string, float and population with 

instances based on pilot and validation use-cases 

• Input all the specified data using Protégé IDE as the supporting tool 

• Run the Pellet reasoner along with Drools and SQWRL query language on the 

knowledgebase to generate results 

• Verify the inference and query results with specific rule outputs to the rule outputs 

controlling product configuration and topology inside platform specific DEA systems. 

C. OWL Ontology Model – Platform Independent and Neutral Formal 

Representation System 

This document contains the classes, properties and restrictions of the GPM-DEA model 

mapped to its OWL2 based ontology model, developed in this research.  

i. Class Hierarchy 

owl:Thing 

ProcessModel:Activity (http://example.org/ProcessModel#Activity) 

ProcessModel:Informatical-Activity 

ProcessModel:Physical-Activity 

ProcessModel:Virtual-Activity 

ProcessModel:Engineering_Design_Process(http://example.org/ProcessModel#Engineering_

Design_Process)  

 ProcessModel:Computational_Fluid_Dynamics_CFD 

  ProcessModel:Fluid_Flow_Analysis 

  ProcessModel:Thermal_Analysis 

http://example.org/ProcessModel#Activity
http://example.org/ProcessModel#Engineering_Design_Process
http://example.org/ProcessModel#Engineering_Design_Process
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 ProcessModel:Design_for_Cost 

 ProcessModel:Design_for_Ergonomics 

 ProcessModel:Design_for_Manufacturing_Assembly 

  ProcessModel:Additive_Manufacturing 

  ProcessModel:Casting 

   ProcessModel:Centrifugal_Casting 

   ProcessModel:Die_Casting 

   ProcessModel:Permanent_Mould_Casting 

  ProcessModel:Forming 

   ProcessModel:Blanking 

   ProcessModel:Extrusion 

    ProcessModel:Cold_Extrusion 

    ProcessModel:Hot_Extrusion 

ProcessModel:Forging 

 ProcessModel:Cold_Forging 

 ProcessModel:Drop_Forging 

 ProcessModel:Hot_Forging 

 ProcessModel:Precision_Forging 

 ProcessModel:Press_Forging 

ProcessModel:Heading 

   ProcessModel:Punching_Piercing 

   ProcessModel:Rolling 

    ProcessModel:Cold_Rolling 

    ProcessModel:Hot_Rolling 

   ProcessModel:Stamping_or_Pressing 

    ProcessModel:Cold_Pressing 

    ProcessModel:Hot_Pressing 

   ProcessModel:Thermo_Forming 

   ProcessModel:Vacuum_Forming 

  ProcessModel:Joining 

   ProcessModel:Brazing 

   ProcessModel:Riveting 

   ProcessModel:Welding 

  ProcessModel:Machining 

   ProcessModel:Boring 

   ProcessModel:CNC_Machining 

   ProcessModel:Drilling 

   ProcessModel:Electrical_Discharge_Machining 

   ProcessModel:Electro_Chemical_Machining 

   ProcessModel:Milling 

   ProcessModel:Reaming 
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   ProcessModel:Turning 

  ProcessModel:Moulding 

   ProcessModel:Blow_Moulding 

   ProcessModel:Compression_Moulding 

   ProcessModel:Injection_Moulding 

 ProcessModel:Design_for_Recycling 

 ProcessModel:Finite_Element_Analysis_FEA 

  ProcessModel:Stress_Analysis 

  ProcessModel:Structural_Analysis 

 ProcessModel:Mechanical_Design 

  ProcessModel:Feature 

   ProcessModel:Attach_Connect_Parts 

   ProcessModel:Depression_Extrusion 

    ProcessModel:Hole 

    ProcessModel:Notch 

    ProcessModel:Pocket 

    ProcessModel:Slot 

   ProcessModel:Protrusion 

    ProcessModel:Block 

    ProcessModel:Shaft 

  ProcessModel:Fit 

   ProcessModel:Assembly 

   ProcessModel:Part 

  ProcessModel:Form 

   ProcessModel:Edge 

    ProcessModel:Chamfer 

    ProcessModel:Fillet 

    ProcessModel:Line 

   ProcessModel:Face 

    ProcessModel:Circle 

    ProcessModel:Ellipse 

    ProcessModel:Hyperbola 

    ProcessModel:Parabola 

    ProcessModel:Polygon 

   ProcessModel:Surface 

    ProcessModel:Bézier_Surface 

    ProcessModel:NURBS_Surface 

   ProcessModel:Volume 

    ProcessModel:Box 

    ProcessModel:Cone 

    ProcessModel:Cylinder 
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    ProcessModel:Ellipsoid 

    ProcessModel:Hyperboloid 

    ProcessModel:Paraboloid 

    ProcessModel:Polygon_Volume 

    ProcessModel:Sphere 

  ProcessModel:Material_Selection 

   ProcessModel:Alloys 

    ProcessModel:Brass 

    ProcessModel:Bronze 

    ProcessModel:Duralumin 

    ProcessModel:Inconel 

    ProcessModel:Manganin 

    ProcessModel:Nimonic 

   ProcessModel:Ceramics 

    ProcessModel:Boron_Carbide 

    ProcessModel:Boron_Oxide 

    ProcessModel:Silicon_Carbide 

    ProcessModel:Silicon_Nitride 

   ProcessModel:Composites 

    ProcessModel:Carbon_Fiber 

    ProcessModel:Glass_Fiber 

    ProcessModel:Kevlar 

    ProcessModel:Reinforced_Plastic 

   ProcessModel:Ferrous_Metal 

    ProcessModel:Carbon_Steel 

    ProcessModel:Cast_Iron 

    ProcessModel:Mild_Steel 

    ProcessModel:Stainless_Steel 

    ProcessModel:Wrought_Iron 

   ProcessModel:Non_Ferrous_Metal 

    ProcessModel:Aluminium 

    ProcessModel:Copper 

    ProcessModel:Lead 

    ProcessModel:Nickel 

    ProcessModel:Tin 

    ProcessModel:Titanium 

    ProcessModel:Zinc 

   ProcessModel:Polymer 

    ProcessModel:Neoprene 

    ProcessModel:Plastic 

    ProcessModel:Polyethylene 
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    ProcessModel:Polypropylene 

    ProcessModel:Polystyrene 

    ProcessModel:Polyvinyl_Chloride 

    ProcessModel:Wood 

 ProcessModel:Multi_Body_Dynamics_MBD 

  ProcessModel:Electromagnetic_Analysis 

  ProcessModel:Kinematic_Analysis 

 ProcessModel:Stages 

  ProcessModel:Conceptual_Design 

  ProcessModel:Detailed_Design 

   ProcessModel:Computer_Aided_Design_CAD 

   ProcessModel:Computer_Aided_Engineering_CAE_Analysis 

   ProcessModel:Computer_Aided_Manufacturing_CAM 

  ProcessModel:Embodiment_Design 

ProcessModel:Function—

FunctionalRequirement(http://example.org/ProcessModel#Function--FunctionalRequirement)  

 ProcessModel:Assess_Product_Initial 

 ProcessModel:Geometric_3D_Analysis 

  ProcessModel:Analysis_Stage 

   ProcessModel:Analysis_Solving 

   ProcessModel:Post_Processing 

   ProcessModel:Pre_Processing 

  ProcessModel:Apply_Boundary_Conditions 

   ProcessModel:Dirichlet_Boundary_Conditions 

   ProcessModel:Neumann_Boundary_Conditions 

   ProcessModel:Robin_Boundary_Conditions 

  ProcessModel:Meshing 

   ProcessModel:Hexahedron 

   ProcessModel:Pyramid 

   ProcessModel:Quadrilateral 

   ProcessModel:TetraHedron 

   ProcessModel:Triangle_ 

   ProcessModel:Triangular_Prism 

 ProcessModel:Geometric_3D_Modelling 

  ProcessModel:Create_Point_Cloud 

  ProcessModel:Create_Solid_as_Added_Volume_Boolean 

   ProcessModel:Add_Box_Volume 

   ProcessModel:Add_Cone_Volume 

   ProcessModel:Add_Cylinder_Volume 

   ProcessModel:Add_Ellipsoid_Volume 

   ProcessModel:Add_Polygon_Volume 

http://example.org/ProcessModel#Function--FunctionalRequirement


 293 

   ProcessModel:Add_Sphere_Volume 

  ProcessModel:Create_Surface_Volume_Boolean 

   ProcessModel:Create_Surface_Volume_Bézier 

   ProcessModel:Create_Surface_Volume_NURBS 

  ProcessModel:Remove_Solid_as_Subtracted_Volume_Boolean 

   ProcessModel:Subtract_Box_Volume 

   ProcessModel:Subtract_Cone_Volume 

   ProcessModel:Subtract_Cylinder_Volume 

   ProcessModel:Subtract_Ellipsoid_Volume 

   ProcessModel:Subtract_Polygon_Volume 

   ProcessModel:Subtract_Sphere_Volume 

 ProcessModel:Manufacturing_Feasibility 

  ProcessModel:Attach_Connect 

   ProcessModel:Assemble_Parts 

   ProcessModel:Attach_Connect_Fixture 

   ProcessModel:Attach_Connect_Jig 

  ProcessModel:CNC_Path_Instructions 

  ProcessModel:Costing 

  ProcessModel:Manufacturing_Method 

  ProcessModel:Material_Allocation 

ProcessModel:Positioning 

   ProcessModel:Axial 

   ProcessModel:Circumferential 

   ProcessModel:Concentric 

   ProcessModel:Radial 

   ProcessModel:Tangential  

  ProcessModel:Quality_Control 

   ProcessModel:Measurement_Capability 

   ProcessModel:Precision_Accuracy 

  ProcessModel:Tool_Selection 

 ProcessModel:Output_Performance_Evaluation 

  ProcessModel:Electrical_Magnetic_Performance 

   ProcessModel:Capacitance 

   ProcessModel:Current 

   ProcessModel:Electric_Field 

   ProcessModel:Electro_Magnetic_Energy 

    ProcessModel:Electric_Energy 

    ProcessModel:Magnetic_Energy 

   ProcessModel:Electro_Magnetic_Power 

   ProcessModel:Electro_Magnetic_Work 

   ProcessModel:Induction 
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   ProcessModel:Magnetic_Field 

   ProcessModel:Voltage 

  ProcessModel:Mechanical_Performance 

   ProcessModel:Acceleration 

   ProcessModel:Angular_Momentum 

   ProcessModel:Fatigue 

   ProcessModel:Force 

   ProcessModel:Foreign_Object_Damage 

   ProcessModel:Hardness 

   ProcessModel:Linear_Momentum 

   ProcessModel:Mechanical_Energy 

    ProcessModel:Elastic_Energy 

    ProcessModel:Gravitational_Energy 

    ProcessModel:Kinetic_Energy 

    ProcessModel:Potential_Energy 

   ProcessModel:Mechanical_Power 

   ProcessModel:Mechanical_Work 

   ProcessModel:Pressure 

   ProcessModel:Speed 

   ProcessModel:Stiffness 

   ProcessModel:Strain 

   ProcessModel:Strength 

   ProcessModel:Stress 

   ProcessModel:Torque 

   ProcessModel:Velocity 

   ProcessModel:Vibration 

  ProcessModel:Thermodynamic_Performance 

   ProcessModel:Compression 

   ProcessModel:Expansion 

   ProcessModel:Flow 

   ProcessModel:Foreign_Object_Damage 

   ProcessModel:Heat 

   ProcessModel:Pressure 

   ProcessModel:Thermodynamic_Energy 

    ProcessModel:Kinetic_Energy 

    ProcessModel:Potential_Energy 

    ProcessModel:Thermal_Energy 

   ProcessModel:Thermodynamic_Power 

   ProcessModel:Thermodynamic_Work 

   ProcessModel:Velocity 

   ProcessModel:Vibration 
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ProcessModel:Logic 

ProcessModel:Object(http://example.org/ProcessModel#Object)  

(The object model has the same classes as Feature, Form, Fit and Material Selection. All 

these 4 classes with their class hierarchy have been assigned subclasses of both Object class 

and Mechanical Design Class by the author. The object model has 1 additional sub-class, 

which is shown below)  

 ProcessModel:Product 

  ProcessModel:Product_Final 

  ProcessModel:Product_Initial 

ProcessModel:Resources (http://example.org/ProcessModel#Resources)  

ProcessModel:Rule (http://example.org/ProcessModel#Rule) 

 ProcessModel:Configuration_Rule 

 ProcessModel:Geometry_Rule 

 ProcessModel:Heuristic_Rule 

 ProcessModel:Logic_Rule 

 ProcessModel:Math_Rule 

 ProcessModel:Process_Rule 

 ProcessModel:Production_Rule 

ProcessModel:Sub-Activity(http://example.org/ProcessModel#Sub-Activity)  

 

It can be observed from the class hierarchy that a few classes such as Velocity, Vibration, 

Kinetic energy, and Potential energy occur under more than 1 class. In the ontology editor, 

these classes only exist as 1 class and have been marked as subclasses of multiple classes 

such as Thermodynamic performance and Mechanical performance in this work, similar to 

the object model class hierarchy.   

ii. Properties 

1. Object Properties with Domain and Range  

ProcessModel:affectedbyLogic 

Domain - ProcessModel:Activity 

Range - ProcessModel:Logic 

 

 

 

ProcessModel:Assesses 

Domain - ProcessModel:Assess_Product_Initial  

http://example.org/ProcessModel#Object
http://example.org/ProcessModel#Resources
http://example.org/ProcessModel#Rule
http://example.org/ProcessModel#Sub-Activity
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Range - ProcessModel:Product_Initial 

 

ProcessModel:consists_of_Activity 

Domain - ProcessModel:Engineering_Design_Process 

Range - ProcessModel:Activity 

 

ProcessModel:consists_of_Object 

Domain - ProcessModel:Engineering_Design_Process 

Range - ProcessModel:Object, ProcessModel:Product 

 

ProcessModel:consumes_Product_Initial 

Domain - ProcessModel:Engineering_Design_Process 

Range - ProcessModel:Product_Initial 

 

ProcessModel:controlled_by_Rule 

Domain - ProcessModel:Activity 

Range - ProcessModel:Rule 

 

ProcessModel:fulfills_Function 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - ProcessModel:Function—FunctionalRequirement 

 

ProcessModel:governedbyLogic 

Domain - ProcessModel:Rule 

Range - ProcessModel:Logic 

 

ProcessModel:has_Edge 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - ProcessModel:Edge 

 

ProcessModel:has_Face 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - ProcessModel:Face 

 

ProcessModel:has_Feature 

Domain - ProcessModel:Assembly, ProcessModel:Object, ProcessModel:Part 

Range - ProcessModel:Feature 

 

 

ProcessModel:has_Form 

Domain - ProcessModel:Object, ProcessModel:Product 
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Range - ProcessModel:Form 

 

ProcessModel:has_Function 

Domain - ProcessModel:Activity 

Range - ProcessModel:Function—FunctionalRequirement 

 

ProcessModel:has_Object_Material 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - ProcessModel:Material_Selection 

 

ProcessModel:has_Part 

Domain - ProcessModel:Assembly 

Range - ProcessModel:Part 

 

ProcessModel:has_Successors 

Domain - ProcessModel:Activity 

Range - ProcessModel:Activity 

 

ProcessModel:has_Surface 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - ProcessModel:Surface 

 

ProcessModel:hasSub-Activity 

Domain - ProcessModel:Activity 

Range – ProcessModel:Sub-Activity 

 

ProcessModel:produces_Product_Final 

Domain - ProcessModel:Engineering_Design_Process 

Range - ProcessModel:Product_Final 

 

ProcessModel:requires_Resources 

Domain - ProcessModel:Activity 

Range - ProcessModel:Resources 

 

ProcessModel:satisfies_Functional_Requirement 

Domain - ProcessModel:Engineering_Design_Process 

Range - ProcessModel:Function—FunctionalRequirement 

 

 

ProcessModel:Starts_with_Activity 

Domain - ProcessModel:Engineering_Design_Process 
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Range - ProcessModel:Activity 

 

2. Datatype Properties with Domain and Range 

ProcessModel:has_Attributes 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

Following have been created as the sub-properties of the datatype property in this work - 

ProcessModel:has_Attributes -  

ProcessModel:has_Object_Orientation_Angle, 

ProcessModel:has_Object_Position_Coordinates, ProcessModel:has_Object_Size 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

Following have been created as the sub-properties of 

ProcessModel:has_Object_Orientation_Angle -  

ProcessModel:has_Object_Orientation_X_Axis, 

ProcessModel:has_Object_Orientation_Y_Axis, 

ProcessModel:has_Object_Orientation_Z_Axis 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

Following have been created as the sub-properties of 

ProcessModel:has_Object_Position_Coordinates –  

ProcessModel:has_Object_X_Coordinate, ProcessModel:has_Object_Y_Coordinate, 

ProcessModel:has_Object_Z_Coordinate 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

Following have been created as the basic sub-properties of ProcessModel:has_Object_Size –  

ProcessModel:has_Object_Depth, ProcessModel:has_Object_Height, 

ProcessModel:has_Object_Width 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

However, it is very crucial to note that other properties can be created by the user as 

additional sub-properties of ProcessModel:has_Object_Size, as it has been illustrated with 

both test case 4 and 5 in this thesis. For example, test case 4 has an additional sub-property 
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named as ProcessModel:has_Object_Diameter as a sub-property of 

ProcessModel:has_Object_Size.  

Other datatype properties have been created such as  - 

ProcessModel:has_Surface_Area, ProcessModel:has_Surface_Finish, 

ProcessModel:has_Tolerance, ProcessModel:has_Volume 

Domain - ProcessModel:Object, ProcessModel:Product 

Range - xsd:float 

 

ProcessModel:has_Temperature_Limit, ProcessModel:has_Youngs_Mod 

Domain - ProcessModel:Material_Selection 

Range – xsd:float 

 

ProcessModel:has_ID 

Domain - ProcessModel:Activity 

Range - xsd:integer 

 

ProcessModel:has_Inputs, ProcessModel:has_Outputs 

Domain - ProcessModel:Activity 

Range – xsd:float 

 

Pertaining to a specific use-case, all the object properties as described above can be classified 

as sub-properties of ProcessModel:has_Inputs, ProcessModel:has_Outputs to indicate inputs 

and outputs of activity completion and execution in terms of its product attributes as 

developed in this research. Both test use-cases 4 and 5 have adopted the same approach to 

create properties with various object attributes as activity inputs and outputs to reflect the 

working of the model GPM-DEA as developed by the author.  

Existential restrictions have been created on the activity class in order to describe it for a 

DEA system in this research, as explained in chapter 5. These are illustrated here as follows -  

Class Name - - ProcessModel:Activity  

Existential Restrictions –  

ProcessModel:has_ID some xsd:integer 

ProcessModel:has_Inputs some xsd:float 

ProcessModel:has_Successors some ProcessModel:Activity 
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D. SWRL in built operators for utilisation and representation of Generative 

Modelling Functions and Engineering Rules 

SWRL offers comparison, math and boolean built-ins on top of OWL classes, properties and 

restrictions and thus enhances the expressiveness of OWL (“SWRL Section 8. Built-Ins,” 

2009). These have been adopted by the author to represent generative modelling functions as 

described in chapter 5 and specific engineering rules for test use cases as described in chapter 

6 as part of system development. These have been further experimentally verified in this 

research using the Pellet and Drools reasoner along with SQWRL query language using the 

test use cases in chapter 7 using Protégé IDE. Some of the in built operators by the author 

have been adopted from the following set as described in this appendix.     

i. Comparison Operators 

1. swrlb:equal(op:numeric-equal, op:compare, op:boolean-equalop:yearMonthDuration-equal, 

op:dayTimeDuration-equal, op:dateTime-equal, op:date-equal, op:time-equal, 

op:gYearMonth-equal, op:gYear-equal, op:gMonthDay-equal, op:gMonth-equal, op:gDay-

equal, op:anyURI-equal) 

Satisfied if the first argument and the second argument are the same. 

2. swrlb:notEqual(from swrlb:equal) 

The negation of swrlb:equal. 

3. swrlb:lessThan (from XQuery op:numeric-less-than, op:compare, op:yearMonthDuration-

less-than, op:dayTimeDuration-less-than, op:dateTime-less-than, op:date-less-than, op:time-

less-than) 

Satisfied if the first argument and the second argument are both in some implemented type 

and the first argument is less than the second argument according to a type-specific ordering 

(partial or total), if there is one defined for the type. The ordering function for the type of 

untyped literals is the partial order defined as string ordering when the language tags are the 

same (or both missing) and incomparable otherwise. 

 

4. swrlb:lessThanOrEqual (from swrlb:lessThan, swrlb:equal) 

Either less than, as above, or equal, as above. 

5. swrlb:greaterThan(from XQuery op:numeric-greater-than, op:compare, 

op:yearMonthDuration-greater-than, op:dayTimeDuration-greater-than, op:dateTime-greater-

than, op:date-greater-than, op:time-greater-than) 

Similarly to swrlb:lessThan. 

http://www.w3.org/TR/xpath-functions/#func-numeric-equal
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-boolean-equal
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-equal
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-equal
http://www.w3.org/TR/xpath-functions/#func-dateTime-equal
http://www.w3.org/TR/xpath-functions/#func-date-equal
http://www.w3.org/TR/xpath-functions/#func-time-equal
http://www.w3.org/TR/xpath-functions/#func-gYearMonth-equal
http://www.w3.org/TR/xpath-functions/#func-gYear-equal
http://www.w3.org/TR/xpath-functions/#func-gMonthDay-equal
http://www.w3.org/TR/xpath-functions/#func-gMonth-equal
http://www.w3.org/TR/xpath-functions/#func-gDay-equal
http://www.w3.org/TR/xpath-functions/#func-gDay-equal
http://www.w3.org/TR/xpath-functions/#func-anyURI-equal
http://www.w3.org/TR/xpath-functions/#func-numeric-less-than
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-less-than
http://www.w3.org/TR/xpath-functions/#func-date-less-than
http://www.w3.org/TR/xpath-functions/#func-time-less-than
http://www.w3.org/TR/xpath-functions/#func-time-less-than
http://www.w3.org/TR/xpath-functions/#func-numeric-greater-than
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-greater-than
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-greater-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-greater-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-greater-than
http://www.w3.org/TR/xpath-functions/#func-date-greater-than
http://www.w3.org/TR/xpath-functions/#func-time-greater-than
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6. swrlb:greaterThanOrEqual (from swrlb:greaterThan, swrlb:equal) 

Similarly to swrlb:lessThanOrEqual. 

ii. Math Operators 

1. swrlb:add(from XQuery op:numeric-add)  

Satisfied if the first argument is equal to the arithmetic sum of the second argument through 

the last argument. 

 

2. swrlb:subtract (from XQuery op:numeric-subtract)  

Satisfied iff the first argument is equal to the arithmetic difference of the second argument 

minus the third argument. 

 

3. swrlb:multiply (from XQuery op:numeric-multiply)  

Satisfied if the first argument is equal to the arithmetic product of the second argument 

through the last argument. 

 

4. swrlb:divide (from XQuery op:numeric-divide)  

Satisfied iff the first argument is equal to the arithmetic quotient of the second argument 

divided by the third argument. 

 

5. swrlb:integerDivide (from XQuery op:numeric-integer-divide)  

Satisfied if the first argument is the arithmetic quotient of the second argument idiv the third 

argument. If the numerator is not evenly divided by the divisor, then the quotient is the 

xsd:integer value obtained, ignoring any remainder that results from the division (that is, no 

rounding is performed). 

 

6. swrlb:mod (from XQuery op:numeric-mod)  

Satisfied if the first argument represents the remainder resulting from dividing the second 

argument, the dividend, by the third argument, the divisor. The operation a mod b for 

operands that are xsd:integer or xsd:decimal, or types derived from them, produces a result 

such that (a idiv b)*b+(a mod b) is equal to a and the magnitude of the result is always less 

than the magnitude of b. This identity holds even in the special case that the dividend is the 

negative integer of largest possible magnitude for its type and the divisor is -1 (the remainder 

is 0). It follows from this rule that the sign of the result is the sign of the dividend 

 

7. swrlb:pow 

Satisfied if the first argument is equal to the result of the second argument raised to the third 

argument power. 

 

8. swrlb:abs (from XQuery fn:abs)  

Satisfied if the first argument is the absolute value of the second argument. 

 

 

9. swrlb:round (from XQuery fn:round)  

Satisfied if the first argument is equal to the nearest number to the second argument with no 

fractional part. 

http://www.w3.org/TR/xpath-functions/#func-numeric-add
http://www.w3.org/TR/xpath-functions/#func-numeric-subtract
http://www.w3.org/TR/xpath-functions/#func-numeric-multiply
http://www.w3.org/TR/xpath-functions/#func-numeric-divide
http://www.w3.org/TR/xpath-functions/#func-numeric-integer-divide
http://www.w3.org/TR/xpath-functions/#func-numeric-mod
http://www.w3.org/TR/xpath-functions/#func-abs
http://www.w3.org/TR/xpath-functions/#func-round
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10. swrlb:sin 

Satisfied if the first argument is equal to the sine of the radian value the second argument. 

 

11. swrlb:cos 

Satisfied if the first argument is equal to the cosine of the radian value the second argument. 

 

iii. Strings 

1. swrlb:stringConcat (from XQuery fn:concat)  

Satisfied if the first argument is equal to the string resulting from the concatenation of the 

strings the second argument through the last argument. 

 

2. swrlb:substring (from XQuery fn:substring)  

Satisfied if the first argument is equal to the substring of optional length the fourth argument 

starting at character offset the third argument in the string the second argument. 

 

3. swrlb:contains (from XQuery fn:contains)  

Satisfied if the first argument contains the second argument (case sensitive). 

 

4. swrlb:containsIgnoreCase 

Satisfied if the first argument contains the second argument (case ignored). 

 

5. swrlb:startsWith (from XQuery fn:starts-with)  

Satisfied if the first argument starts with the second argument. 

 

6. swrlb:endsWith (from XQuery fn:ends-with)  

Satisfied if the first argument ends with the second argument. 

 

7. swrlb:matches (from XQuery fn:matches)  

Satisfied if the first argument matches the regular expression the second argument. 

 

8. swrlb:replace (from XQuery fn:replace)  

Satisfied if the first argument is equal to the value of the second argument with every 

substring matched by the regular expression the third argument replaced by the replacement 

string the fourth argument. 

 

 

  

http://www.w3.org/TR/xpath-functions/#func-concat
http://www.w3.org/TR/xpath-functions/#func-substring
http://www.w3.org/TR/xpath-functions/#func-contains
http://www.w3.org/TR/xpath-functions/#func-starts-with
http://www.w3.org/TR/xpath-functions/#func-ends-with
http://www.w3.org/TR/xpath-functions/#func-matches
http://www.w3.org/TR/xpath-functions/#regex-syntax
http://www.w3.org/TR/xpath-functions/#func-replace
http://www.w3.org/TR/xpath-functions/#regex-syntax
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Appendix 2: – Use Case 4 and 5 Axioms – Test Cases 

E. Use Case 4 

i. ParaPy Source Code – Created by Author 

As shown in experimental verification with test use cases in chapter 7 in this work, one of the 

targets for the 4th experiment as designed by the author is to compare the rule output in 

ontology model as platform independent and neutral formal representation standards to the 

specific rule outputs inside platform specific and proprietary DEA systems such as ParaPy. 

The following is the source code created by the author in ParaPy as a platform specific DEA 

system to represent some of the specific engineering rules controlling the topology and 

configuration of the block as a product.  

from __future__ import division 

from parapy.core import * 

from parapy.geom import * 

from math import pi, degrees, radians 

 

class Block(GeomBase): 

 

    #: Block Dimensions - Width, Length(Height), Height(Depth) 

    #: :type: float 

 

    block_width = Input(50)            # Block Width(W)  

    block_length = Input(60)           # Block Height(H) #User Inputs 

 

    @Attribute 

    def block_height(self):            # Block Depth(D)    #Depth Rule 

        return self.block_width*1.5 

 

    @Part 

    def block1(self): 

        return Box(self.block_width if self.block_width>=50 else "ERROR",                         

#Dimension Rule 
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                   self.block_length if self.block_length>=50 else "ERROR",  # Block Height(H)    

#Dimension Rule 

 

                   self.block_height if self.block_height>=50 else "ERROR",  # Block Depth(D)     

#Dimension Rule 

 

                   color="red") 

 

    #: Hole Dimensions - Radius(Diameter/2), Length(Depth) 

    #: :type: float 

 

    hole_diameter = Input(30)           # Hole Diameter(HD1)  #User Input 

 

    @Attribute 

    def hole_radius(self): 

        return self.hole_diameter/2     # Hole Radius = HD1/2 

 

    hole_height = Input(40)    # Hole Depth(HD2)  #User Input 

 

    @Part 

    def hole1(self): 

        return Cylinder(self.hole_radius if self.hole_radius*2.5<self.block_width 

                                            and 

                                            self.hole_radius*2.5<self.block_length else "ERROR",   

 #HoleDiameter Rule 

                        self.hole_height if self.hole_height<=self.block_height else "ERROR",      

#Hole Depth Rule 

 

                        color="blue", position=self.position.translate('x', 30, 'y', 20, 'z', 35)) 

 

    @Part 

    def blockwithhole1(self): 

        return SubtractedSolid(shape_in=self.block1, 

                               tool=self.hole1)   #Subtraction of Volume for Drilling 

 

if __name__ == '__main__': 

    from parapy.gui import display 

    obj = Block() 

    display(obj) 
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ii. Variation of SWRL Rule Outputs for Block and Hole Attributes in Ontology 

and Comparison with ParaPy 

The source code created by the author has resulted in variations in output with block and hole 

attributes in ParaPy as a platform specific DEA application in this research as shown below –  

 

Figure B 1: ParaPy Source Code – Inputs and Rules for Block and Hole Attributes 

 

The SWRL rule representation of the specified engineering rules in this research as part of 

the developed ontology model corresponding to GPM-DEA schema are explained as follows  

Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm, H>=50 mm, 

D>=50mm) 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:greaterThanOrEqual(?w, 

"50.0"^^xsd:float) ^ hasHeight(?p, ?h) ^ swrlb:greaterThanOrEqual(?h, "50.0"^^xsd:float) ^ 

hasDepth(?p, ?d) ^ swrlb:greaterThanOrEqual(?d, "50.0"^^xsd:float) -> sqwrl:select("Block 

adheres to dimensions") 
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Depth Rule - D=W*1.5 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:multiply(?x, ?w, 

"1.5"^^xsd:float) -> hasDepth(?p, ?x) 

 

Hole Depth Rule - Hole depth should be less than or equal to depth of block, HD2<=D 

 

SWRL Representation - Product(?p) ^ hasDepth(?p, ?d) ^ Hole(?h) ^ hasDepth(?h, ?d2) ^ 

swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select(("Hole adheres to dimensions") 

   Else 

Product(?p) ^ hasDepth(?p, ?y) ^ Hole(?h) ^ hasDepth(?h, ?z) ^swrlb:greaterThan(?z, ?y) -> 

sqwrl:select("Hole can't be created") 

 

Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H 

 

SWRL Representation - Product(?p) ^ hasWidth(?p, ?a) ^ hasHeight(?p, ?b) ^ Hole(?h) ^ 

hasDiameter(?h, ?c) ^swrlb:multiply(?d, ?c, "1.25"^^xsd:float) ^ swrlb:lessThan(?d, ?a) ^ 

swrlb:lessThan(?d, ?b) ->sqwrl:select("Hole adheres to dimensions") 

   Else 

Product(?p) ^ hasWidth(?p, ?e) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, ?g, 

"1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?e) -> sqwrl:select("Hole can't be 

created") 

   Else 

Product(?p) ^ hasHeight(?p, ?f) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, ?g, 

"1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't be 

created") 

 

The output in product form through the Graphical User Interface (GUI) for visual display is 

illustrated with Figure B 3 and B4.  
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Figure B 2: ParaPy Source Code – Virtual Subtraction of Hole Volume 

 

 

Figure B 3: ParaPy GUI – Output with Root View 
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Figure B 4: ParaPy GUI – Output with Subtracted Volume View 

 

The comparison of these specific values for block attributes and representation of SWRL engineering 

rules on top of OWL as platform independent and neutral representation with those against ParaPy as 

platform specific DEAS is shown below with Figure B 5 –  

 

Figure B 5: Asserted Input Values – Block and Hole in OWL/SWRL Ontology 
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The output of SQWRL query results for the dimension, hole depth ad hole diameter rule is 

shown with Figure B 6 and B7.  

 

Figure B 6: SQWRL Query Results – Hole Diameter and Hole Depth Rule 
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Figure B 7: SQWRL Query Result – Dimension Rule 

 

It can be observed that the query results are inline with the specific output attributes of block 

and hole inside ParaPy although the output is supported by visual display through an inbuilt 

GUI. However, the ontology model although doesn’t currently support and inbuilt GUI, the 

query results are accurate and provide semantic clarity. Similarly, the SWRL rule output for 

hole volume is supported with Figure B 8 and B 9.   

It can be observed that the hole volume is similar inside both ontology model and ParaPy. 

However, there is a slight difference from 44178.64 mm3 to 44156.25 mm3due to the value of 

pi as π =3.141592653589793238 inside ParaPy and 3.14 used inside SWRL rule. 
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Figure B 8: Computed Hole Volume – ParaPy 

 

 

Figure B 9: Inferred Hole Volume – Hole Volume Rule – OWL/SWRL Ontology Model 
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A violation is also introduced by increasing the hole diameter from 25 to 50 mm which 

violates the Hole Diameter Rule keeping the block attributes same as above. The output 

inside ParaPy is shown with the help of Figure B 10.   

 

 

Figure B 10: Violation of Hole Diameter Rule – ParaPy 
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The output of violation of hole diameter as per Hole Diameter Rule in ontology model is 

explained with Figure B 11 

 

Figure B 11: Violation of Hole Diameter Rule – OWL/SWRL ontology model  

 

Thus, all the results are in line with the results from the experimental verification of the 

knowledge representation system for Use Case 4 as Test Case performed in Chapter 7. 
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F. Use Case 5 

iii. AML Source Code snippets 

As illustrated in Chapter 6 and 7, Use Case 5 as Test Case is adopted from (Lützenberger et 

al., 2012) with addition of knowledge such as function, activity and object and rule 

association. The following section shows small snippets of AML source code as a platform 

specific DEA system for the engineering rules controlling the bookshelf topology and 

configuration. 

;;;Filename: kbe-bookshelf-input-mixin.aml 

(in-package :AML) 

(define-class kbe-bookshelf-input-mixin 

:inherit-from (object) 

:properties ( 

;;; parameters set in GUI 

height-input 5 

width-input 3 

max-hs-input 0.5 

vertical-spacing-shelves-input 0.5 

shelf-depth 0.7 

thickness-bottom-shelf-input 0.05 

thickness-top-shelf-input 0.05 

thickness-dividing-walls-input 0.05 

thickness-of-shelves-input 0.05 

thickness-side-walls-input 0.05  #Input Parameters 

) 

:subobjects ( 

) 

)      (Lützenberger et al., 2012, Pg 58, 59) 

 

;;;------------------------------------------------------ 

;;;Method for verification of width-input and max-hs-input 

;;;------------------------------------------------------ 

(define-method kbe-validate-bookshelf-width kbe-bookshelf-data-model-class () 

(if (< !width-input (* 0.5 (!max-hs-input))) 

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too narrow. Adjust 

bookshelf width or maximum horizontal length of one shelf. ") 

nil     #Dividing Walls Rule 
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) 

) 

;;;------------------------------------------------------ 

;;;Method for verification of height-input and vs-input 

;;;------------------------------------------------------ 

(define-method kbe-validate-bookshelf-height kbe-bookshelf-data-model-class () 

(if (> !vertical-spacing-shelves-input !height-input) 

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too low 

for even one vertical space in the bookshelf. Adjust bookshelf height or vertical 

spacing between shelves. ") 

nil     #Shelves Rule 

)  

)     (Lützenberger et al., 2012, Pg 61, 62)  

 

iv. Variation in SWRL Rule Outputs for Bookshelf Attributes in Ontology 

A few variations are produced in the bookshelf design ontology model by the author as per 

the modelled semantics of Dividing Walls Rule. These are shown with the support of Figure 

B 12, B 13 and B 14. Similarly, asserted values to bookshelf attributes as violation of Shelves 

Rule is shown with Figure B 15. The rule and their SWRL representations developed by this 

research are illustrated as follows -  

Dividing Walls Rule – NDW is based on HS and W, If (W<0.5*HS, "ERROR") elseif 

(W<=HS, NDW=0) else (NDW=Int(W/HS)-1) 

 

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, "0.5"^^xsd:float, 

?hs) ^ swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow for a bookshelf") 

 And 

Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, "0.5"^^xsd:float, 

?hs) ^ swrlb:greaterThan(?w, ?x) ^ swrlb:lessThanOrEqual(?w, ?hs) -> 

has_Object_No_dividing_walls_NDW(?p, "0.0"^^xsd:float) 

And  

Product(?p) ^ has_Object_Width_W(?p, ?w) ^ 

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:greaterThan(?w, ?hs) ^ 

swrlb:divide(?y, ?w, ?hs) ^ swrlb:subtract(?z, ?y, "1.0"^^xsd:float) -> 

has_Object_No_dividing_walls_NDW(?p, ?z) 

 

Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif (2*VS>H, NSH=0) 

else (NSH=Int((H/VS)-1)) 
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SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^ 

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:greaterThan(?vs, ?h) -> 

sqwrl:select("Error - Too low for even one space in the bookshelf") 

  And 

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ has_Object_Vertical_length_1_shelf_VS(?p, 

?vs) ^ swrlb:lessThan(?vs, ?h) ^ swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^ 

swrlb:greaterThan(?a, ?h) -> has_Object_No_shelves_NSH(?p, "0.0"^^xsd:float) 

  And 

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ has_Object_Vertical_length_1_shelf_VS(?p, 

?vs) ^ swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^ swrlb:lessThan(?a, ?h) ^ swrlb:divide(?b, 

?h, ?vs) ^ swrlb:subtract(?c, ?b, "1.0"^^xsd:float) -> has_Object_No_shelves_NSH(?p, ?c) 

 

 

 

Figure B 12: Violation of Dividing Walls Rule1: Bookshelf Design Process Ontology Model 
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Figure B 13: Dividing Walls Rule Clause 2 

 

 

Figure B 14: Dividing Walls Rule Clause 3 – Variation in asserted Values 
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Figure B 15: SQWRL Query Output - Violation of Shelves Rule 

 

Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0) 

 

SWRL Representation - Part(Dividing_Walls1) ^ Product(?p) ^ 

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ has_Object_Shelf_length_SHL(?p, ?shl) ^ 

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ swrlb:add(?i, ?ts, ?shl) -> 

has_Object_X_Coordinate(Dividing_Walls1, ?i) ^ 

has_Object_Y_Coordinate(Dividing_Walls1, ?tb) ^ 

has_Object_Z_Coordinate(Dividing_Walls1, "0.0"^^xsd:float) 
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The dividing walls position as per the semantics of Dividing Walls Position Rule is indicated 

with Figure B 16. A variation in values is illustrated with Figure B 17.  

 

Figure B 16:Inferred Dividing Walls Position Coordinates as per Asserted Values 

 

 

Figure B 17:Modifications in Dividing Walls Position – Variation in Asserted Bookshelf 

Attributes 
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Appendix 3: Experimentation of Pilot Use-Cases with Neutral Formal 

Semantics 

G. Process Specification Language 

Process Specification Language has been investigated as potential knowledge representation 

formalism for activity description with focus on manufacturing and production processes 

based on pilot use-cases. PSL is based on Common Logic Interchange Format (CLIF) and is 

regarded as ISO 18629. It is based on first order calculus or first order predicate logic 

(FOPL). The syntax for activity and object description for engineering processes is illustrated 

as follows –  

PSL activity role declaration (ARD) and object declaration syntax: 

(define-activity-role 

:id <number>*  

:name <string> 

:successors <number>*  

:preconditions <PSL sentence>*  

:postconditions <PSL sentence>*)                    

(define-object 

:name <KIF constant> 

:constraints <PSL sentence>*)                                          

(define-parameter 

:variable <KIF variable> 

:constraints <PSL sentence>*)                                          (Grüninger and Menzel, 2003) 

 

For representation of inputs and outputs axioms for pilot use-cases, the syntax has been 

adopted from (Bock and Gruninger, 2004) as explained with the help of a milling process in 

Figure B 1.   
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Figure C 1: Inputs and Outputs for a Milling Process (Bock and Gruninger, 2004, Pg 3) 

 

Inputs and Outputs in PSL syntax: 
 

Parameterised term for activities -  

 

(forall (?a ?m ?i ?o)  

(implies (= ?a milling(?m ?i ?o))  

(and (activity ?a)  

(metal ?m)  

(instructions ?i)  

(oil ?o)))) 

 

Inputs and outputs at activity occurrence –  

(forall (?x ?s)  

(implies (or (occurrence-input ?x ?s)  

  (occurrence-output ?x ?s))  

(and (object ?x)  

(not (state ?x))  

(activity_occurrence ?s))))   

(forall (?x ?s)  

(iff (participant ?x ?s)  

(exists (?t)  

(participates_in ?x ?s ?t)))) 

 

(forall (?x ?s)  

(implies (or (occurrence-input ?x ?s)  

(occurrence-output ?x ?s))  

(participant ?x ?s))) 
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(forall (?x ?s2)  

(implies (and (occurrence-input ?x ?s2)  

(legal ?s2))  

(exists (?s1)  

(and (occurrence-output ?x ?s1)  

(earlier ?s2 ?s1))))) 

(exists (?sDrill ?sMill ?m ?i ?o)  

(and (occurrence_of ?sDrill drilling(?m ?i ?o)  

(occurrence_of ?sMill milling(?m ?i ?o)  

(occurrence-input ?m? sDrill)  

(occurrence-output ?m ?sDrill)  

(occurrence-input ?m ?sMill)  

(occurrence-output ?m ?sMill)  

(earlier ?sDrill ?sMill)  

(legal ?sMill))))) 

(forall (?x ?s ?f)  

(implies (or (input-state ?x ?s ?f)  

 (output-state ?x ?s ?f))  

(and (object ?x)  

(not (state ?x))  

(activity_occurrence ?s)  

(state ?f)))) 

(forall (?x ?s ?f)  

(implies (input-state ?x ?s ?f)  

(and (occurrence-input ?x ?s)  

(prior ?f ?s)  

(exists_at ?x (begin_of ?s))))) 

(forall (?x ?s ?f)  

(implies (output-state ?x ?s ?f)  

(and (occurrence-output ?x ?s)  

(achieved ?f ?s)  

(exists_at ?x (end_of ?s))))) 

subactivity(subactivity1, activity) 

subactivity(subactivity2, activity) 

 

H. RuleML 

RuleML is a markup language for representing rules using semantic standards and based on 

horn logic. For experimentation of engineering rules of pilot use-cases with Datalog version 

of RuleML (Boley et al., 2005), based on XML, RDF, XSLT and OWL, the following syntax 

was adopted for engineering rule axioms – 
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Natural Language Sentence - "Peter Miller's spending has been min 5000 euro in the 

previous year."  

 

Datalog RuleML syntax –  

<Atom> 

<Rel>spending</Rel> 

<Ind>Peter Miller</Ind> 

<Ind>min 5000 euro</Ind> 

<Ind>previous year</Ind> 

</Atom> 

 

Natural Language Sentence -  "A customer is premium if their spending has been min 5000 

euro in the previous year." 

 

Datalog RuleML syntax –  

<Implies> 

<head> 

<Atom> 

<Rel>premium</Rel> 

<Var>customer</Var> 

</Atom> 

</head> 

<body> 

<Atom> 

<Rel>spending</Rel> 

<Var>customer</Var> 

<Ind>min 5000 euro</Ind> 

<Ind>previous year</Ind> 

</Atom> 

</body> 

</Implies> 

 

Natural Language Sentence  - The discount for a customer buying a product is 7.5 percent if 

the customer is premium and the product is luxury." 

 

Datalog RuleML syntax –  

<Implies> 

<head> 

<Atom> 

<Rel>discount</Rel> 

<Var>customer</Var> 

<Var>product</Var> 

<Ind>7.5 percent</Ind> 

</Atom> 

</head> 

<body> 
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<And> 

<Atom> 

<Rel>premium</Rel> 

<Var>customer</Var> 

</Atom> 

<Atom> 

<Rel>luxury</Rel> 

<Var>product</Var> 

</Atom> 

</And> 

</body> 

</Implies> 

 

Natural Language Sentence - "The discount for Peter Miller buying a Porsche is 7.5 percent" 

Datalog RuleML syntax –  

<Atom> 

<Rel>discount</Rel> 

<Ind>Peter Miller</Ind> 

<Ind>Porsche</Ind> 

<Ind>7.5 percent</Ind> 

</Atom> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


