

A Process Model in Platform Independent and

Neutral Formal Representation for Design

Engineering Automation

Vibhor Trehan

A thesis submitted to Birmingham City University in partial fulfilment for the

degree of

Doctor of Philosophy

September 2018

Faculty of Computing, Engineering and Built Environment (CEBE)

Birmingham City University

 I

Abstract

An engineering design process as part of product development (PD) needs to satisfy ever-

changing customer demands by striking a balance between time, cost and quality. In order to

achieve a faster lead-time, improved quality and reduced PD costs for increased profits,

automation methods have been developed with the help of virtual engineering. There are

various methods of achieving Design Engineering Automation (DEA) with Computer-Aided

(CAx) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and

Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools

enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product

knowledge throughout the PD lifecycle.

Traditional automation methods are specific to individual products and are hard-coded and

bound by the proprietary tool format. Also, existing CAx tools and PLM systems offer

bespoke islands of automation as compared to KBE. KBE as a design method incorporates

complete design intent by including re-usable geometric, non-geometric product knowledge

as well as engineering process knowledge for DEA including various processes such as

mechanical design, analysis and manufacturing.

It has been recognised, through an extensive literature review, that a research gap exists in the

form of a generic and structured method of knowledge modelling, both informal and formal

modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part

of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack

of a structured technique for knowledge modelling, which can provide a standardised method

to use platform independent and neutral formal standards for DEA with generative modelling

for mechanical product design process and DFM with preserved semantics. The neutral

formal representation through computer or machine understandable format provides open

standard usage.

 II

This thesis provides a contribution to knowledge by addressing this gap in two-steps:

• In the first step, a coherent process model, GPM-DEA is developed as part of MBSE

which can be used for modelling of mechanical design with manufacturing knowledge

utilising hybrid approach, based on strengths of existing modelling standards such as

IDEF0, UML, SysML and addition of constructs as per author’s Metamodel. The

structured process model is highly granular with complex interdependencies such as

activities, object, function, rule association and includes the effect of the process

model on the product at both component and geometric attributes.

• In the second step, a method is provided to map the schema of the process model to

equivalent platform independent and neutral formal standards using OWL/SWRL

ontology for system development using Protégé tool, enabling machine

interpretability with semantic clarity for DEA with generative modelling by building

queries and reasoning on set of generic SWRL functions developed by the author.

Model development has been performed with the aid of literature analysis and pilot use-

cases. Experimental verification with test use-cases has confirmed the reasoning and

querying capability on formal axioms in generating accurate results. Some of the other

key strengths are that knowledgebase is generic, scalable and extensible, hence provides

re-usability and wider design space exploration. The generative modelling capability

allows the model to generate activities and objects based on functional requirements of

the mechanical design process with DFM/DFA and rules based on logic. With the help of

application programming interface, a platform specific DEA system such as a KBE tool

or a CAD tool enabling GA and a web page incorporating engineering knowledge for

decision support can consume relevant part of the knowledgebase.

Keywords: Design engineering automation, process model, platform independent and neutral

formal representation, knowledge modelling, semantic clarity, generative modelling

 III

Table of Contents

Abstract .. I

Table of Contents ... III

List of Figures .. IX

List of Tables .. XIII

Publications ... XIV

Acknowledgements .. XV

List of Acronyms .. XVI

1 Introduction .. 1

1.1 Research Context ... 1

1.2 Overview of DEA with a KBE approach ... 3

1.3 Aim and Objectives.. 5

1.4 Research Method ... 6

1.4.1 Research Hypothesis .. 6

1.4.2 Research Design... 7

1.5 Research Scope .. 9

1.5.1 Design Engineering Automation (DEA) .. 10

1.5.2 Informal Process Modelling ... 10

1.5.3 Formal Representation ... 11

1.5.4 Development of Process Model ... 11

1.5.5 System Development - Neutral Formal Representation of Process Model 11

1.5.6 Experimental Verification .. 12

1.6 Thesis Structure ... 12

2 Design Engineering Automation and KBE .. 14

2.1 Introduction .. 14

2.2 Engineering Design Process for Product Development ... 14

2.2.1 Conceptual Design Stage ... 15

2.2.2 Embodiment Design Stage / Configuration Design Stage 16

2.2.3 Detailed Design Stage .. 16

2.3 Product Development: Advancement with Virtual Engineering 18

2.3.1 CAD & Geometry Automation: Parametric Modelling 18

2.3.2 CAE & Analysis .. 19

2.3.3 CAM & Manufacturing.. 20

2.3.4 Product Data Management (PDM)/Product Lifecycle Management (PLM) 21

2.4 Design Engineering Automation - CAx, PDM/PLM ... 22

2.4.1 Design Engineering Automation (DEA) .. 22

2.4.2 CAx, PDM/PLM for DEA ... 23

2.5 Knowledge Based Engineering (KBE) .. 25

2.5.1 KBE and CAx, PDM/PLM for DEA ... 26

2.5.2 Achieving DEA with KBE – Integral Features.. 28

 IV

2.5.3 KBE lifecycle and Methodologies ... 30

2.6 Engineering Design Process Decomposition: Classification of Knowledge 35

2.6.1 Engineering Design Activity.. 36

2.6.2 Engineering Rules .. 36

2.6.3 Function and Behaviour: Engineering Design Process .. 39

2.6.4 Product Knowledge for Engineering Design Process .. 40

2.7 Knowledge Modeling for Engineering Design Process ... 41

2.7.1 Systems Engineering (SE) ... 41

2.7.2 Model Based Systems Engineering (MBSE) ... 42

2.7.3 Utilisation of SE and MBSE for Engineering Design: Product Development 43

2.8 Existing Models and Frameworks for Engineering Design and Manufacturing

Processes enabling DEA – KBE perspective ... 44

2.9 Synthesis and Findings of DEA Review .. 46

2.10 Summary .. 50

3 Informal and Formal Modelling of Engineering Processes ... 52

3.1 Introduction .. 52

3.2 Process Modelling for Design Engineering Automation ... 52

3.3 Informal Modelling Techniques for Engineering Processes 54

3.4 Semi-formal Modelling Methods and Languages for Engineering Processes (Light

weight formalisms) .. 60

3.5 Comparative analysis of informal and semiformal modelling methods and

languages for knowledge modelling of an engineering process .. 63

3.6 Formal modelling and representation techniques for engineering processes and

DEA 65

3.6.1 Classification of Formal Representation Standards ... 65

3.6.2 Reasoning: DEA .. 67

3.7 Description of formal representation standards ... 68

3.7.1 Object Oriented (O-O) modelling standards – UML and SysML 68

3.7.2 Object – Process Methodology (OPM) .. 70

3.7.3 Frames and Semantic Networks... 70

3.7.4 Ontology Languages .. 71

3.7.5 Description Logic Based Languages ... 73

3.7.6 First-Order Logic Based Languages .. 75

3.7.7 Gellish .. 80

3.7.8 Rule Languages (Logic based)... 81

3.7.9 Schema based Languages – STEP and VRML .. 82

3.7.10 Schema based languages - Semantic Web Base Standards 84

3.7.11 Object-Oriented (O-O) programming languages ... 85

3.8 Analysis of Informal/Semiformal and Formal Process Modelling Standards for

DEA 88

3.9 Summary .. 91

 V

4 Key Concepts and Relationships of Engineering Processes for Formalisation with Pilot

Use Cases ... 93

4.1 Introduction .. 93

4.2 A Generic Process Model for DEA with Neutral Formal Representation 93

4.2.1 Phase 1 ... 95

4.2.2 Phase 2 ... 95

4.2.3 Phase 3 ... 96

4.3 Key concepts and relationships of the Process Model ... 97

4.4 Pilot Use Case 1 – Precision Forging of Aero Fan/Compressor Blades as Design for

Manufacturing (DFM) ... 99

4.4.1 Preliminary Knowledge Analysis .. 99

4.4.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML ... 100

4.5 Pilot Use Case 2 – Conceptual Design of Aero Fan Blades 104

4.5.1 Preliminary Knowledge Analysis .. 104

4.5.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML ... 106

4.5.3 Mapping of Informal Process Model Concepts to Formal Representation

Standards: OWL... 110

4.6 Findings and Analysis – Pilot Use Case Experimentation 114

4.7 Requirements for a process model for implementation in neutral formal

representation enabling design engineering automation (DEA) .. 114

4.7.1 Requirements for an unified / integrated process model ready for implementation

as formal representation to enable DEA in context of KBE .. 115

4.7.2 Requirements for a knowledge representation system (knowledge base) enabling

DEA 116

4.7.3 Compiled requirements for a process model for implementation in neutral formal

representation enabling DEA in context of KBE ... 119

4.8 Basic Comparison of Formal Representation Standards 120

4.8.1 STEP vs. Ontology Based Approach ... 120

4.8.2 UML/SysML vs. OPM... 121

4.8.3 Ontology vs. Systems modelling approach as UML/SysML and OPM 121

4.9 Comparative Analysis of Formal Representation Standards 123

4.9.1 Results and Discussion .. 126

4.9.2 Comparison of Neutral Formal Representation Standards for Mapping of Key

Concepts and Relationships ... 129

4.10 Analysis of Findings .. 131

4.11 Summary .. 133

5 Development and Implementation of Process Model for Design Engineering

Automation: Ontology Based Approach .. 134

5.1 Introduction .. 134

5.2 Initial Process Model for Design Engineering Automation 134

5.3 Development of final version of GPM-DEA – Relationships of MetaModel 137

 VI

5.4 Functioning of GPM-DEA – Coherent Process Knowledge Model 141

5.4.1 Workability .. 141

5.4.2 Pilot Use Cases - Function Structure Matching: Basis of Generating Activities

and Objects of GPM-DEA ... 144

5.4.3 Types of Engineering Design Process with Variable Concepts: Function and

Objects ... 147

5.5 Synthesis of GPM-DEA ... 148

5.5.1 GPM-DEA – Hybrid Representation of Existing Modelling Standards 149

5.5.2 GPM-DEA - Generative Modelling Aspects ... 150

5.6 Implementation of GPM-DEA in OWL/SWRL Ontology and Rule Representation:

Neutral Formal Representation .. 151

5.6.1 Ontology Development in OWL: Classes, Properties and Restrictions 152

5.6.2 Function Structures, Design Process and Objects: Class Specification 157

5.6.3 Generative Modelling: Function Structure Matching using SWRL – Based on

Function Structures, Design Process and Objects .. 161

5.7 Summary .. 164

6 Development of Knowledge Representation System with Test UseCases 165

6.1 Introduction .. 165

6.2 Overview of Use Case 3 & 4 ... 165

6.3 Test Use Case 3: Creating a Hole in a Block with Drilling Process 167

6.3.1 Function Structure Matching ... 168

6.3.2 Informal / Semiformal Representation: GPM-DEA .. 170

6.3.3 Formal Representation: OWL/SWRL.. 174

6.4 Test Use Case 4: Designing a bookshelf (KBE and Neutral Formal Representation

with MOKA methodology): Adapted from LinkedDesign .. 184

6.4.1 Function Structure Matching ... 185

6.4.2 Informal / Semiformal Representation: GPM-DEA .. 187

6.4.3 Formal Representation: OWL/SWRL.. 191

6.5 Summary .. 200

7 Experimental Verification of Knowledge Representation System 201

7.1 Introduction .. 201

7.2 Overview of the process model.. 201

7.3 Design of the Experimental System ... 203

7.4 Illustration of Experiments .. 205

7.5 Use Case 3: Experimentation ... 206

7.5.1 Experiment 1 – Generative Modelling Capability ... 207

7.5.2 Experiment 2 – SWRL Rules with Variation in Values 210

7.5.3 Experiment 3 – SQWRL Query with Violation in Asserted Values 213

7.5.4 Experiment 4 – Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems ... 216

7.6 Use Case 4: Experimentation ... 221

7.6.1 Experiment 1 – Generative Modelling Capability ... 222

 VII

7.6.2 Experiment 2 - SWRL Rules with Variation in Values 224

7.6.3 Experiment 3 – SQWRL Query with Violation in Asserted Values 228

7.6.4 Experiment 4 - Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems ... 230

7.7 Discussion of the experimentation results ... 234

7.8 Summary .. 235

8 Conclusion ... 236

8.1 Introduction .. 236

8.2 Summary of Thesis and Discussion ... 236

8.2.1 Development and Formulation of GPM-DEA model .. 239

8.2.2 Neutral formal representation of GPM-DEA in OWL/SWRL ontology and rule

representation ... 241

8.2.3 Functioning of OWL/SWRL system ... 243

8.2.4 Reasoning and querying on OWL/SWRL model .. 245

8.3 Applicability and Effectiveness of the Research Outputs...................................... 246

8.3.1 Positioning of the Model in Comparison to Related Work................................ 247

8.3.2 Integration and Extension of the Model to other Engineering Applications 250

8.4 Contributions to Knowledge .. 253

8.4.1 Model Driven Approach for Knowledge Modelling and Automation for

Mechanical Design Process with DFM.. 254

8.4.2 Utilisation of Formal Logic for Implementation of a Process Model for DEA . 254

8.4.3 Neutral (Open Standard) Usage of the Ontology Knowledge Model across

Platform Specific DEA Systems with Semantic Clarity .. 255

8.4.4 Extensibility and Scalability of the Knowledge Base .. 255

8.4.5 Web Based Decision Support for Engineering Applications 255

8.4.6 Integration of Generative Modelling Capability within Process Model 256

8.4.7 Ontology Representation of Design and Manufacturing Knowledge within a

Unified Process Model ... 256

8.5 Limitations ... 257

8.6 Recommendations for Future Work... 258

8.7 Closing Summary... 259

References .. 260

Appendix 1: Ontology Development Methodology .. 286

A. Introduction .. 286

B. Steps adopted to create an Ontology for Design Engineering Automation 286

C. OWL Ontology Model – Platform Independent and Neutral Formal Representation

System .. 288

i. Class Hierarchy .. 288

ii. Properties ... 295

D. SWRL in built operators for utilisation and representation of Generative Modelling

Functions and Engineering Rules .. 300

i. Comparison Operators ... 300

 VIII

ii. Math Operators .. 301

iii. Strings .. 302

Appendix 2: – Use Case 4 and 5 Axioms – Test Cases ... 303

E. Use Case 4.. 303

i. ParaPy Source Code – Created by Author ... 303

ii. Variation of SWRL Rule Outputs for Block and Hole Attributes in Ontology and

Comparison with ParaPy.. 305

F. Use Case 5.. 314

iii. AML Source Code snippets ... 314

iv. Variation in SWRL Rule Outputs for Bookshelf Attributes in Ontology 315

Appendix 3: Experimentation of Pilot Use-Cases with Neutral Formal Semantics 320

G. Process Specification Language .. 320

H. RuleML .. 322

 IX

List of Figures

Figure 1-1: KBE vs. Traditional CAD (Skarka, 2007, Pg 678) ... 3

Figure 1-2: Research Design .. 7

Figure 1-3: Thesis Structure... 13

Figure 2-1: Stages of Engineering Design with Knowledge Representation Methods

(Chandrasegaran et al., 2013, Pg 208) ... 18

Figure 2-2: KBE with respect to CAx, PDM/PLM (Ćatić and Malmqvist, 2007, Pg 1) 25

Figure 2-3: MOKA methodology in KBE lifecycle (Lohith et al., 2013) 34

Figure 2-4: Vee Development for Engineering Design Process (Woestenenk et al., 2011) 43

Figure 3-1: IDEF0 higher fidelity activity box with an example (PUBs, F.I.P.S, 1993) 57

Figure 3-2:Using Signposting to derive task status from confidence mapping of parameters

(Clarkson and Hamilton, 2000).. 60

Figure 4-1: Model Driven Approach for Knowledge Capture and its Equivalent Interoperable

Formal Representation for DEA .. 94

Figure 4-2: Working of the process model for DEA ... 95

Figure 4-3: Concepts for the required Process Model for DEA – Meta Model 98

Figure 4-4: Use Case 1 - Example of a precision forging process of a compressor blade 100

Figure 4-5: Use Case 1 - SysML Requirement Diagram for capturing functional and

performance based requirements of the precision forging manufacturing method 104

Figure 4-6: Use Case 2 - An informal process capturing design aspects of a fan blade 105

Figure 4-7: Use Case 2 - The object box as per IDEF4 methodology 105

Figure 4-8: Use Case 3 - SysML requirement diagram for representing functional

requirements of the design aspects of the fan blades process .. 110

Figure 4-9: SPARQL Query Illustration: Activity and Functional Requirement 113

Figure 4-10: Formal Logic for Knowledge Representation (Grosof et al., 2010) 123

Figure 5-1: Initial Process Model for DEA as Informal / Semiformal Representation 135

Figure 5-2: Revised Process Model for DEA as Informal / Semiformal Representation 136

Figure 5-3: Instance of Generative Process Model for Design Engineering Automation

(GPM-DEA) as Informal / Semiformal Representation – Developed by Author 140

Figure 5-4: Working of Generative Process Model for Design Engineering Automation

(GPM-DEA) – Developed by Author .. 142

Figure 5-6: Example of Engineering Design Process Activities with corresponding Functional

Requirement as Sub-Functions: Knowledgebase ... 145

Figure 5-7: Example of Engineering Design Process Activities with Inputs, Outputs, Rules

and Resources with Objects: Knowledgebase ... 146

Figure 5-8: Example of Engineering Rules controlling the Design Process Activities:

Knowledgebase .. 146

Figure 5-9: OWL implementation of GPM-DEA developed by this research: Classes and

Properties ... 153

Figure 5-10: Axioms for Restrictions on Activity Class ... 157

Figure 5-11: Types of Design Processes: Class Hierarchy .. 158

Figure 5-12: Function Structure Classification: Class Hierarchy .. 159

 X

Figure 5-13: Function Structure Classification: Class Hierarchy Continued 159

Figure 5-14: Object Model Classification: Class Hierarchy .. 160

Figure 5-15: Object Model Classification: Class Hierarchy Continued 160

Figure 6-1: Use Case Allocation – Created by Author .. 166

Figure 6-2: Drilling Process Functional Requirements & Sub Functions: Knowledgebase .. 168

Figure 6-3: Activities with Functions & Sub Functions: Knowledgebase 169

Figure 6-4: Activities with Inputs, Outputs, Rules and Resources with Objects for Drilling

Process: Knowledgebase .. 169

Figure 6-5: Engineering Rules controlling the Design Process Activities for Drilling Process:

Knowledgebase .. 170

Figure 6-6: An Instance of Drilling Process in GPM-DEA: Informal / Semiformal

Representation.. 172

Figure 6-7: Function Structure Matching – Drilling Process Activities with Links to Rules 173

Figure 6-8: Product in Initial and Final State and Function Matching - Drilling Process

Objects with Description of Rules ... 173

Figure 6-9: Drilling Process in OWL: TopBraid Composer FE .. 174

Figure 6-10: Instances of Functions – Drilling: Topbraid ... 177

Figure 6-11: SWRL Functions - Generative Modelling in Drilling: Protégé 178

Figure 6-12: SPARQL Query Result: Activity to Function Mapping – Drill hole 179

Figure 6-13: SPARQL Query result: Activity to Function Mapping – Ream hole 179

Figure 6-14: SPARQL Query Result – Object to Function Mapping – Drill bit and Reamer

.. 180

Figure 6-15: SPARQL Query Result – Rule to Logic Mapping – Drilling Process 180

Figure 6-16: Engineering Rules – Drilling Process: Protégé ... 183

Figure 6-17: Engineering Rules 2 – Drilling Process: Protégé .. 183

Figure 6-18: Engineering Rules 3 – Drilling Process: Protégé .. 184

Figure 6-19: Bookshelf Design Process Functional Requirements & Sub Functions:

Knowledgebase .. 185

Figure 6-20: Activities with Functions & Sub Functions: Knowledgebase 186

Figure 6-21: Activities with Inputs, Outputs, Rules and Resources with Objects for Bookshelf

Design Process: Knowledgebase ... 186

Figure 6-22: Engineering Rules controlling the Design Process Activities for Bookshelf

Design Process: Knowledgebase ... 187

Figure 6-23: An Instance of Bookshelf Design Process in GPM-DEA: Informal / Semiformal

Representation.. 189

Figure 6-24: Function Structure Matching – Bookshelf Design Process Activities with Links

to Rules .. 190

Figure 6-25: Product in Initial and Final State and Function Matching – Bookshelf Design

Process Objects with Description of Rules .. 190

Figure 6-26: Bookshelf Design Process in OWL: TopBraid Composer FE 191

Figure 6-27: Instances of Functions – Bookshelf Design Process: Topbraid 194

Figure 6-28: SWRL Functions - Generative Modelling in Bookshelf Design: Protégé 194

Figure 6-29: Fit: Assembly and Part Relations for Bookshelf: Topbraid Composer FE 195

 XI

Figure 6-30: SPARQL Query Result: Bookshelf Part and Assembly Relations 196

Figure 6-31: SPARQL Query Result – Activity Function Mapping – Bookshelf Design 196

Figure 6-32: SPARQL Query Result: Rule to Logic Mapping – Bookshelf Design Process 197

Figure 6-33: Engineering Rules – Bookshelf Design Process: Protégé 200

Figure 7-1: Overview of Formalisation of GPM-DEA & Experimental System Investigation

.. 204

Figure 7-2: Drilling Process Ontology: Protégé .. 206

Figure 7-3: Axioms assertion for Drill Hole and Assess Block Activity with Sub-functions

.. 207

Figure 7-4: Activating the Pellet and Drools Reasoner ... 208

Figure 7-5: Generative Modelling Capability - SWRL functions activated for drilling process

ontology for Block ... 209

Figure 7-6: Inferred knowledge – Drilling Process Activities ... 210

Figure 7-7: Asserted and Inferred values to Block and Hole attributes - Drilling Process

Ontology / SWRL Rules for Block .. 211

Figure 7-8: Modification in Asserted Values with Variation in Output Values - Drilling

Process Ontology / SWRL Rules for Block ... 212

Figure 7-9: Process Rule1: Drilling Process SWRL .. 213

Figure 7-10: Query Results: SQWRL Rules .. 214

Figure 7-11: Violation of Asserted Axioms against Dimension Rule, Hole Depth Rule and

Hole Diameter Rule – OWL/SWRL .. 215

Figure 7-12: Inputs and Evaluated values inside ParaPy: Drilling Process – Block 217

Figure 7-13: Inputs and Evaluated values with modifications to asserted values inside ParaPy:

Drilling Process – Block .. 218

Figure 7-14: Violation of Asserted Axioms against Dimension Rule - ParaPy 219

Figure 7-15: Violation of Asserted Axioms against Hole Depth and Hole Diameter Rule –

ParaPy .. 220

Figure 7-16: Bookshelf Design Process: Ontology ... 222

Figure 7-17: Axiom Assertions for Activities: Object and Datatype properties 223

Figure 7-18: Generative Modelling and Inferred Knowledge – Bookshelf design process –

SWRL functions... 224

Figure 7-19: Asserted and Inferred values to Bookshelf Attributes: SWRL Rules 225

Figure 7-20: Asserted and Inferred value to Bookshelf Sub-assembly: SWRL Rules 226

Figure 7-21: Modifications in asserted values – Bookshelf and subassembly attributes 226

Figure 7-22: Changes in Inferred Values: Bookshelf and Subassembly attributes 227

Figure 7-23: Violations of assertions and SQWRL Query Results – Dividing walls and

Shelves Rule... 228

Figure 7-24: Modifications to Asserted Values and Change in SQWRL Query Results –

Dividing walls and Shelves Rule ... 229

Figure 7-25: Input values to bookshelf attributes – Siemens NX Expression Window

(Lützenberger et al., 2012, Pg 39).. 231

Figure 7-26: Output values to bookshelf attributes – Siemens NX Expression Window

(Lützenberger et al., 2012, Pg 40, 41, 43).. 232

 XII

Figure 7-27: Incorrect value to H and VS parameters inside AML – Bookshelf Design

Process (Lützenberger et al., 2012, Pg 73) .. 233

Figure 7-28: Incorrect value to H and VS parameters in OWL/SWRL – Bookshelf Design

Process ... 234

 XIII

List of Tables

Table2-1: Existing KBE methodologies and area of focus .. 33

Table 2-2: Existing Models and Frameworks for Design Engineering Automation (DEA) ... 44

Table3-1: Analysis of informal and semiformal modelling methods and languages for

capturing engineering process knowledge to enable design process automation 64

Table 3-2: Formal representation methods & techniques available for representing design

decomposition features to enable design process automation ... 88

Table4-1: Comparative Analysis of Formal Representation Standards 124

Table4-2: Mapping of Identified Concepts and Relationships to Neutral Formal

Representation Standards ... 130

 XIV

Publications

Journal Paper Published [Presented in 5th Advanced Design Concepts and

Practice Workshop (ADCP), Hangzhou, China, 2015]

• Trehan, V., Chapman, C., Raju, P., 2015. Informal and formal modelling of

engineering processes for design automation using knowledge based engineering. J.

Zhejiang Univ. Sci. A 16, 706–723. doi:10.1631/jzus.A1500140

Journal Paper Planned for Submission [Journal of Computing and

Information Science in Engineering] -

• Trehan, V., Chapman, C., Raju, P., Farazi, F., Oraifige, I., 2018. A Generative

Process Model for Design Engineering Automation (GPM-DEA): Represented in

OWL/SWRL

 XV

Acknowledgements

The course of my research journey through this PhD has been arduous and full of ups and

downs. I have learnt a lot from my mentors and my personal experiences during my research.

I would like to say thank you to Prof Craig Chapman and Dr. Pathmeswaran Raju for giving

me this opportunity. They provided me with a lot of academic and training support in my

initial stages and laying the foundation. During the later duration, Prof Ilias Oraifige provided

a lot of support in completion of my PhD. I would also like to thank my colleague Dr. Feroz

Farazi who helped a lot in my implementation. I would also like to thank Ralph Boyce, Colin

Cadas and Jonathan Butters from Rolls Royce as my industrial mentors who helped provide

my pilot use-cases and provided support and guidance when needed. I am especially thankful

to Prof Craig and Dr. Raju for providing me with an opportunity to travel to China to present

my research findings in a conference. It really gave me good exposure and interaction with

experts from all over the world and specialising in my field. The training courses helped

expand my viewpoint. I am thankful to Prof Peter Larkham for providing assistance with my

writing skills in orientation to academic reading. I am also thankful to Prof Hanifa Shah for

supporting me towards the completion stages of my research. I enjoyed working with a few

colleagues in my lab; Mani, Shiva, Vijay, Gerald, Maxim and Guolong who were

encouraging and our discussions helped a lot towards my personal growth. Our administrator

Sue Witton was of tremendous help in solving administrative issue and policies.

On my personal front, I would like to thank my parents, sister and my wife who have always

supported me in my difficult times. The love and support of my wife has meant a lot to me

during my research. She gave birth to my son, Vihaan during my PhD, which was the best

gift, anyone has ever given to me. Last, I would like to thank god in charting out a suitable

journey for me to undergo this PhD experience which brought clarity and direction towards

my future career.

 XVI

List of Acronyms

AI = Artificial Intelligence

AML = Advanced Modelling Language

API = Application Programming Interface

BPMN = Business Process Modelling Notation

CAD = Computer Aided Design

CAE = Computer Aided Engineering

CAM = Computer Aided Manufacturing

CCM = Common Computational Model

CFD = Computational Fluid Dynamics

CG = Conceptual Graphs

CGIF = Common Graph Interchange Format

CL = Common Logic

CLIF = Common Logic Interchange Format

CLOS = Common Lisp Object System

CPR = Core Plan Representation

CWA = Closed World Assumption

DARPA = Defense Advanced Research Projects Agency

DEA = Design Engineering Automation

DFA = Design for Assembly

DFD = Data Flow Diagram

DFM = Design for Manufacturing

DL = Description Logic

 XVII

DSM = Design Structure Matrix

EPC = Event Process Chain

FBS = Function-Behaviour-Structure

FEA = Finite Element Analysis

FOPL = First Order Predicate Logic

FOL = First Order Logic

GDL = General-purpose Declarative Language

GA = Geometry Automation

GPM-DEA = Generative Process Model for Design Engineering Automation

GUI = Graphical User Interface

IBIS = Issue Based Information System

IDEF = Integrated Definition for Functional Modelling

IDL = ICAD Design Language

IGES = Initial Graphics Exchange Specification

ISO = International Standards Organization

KBE = Knowledge Based Engineering

KBES = Knowledge Based Engineering System

KBS = Knowledge Based Systems

KIC = Knowledge Intensive CAD

KIF = Knowledge Interchange Format

KR = Knowledge Representation

LISP = LISt processing

MathML = Mathematical Markup Language

 XVIII

MBSE = Model Based Systems Engineering

MDO = Multidisciplinary Design Optimisation

MDA = Model Drive Architecture

MPN = Modified Petrinet

NIST = National Institute of Standards and Technology

OKBC = Open Knowledge Base Connectivity

OO = Object Oriented

OOP = Object Oriented Programming

OPM = Object Process Methodology

OSTN = Object State Transition Network

OWL = Web Ontology Language

OWA = Open World Assumption

PD = Product Development

PDDL = Planning Domain Definition Language

PDM = Product Data Management

PFN = Process Flow Network

PLM = Product Lifecycle Management

PSL = Process Specification Language

RAD = Role Activity Diagram

RDF = Resource Description Framework

RDFS = Resource Description Framework Schema

RIF = Rule Interchange Format

RuleML = Rule Markup Language

 XIX

SADT = Structured Analysis and Design Technique

SE = Systems Engineering

SPARQL = SPARQL Protocol and RDF Query Language

STEP = STandard for the Exchange of Product data

SWRL = Semantic Web Rule Language

SWSL = Semantic Web Services Language

SysML = Systems Modelling Language

SQWRL = Semantic Query Web Rule Language

UML = Unified Modelling Language

VRML = Virtual Reality Modeling Language

WPDL = Workflow Process Definition Language

WTM = Work Transformation Matrix

XML = eXtensible Markup Language

 1

1 Introduction

1.1 Research Context

The commercial success of a manufacturing enterprise substantially depends upon the

efficiency of product development (PD) (Ulrich and Eppinger, 2012). In order to maximise

profits, the PD process should have an optimum balance between achieving product quality,

cost and development time (Ulrich and Eppinger, 2012). The main task of engineers in the

PD stage is to apply their scientific knowledge to generate solutions for technical problems

and optimise them based on requirements and constraints such as material, functional,

economic, legal and environmental considerations (Pahl et al., 2007).There are complex

interdependencies between the design process and the product involved in engineering design

(Chalupnik et al., 2006). Engineering knowledge should be efficiently captured, modelled

and retrieved for re-use and enhancing the efficiency of the PD process.

One of the methods to improve the efficiency of the PD process is Design Engineering

Automation (DEA). DEA is performed in a virtual engineering environment at various stages

of the PD lifecycle (Ovtcharova, 2010). Many tools and methods have been utilised by

industries to address various aspects of DEA. Different Computer-Aided (CAx) tools such as

Computer-Aided Design (CAD), Computer-Aided Engineering (CAE) and Computer-Aided

Manufacturing (CAM) tools assist the PD process at the design and manufacturing stages of a

PD process (Shintre and Shakir, 2011). CAD tools allow visualisation and representation of

product’s shape and form with 2D and 3D models (Bernard, 2005). Advancements in CAD

tools have led to DEA with parametric modelling facilities to modify the product’s shape

with variation in dimensional parameters (Bodein et al., 2009). Knowledge intensive CAD

(KIC) allowed representation of additional product and engineering design process

knowledge buy restricted within a CAD architecture (Tomiyama and Hew, 2000). These can

 2

be referred as Geometry Automation (GA) (Amadori, 2012). CAE tools assist in analysis of a

product’s performance such as such as finite element analysis (FEA) and computational fluid

dynamics (CFD) (Tyapin et al., 2012). CAM tools allow simulation of the manufacturing and

production processes for physical realisation of the designed and analysed product (Corallo et

al., 2009). Thus, all CAx tools address some aspects of DEA varying from parametric

modelling to knowledge sharing with inclusion of manufacturing knowledge for product

design. However, due to different file formats of CAx tools there is loss of knowledge while

utilising the combined benefits of these DEA methods (Zhang et al., 2009).

As part of virtual engineering, Product Data Management (PDM)/Product Lifecycle

Management (PLM) systems allow storage and representation of product and design process

knowledge and provide integration of knowledge between CAD/CAE and CAM tools

depending upon their configuration and application. However, a major limitation of PLM

systems is lack of representation of product’s geometric attributes within a unified knowledge

model as they mostly link different knowledge sources from CAx tools through a common

platform (Burkett et al., 2003).

In order to address the limitations of these existing virtual engineering applications to address

the needs of DEA, KBE as a design method was adopted to provide an integrated approach to

DEA. CAx and PDM/PLM systems provide islands of automation in context to a more

holistic approach for DEA with KBE. KBE is generally regarded as an umbrella term

describing the application of knowledge to automate or assist in the engineering task. It can

be applied to a wide variety of design processes (Hew et al., 2001). According to Stokes,

Knowledge Based Engineering (KBE) can also be defined as ‘The use of advanced software

techniques to capture and re-use product and process knowledge in an integrated way’

(Stokes, 2001).

 3

1.2 Overview of DEA with a KBE approach

‘KBE systems aim to capture product and process information in such a way so as to allow

businesses to model engineering design processes, and then use the model to automate all or

part of the process’ (Chapman and Pinfold, 1999, Pg 259). Alternatively, KBE systems can

also be defined as ‘an evolution of knowledge based systems pertaining to the engineering

domain’ (La Rocca, 2011; Rocca, 2012).Figure 1-1 demonstrates a reduction in the product

design lifecycle time using KBE vs. Traditional CAD based design methodology.

Figure 1-1: KBE vs. Traditional CAD (Skarka, 2007, Pg 678)

The creation of an informal model is the first step in knowledge modelling of an engineering

design process and is considered to be one of the most critical step in developing a KBE

system (KBES) (Pinfold et al., 2008). The most integral purpose of creating the informal

model is to formulate neutral formal representation of the knowledge model for machine

interpretation, which can assist the designer for achieving DEA as well as the knowledge

engineer for developing automation application using a KBES. The abstraction of

engineering knowledge in context of KBE environment can be stated as ‘the process in which

the engineering and design knowledge is structured and analysed for being represented in

terms of objects and engineering rules in a computer understandable language or code’

 4

(Bermell-Garcìa et al., 2001). As KBE as a design method allows inclusion of both product’s

geometric and non-geometric knowledge for design, analysis, manufacturing and design

process decision making, knowledge modelling through knowledge management techniques

constitutes a major bottleneck. The challenge is to perform the abstraction in a neutral (open

standards) format with semantic clarity to ensure re-usability of the domain knowledge of

engineering design process for DEA (Jubierre and Borrmann, 2015). Open standard usage

becomes a key issue when the engineering design knowledge has to be transferred between

different KBE applications (Bermell-garcia et al., 2007). Thus engineering design knowledge

should be represented in open architecture as neutral representation for DEA in context to

KBE approach (Penoyer et al., 2000; Zhang et al., 2009).

Various methods and techniques have been used for knowledge acquisition and

representation in context to DEA with KBE approach. Some of them are used as informal

representation for human interpretation and exchange of design process knowledge such as

IDEFx (Integrated Definition for Functional Modelling), Model Based Systems Engineering

(MBSE) methods such as Unified Modelling Language (UML) and Systems Modelling

Language (SysML) for DEA. Other techniques such as W3C standards in the form of Web

Ontology Language (OWL), RuleML and International Standards Organization (ISO)

standards such as Process Specification Language (PSL) have also been investigated for

machine interpretation of design process knowledge with axioms as formal representation for

DEA. Investigation of existing KBE methodologies such as Methodology and tools oriented

to knowledge-based engineering applications (MOKA), Knowledge Nurture for Optimal

Multidisciplinary Analysis and Design (KNOMAD), Knowledge Capture Methodology

(KCM), and Knowledge Oriented Methodology for the Planning and Rapid Engineering of

Small-Scale Applications (KOMPRESSA) has revealed a few shortcomings to address DEA.

Some of the identified shortcomings to enable DEA with KBE as a holistic approach are

 5

neutral representation techniques of an engineering design process model with uniform

axioms and preserved semantics that will allow usage across multiple platforms with open

standards. The next sections will discuss the aims and objectives in order to address the

existing challenges.

1.3 Aim and Objectives

This aim of this research is to provide a coherent method to develop platform independent

and neutral formal representation of an engineering process model, with focus on mechanical

product design process with manufacturing knowledge, and semantic clarity for DEA. This

coherent method will capture various knowledge entities and relationships such as activity,

product attributes, rule, function and behaviour as Meta Model, identified with literature

analysis in an informal process model (for human aid and interpretation). The 2nd step will

provide a method to represent the schema of the structured process model in neutral formal

representation (for machine/system interpretation) with open standards for DEA with KBE as

a holistic approach. This will include generative modelling capability by building queries as

per a set of generic predefined functions. It will perform DEA with effect of the process

model on product attributes with the help of inference (automated reasoning) and querying.

In order to achieve the aim, the following objectives have been developed–

1. To investigate different approaches for Design Engineering Automation (DEA)

including CAx, PLM and KBE for product and process based automation.

2. To analyse and compare various informal and semiformal process modelling methods

to capture various aspects of an engineering design process with focus on mechanical

product design with design for manufacturing knowledge for automation.

3. To analyse and compare state of the art in existing formal representation (machine

readable) techniques and standards.

 6

4. To develop and build a detailed informal/semiformal process model with explicit

relationships between identified knowledge entities of a mechanical product design

process with design for manufacturing knowledge.

5. To formalise the process model in platform independent and neutral formal

representation standards for DEA with semantic clarity. This will incorporate

generative modelling capability by generating the activities, objects of the process and

rules based on logic as per set of developed generic functions.

6. To perform experiments in order to validate and verify the process based knowledge

model with its platform independent and neutral formal representation for re-usability,

transparency and accuracy.

1.4 Research Method

The research method in order to meet the aim and objectives of this research is to hypothesise

and test. The research hypothesis is described below.

1.4.1 Research Hypothesis

The hypothesis of this research work is -

“Platform independent and neutral formal representation of an engineering design

process model with focus on mechanical product design and manufacturing knowledge

built on standardised concepts and relationships, structured and well defined axioms

along with semantic clarity can achieve the requirements of design engineering

automation (DEA) enabling generative modelling and re-usability of knowledge”

In order to test the research hypothesis a two-step strategy has been developed. The first step

involves careful analysis of informal and semiformal modelling standards, which provide a

coherent method of knowledge modelling of an engineering design process with focus on

mechanical product design and manufacturing knowledge for automation. The second step

 7

covers the schema mapping of the developed structured process based knowledge model, as a

method in neutral formal representation with machine interpretable semantics enabling DEA

with generative modelling.

1.4.2 Research Design

The research design consists of the following four building blocks – (1) Literature Review,

(2) Use Case Collection and Analysis, (3) Development of process model as GPM-DEA and

its implementation in Neutral Formal Representation Standards along with (4) Test for

Transparency, Accuracy and Reusability of Knowledgebase. It is illustrated in Figure 1-2.

Figure 1-2: Research Design

In order to address the research gap, literature review and analysis, use case collection and

analysis along with comparative analyses has been the main cornerstone for the development

work with experimental verification of the developed process model. The literature review

consists of broadly three topics – DEA and KBE in context to DEA with knowledge entities

 8

for engineering design, informal process modelling for knowledge capture of an engineering

design process and formal representation standards for representing an engineering process

model at a system level for machine interpretation instead of natural text for human

interpretation.

Use cases 1 and 2 have been used as pilot case studies. Use cases 1 has been collected from

the industrial partner from SILOET2 grant such that knowledge can be accessed in the form

of engineering design intent for mechanical design and design for manufacturing (DFM)

aspects with manufacturing guidelines of jet engine fan / compressor blades spanning

conceptual and embodiment design stages. Due to commercial sensitivity, the analysed

knowledge in Use-case 1 won’t be shared in detail. Use case 2 has been compiled from the

literature review and includes jet engine fan blades conceptual design stage. All the Use cases

have helped in the initial development of process model as GPM-DEA. Test use cases 3 and

4 have been compiled with the help of literature review and analysis. Use case 3 has been

devised in terms of creating a hole in a block to test the effect of GPM-DEA at product’s

geometric attributes for virtual representation in detailed design stage. Similarly, Use case 4

has been devised and analysed from literature review with added knowledge in terms of

bookshelf design process as a KBE method from LinkedDesign project. Both Use case 3 and

4 have been validated with the help of reasoner/inference and query as execution results,

which are also compared with specific rule implementation in KBES. Targeting DEA for

mechanical product design process with Design for Manufacturing (DFM) knowledge, GPM-

DEA through its neutral representation format will also enable generative modelling with the

aid of developed generic functions for query and reasoning and allow for ease of exchange

and re-usability of knowledge.

Qualitative methods is adopted for data collection and analysis from use-cases based on

document data in order to fully comprehend the research problem and develop an initial

 9

prototype of the process model (Creswell, 2003). Comparative analysis has been performed

for both informal (natural language) and formal (machine interpretable) standards for

developing the process model and its implementation in neutral formal standards along with

results from pilot use-cases (Rihoux and Ragin, 2009). The method of schema mapping of

engineering knowledge from informal/semiformal process model to formal representation

with preserved semantics and experimental verification to test the research hypothesis

follows an ontology development approach by (Noy and McGuinness, 2001). The method of

system development and experimental verification with test use cases using ontology

development also aligns with engineering design optimisation and DEA with DFM aspects

(Ahmed et al., 2007; Witherell et al., 2007). The proposed ontology development method

aligns its principles with the research aims and objectives and aids in the verification by

testing DEA capabilities with the help of supporting tools such as Protégé and Topbraid with

assertion of axioms and reasoning / inference and query capability.

1.5 Research Scope

This research thesis is part of a larger research project, Platform Independent Knowledge

Model (PIKM), where the initial case selection is based around the SILOET 2 grant as access

to materials and experts can be built into the project. Two steps are critical in development of

the process model in context to this research –

1. The first step is the structured knowledge modelling of domain knowledge as informal

process model. The scope of the knowledge modelling as part of pilot use-cases is

mechanical design along with DFM process of the compressor blades. The knowledge

modelling is initially performed from the existing technical documentation of the

design intent or specification of the industrial partner such as design rules and aids

along with materials and mechanical methods as the collated knowledge. The collated

knowledge is the raw and unstructured informal knowledge. This is followed by the

 10

breakdown of the collated knowledge as per the engineering design process knowledge

entities comprising of activities, input and output relationships, functional requirements

and behaviour, constraints/rules, logic and product knowledge for efficient product

realisation in the form of topological and geometric configuration along with

manufacturing processes and rules. This is an integral step of knowledge analysis for

developing a generic process model.

2. The second step is the structured method of schema mapping of the developed process

model to platform independent and neutral formal representation. The platform

independent and neutral representation with preserved semantics outside of a CAx

system should enable DEA with KBE aspects such as generative modelling with the aid

of suitable reasoning and query method.

Thus, this constrains the focus of this research. In order to meet the aims and objectives, the

research scope includes the following aspects –

1.5.1 Design Engineering Automation (DEA)

All virtual engineering approaches for DEA such as CAx tools; PDM/PLM systems,

workflow automation and KBE have been discussed. Various knowledge entities of an

engineering design process with focus on mechanical product design and DFM knowledge in

context to automation have been elaborated along with knowledge modelling methods.

1.5.2 Informal Process Modelling

Discussion and analysis of various informal (natural language) modelling methods has been

performed in context to knowledge modelling of engineering processes. This includes

methods such as IDEFx series, Design Structure Matrix (DSM), Business Process Modelling

Notation (BPMN), Signposting, Role Activity Diagram (RAD) along with semiformal

modelling languages in the form of Model Based Systems Engineering (MBSE) standards

 11

such as UML, SysML to represent complete domain knowledge of a mechanical design

process with manufacturing knowledge for automation with KBE as a holistic approach.

1.5.3 Formal Representation

This includes detailed analysis of formal (machine interpretable) representation in the form of

Frames and Frame based languages, Description Logic (DL) and First Order Logic (FOL),

Schema based representations and Object Oriented (O-O) languages. It also include

discussion and analysis of ontology languages such as PSL, OWL, IDEF5 and rule languages

such as RuleML, Rule Interchange Format (RIF) and Semantic Web Rule Language (SWRL).

The informal or semiformal process model aspects for DEA should map onto suitable formal

standards. The formal representation framework will have well-defined syntax, axioms and

semantics and will be compliant with International Standards for process exchange and

product model definition (Grüninger and Menzel, 2003; Pouchard et al., 2005). The execution

of neutral formal representation layer will be similar to the functioning of a KBES.

1.5.4 Development of Process Model

After careful analysis of existing knowledge modelling standards based on standardised

engineering concepts and relationships, along with review of an integrated approach of

existing methods with modifications, a Generative Process Model (GPM-DEA) has been

developed. This has been developed with the aid of literature analysis, industrial and

literature based pilot use cases and comparative analysis of informal/semiformal standards as

per the requirements of DEA for mechanical product design process with DFM knowledge.

This is performed using DrawIo tool, which supports UML/SysML, and IDEF0 constructs

along with additional concepts and relationships.

1.5.5 System Development - Neutral Formal Representation of Process Model

The implementation of process model in platform independent and neutral representation as

system development has been performed after comparative analysis of formal representation

 12

standards based on the requirements of DEA in context to KBE. The results have shown

OWL/SWRL as a suitable candidate. The ontology development is performed using Protégé

(Horridge et al., 2011) which supports both OWL/SWRL and Topbraid (Composer, 2011) for

OWL.

1.5.6 Experimental Verification

Experimental verification of the developed system of process model with ontologies as

neutral formal representation has been performed with the aid of test use-cases. Important

aspects include testing of generic working, re-usability and traceability of concepts and

relationships such that the coherent and structured model can represent complete domain

knowledge of a mechanical design process with DFM knowledge for automation. The other

aspect involves the accuracy of DEA capability with generative modelling of the detailed

process model through reasoner/inference and query results based on set of developed generic

functions using SWRL and its comparison with specific rule implementation in platform

specific DEA system / KBES such as Advanced Modelling Language (AML) and ParaPy.

1.6 Thesis Structure

Figure 1-3 illustrates the outline of the thesis. The thesis is divided in 8 chapters. Chapter 1 is

the introduction. Chapter 2 provides existing literature review with overview of DEA and

various methods in virtual engineering for DEA. It leads to the identification of the research

gap, which this thesis addresses. Chapter 3 then elaborates on literature analysis with

informal and formal standards for knowledge modelling of engineering design process. This

leads to refinement of the research gap. Chapter 4 addresses the novel aspects of this research

with the help of pilot use-cases collated from both industry and literature. It discusses

experimentation of neutral formal representation languages including ontology language such

as PSL and OWL, rule languages such as RuleML and existing MBSE languages such as

 13

UML, SysML with design process knowledge entities. The generative process model for

DEA in the form of GPM–DEA is then developed with the help of pilot use-case analysis and

compiled requirements of DEA. Chapter 5 discusses the implementation of GPM-DEA

schema in OWL/SWRL as the developed method of using ontologies. This is performed as

per the comparative analysis of neutral formal representation standards against the

requirements. Chapter 6 compiles two additional test use cases from literature for

instantiation in GPM-DEA and in OWL/SWRL as proof of concept. Chapter 7 illustrates the

experimental verification by testing the reasoning and inference accuracy of the developed

system with the help of Protégé as supporting tool. The results are compared with the

implementation results of use-case rule outputs inside platform specific DEA system such as

AML and ParaPy. Chapter 8 presents the final conclusion based on discussion, contribution

to knowledge, limitations and possible extensions for future research.

Figure 1-3: Thesis Structure

 14

2 Design Engineering Automation and KBE

2.1 Introduction

The goal of the Product Development (PD) process is to transform customer requirements

into a physical product. A robust PD process needs to achieve optimum product performance

and quality with short lead-time to market and reduced costs (Ulrich and Eppinger, 2012).

Design Engineering Automation (DEA) techniques greatly help solve this purpose. In order

to enhance PD efficiency with DEA, virtual engineering methods were adopted by industries

worldwide (Bernard, 2005; Zhang et al., 2010). It consists of various domains such as CAx

consisting of Computer Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer

Aided Manufacturing (CAM); information systems such as Product Data Management

(PDM)/Product Lifecycle Management (PLM), decision support tools and KBES, with all

systems represented in heterogeneous formats. However, it was realised that interoperability

is one of the key areas of improvement in order to prevent compatibility issues between

different virtual engineering applications and file formats (Bernard, 2005). In order to provide

holistic and complex DEA, the scope of neutral representation of engineering design process

for interoperable product realisation in context to KBE has been recognised. This chapter

provides an overview of various virtual engineering aspects as part of PD. This will lead to

discussion on DEA and KBE with existing models for DEA.

2.2 Engineering Design Process for Product Development

Product Development (PD) process can be stated as ‘a sequence of activities that an

organization follows in order to conceptualise, design and manufacture a product

commercially’ (Ulrich and Eppinger, 2012). PD process can be divided broadly into five

stages as per Ulrich (Ulrich and Eppinger, 2012) – ‘requirements analysis & conceptual

design, systems development & configuration design, detailed design, testing & refinement,

 15

and production’. The PD process consists of engineering design, analysis for testing and

manufacturing which span all these five stages. The first stage of the engineering design

process is the identification of customer requirements, which are then translated into

functional requirements of the product as design specifications or design intent. The

functional requirements drive the engineering design process which are used to specify

product profiles utilising engineering knowledge and creative thinking (Chen et al.,

2008).The engineering design process is considered to be a set of comprehensive and

knowledge intensive activities depending upon existing engineering knowledge which

consists of bothdesign and manufacturing knowledge (Chen et al., 2008; Peng et al.,

2017).According to Pahl and Beitz (Pahl et al., 2007), engineering design is very complex

and requires a very systematic approach. An engineering design process for PD can be

subdivided into various categories such as conceptual design, embodiment or configuration

design and detailed design (Pahl et al., 2007; Ullman, 2010; Zeng and Gu, 1999). All the

stages are described as follows -

2.2.1 Conceptual Design Stage

The conceptual design stage encompasses high-level concepts to meet design specifications

or design intent as requirements (Pahl et al., 2007; Zeng and Gu, 1999). Concept generation

is very crucial at this stage (Ullman, 2010). Conceptual design process includes basic

building of physical structure of the product guided by design specifications as functional

requirements of the design process or product’s function (Qin et al., 2003; Viola et al., 2012).

The analysis of functional requirements or product’ function is very crucial at this stage as

design specifications can be highly abstract (Wang et al., 2002). Division of functions as sub

functions can be achieved by various ways such as brainstorming (Ullman, 2010). Some

examples of function are - “increase pressure, transfer torque and reduce speed” (Pahl et al.,

2007, pg 31).

 16

2.2.2 Embodiment Design Stage / Configuration Design Stage

The configuration design stage or embodiment design focuses on the refinement of initial

concepts to product configuration at the component and subcomponent levels along with the

development of design parameters. It greatly assists the designer in concept evaluation and

selection. It also helps in technology readiness by identifying critical parameters (Ullman,

2010). Various methods such as Pugh’s (Pugh, 1991), decision matrix can be used at this

stage for risk and feasibility analysis of generated concepts.

2.2.3 Detailed Design Stage

The detailed design stage focuses on the development of detailed parameters of the product

architecture and structure such as form with the assistance of geometric dimensions and

tolerances, fit as components with parts and assemblies, features and material allocation (Pahl

et al., 2007; Zeng and Gu, 1999). Product evaluation is very critical at this stage before

proceeding to the manufacturing stage (Ullman, 2010). Product evaluation involves

performance analysis of product’s function such as electrical energy, mechanical energy and

thermal energy within the prescribed boundary conditions.

The boundary between all stages of the design process overlaps due to the iterative

nature of the design process. Design for manufacturing (DFM) is very crucial stage of the

design process and mainly comes under configuration or embodiment design although it can

be considered at conceptual design and detailed design stage as well. DFM includes

manufacturing and production feasibility, lifecycle and quality aspects (Wuest et al., 2015).

Thus it includes manufacturing knowledge as feedback or inputs at the design stage, which

may include manufacturing processes for example machining processes such as welding,

drilling and processes such as moulding, casting for the product specification. Similarly,

design for assembly (DFA), design for ergonomics, design for recycling are some of the other

crucial aspects of the embodiment or configuration design stage (Pahl et al., 2007). All

 17

techniques such as DFM, DFA, design for ergonomics, and design for recycling are part of

DFX techniques for improved productivity of the engineering design process (Elgh, 2006).

Collection and representation of design knowledge with the help of computing is

crucial for all these phases. Computer based data processing in the form of Computer Aided

Design (CAD) is very prevalent among designers. However, routine tasks should also be

taken by a computer to allow designers to focus on new design tasks. The development of

knowledge based systems (KBS) for engineering design can be used as a computer tool for

knowledge modelling and retrieval, which should incorporate both design process and

product knowledge. These systems assist the designer in analysis and optimisation of

solutions by providing decision-making capability (Pahl et al., 2007). It is widely

acknowledged that for knowledge storage and re-use for engineering design, capture and

representation of abstract forms such as high level concepts and function are extremely

beneficial for design evaluation and rapid retrieval of knowledge as query for archive designs

as well as the complete design lifecycle from conceptual design to detailed design (Andrews

et al., 1999; Ullman, 2002). Thus, capture, representation and querying of design intent will

greatly improve the efficiency of the engineering design process as part of PD. Functional

requirements are very crucial to generate artifacts for design optimisation and evaluation

process (Roy et al., 2001). This includes non-geometric knowledge pertaining to the

conceptual design and configuration design stage affecting the topology of the product from

the functional requirements as goals of the design process. Thus, a suitable domain specific

model of engineering design should link decomposed functional requirements of the

engineering design process to the form of the product (Roy et al., 2001).

Figure 2-1 illustrates various stages of design lifecycle with representation methods for

engineering knowledge.

 18

Figure 2-1: Stages of Engineering Design with Knowledge Representation Methods

(Chandrasegaran et al., 2013, Pg 208)

2.3 Product Development: Advancement with Virtual Engineering

Virtual engineering helps transform the physical engineering design process in virtual system

domain at all stages of the product lifecycle. The engineering design, analysis process and the

manufacturing process as part of PD are realised in the virtual world with CAx tools

(platforms) such as CAD, CAE and CAM (Frank et al., 2014; Shintre and Shakir, 2011).

CAE generally consists of CAD and CAM tools along with analysis of CAD models such as

structural analysis, fluid analysis, and thermal analysis depending upon product’s functional

requirements (Ćatić and Malmqvist, 2007).

2.3.1 CAD & Geometry Automation: Parametric Modelling

CAD tools allow building and visualisation of product’s geometric shapes based on points,

curves, surfaces, and volumes along with features (Bernard, 2005; Shyamsundar and Gadh,

 19

2002). The underlying representation in most CAD tools is based on B-Rep and Constructive

Solid Geometry (CSG). They also provide compilation of Engineering Drawings (ED) and

Bill of Materials (BOM) thus illustrating the product structure (Shyamsundar and Gadh,

2001). CAD provides support during the configuration and most importantly detailed design

stage of the PD process. Updates and enhancements in CAD tools such as CATIA

Knowledgeware provide Geometry Automation (GA) (Amadori, 2012) through parametric

modelling (Bodein et al., 2009), knowledge based CAD (Nomaguchi et al., 2004) and

Knowledge Intensive CAD (KIC) (Tomiyama and Hew, 2000). Parametric CAD systems

utilise Geometric Constraint Solvers (CSG) for parametric modelling (Jubierre and

Borrmann, 2015). They mainly affect geometric attributes in the form of points, lines and

circles as constraints. This allows for modelling of intelligent automation through variant

design in terms of product’ geometric parameters. However, the file format of these CAD

tools enabling design engineering automation (DEA) are in proprietary formats and are still

limited to shape and form variation (Frank et al., 2014).

2.3.2 CAE & Analysis

CAE tools allow the virtual simulation and analysis of 3D CAD models as geometric product

representation (Ulrich and Eppinger, 2012). CAE includes processes such as finite element

analysis (FEA) and computational fluid dynamics (CFD) analysis in the form of thermal

analysis, flow analysis, stress analysis, aerodynamic analysis and kinematic analysis with

CAD model as the master model (Tyapin et al., 2012). Some of the CAE operations include

meshing and applying boundary conditions in order to perform accurate analysis in the form

of preprocessing and postprocessing. CAE provides a major platform during testing and

refinement stage of the PD process. The results of the CAE analysis models are evaluated as

per the formulated functional requirements. However, the transition of geometric product

model from CAD to CAE tools requires transformations due to heterogeneous file formats

 20

between CAD and CAE systems (platforms) thus limiting the combined advantage (Corallo

et al., 2009).

2.3.3 CAM & Manufacturing

CAM tools allow simulating and performing the production/manufacturing processes as

physical processes for realisation of the product with the help of virtual environment (Corallo

et al., 2009). CAM tools generally include tool paths such as CNC programming and

machining operations, manufacturing methods, tool cutting data such as speed and feed,

clamping, jigs and fixture strategy along with product’s physical properties such as material,

features, tolerances and surface finish (Helgoson and Kalhori, 2012). These may include

operations such as milling, drilling and boring. CAM provides a major platform during the

production stage of the PD process. However, the transfer of knowledge from the CAD/CAE

stage to CAM stage is highly complex due to variation in platform representations (Corallo et

al., 2009; Zhang et al., 2009).

Due to heterogeneity in CAx tools (platform) representations, there is loss of valuable

knowledge. Thus there is a lack of coherent engineering design knowledge for PD process in

a multidisciplinary environment, which can be re-used (Zhang et al., 2009). In order to

overcome the loss of knowledge in CAx tools, various environments have been devised as

part of Concurrent Engineering (CE). Concurrent Engineering (CE) provides utilisation of

varied knowledge inputs simultaneously to speed up PD process by integrating down-stream

processes such as analysis and manufacturing in the early stage of engineering design

(Chapman and Pinfold, 1999). One example is Computer Integrated Manufacturing

Environment (CIM) to overcome the loss of knowledge between CAD ad CAM systems due

to lack of neutral formats as well as the overall content of CAD knowledge (Natekar et al.,

2004). CIM allows for feature recognition in order to convert from product form and shape in

CAD to manufacturing process planning in CAM using a neutral format such as Initial

 21

Graphics Exchange Specification (IGES). The feature recognition algorithm is written on top

of IGES for extraction of CAD features to CAM operations. Advancements in proprietary

systems such as Unigraphics solutions UG NX5 also provide integrated CAD, CAM and

CAE systems as part of CE, thus providing a unified platform for engineering design with

rich semantic product data knowledge for cross functional PD (Liu et al., 2010).

Thus in order to facilitate efficient knowledge transfer between CAx tools, neutral formats

such as IGES and STandard for the Exchange of Product model data (STEP) should be

utilised. STEP retains most of the product’s model knowledge while transfer between

different CAD platforms (Pratt, 2001). However, these neutral formats in the form of STEP

mainly represent product’s geometric knowledge pertaining to detailed design and

manufacturing including 3D model but don’t contain other aspects of engineering design

process knowledge covering all aspects of product’s lifecycle (Främling et al., 2012).

2.3.4 Product Data Management (PDM)/Product Lifecycle Management (PLM)

Other attempts in the field of virtual engineering to overcome the loss of knowledge between

different CAx tools are Product Data Management (PDM)/Product lifecycle Management

(PLM) systems. According to John Stark, PLM systems can be defined as follows – ‘PLM is

the business activity of managing a company's products all the way across their

lifecycles,from the very first idea for a product all the way through until it is retired and

disposed of, in the mosteffective way’ (Stark, 2011). The initial versions of PLM systems

were generally referred as PDM systems. Generally PDM systems allow integration of

disparate knowledge between various CAD, CAE and CAM tools (Bruun et al., 2015; Ćatić

and Malmqvist, 2007). They consist of product geometry knowledge, assembly and

functional relations, analysis and manufacturing knowledge depending upon their

configuration. PLM is like an extension to PDM facilities for more comprehensive coverage

and can also provide workflow automation. Some examples of PDM/PLM systems are

 22

TeamCenter PDM, Collaborative product development (cPDM) and virtual product

development (VPDM) (Bruun et al., 2015). Similarly, other versions of PLM systems to

address the needs of CE are Product Life Cycle Systems (PLCS), which provide integration

of CAD, CAM, CAE and Product Information Management (PIM) systems thus allowing

coherent flow of knowledge for collaborative environment (Penoyer et al., 2000).

2.3.4.1 Workflow Automation

Workflow automation in context to PLM systems can be performed in tools such as Isight (H

Wenzel et al., 2011). Workflows and their execution logic can be shared and exchanged

between heterogeneous design platforms as platform independent representation using neutral

format in the form of eXtensible Mark-up Language (XML). The building blocks of the

simulated workflows are individual components such as the object parameters, sub processes

and connected components (H. Wenzel et al., 2011).

2.4 Design Engineering Automation - CAx, PDM/PLM

2.4.1 Design Engineering Automation (DEA)

As illustrated, various CAx and PDM/PLM systems fulfill automation techniques for

engineering design process. Automation methods satisfy the following objectives as part of a

PD process - reduce lead-time and costs, improve quality of products and provide variation in

product design process as per changes in customer requirements (Cederfeldt and Elgh, 2005).

Design Engineering Automation (DEA) can be defined as capturing and formalising

engineering design knowledge consisting of a set of building blocks for automated design and

PD processes for satisfaction of customer requirements (Frank et al., 2014). DEA provides

added value by optimisation of PD process and incorporating all types of knowledge for

automation including both product’s geometric knowledge as well non-geometric knowledge

in the form of engineering design process knowledge.

 23

According to work performed by Cederfeldt & Elgh, DEA refers to ‘Engineering support by

implementation of information and knowledge in solutions,tools, or systems, that are pre-

planned for reuse and support the progress of thedesign process. The scope of the definition

encompasses computerized automation oftasks that directly or indirectly are related to the

design process in the range ofindividual components to complete products’ (Cederfeldt and

Elgh, 2005, Pg 2). DEA can be categorised into two types – information handling (knowledge

representation and retrieval with inference or automated reasoning) and knowledge

processing (Elgh, 2008; Nan and Li, 2012).

The purpose of DEA is to provide support in following areas (Elgh, 2008, 2007) –

• Design synthesis - this includes optimisation of design parameters and product

geometry and decision support for engineering design with the assistance of functional

requirements and manufacturing constraints

• Design analysis - this includes model analysis for testing such as finite element

analysis, geometry preparation for analysis in the form of meshing, preprocessing and

post processing and evaluation of design characteristics

• Plan for manufacture – this includes manufacturing processes for physical production

of the designed parts and components. This may include production methods, sequence

of operations and tooling description such as fixture and jigs

2.4.2 CAx, PDM/PLM for DEA

All CAx tools such as CAD, CAE, CAM along with PDM/PLM systems comprise main

virtual engineering applications for engineering design process and enabling some aspects of

DEA (Ćatić and Malmqvist, 2007). However, there is a difference in the knowledge content

of CAx tools such as CAD systems and PDM/PLM systems. The main strength of CAx tools

specifically CAD systems is the representation of product’s geometric knowledge as part of

detailed design stage which is a narrow part of PD in its proprietary platform representation

 24

(Foufou et al., 2005). On the other hand, PDM/PLM systems are tailored to represent

product’s non geometric knowledge in its proprietary format such as requirements analysis,

product function and behaviour and are used as linking or information management system

for product’s geometric knowledge by documenting and managing CAD files, drawings,

CAE and CAM files along with product related documents in different computer formats

(Bruun et al., 2015; Burkett et al., 2003). The most comprehensive usage of PDM/PLM as

database management systems is a common platform for knowledge access and integration

across various CAx tools and product definitions across different formats (Penoyer et al.,

2000).

Thus, one of the limitations of this existing virtual engineering approach is lack and ease of

integration of geometry kernels as part of CAD systems within a unified PDM/PLM system

representation for DEA (Penoyer et al., 2000). Also, individual automation applications such

as workflow automation using Isight and excel based macros for specific purposes are very

rarely linked to CAx tools or PDM/PLM systems. Another cause of concern of these

individual virtual engineering approach is that the representation of individual CAE and

CAM tools is specific, knowledge management is very rigid with respect to the underlying

platform along with lack of an integrated, unified and structured approach for DEA (Ćatić

and Malmqvist, 2007).

Another method of addressing the needs of DEA is solved through Knowledge based

Engineering (KBE). As illustrated with the help of Fig 2-2, all CAx tools such as CAD, CAE

and CAM along with PDM/PLM systems provide small isolated islands of DEA in context to

a KBE approach, which provides an integrated and unified approach for DEA (Ćatić and

Malmqvist, 2007).

 25

Figure 2-2: KBE with respect to CAx, PDM/PLM (Ćatić and Malmqvist, 2007, Pg 1)

2.5 Knowledge Based Engineering (KBE)

‘Knowledge Based Engineering (KBE) represents an evolutionary step in Computer-Aided

Engineering (CAE) and is an engineering method that represents a merging of Object-

Oriented Programming (OOP), artificial intelligence (AI) and Computer-Aided Design

(CAD) technologies, giving benefit to customised or variant design automation solutions’

(Chapman and Pinfold, 2001, Pg 905). One of the main objectives of KBE systems is to

reduce the time and cost of product design lifecycle by automating repetitive and non-

creative design tasks (Cooper and LaRocca, 2007; Sandberg, 2003).

A few examples where usage of KBE technology has led to a decrease in product design life

cycle time are demonstrated as follows. In the automotive domain, Chapman and Pinfold

utilised a KBE system (KBES) in the form of Advanced Modelling Language (AML)

(TechnoSoft Inc, 2003) for automation of geometry creation and finite element (FE) analysis

process using meshing and applying boundary conditions (Chapman and Pinfold, 2001;

Pinfold and Chapman, 2001). Pertaining to the aerospace domain, a KBES was employed by

La Rocca and Van Tooren for automation and generation of blended wings and low pressure

turbines (La Rocca and Van Tooren, 2007).

The focus of KBE is knowledge capture and representation of both geometric and non-

geometric knowledge to enable product and process centred automation for all stages of the

engineering design process lifecycle including conceptual design, embodiment design and

 26

detailed design including the manufacturing phase (Corallo et al., 2009; Prijic et al., 2005).

Traditionally, in design engineering the output of the preliminary and the detailed design is in

the form of a geometric CAD model directly created from requirements or problem

definition.KBE as a design method captures product and process-based data and helps in

building a virtual prototype in a system which encapsulates rules, requirements, product

attributes, features and rationale for building a geometric model along with downstream

processes such as material selection for static and dynamic analysis, and manufacturing

capability enabling complex design automation. It enables generative modelling along with

feature based parametric modelling and reasoning mechanism by acting as an expert system

(Cooper and LaRocca, 2007; La Rocca and Tooren, 2012). KBE adds a major dimension also

referred to as product decomposition (Calkins et al., 2000) and helps in developing a

complete repository of design engineering knowledge for efficient product design &

realisation process.Thus it gives options to the designer to test the geometric model for

realisation more efficiently due to the availability of a complete knowledgebase.

A system implementation of KBE can be defined as ‘the use of dedicated software language

tools in order to capture and re-use product and process engineering knowledge in a

convenient and maintainable fashion’ (Cooper and LaRocca, 2007). A system implementing

KBE is dynamic such that it offers true engineering automation including application

development, geometric modelling, application deployment and tools integration (Calkins et

al., 2000).

2.5.1 KBE and CAx, PDM/PLM for DEA

KBE as an area of artificial intelligence (AI) provides a unified and integrated approach for

complex DEA and effectively combines CAx and PDM/PLM automation facilities along with

assistance in knowledge re-use and decision making (Zhang et al., 2009). The formal

representation in a KBES performs DEA with various reasoning mechanisms, which can vary

 27

such as rule-based reasoning and case-based reasoning. A successful KBE implementation

depends upon various stages – knowledge acquisition, knowledge representation and

reasoning (Zhang et al., 2009). Thus, KBE offers enrichment of CAD models with non-

geometric knowledge and also assists knowledge management (KM) with knowledge

acquisition and representation of engineering design knowledge (Cooper et al., 1999). One of

the distinct advantages of KBE approach towards DEA is generative modelling capability,

which ensure that engineering design knowledge is generated as instantiated data from

requirements analysis by explicit declaration of codified knowledge. It also offers multiple

view-points such as design, analysis, manufacturing, ergonomics within a unified

environment (Bermell-garcia et al., 2007).

Thus KBE tools capture design rules with much higher granularity in contrast to PDM/PLM

systems as they combine the knowledge content of CAx and PDM consisting of both

geometric and non-geometric knowledge. The most important aspect of a KBE approach for

DEA is the integration of geometry kernel closely integrated with non-geometric knowledge

(Bermell-garcia et al., 2007; Ćatić and Malmqvist, 2007). This includes product’s form and

geometry in the CAD environment, topological variation in product design with both

parametric and generative modelling and non geometrical knowledge which is generally

contained in PDM systems thus providing a systematic approach for knowledge acquisition,

re-use for automation and efficient decision making (Sandberg et al., 2017; Sorli et al., 2012).

Generative modelling is one of the most important aspects of DEA with KBE

approach. KBE as a design method not only enables generative modelling at the detailed

design stage with GA but also at the conceptual and embodiment design stage (Isaksson,

2003). This provides flexibility in design variation at all stages of engineering design, which

is not possible with any CAx tool. The generative modelling capability captures both product

 28

and engineering design process knowledge and can be used for DEA and design evaluation

based on the product’s functional requirements ‘on the fly’ basis (Isaksson, 2003).

Thus, KBE approach combines capabilities of CAx tools and PDM/PLM systems for

complex DEA enabling knowledge re-use and decision making in a modular and integrated

environment (Isaksson, 2003).

2.5.2 Achieving DEA with KBE – Integral Features

Traditional DEA approaches follow procedural style of programming where the knowledge

or the design intent from a source is hard coded and integrated to a system or an application

(Prasad, 2006). In procedural programming style the sequence of steps has to be explicitly

mentioned. However, KBESoffer slightly different approach to conventional DEA. They

follow declarative style as against a purely procedural style (Cooper and LaRocca, 2007;

Prasad, 2006). This means that the sequence of steps for a process in the form of design intent

doesn’t need to be explicitly mentioned during execution. The system or the application will

automatically determine which activity to implement based on the requirements. KBES offer

functional coding style which states that the code returns values to the user instead of simply

modifying or updating the model (Cooper and LaRocca, 2007). KBES follow Object-

Oriented(O-O) representation with high probability of embedding LISP based dialects

(Cooper and LaRocca, 2007; La Rocca, 2011; Rocca, 2012)along with being dynamic, which

means the formal design intent will update, and new concepts and relationships are inferred

as changes at runtime. Conventional DEA is not dynamic in nature.

Some of the integral features of KBES are listed as follows -

• Functional and declarative style as opposed to pure procedural style in conventional

DEA – it supports both declarative and procedural paradigm

• Dynamic data types

 29

• Runtime value caching and Dependency tracking

• Demand driven

• Generative modelling

• Tight linkage with geometry

• High level indicating that a small amount of code enables manipulation of large number

of objects as being opposed to problem specific. This enables generic and re-usable

code with instances as compared to limited re-use of hard coded knowledge in

conventional DEA

• Knowledge models are enriched with process and product knowledge as compared to

specific domain in conventional DEA

(Cooper and LaRocca, 2007; Prasad, 2006, 2005; Rocca, 2012; Van der Velden, 2008)

There are a lot of crucial differences between CAD centered automation applications such as

CATIA Knowledgeware and Siemens NX Knowledge Fusion and pure KBE based DEA.

CAD centered automation lays emphasis on alteration of product models primarily through

geometric features based approach for pure geometry automation (GA). CAD based

automation doesn’t include function and behaviour of the product (Kopena and Regli, 2003;

Umeda and Tomiyama, 1997). Furthermore, the design intent in a parametric CAD for GA

doesn’t capture the complete design intent (Ullman, 2002). This reduces the creativity for

innovation based on ‘what-if’ analysis of the design intent (Jubierre and Borrmann, 2015).

This differs from the pure KBE based DEA through a knowledge based approach (Colombo

et al., 2014; Prasad, 2006)where knowledge is managed through high level of abstraction

encapsulating engineering rules based on logic, product structure, function and behaviour.

KBESor KBE applications can deal with both geometric and non-geometric knowledge of the

product as part of the system and can incorporate design process knowledge (Prasad, 2006;

 30

Skarka, 2007). CAD based automation applications like CATIA Knowledgeware and

Siemens NX Knowledge Fusion do provide purely GA facilities through a platform specific

code but don’t enable KBE features such as full generative modelling, dynamic data typing,

run time caching and dependency tracking (Cooper and LaRocca, 2007). For example,

CATIA v5 Knowledgeware uses C++, visual basic and component application architecture

(CAA) language in order to provide GA facilities (Prijic et al., 2005). In the research of Lin

(Lin et al., 2013), CATIA was used as a platform to enable parameter based design space

exploration and automation by providing variable input parameters to the geometric form of

the product. In case of a change of system the platform specific code will have to be re-

written, thus limiting the abstraction and re-usability of the engineering process knowledge

along with increased maintenance (Sanya and Shehab, 2014).

With recent advancements, web based approach has gained acceptance in the KBE

community for information sharing and exchange (Liu and Xu, 2001). It also offers

advantages such as open architecture, uniformity in information modeling and O-O structure

(J Kulon et al., 2006).

2.5.3 KBE lifecycle and Methodologies

According to Stokes, KBE lifecycle consists of the following 6 stages(Stokes, 2001) –

• Identify: Identification of technical and business requirements for DEA for providing an

initial specification of a KBES

• Justify: Assessment of existing processes for implementation of KBE for DEA benefits

and risk analysis

• Capture: Knowledge acquisition in the form of input of engineering design process and

product knowledge collected from domain experts, documents such as design

guidelines and manuals for conversion to structured formal representation. It caters to

the needs of the domain experts for validation of domain knowledge as informal model

 31

• Formalise: Development of a framework for conversion of the structured captured

informal knowledge to a formal representation model (machine readable for system

interpretation) with neutral semantics for interoperable usage through open standards.

This ensures re-usability of the domain knowledge as neutral formal representation

• Package: The neutral formal model is used for compilation and execution as the source

code in a KBES or KBE application. This phase covers the transformation of the

neutral formal representation to the platform specific representation inside the KBES.

In order to validate the functioning of a KBES, running queries and reasoning as

execution of the source code is performed to demand data from the KBES source code

• Activation: Verification of the installation of KBES for multiple users. Documentation,

training support and infrastructure may be provided for effective deployment within the

organisation

There are various methodologies for implementing KBE. A methodology termed as

Knowledge-Oriented Methodology for the Planning and Rapid Engineering of Small-Scale

Applications (KOMPRESSA) with its diagrammatic ways of capturing knowledge in the

form of a component diagram was initiated for smaller KBE applications (Bancroft et al.,

2000; Chapman et al., 2007). In Knowledge Capture Methodology (KCM), capturing and

structuring of knowledge is performed from a designer’s point of view. It breaks down the

product knowledge into parts, assemblies, features and the relationships between the

geometric features and the components to formulate product semantics (Chapman et al.,

2007; Terpenny et al., 2000). Both KOMPRESSA and KCM were targeted for product

modelling and automation. Knowledge Nurture for Optimal Multidisciplinary Analysis and

Design (KNOMAD) as a methodology laid emphasis on activity diagrams for processes and

representation of multidisciplinary knowledge including design and manufacturing (Verhagen

et al., 2012).

 32

Methodology and Tools Oriented to Knowledge Based Engineering Applications (MOKA)

(Skarka, 2007) as a methodology was initiated for larger applications. It encapsulated both

product and process based modelling. Rapid Application Development (RAD) (Beynon-

Davies et al., 1999) is another methodology which directly encodes the knowledge on to an

application with the help of packaging stage whereas other methodologies such as

KOMPRESSA, KCM and MOKA build an independent knowledge book or the knowledge

model external of the application and then map the knowledge model on to the KBES or a

KBE application. This is the combination of formalise and package stage in the KBE

lifecycle.

Thus RAD provides a quicker way of achieving an end KBE application by directly

packaging the captured knowledge whereas other methodologies such as KCM,

KOMPRESSA and MOKA are slightly more time consuming as they develop anindependent

knowledge model with the help of formalise stage and then focus on translation to the end

KBE application or KBES in the packaging stage. However, the advantage of developing an

independent knowledge model is the translation of the independent knowledge model to

multiple end KBE applications through its neutral formal representation enabling re-use of

the domain knowledge both at human and system level.

Except for the fundamental difference between RAD and KCM, KOMPRESSA and MOKA

which allow building of an independent knowledge model as compared to direct population

of knowledge into the end KBE application in RAD, methods of capturing the structuring

knowledge varies slightly between all three methodologies.Careful considerations should be

adopted while implementing these methodologies such as the end KBE application should

reflect continuous changes with the independent KBE model being the master model.

Another methodology is referred as CommonKADS, which stands for Common Knowledge

Acquisition and Documentation Structuring or Common Knowledge Acquisition and Design

 33

Support (Schreiber et al., 2000). It defines six modules – organisation, task, agent,

knowledge, communication and design models.

All these KBE methodologiesin the form of MOKA, KNOMAD, KCM, KOMPRESSA,

CommonKADS and RAD offered major advantage in terms of abstraction and decomposition

of knowledge in different forms, as discussed, with the help of Table 2-1, before the end KBE

application development and provide more functionality to knowledge management. As

observed from Table 2-1, all the methodologies have different ways of capturing data for

knowledge modelling and aid in process improvement through diagrammatical and visual

ways.All of these methodologies were successful only in knowledge acquisition and analysis

stage for engineering design process improvement.

Table2-1: Existing KBE methodologies and area of focus

Existing KBE Methodologies Focus for Knowledge Modelling

 MOKA

Focus on both product and process modelling.

ICARE forms for knowledge capture and MML

for formalised knowledge

 KNOMAD

Activity diagrams for processes and

representation of multidisciplinary knowledge

focusing both on product and process modelling

KCM

Product modelling in the form of parts,

assemblies and features

 KOMPRESSA

Product modelling in the form of diagrammatic

ways of capturing knowledge such as component

diagrams

RAD Product modelling and direct implementation of

knowledge on to the application

CommonKADS Focus on both product and process modelling

though UML notations and diagrams

MOKA, being one of the most comprehensive, lays emphasis on two stages of the KBE

lifecycle as shown in Figure 2-3. First it captures knowledge in an informal manner in the

form of ICARE (Illustration, Constraints, Activities, Rules and Entities) and then converts it

to a formal manner. MOKA utilised Unified Modelling Language (UML) notation and

 34

extended it to develop Moka Modelling Language (MML) as a means of producing a formal

knowledge model (Chapman et al., 2007; Stokes, 2001).

CommonKADS also utilises object-oriented (O-O) modelling and uses UML notations such

as class diagrams, use-case diagrams, activity diagrams and state diagrams in order to

represent domain knowledge (Schreiber et al., 2000). Thus both MOKA and CommonKADS

utilise UML based notations for knowledge representation. Even CommonKADS utilised

similar stages of developing an informal based model initially and then developing the formal

implementation.

Figure 2-3: MOKA methodology in KBE lifecycle (Lohith et al., 2013)

Various tools such as PCPACK can be used which help in building inter-connected

knowledge representation models. PCPACK supports knowledge capture, analysis and

modelling of knowledge using both MOKA and CommonKADS methodology (La Rocca,

2011; Nan and Li, 2012; Schreiber et al., 2000). CommonKADS offers major advantage in

 35

terms of adding structure to knowledge capture and representation. However, it lacks the

accuracy and specialisation pertaining to knowledge capture and representation for

engineering design (Sanya and Shehab, 2014).

In spite of strengths in managing engineering knowledge throughout the product lifecycle

MOKA was revealed to have a few shortcomings e.g. MML did not comply with Object

Management Group (OMG) requirements (Abdullah et al., 2005), the formal knowledge

model could not be mapped to a KBES (KBE system) application to assist in process

automation (Chapman et al., 2007; Prasad, 2006).

This piece of research initially intends to bridge this gap in correct syntactical and semantic

mapping of an informal process model capturing all knowledge types and relationships of an

engineering design process to a platform independent and neutral (interoperable usage

through open standards) formal representation framework. It is very important to maintain

traceability between the informal process model with captures the engineering design

knowledge and the formal representation of the informal model (Verhagen et al., 2012). The

formal representation should be computer readable and understandable (Klein et al., 2014)

and fulfill the requirements of design engineering automation (DEA) as part of this research.

The neutral formal representation framework of the process model will enable DEA similar

to a KBES implementation with the help of suitable inference and querying mechanism as

execution of its code.

2.6 Engineering Design Process Decomposition: Classification of

Knowledge

According to ISO 10303-49, process can be defined as ‘a particular procedure for doing

something involving one or more steps or operations. The process may produce a product, a

property of a product, or an aspect of a product’ (Michel, 2005). Engineering design process

 36

as a part of PD can be stated as a ‘process of converting design requirements into verified

solutions’ (Isaksson, 2003). In the context of this research the engineering design process for

product realisation should cover all stages of its lifecycle.All concepts required for modelling

engineering design process will be discussed in this section. The type of specific concepts of

the design process decomposition such as activity, inputs, outputs, resources, engineering

rule, rationale, product function and behaviour will govern the selection of suitable formal

representation techniques for the developed process model.

2.6.1 Engineering Design Activity

An engineering design process consists of various activities for creation and evaluation of

products by changing their state (Isaksson, 2003). Design process activities consume some

inputs and produce outputs with the help of resources and methods in order to convert

functional requirements to verified solutions(Ding et al., 2009). All design process activities

are highly interdependent and require knowledge such as inputs, outputs, resources and

methods in the form of rules from other dependent design activities in order to be completed

efficiently (Zhang et al., 2013). Each activity can be associated with an ID for system

interpretation. Inputs can be defined as any entity that are consumed or modified during an

activity and converted to outputs. Similarly, outputs can be defined as entities produced by an

activity (Ding et al., 2009).Resources can be defined as the entities that provide support for

the completion of an activity (Ding et al., 2009; Zhang et al., 2013). The methods govern the

conversion of inputs to outputs and can be represented with the help of engineering rules

based on logic and mathematics thus governing the conversion of inputs to outputs during an

activity.

2.6.2 Engineering Rules

Engineering rules containing both design and manufacturing rules are often described by

containing two important parts: product and process knowledge (Stokes, 2001). Product rules

 37

contain clauses or criteria for relationship between different components of a product.

Process rules contain criteria for different task sequence and selection based on requirements

or constraints.

According to La Rocca, 5 different types of product rules can be described –

• Logic rules: rules based on logical statements and also containing conditional ‘If-Then’

and ‘If-Then-Else’ expression

• Math rules: contain mathematical formulae and comparison symbols

• Geometry handling rules: parametric and geometry manipulation rules governing the

dimensions as size of the product

• Configuration selection rules: combination of logic and math rules governing the

topology of a product. This includes the positioning of the product as position co-

ordinates and orientation vector in the virtual space

• Communication rules: rules governing communication of system code with external

formats (La Rocca, 2011)

Similarly, La Rocca describes process rules in the following ways –

• Process sequence: rules governing process sequence steps and input-output

relationships

• Optimization: rules defining optimisation of process through functionality and

constraints. This includes interdependencies between tasks (La Rocca, 2011)

As engineering rules are often based on logic, the type of logic will govern the suitable

representation technique. According to logic, engineering rules can further be classified as

one of the following types –

• Transformation – it includes simple statements that links to other statements and may

thus be a statement declaration

 38

• Derivation – it includes infer on facts within a statement and may thus be an

implication declaration

• Reaction – it includes both trigger and production rule in the form of antecedent and

consequent. Trigger rules have events in their antecedents and production rules have

facts in their antecedents. ‘If’ part is called an antecedent and ‘Then’ part called a

consequent and they are linked by logical operators such as ‘AND’ and ‘OR’.

Production rules can include nested facts in both antecedent and consequent. In order

for the consequent to be true the antecedent need to be true. This is the reason for the

antecedent and consequent facts based statement to be named a production rule. An

example is –

Antecedent Consequent

IF (material = Aluminum) THEN (Welding method = DC welding)

 (Reijnders, 2012)

For this thesis with focus on DEA, the engineering rules will contain all engineering design

rules based on logic and math along with heuristic rules, production rules and process rules.

These may be geometry handling rules as well as configuration rules and process sequencing

and optimization rules (Chapman and Pinfold, 1999). They can be broadly classified as –

• Logic based Rules - rules based on engineering logic. These rules can include

production rules, geometry rules, configuration rules and process rules. The process

rules contain both process sequencing rules as well as optimization rules.

• Math based Rules - rules containing mathematical symbols and formulae. These rules

can also include of production rules, geometry rules, configuration rules as well as

process rules containing both sequencing and optimization rules.

• Production Rules - all statements in the form of ‘If’, ‘Then’ and ‘Else’ containing an

antecedent and consequent linked by an operator such as ‘AND’ and ‘OR’. These can

 39

be either logic based rules and math based rules. Some rules can also overlap as

demonstrating features of geometry rules, configuration rules and even production

rules. In fact, all production rules are either geometry and configuration rules but they

are expressed in ‘If’, ‘Then’, ‘Else’ representation.

• Heuristic Rules - rules not based on logic. Sometimes, engineering rules are rules of

thumb and not based on logic statements. However, they may be geometry rules,

configuration and even process rules based on rule of thumb. Heuristic rules are thus

disjoint with logic rules, which means a rule can either be a heuristic rule or a logic rule

but can’t be both.

2.6.3 Function and Behaviour: Engineering Design Process

In order to create an efficient DEA system, it should be able to capture and represent the

design intent in the form of process structure, function and behaviour and in context to the

product (Brunetti and Golob, 2000). In engineering design process, a model or a framework

should include function, behaviour, structure (F-B-S) and all design activities for a complete

process description (Gero and Kannengiesser, 2007a). Alternatively, in order to describe an

engineering design process for realization of a physical product, its function, behavior and

structure (F-B-S) need to be defined (Alvarez Cabrera et al., 2009; Tomiyama et al., 2013).

‘Function’ is defined by an effect of a product or a component (Szykman et al., 2000a) or the

purpose of the product or a component (Foufou et al., 2005; Patil et al., 2005). Thus

‘Function’ can also be described as what the object is for (Gero and Kannengiesser, 2004).

‘Behaviour’ can be described as a method of how a product or a component implements its

function (Foufou et al., 2005; Patil et al., 2005). It can also be described as what the object

does as deduced from its structure in the form of attributes (Gero and Kannengiesser, 2007b).

F-B-S as function-behaviour-structure are artifacts that offer extremely high value during the

conceptual and preliminary design phases (Erden et al., 2008). Regarding function in context

 40

to engineering design process, it can be defined as a requirement that a design process is

going to perform with the change in state of the product. Fulfilling functional requirement as

product’s function is one of the key aspects of a product design process (Bluntzer et al.,

2009). Similarly, process behaviour can be stated as a method or utilisation of how the design

process is going to achieve its function (Reddy et al., 2015).

If we consider either product or process as an artifact and then define function and behaviour,

we can state function as what the artifact is supposed to do or the satisfaction of artifact’s

requirements. The behaviour can be stated as a method of how the artifact performs its

function (Fenves et al., 2008). The process function can be stated equally as functional

requirement of the design process. The function or functional requirement of a process

governs the flow of energy, material, inputs and outputs of a process (Wang et al., 2002).Both

function (as functional requirements) and behaviour along with product parameters and

manufacturing knowledge have also been modelled as artefacts in context to DEA systems

for all stages of design lifecycle from conceptual, embodiment to detailed design (Bhaskara,

2010; Brunetti and Golob, 2000; Chulvi et al., 2007; Roy et al., 2001).

2.6.4 Product Knowledge for Engineering Design Process

‘Feature’ can be described as associated knowledge of a component which aids in identifying

its function (Patil et al., 2005). Feature can also be defined as ‘an information unit

representing a region of interest within a product (Brunetti and Golob, 2000). ‘Form’ can be

defined as a physical layout of a component (Szykman et al., 2000a). ‘Fit’ describes the

relationship of a component with other components and assemblies (Pinfold et al., 2008).

Form, fit and features constitute the structure of a product. ‘Form’, ‘Fit’ and ‘Features’ entail

rules and constraints governing product geometry, structure and material. A key

characterization of product’s state can be stated as the change in attributes of a physical

product (Alvarez Cabrera et al., 2009). Correlating F-B-S we can state the behaviour of the

 41

object is dependent upon its attributes and helps in achieving the function of the object.

Behaviour of the product and its function alter its attributes indicated by change of state.

‘Rationale’ or ‘Design Rationale’ can be described as reasons behind design decisions

(Medeiros et al., 2005). ‘Rationale’ can also be stated as the reason or explanation behind the

design and specification of an artifact (Poorkiany et al., 2016). It includes the background

knowledge which helps in reasoning and decision making for a particular design choice

(Regli et al., 2000). For a process-based system, design rationale is descriptive capturing

issues and available options illustrating design progress aiding in design process decision-

making. In this research, Design Rationale as a concept or knowledge type is captured in a

process-oriented approach.

2.7 Knowledge Modeling for Engineering Design Process

Knowledge modelling as an integral part of knowledge management is a critical activity in

development of a knowledge based system (KBS) or a framework which helps in fulfilling

DEA through KBE(Isaksson, 2003; Milton, 2007; Schreiber et al., 2000). Knowledge

modelling process should ensure that the complete engineering knowledge of a product

design process is captured, represented and processed efficiently. As discussed earlier,

knowledge acquisition will be performed with mechanical design process as the main focus

along with inclusion of both geometric and non-geometric knowledge of the product

including process function, behaviour and structure (F-B-S) (Tomiyama et al., 2002).

2.7.1 Systems Engineering (SE)

Systems engineering can be defined as a multidisciplinary approach towards system

specification, design, validation and verification(Krasner, 2015). The function of Systems

Engineering (SE) is to ‘guide the engineering of complex systems’ (Kossiakoff et al., 2011).

Thus SE deals with interrelated components, subsystem and parts, which form a complex

 42

system and interact with each other and external elements in order to fulfil the system

objective.A number of lifecycle models were initially developed for systems engineering

purposes in the form of design, development and testing of the system such as Waterfall,

Spiral and Vee models. Waterfall and the spiral model have been extensively used with

modifications in various software development projects whereas “Vee” models have been

used with variations in the systems engineering and development. Most of the existing SE

standards have evolved from Department of Defense (DoD-MIL-STD 499) (Estefan, 2007).

2.7.2 Model Based Systems Engineering (MBSE)

Model based systems engineering (MBSE) is a model centric approach which helps

understand the complex system behaviour, relation of requirements to functions and provides

a complete view of the system model with the help of formalised and semantically rich visual

modelling languages and tools(Krasner, 2015). According to International Council on

Systems Engineering (INCOSE), MBSE can be defined as ‘the formalized application of

modelling to support system requirements, design, analysis, verification and validation

activities, beginning in the conceptual design phase and continuing throughout development

and later lifecycle phases(INCOSE, 2007). Some of the important MBSE approaches are

Object Management Group (OMG) visual modelling languages and standards in the form of

UML and Systems Modelling Language (SysML). SysML was developed with collaboration

between OMG and INCOSE and derived a lot of features from UML version 2.0. INCOSE

object-oriented systems engineering method (OOSEM) uses a top down model based

approach based on OMG SysML standards(Estefan, 2007). Model Drive Architecture (MDA)

was an approach initiated by OMG in order to drive interoperable and re-usable architectural

frameworks for systems. Dov Dori’s Object-Process Methodology (OPM) is another crucial

formal paradigm to model based systems development and support(Dori, 2002).

 43

2.7.3 Utilisation of SE and MBSE for Engineering Design: Product Development

Vee Model was utilised for knowledge capture of design process for complex product

development by (Woestenenk et al., 2011). It is illustrated with figure 2-4.

Figure 2-4: Vee Development for Engineering Design Process (Woestenenk et al., 2011)

As it can be observed, various steps include formulation of system function and requirements,

detailed design and then verification of both systems and detailed components. The validation

steps as testing are in synchronisation with the initial step of functional requirements analysis

and detailed design. Some of the crucial points while following the Vee development process

for engineering design (Woestenenk et al., 2011) are –

• Appropriate methods and language for capture of the complete engineering design

knowledge in terms of concepts, decomposition and relations

• Capture and representation of functional requirements and structural decomposition for

high level models along with inclusion of design activities, components and product

parameters for detailed models

• A mechanism or a method to define and populate the knowledge models indicating the

flow of information from functional requirements through to design activities and

 44

product parameters which can be applied for generic use-cases and can be tracked in

context of wider engineering design domain

• An equivalent machine interpretable formal representation of high level and detailed

models for providing automation in engineering design along with a tool that can

support the updating and modifications in the developed models

Thus the knowledge capture and representation stage for development of process model for

DEA with KBE approach will adopt principles of “Vee” development model stages as an

integral part of MBSE.

2.8 Existing Models and Frameworks for Engineering Design and

Manufacturing Processes enabling DEA – KBE perspective

Many frameworks and applications exist for automation purposes in PD cycle. Most of them

focus on product modelling and generation through models and framework along with

various specific aspects of engineering design, analysis and manufacturing processes.

Interestingly, none of the methodology or framework provides capturing of a generic and re-

usable process and product domain knowledge, which can be utilised for developing a KBE

application (Verhagen et al., 2012). Some of the crucial frameworks and models that have

been developed for product development and addressed for knowledge based design and

DEA purposes are discussed here.

Table 2-2: Existing Models and Frameworks for Design Engineering Automation (DEA)

Model / Framework - DEA Description References

Design and Engineering

Engine (DEE)

In addition to KBE methodologies in the form of MOKA

as discussed earlier, DEE is another model, which involves

multidisciplinary design optimization approach (MDO). It

includes of three modules – design process optimisation

module, multi model generator (MMG) and detailed

analysis module. Thus, DEE provides improved facilities

as compared to MOKA by including detailed analysis and

MDO and laid the foundation for KNOMAD

methodology. However, it offers some limitations by not

(Curran et al., 2010;

La Rocca et al.,

2002; La Rocca and

Van Tooren, 2007;

Reddy et al., 2015)

 45

providing a method for knowledge capture and

formalisation of captured knowledge along with its

delivery in the mainstream processes.

Linked knowledge in

manufacturing, engineering

and design for next

generation production

(LinkedDesign)

Linkeddesign project focussed on both KBE and GA based

DEA. They explored various methods of knowledge

acquisition and codification as formal representation of

engineering knowledge with MOKA methodology as the

basis and UML based product representation. One of the

key focuses was identification of neutral formal

representation standards with preserved semantics, which

can represent the engineering knowledge as domain

knowledge for DEA that can be re-used by both KBE

applications such as AML as well as CAD based GA

applications such as Siemens NX KF and CATIA

Knowledgeware. For knowledge codification as neutral

formal representation, various standards were identified

such as STEPstandard as an ISO 10303 with focus on

Application Protocol (AP) 242, XML representation of

AP242 and ontology / rule languages such as Web

Ontology Language (OWL)/Semantic Web Rule Language

(SWRL) and Rule Interchange Format (RIF). A major

contribution of the Linkeddesign project was the

recommendation of RIF for neutral standard representation

and exchange of engineering rules. However, it was not

demonstrated that an engineering design process could be

represented in RIF and whether the process model is

relevant for DEA along with a requirement to further

validate RIF. OWL/SWRL was identified as a strong

possibility of formal representation or codification of

engineering knowledge with preserved semantics.

(Colombo et al.,

2014; Lützenberger

et al., 2012; Mocan

et al., 2015; Perales

and de la Maza,

2015)

Reijnders Post MOKA, another contribution was made by Rejinders

in developing platform independent and formal

representation of engineering design knowledge for

aerospace industry for DEA with a KBE approach using a

combination of OWL, RIF and MathML using a

commercial implementation tool Allegro Graph based on

Allegro Common Lisp platform. Although product and

process knowledge was represented, the main focus of the

captured and represented knowledge was based on

engineering rules for product design. MOKA ICARE

forms were used as informal representation with the

corresponding platform independent formal representation

of rules in RIF-Production Rule Dialect (PRD) and

Content MathML. Although it offered successful

formalisation of design knowledge, the predicates of the

rules such as the antecedent and the consequent couldn’t

be queried due to integration between RIF-PRD and OWL

leading to loss of contextual relevance of rules with co-

related knowledge. It was also recognised that single rules

related to an object or a process were easily modelled, but

multiple rules were difficult to implement.

(Reijnders, 2012;

Van Tooren et al.,

2003)

Sanya and Shehab Following the MOKA methodology, Sanya and Shehab

performed work for the aerospace industry for

development of platform independent knowledge models

using OWL/SWRL to formalise the design knowledge

with Protégé as a tool. The building of platform

independent knowledge models for DEA with KBE

approach also helps in building of dynamic, portable and

adaptable systems and supports re-usability of knowledge.

(Sanya et al., 2011;

Sanya and Shehab,

2015, 2014)

 46

Although the knowledge model was based on functional

requirements as the basis, the focus was on design

parameters, constraints and rules for specific aerospace

components such as compressors and turbines based on

feature and shapes such as sleeve, panel and flanges. It

also recognised that using semantic web based languages

such as OWL ontology for DEA with a KBE approach,

there was a lack of standard method based on a set of

activities which would deploy the OWL model for use in

KBE applications with a lack of widely adopted ontology

development for engineering design and DEA. It was also

recognised that there was lack of research between

ontology development and engineering design.

J Kulon: Hot Forging

Process

A KBE model for automation of hot forging process with

focus on the product model was developed by. In order to

include relevant product knowledge, the model included

design rules, production rules, and material information.

The automation application method consisted of an

integrated relational database over the web browser with

requirements, design rules and product modelling key

concepts such as components, material and manufacturing

rules and complex interdependencies within the domain

concepts. The visualisation of the product geometry and

structure was done over the web with the help of Virtual

Reality Modeling Language (VRML). However, the

design and production rules pertain to product

functionality, structure and behaviour instead of process-

centred approach.

(J Kulon et al.,

2006; J. Kulon et

al., 2006; Qin et al.,

2003)

Adaptable Methodology for

Automation Application

Development (AMAAD)

A KBE system application for aerospace design and

analysis process was developed in a commercial

environment based on MOKA and CommonKADS

methodology. The AMAAD methodology focused on a re-

usable, generic and high-level model. It laid emphasis on

object-oriented (O-O) UML based notation and Integrated

Definition for Functional Modelling (IDEF0) notation as

part of agile development with MBSE approach. It

involved knowledge acquisition and knowledge modelling

after requirements specification before proceeding to

system development and validation. The output of the

developed system could be integrated with CAD

architecture through platform independent and neutral

format. However, a major limitation was it didn’t provide

a structured method to conduct the individual and detailed

activities along with association of these activities with

complex system working and its attributes required to

achieve DEA with a KBE perspective

(Van Der Velden et

al., 2012; Van der

Velden, 2008)

2.9 Synthesis and Findings of DEA Review

MOKA methodology focused on development of neutral formal representation of the domain

knowledge in the form of ICARE forms for the development of an independent model of the

engineering design process knowledge at the system level or machine interpretable level for

DEA. It recommends XML as the basis for development of neutral model for system

 47

interpretation of the informal model but doesn’t provide a detailed method for developing the

neutral model (Stokes, 2001). The neutral formal model will be the basis of the software code

as the source code of a KBE application or tool. This is one of the research gaps that this

research will satisfy by providing a detailed method for development of a neutral formal

process model for DEA with MOKA methodology as the basis.

As per Wagner (Wagner et al., 2003, 2001) the problem in knowledge acquisition and

modelling in context to an expert system for automation, is the method of acquiring both

structured and non structured domain knowledge for decomposition into fragments and

representing it in the appropriate computer format for example an expert system shell. As

KBES are expert systems with geometry kernel for the engineering domain, knowledge

modelling is extremely critical for DEA in context to KBES.

KBES allow integration of rule-based design, geometry manipulation and computational

capability in the form of forward and backward chaining as inference or reasoning

mechanism for knowledge processing, which differentiates KBES from traditional CAD and

expert systems and allows KBES to combine their individual capabilities for complex

problem solving (La Rocca, 2011; Rocca, 2012). As stated earlier, the main contribution of

MOKA methodology was the capture stage through ICARE forms and formalise stage

through MML as visual representation. It tried to address automatic generation of KBES

source code from MML as proof of concept for preliminary analysis even though MML

didn’t comply with OMG requirements (Abdullah et al., 2005). As PCPACK can be used for

MOKA methodology requirements, PCPACK was used as a knowledge modelling and

representation tool for MML diagrams and produced an internal XML representation as

neutral formal representation for conversion to the source code in a KBES. However issues

were encountered for mapping of the neutral formal knowledge model to a KBES such as

lack of semantic clarity of XML, which causes multiple translators to interpret the XML

 48

based neutral formal knowledge model (La Rocca, 2011). Also, lack of focus on other

knowledge representation (KR) for development of formal models was a major shortcoming

of MOKA which can lead to knowledge accessibility and re-use issues (Curran et al., 2010;

Verhagen et al., 2012). Thus, the formal knowledge model from MOKA as MML was unable

to assist in DEA using KBE methodology and application (Chapman et al., 2007).

KNOMAD as a methodology tried to integrate multidisciplinary knowledge for design

optimisation and DEA (Curran et al., 2010). The various steps include – (K)nowledge

Capture, (N)ormalisation, (O)rganisation, (M)odelling, (A)nalysis, (D)elivery. For the

(M)odelling stage, it adopted the MMG approach by DEE and built upon it to provide a

structured methodology for DEA through KBE. It provided tools such as Protégé to support

ontology construction using Web Ontology Language (OWL) for both products and

processes allowing for knowledge traceability and application deployment. However, various

areas of improvement were identified such as a clear, structured and concise knowledge

modelling and analysis approach or method along with the validation of the method with

original case studies (Curran et al., 2010).

Thus, it is identified from the literature that most of the KBE methodologies including

KNOMAD and MOKA being the most comprehensive, there is a lack of process oriented

approach to capture engineering design with manufacturing knowledge for representation in a

platform independent and neutral formal manner with preserved semantics (Chapman et al.,

2007; Rocca, 2012; Verhagen et al., 2012). Most applications developed, as KBES are case

based and ad-hoc with no adherence to existing structured methodologies (Rocca, 2012;

Phillip Sainter et al., 2000). Also most of the applications developed are black box, with lack

of knowledge transparency and traceability issues for DEA (Ammar-Khodja et al., 2008; J

Kulon et al., 2006; J. Kulon et al., 2006). This includes lack of semantic clarity in the design

intent for example engineering rules and their relevance to the product and process

 49

knowledge. The knowledge is decoupled from original context, documentation is not

explicitly stated with their clear semantics such as co-relation of engineering rules in the form

of formulas and equations. This leads to lack of knowledge sharing, traceability and re-use as

well which is enhanced by the difficulty of knowledge sharing across different proprietary

platform specific KBES or KBE applications (Verhagen and Curran, 2010; Verhagen et al.,

2012). Formalisation is the key to enhance re-usability and sharing and address the needs of

DEA with application development. However, the key problem is an unstructured knowledge

modelling process, which leads to unstructured knowledge codification as formal

representation (Klein et al., 2014).

There is a lack of capture and representation of non geometric knowledge in most KBE

applications for re-use such as project constraint reasoning, problem solving methods and

solution strategies as part of design intent (Baxter et al., 2007). As stated by Pablo Bermell-

Garcia, ‘using current data exchange standards, it is only possible to transfer an instance of

the design and not the knowledge embodied to generate it’ (Bermell-Garcia, 2007). Thus new

knowledge bases should ensure knowledge sharing across different platforms with neutral

usage through open standards. They should be flexible and user friendly as well for effective

sharing, re-use and maintenance with semantic clarity of design intent (Verhagen et al.,

2012).

Similarly, the source code in a KBES for a particular function for product parameters doesn’t

reflect the stage of the design process such as conceptual design or detailed design phase. The

implementation of the function varies from stages of the design lifecycle such as conceptual

and detailed design. Thus, a suitable method for knowledge modelling for DEA using KBE

approach should incorporate the relevant aspects of engineering design and development

process such as mechanical design with DFM. Also, the neutral formal standard should

ideally provide visualisation support for codified domain knowledge for direct consumption

 50

by design engineers (Klein et al., 2015). According to Jubierre and Borrman (Jubierre and

Borrmann, 2015), it is crucial to achieve high abstraction of engineering knowledge

consisting of technical guidelines and standards for DEA using KBE approach. The

knowledge base should have high level of abstraction with a logical modelling approach for

development of a neutral formal representation layer for automation with generative

modelling capabilities.

In order to address the current limitations such as those by Linkeddesign, Sanya/Shehab,

Reijnders, DEE and others, this research aims to bridge these identified gaps by providing a

structured method for process based knowledge modelling in concurrency with MBSE

approach, its formal representation and its verification with test use-cases as corresponding

analysis. This method of schema mapping will also provide transparency and traceability

with semantic clarity in the developed process knowledge model with both geometric and

non-geometric knowledge for re-use as part of product development. This research will also

provide mapping of engineering design aspects with focus on mechanical design and DFM

for DEA and re-usable ontology development method with multiple rules and generative

modelling capability.

2.10 Summary

This chapter discusses various aspects of DEA with virtual engineering. It also discusses all

knowledge entities required to model as part of systems engineering and MBSE with an

MDA approach for DEA such as process description, engineering rules, function and

behaviour. Through a detailed analysis of existing DEA techniques various gaps were

recognised such as a detailed and structured method for development of neutral formal

representation of an engineering process model with focus on mechanical design and DFM

with both geometric and non-geometric knowledge for traceability, transparency and

semantic clarity with contextual relevance as none of the existing KBE methodologies were

 51

successful in achieving DEA from an independent neutral formal representation of a process

model for engineering design (Elgh and Johansson, 2014). This is further enhanced by lack of

open standard usage, documentation for knowledge modelling and knowledge re-use. This

research will bridge these gaps by providing a structured and detailed method in the form

of a re-usable process model for capturing the activities of the mechanical design process

with DFM/DFA and their corresponding neutral formal representation with preserved

semantics for DEA with generative modelling. KBE based approach for DEA will be

primarily adopted along with GA in order to develop a knowledgebase with both geometric

and non-geometric knowledge for automation with primary focus on the mechanical design

process with manufacturing knowledge. The developed process model will be generic,

expandable both as informal and formal representation to enable re-usability. This will

include design process, rules based on logic, process function and behaviour with product

knowledge as F-B-S. In order to develop this model an understanding of existing informal

and formal representation standards for knowledge modelling of mechanical design process

with activity decomposition and inter-dependencies between knowledge is required which are

discussed in the next chapter.

 52

3 Informal and Formal Modelling of Engineering Processes

3.1 Introduction

Chapter 2 provided an overview of design engineering automation (DEA) methods and

techniques for mechanical design process as part of product development (PD). Various

knowledge types as design decomposition features were described as integral constituents.

This chapter will initially discuss existing informal and semiformal modelling standards for

knowledge modelling of mechanical design processes with DFM for DEA along with their

comparative analysis. The later part will elaborate on the formal representation standards,

which will ensure mapping of the concepts of the informal model to the neutral formal

representation with preserved semantics.

3.2 Process Modelling for Design Engineering Automation

‘Process modelling is an activity set to be followed to create one or more models of a process

for a certain purpose, usually the representation, explanation, design, specification, analysis,

or control of a given process’ (Amigo et al., 2013, Pg 169).According to the National

Institute of Standards and Technology (NIST), a ‘process model for product realisation is

defined as a computer–interpretable representation of human and machine activities and their

interactions required for realisation of a product. This may include early concept and

configuration design activities, detailed design, prototyping, testing, tooling, fabrication,

assembly and other activities within the scope of the realisation process’ (Lyons et al., 1995).

There are many methods of capturing and representing knowledge for a DEA or a KBE

system. The approach that will be followed as part of this research aligns its concepts to

object process methodology(OPM) whose feature is that it breaks down the knowledge into

three types of entities: objects, processes, and states with objects and processes being higher

level building blocks (Dori, 2002). OPM is also recognized as an International Standards

 53

Organization (ISO) standard in the form of ISO/PRF PAS19450 (Dori, 2002).The OPM

methodology keeps systems as the viewpoint and enables merger of object-oriented and

process-oriented modelling. The states are indicated by links, which exist as both structural

and procedural links representing the static and dynamic behavior of objects in a system.

OPM allows for features such as inheritance, and aggregation of objects and their properties.

It offers object-process language (OPL) and object-process diagram (OPD) as a means of

formal representation of the informal representation (Dori et al., 2003; 2010). The OPL

enables java code generation and automatic generation of UML diagrams and natural text

output. Pertaining to this research, the formal representation of the entire process model

should enable code generation for fulfilling the purpose of process automation.

There are many governing factors for selecting a process modelling technique. Some of the

existing purposes are task scheduling, resource allocation, cost-quality-time trade-offs and

process improvement in terms of design-to-market lead time (Smith and Morrow, 1999). In

order for a process-based model to be interpreted by KBE systems to achieve automation of

processes, the process modelling technique should broadly satisfy the following functions–

• Inter - dependencies between tasks to enable flow of information such as inputs,

outputs, enablers, mechanisms into multiple tasks which will enable dependency

backtracking in the formal representation in the system

• Design process decomposition to the highest level of abstraction of artefacts, which

includes all features such as function, attributes of a process and product with states and

behaviour along with resources and requirements. This also includes control

mechanisms and enablers for a process for failure modes through existing rules,

constraints and logic for successful process adherence and completion. These may be in

the form of geometrical tolerances, manufacturing constraints or material selection

information for a design process

 54

• Object-process relationship by breakdown of the knowledge content primarily in the

form of objects and simultaneous representation of governing processes altering the

state and behaviour of the object

• Computational capability indicating that all aspects of the process model can be

mapped to a software system or formally stored in a system with well-defined syntax

and axioms which can then be queried and inferred (reasoning) to achieve DEA in

terms of process automation

The requirements as functions have been deduced with the help of the following sources

(Calkins et al., 2000; Chapman and Pinfold, 1999, 2001; Chapman et al., 2007; COLOMBO

et al., 2005; Cooper and LaRocca, 2007; Lohith et al., 2013; Prasad, 2006; Skarka, 2007)

The process modelling techniques discussed will be analysed for various functions as

described below -

• Task scheduling and sequential planning

• Cost/time/quality trade-off

• Inter - dependencies between tasks

• Design process decomposition

• Object-process relationship

• Computational capability

Thus techniques, which satisfy the stated criteria out of all described functions, will be

carried forward for formal representation.

3.3 Informal Modelling Techniques for Engineering Processes

Standards such as Design Structure Matrix (DSM), IDEFX suite, Petrinet, Signposting, Role

Activity Diagram (RAD), MBSE based UML/SysML and Business Process Modelling

 55

Notation (BPMN) will be discussed and analysed for capturing engineering design process

knowledge to enable design automation in this section.

A process modelling technique based on a matrix structure for sequencing and scheduling is a

design structure matrix (DSM) (Eppinger et al., 1994). DSM lays emphasis on activity

dependencies and can focus on complicated processes with more than 100 tasks (Smith and

Morrow, 1999). It helps in assessment of risks throughout the design process along with

failure modes (Amigo et al., 2013). DSM as a technique also helps in implementing

concurrent engineering, which is a major advantage when cost is considered an important

parameter. It also helps in generating key performance indicators (KPI) to show status of an

activity (Amigo et al., 2013). However, one of the limitations of DSM is the lack of ability to

manage tasks within an iterative group. Work Transformation Matrix (WTM) is a process

modelling method which helps in decomposition of a larger task into small processes (Smith

and Eppinger, 1997). It is derived from DSM with a modification that the non-diagonal

elements in the matrix are represented by re-work quantity. However, a major shortcoming of

WTM modelling is the assumption of computation of re-work as a linear function of work

from a previous iteration, which is not true in all cases. Both the techniques including DSM

and WTM have strengths in modelling interdependencies of tasks along with process

planning and improvement but fail to capture all of the necessary design decomposition

features along with lack of focus on object-process relationship.

Modelling techniques such as Petrinet and Event Process Chain Diagram (EPC) fulfill the

purpose of measurement of productivity of a process and work flow modelling (Amigo et al.,

2013). Petrinet is based on nodes and arcs to represent information (Murata, 1989) and most

importantly consists of two kinds of nodes in the form of places and transitions. One of the

limitations of Petrinet is its inability to consider time as a process variable (Browning et al.,

2006). Petrinet uses tokens as activity inputs to determine the activity’s state in order to

 56

execute the activity (Knutilla et al., 1998). Petrinet fails to capture contextual information

although it can be used for modelling of interdependencies of tasks (Stacey et al., 2000). To

capture contextual information, modifications can be made to Petrinet. For example, NIST

researchers used Modified Petrinet (MPN) in an object-oriented methodology to include

additional information such as mechanisms and rules for governing failure modes along with

resources in the form of people, machines and tools in order to implement computer aided

concurrent engineering (CACE) (Lyons et al., 1995). Thus MPN can be used to indicate

inter-dependencies within a process along with design decomposition features. An Event

Process Chain diagram(EPC) helps in generating tools for benchmarking along with

documentation of design data (Amigo et al., 2013; Browning, 2009). Both EPC and Petrinet

techniques can be used for simulation of design process, which indicates the behaviour of the

process in different scenarios. EPC fails to capture design decomposition features but MPN

allows the capturing of design decomposition features along with focus on object-process

relationship.

A modelling method, initially for representing manufacturing systems, but which progressed

to the design process is Integrated Definition for Functional Modelling (IDEF0) (Colquhoun

et al., 1993; FIPS PUBS, 1993). It was derived from Structured Analysis and Design

Technique (SADT). An IDEF0 model comprises of a set of activity boxes referred as ICOM

(Input, Control, Output, and Mechanism). The top level box is the highest fidelity model and

can be represented elaborately in more detail using lower fidelity models (Colquhoun et al.,

1993; Gingele et al., 2002). The ICOM activity box for IDEF0 is illustrated with the help of

Figure 3-1. Based on MOKA methodology, IDEFO was used with control and resources by

developing Onto-Process for the production design domain in context to ICARE forms for

automation with a KBE perspective (Martínez-Pellitero et al., 2011). PC-PACK was used as a

knowledge acquisition tool for knowledge capture of inspection planning process. IDEF0 was

 57

also used by (Gómez et al., 2013) along with UML notation as an information model for

conceptual assembly design and its process automation with a KBE perspective.

Figure 3-1: IDEF0 higher fidelity activity box with an example (PUBs, F.I.P.S, 1993)

Although IDEF0 was found to be a very detailed graphical representation of the processes

(Al-Ahmari and Ridgway, 1999) with all the control parameters, it was considered to be time

consuming. A major shortcoming of the IDEF0 approach was its lack of consideration of

time as a variable. IDEF1 was introduced after IDEF0 and was based on information

modelling instead of IDEF0 functional modelling. It shows the relation between constraints

and is based on entity relationships (Lyons et al., 1995; Mayer, 1992). IDEF1 lays emphasis

on representing information based on a class of entities with attributes to define their

behaviour (Lingzhi et al., 1996). Thus it can be used to model real world objects as well as

information required to manage an enterprise. IDEF2 was introduced to address a major

shortcoming of earlier IDEFX versions for their lack of inclusion of time. It was supposed to

be dynamic but was not successfully implemented in commercial systems (Lyons et al.,

1995). IDEF3 shows the relation and logical flow of activities within a process(Mayer et al.,

1995). It is referred to as a process description capture method with time-based behaviour of

activities. Another advantage of IDEF3 was that it can show two views of the process, one

termed Process Flow Network (PFN) which lays emphasis on activity and the other Object

State Transition Network (OSTN) which allows an object – centered view (Knutilla et al.,

 58

1998; Plaia and Carrie, 1995). The IDEF3 process description method lays emphasis on the

flow of junctions, which embeds the time varying behaviour of activities.

IDEF4 is an object-oriented (O-O) design process description and broadly consists of two

models –class and method sub-models with diagrams such as protocol, inheritance and

taxonomy diagrams which can be interlinked and sufficiently capture all intricate parts of a

process (Mayer et al., 1992). The complete IDEF suite, however, adopts slightly different

methods to capture process information, as illustrated. IDEF0 focusses on function

modelling, IDEF1 focusses on information modelling, IDEF2 on simulation modelling,

IDEF3 on detailed flow of junctions in a process flow, IDEF4 on O-O design and IDEF5 on

ontology-based description (Plaia and Carrie, 1995). IDEF4 will be discussed in detail in the

next section on ‘semi-formal modelling methods and languages’ to verify whether it satisfies

the requirements for design process automation. IDEF5 will be discussed under ‘formal

representation methods’.

A Role Activity Diagram (RAD) enables a graphic view of the process with interactions

between various processes. It allows an object-oriented (O-O) view of the process with

changes in behaviour of the object with activities (Aguilar-Saven and Ruth, 2004). However,

one of the limitations of RAD is its inability to decompose the high level processes to lower

levels of process with precise details. RAD can be used to model workflows for

improvement. RAD can be visualised through MS Visio (Shukla et al., 2014) but it captures

high level aspects with activities assigned to roles for a particular system but doesn’t capture

design decomposition features as stated in the requirements for design automation.

A Data Flow Diagram (DFD) shows the flow of process data and information graphically. It

enables decomposition of the process to a lower level of detail (Aguilar-Saven and Ruth,

2004) in contrast to RAD. It allows functional modelling and thus has conceptual similarities

to IDEF0. However, it fails to capture all design decomposition features.

 59

Business Process Modelling Notation (BPMN) is an object-oriented (O-O) modelling method

and is a recognised standard of the Object Modelling Group (OMG) (Sharma et al., 2014). It

includes swim-lanes to show the roles of actors in a system. In this way, it has similarities

with the RAD. BPMN can be used to describe activities with the flow of information similar

to RAD, Unified Modelling Language (UML) activity diagram and EPC. BPMN can be

enhanced to show activities, events, decision nodes, and activity along with actors and roles.

BPMN defines 50 constructs and attributes, which can be grouped together in four categories

– flow objects, connecting objects, swim lanes and artefacts (Muehlen and Recker, 2008).

Flow objects are the most basic constructs and consist of events, activities and gateways.

Connecting objects show interdependencies through arrows and links. Swim lanes can be

used for categorization of activities. Artefacts can be used to add contextual information to

the model. BPMN can be used to model both functional and non-functional requirements

(Heidari et al., 2013), improve business processes in terms of lead time to market for

products, and in the visualisation of processes. However, it fails to capture all of the design

decomposition features to enable design process automation.

The Signposting model is a task-based modelling method. It is based on three core elements –

tasks, states and ‘signposting parameters’, offering three views – task level, process level and

the parameter level (Clarkson and Hamilton, 2000). Depending upon the confidence of the

parameters, a relationship between tasks is constructed. Thus it enables modelling of the

interrelationships between tasks and can also be modelled as a DSM approach. Signposting is

very useful for modelling uncertainty in the design process which is a critical feature

(O’Donovan et al., 2003). It also offers inclusion of additional text information in its core

constructs which can include requirements (Stacey et al., 2000). It allows for the capture of

design decomposition features through the addition of contextual information along with

interdependencies. It is illustrated with the help of Figure 3-2. Power and rigid body are tasks

 60

to be performed. L, M and H are low, medium and high confidence rating of the parameters

such as blade-loads and engine power. After the total confidence of the task is performed

based on these parameters, it is used to determine whether the task will be successfully

completed. Thus task status is derived from confidence mapping of parameters.

Figure 3-2:Using Signposting to derive task status from confidence mapping of parameters

(Clarkson and Hamilton, 2000)

3.4 Semi-formal Modelling Methods and Languages for Engineering

Processes (Light weight formalisms)

As per the context of a formal representation of an informal process model to enable DEA,

there exists a boundary between informal and formal modelling. All the informal process

modelling techniques can be used to capture process-based data in a human readable form or

natural text output form. Similarly, languages like UML and SysML can be used both to

capture data and represent it formally using tools. Alternatively, any informal method of

capturing data can be converted into XML serialisation, which then becomes a formal

representation. A formal representation is a low level machine-readable format, which may or

may not be easy to understand by humans as against a natural text output, but offers ease of

 61

processing by machines. XML is a data modelling language, which can be used for

representing information as tags and exchanging between different applications (Chung and

Lee, 2002). XML as a basic language consists of a prolog, elements and an optional epilog

(Antoniou and Van Harmelen, 2004). The prolog consists of an XML declaration.

‘UML is a language for specifying, visualizing, constructing and documenting the artifacts of

software systems, as well as for business modelling and other non-software systems’

(Aguilar-Saven and Ruth, 2004).UML version 1.4.2 is considered as an international standard

as specified by the OMG in the form of ISO/IEC 19501 (ISO, 2005; Weilkiens, 2007).

Various versions of UML exist, starting from OMG recognition of version 1.3 in 2000 to

version 1.4 in 2001 to version 2.5 in June 2015 (OMG, 2016). UML version 2 is defined by

ISO 19505 (ISO, 2012).

UML is an MBSE approach and utilises object-oriented techniques and nine types of

diagrams to model and exhibit information in the form of: class, object, state-chart, activity,

sequence, collaboration, use-case, component and deployment diagrams (Aguilar-Saven and

Ruth, 2004). UML 2.0 illustrates both structural and behavioural aspects of a system.

According to Tim Weilkiens, it illustrates structural aspects through class diagram,

component diagram, object diagram, composite structure diagram, deployment diagram and

package diagram and behavioural aspects through activity diagram, use case diagram, state

machine diagram, sequence diagram, communication diagram, timing diagram and

interaction overview diagram (Weilkiens, 2007). There are three main modelling viewpoints

in UML – use-case, static and dynamic models (Kim et al., 2003). The use case models

define the generic processes that the system should handle. They provide a graphical

description and although offer a very brief description, they are similar in principle to IDEF

as a means of communication through graphical display. The static view includes class

diagrams, which enable a static view in terms of objects and relationships within objects of a

 62

class. The dynamic modelling view enables communication between the system objects. For

dynamic modelling UML utilises four types of diagram- state, sequence, collaboration and

activity diagrams (Kim et al., 2003). UML can be used as an informal modelling technique

and then maps to a formal representation through a final diagrammatic layer known as

implementation diagrams.

Systems modelling language (SysML) was derived from UML as part of MBSE for the

modelling of complex systems involving real life objects (Weilkiens, 2007). SysML inherits a

lot of properties from UML with the addition of two types of diagram – requirement and

parametric diagrams. It has minor variations on UML. Blocks in SysML replace UML

classes. The class diagram in UML is replaced by a block definition diagram in SysML and

the composite structure diagram in UML is replaced by an internal block diagram in SysML

(Weilkiens, 2007). A very important point about SysML is that the models can be exchanged

via a neutral format in the form of ISO AP233 (discussed later). Both UML and SysML with

multiple viewpoints can exhibit and represent design decomposition features along with

interdependencies of tasks.

IDEF4 as a derivation of IDEF features but with a focus on object-oriented technique and is

similar to UML in terms of layering and process views. Both are object-oriented modelling

techniques, which are necessary for capturing processes and representing in a neutral format

for process automation. ‘IDEF4 is an object-oriented design method for developing

component - based client server systems. It has been designed to support smooth transition

from the application domain and requirements analysis models to the design and to actual

source code generation’ (Mayer et al., 1992). IDEF4 provides three layers – system design,

application design and low-level design. Thus it decomposes design into higher level of

abstraction. Along with the three design models, IDEF4 includes a design rationale

component. In IDEF4, symbols such as O, R, L, M, A, E are used to denote objects, relations,

 63

links, methods, attributes and events respectively (Mayer et al., 1992). Thus its concepts

become similar to UML by focusing on object-oriented modelling and by providing multiple

layers of the design process. However, the design rationale component in IDEF4 is an

additional feature and provides the designer with a wider view of the design data. This makes

IDEF4 suitable for capturing all of the design decomposition features required for process

automation. It also enables inter-dependencies between tasks along with illustrating changes

in the state of an object with governing processes propagating throughout the model with

object-oriented (O-O) modelling.

3.5 Comparative analysis of informal and semiformal modelling methods

and languages for knowledge modelling of an engineering process

As stated earlier, the majority of process modelling techniques for knowledge acquisition or

capturing can be visualized or edited with the help of existing tools. Some examples are – use

of SIMAN / ARENA tool for simulation of IDEF0 (Al-Ahmari and Ridgway, 1999), ProCAP

for IDEF3 (Grüninger, 2009), and CAM for construction and visualisation of Signposting

(Wynn et al., 2010). Thus computational capability will be excluded from the criteria in the

analysis table as any process-based method of capture can be converted into XML syntax and

stored in a system with a formal representation. The other three criteria i.e. inter -

dependencies between tasks, design process decomposition and object-process relationship

will be the most important functions in evaluating whether a process model can broadly

capture enough information which when mapped onto a formal representation can achieve

process automation. The analysis is shown in Table 3-1

 64

Table3-1: Analysis of informal and semiformal modelling methods and languages for

capturing engineering process knowledge to enable design process automation

Modelling

Methods &

Languages

Functions

References

Required for mapping to formal representation

to enable design process automation

Task

Scheduling /

Sequential

Planning

Cost /

Time /

Quality

Trade-off

Interdepende

ncies between

tasks

Design Process

Decomposition

Object-

Process

Relationship

DSM ✓ ✓ ✓

(Amigo et al., 2013;

Browning, 2009;

Eppinger et al., 1994;

Smith and Morrow,

1999; Wang et al.,

2002)

WTM ✓ ✓ ✓

(Amigo et al., 2013;

Smith and Eppinger,

1997; Smith and

Morrow, 1999)

Petrinet ✓ ✓

(Amigo et al., 2013;

Browning et al., 2006;

Grüninger and Menzel,

2003; Knutilla et al.,

1998; Lyons et al.,

1995; Wang et al.,

2002)

MPN (e.g.

Coloured

Petrinet,

Timed

Petrinet)

✓ ✓ ✓ ✓

(Aguilar-Saven and

Ruth, 2004; Amigo et

al., 2013; Browning et

al., 2006; Knutilla et al.,

1998; Lyons et al.,

1995)

EPC ✓ ✓
(Amigo et al., 2013;

Browning, 2009)

IDEF0,1,2,3,4,

5
✓ ✓ ✓ ✓

(Aguilar-Saven and

Ruth, 2004; Al-Ahmari

and Ridgway, 1999;

Amigo et al., 2013;

Browning, 2009;

Colquhoun et al., 1993;

FIPS PUBS, 1993;

Gingele et al., 2002;

Grüninger and Menzel,

2003; Klein et al., 2014;

Knutilla et al., 1998;

Lyons et al., 1995;

Mayer et al., 1995,

1992; Plaia and Carrie,

1995; Wang et al.,

2002)

RAD ✓ ✓ ✓

(Aguilar-Saven and

Ruth, 2004; Badica and

Badica, 2011; Badica et

al., 2005, 2003; Holt et

al., 1983; Shukla et al.,

2014)

DFD ✓ ✓

(Aguilar-Saven and

Ruth, 2004; Al-Ahmari

and Ridgway, 1999;

Amigo et al., 2013;

Colquhoun et al., 1993)

 65

Signposting ✓ ✓ ✓ ✓ ✓

(Amigo et al., 2013;

Baxter et al., 2007;

Browning, 2002;

Browning et al., 2006;

Clarkson and Hamilton,

2000; O’Donovan et al.,

2003; Stacey et al.,

2000; Wynn et al.,

2010)

UML, SysML ✓ ✓ ✓ ✓

(Badica and Badica,

2011; Booch et al.,

1999; Chen and Chen,

2005; Kim et al., 2003;

Klein et al., 2014; Nan

and Li, 2012; Plateaux

et al., 2009; Pooley and

King, 1999; Sharma et

al., 2014; Vernadat,

2002; Weilkiens, 2007)

BPMN ✓ ✓ ✓

(Amigo et al., 2013;

Badica and Badica,

2011; Heidari et al.,

2013; Scheuerlein et al.,

2012; Sharma et al.,

2014)

3.6 Formal modelling and representation techniques for engineering

processes and DEA

In order to perform DEA from the process model, the focus of representation should be on

low level machine interpretation instead of natural language (Patil, 2005; Szykman et al.,

2000b). This clarifies that the modelling techniques should enable computational reasoning as

just opposed to modelling techniques for human aid (Hsu and Woon, 1998). There are many

existing formal representations, which can be used for representing engineering process

models.

3.6.1 Classification of Formal Representation Standards

Existing process descriptions and process ontologies not based on formal logic provide

inadequate semantics for computational support in context to achieving granular DEA at an

informal/semiformal layer (Gero and Kannengiesser, 2007a; Patil, 2005). The formal

representation standards for process models for DEA can be divided as –

 66

1. Semiformal/Formal and graphical representations (Non logic based) – these can be

further subdivided into two categories –

a. Semiformal/lightweight formalisms that support graphical representation –

UML/SysML, OPM.

b. Formal representations that support graphical representation and support

reasoning - frames and semantic networks

2. Logic based and ontology languages – Knowledge Interchange Format (KIF), Common

Logic (CL) that are semantically based on formal logic. Ontology based languages as

devised or encoded from formal logic also belong to this category. These include

ontologies encrypted with both Description Logic (DL) and First Order Logic (FOL)

based semantics such as Web Ontology Language (OWL) based on DL, Process

Specification Language (PSL) and IDEF5 based on FOL and rule languages such as

RuleML, RIF based on horn logic semantics. SWRL is an example of hybrid

representation standard as derived from logic-based approach. Ontology language such

as Gellish in the form of STEPlib is not based on formal logic. Although not officially

from the logic paradigm, production rules can be considered as knowledge

representation (KR) where production rule dialects have been devised for both RIF and

RuleML.

3. Schema based representations – STEP schemas modelled and represented in EXPRESS

language, RDF/RDFS with XML serialisation

4. O-O (Object-oriented) programming languages – examples are LISP, Java and C/C++

as programming languages, which can be used to implement schemas and models for

machine interpretation such as UML/SysML models as well. They use classes and

methods to represent the behaviour of the objects. The attributes are encoded in the

class description. They are also used to embed design automation facilities for e.g.

 67

proprietary CAD enabled automation such as CATIA knowledgeware uses C++ and

AML as a proprietary KBE system (TechnoSoft Inc, 2003) is based on a different and

much more dynamic language in the form of LISP thus making it generative and

demand driven along with enabling dependency backtracking. A lot of other proprietary

KBE systems such as GenDL are also based on dialects of LISP originated languages.

LISP embeds multi-paradigm programming features on top of O-O programming.

3.6.2 Reasoning: DEA

Reasoning techniques for DEA systems or pertaining to knowledge based engineering

representation can be broadly classified as follows – rule based (forward chaining and

backward chaining), case based and model based (Van der Velden, 2008). There are other

reasoning techniques such as fuzzy logic and neural networks. Reasoning can be classified as

monotonic reasoning and non-monotonic reasoning. Monotonic reasoning indicates that a

conclusion once inferred from the knowledge base can’t be altered if new knowledge entered

is related to the conclusion. On the other hand, non-monotonic reasoning allows conclusion

once inferred from the knowledge base to be altered if new knowledge entered is related to

the query (Ivanov et al., 2015; Olivetti, 2011; Poole and Mackworth, 2010). Thus non-

monotonic reasoning adopts closed world assumption (CWA) in the sense unless new

information is added, the knowledge base assumes the knowledge base is complete. As and

when the new information is added the generated results can be altered. For example,

production rules follow CWA. On the other hand, monotonic reasoning follows open world

assumption (OWA) in which even after new information is added, the results generated by

the reasoning engine don’t change. DL support monotonic reasoning and follow OWA. Thus

languages such as OWL based on DL support monotonic reasoning following OWA.

There is always a trade-off between reasoning and expressive power of a formal

representation standard (Yahia et al., 2012). Thus the relationship between expressiveness

 68

and reasoning is inverse, the more expressive the language its decidability or efficiency of

reasoning decreases. Although FOL offers more expressiveness as compared to DL, it does

so at the expense of computational efficiency in reasoning.

3.7 Description of formal representation standards

Process models can be shared across multiple domains using different representation

formalisms but this may have problems due to syntax, semantics and axioms. The objective

of the following section is to discuss and narrow down a few existing neutral formal

representation techniques of the informal/semiformal model in terms of these issues that

should help integration with multiple platforms and provide interoperability. The explanation

will be performed in accordance with the classification of formal representation standards in

section 3.6.1.

3.7.1 Object Oriented (O-O) modelling standards – UML and SysML

Both MBSE languages in the form of UML and SysML as O-O modelling languages have

been discussed in section 3.4. They can also be referred as lightweight formalisms or

semiformal representations. UML uses Object Constraint Language (OCL) in order to define

rules and constraints for consistency checking across models (Vaziri and Jackson, 2000).

UML data models follow CWA (Hennig et al., 2015). SysML is a language that can be used

for capturing and representing of process-based data for a complex system and can be viewed

as a formal representation with the help of tools such as visual paradigm. SysML models,

once created, can be exchanged via ISO AP 233 of STEP(Weilkiens, 2007). Some of the

important APs of STEP for consideration are AP233, AP213, Part49 and AP242 for formal

storage of informal process models. However, both UML / SysML can capture process and

product semantics in a lightweight formalism approach which needs to be transformed to a

formal layer, which ensures common semantics through its axioms (Chungoora et al., 2013a).

 69

Researchers based at NIST have used UML based lightweight neutral representations

for product knowledge such as form, function and behaviour along with design rationale for

developing Core Product Model (CPM) and product assembly features such as tolerances,

kinematics at system level for Open Assembly Model (OAM) (Fenves et al., 2008; J. H. Lee

et al., 2010; Rachuri et al., 2006; Sudarsan et al., 2005). There are other concepts related to

product structure such as part/assembly and extensible geometrical knowledge such as

features, tolerance, material and manufacturing process as well. Along with these product

structure and manufacturing concepts, function, behaviour and design rationale have been

represented for knowledge sharing using UML class based representation in CPM/OAM for

product knowledge in context to PLM systems (Jae H. Lee et al., 2010; Jae Hyun. Lee et al.,

2010; Rachuri et al., 2005; Sudarsan et al., 2005).UML and SysML based representation such

as class diagram, block diagram, parametric diagram have been used for functional and

behavioural representation of mechatronic products (Alvarez Cabrera et al., 2009;

Woestenenk et al., 2010). Design rationale has been discussed as the decision making reasons

for engineering design and manufacturing activities and has been represented using UML

based lightweight notation in context to CAD systems with interaction through an application

programming interface (API) (Poorkiany et al., 2016) and generic product models as part of

PD (Medeiros et al., 2005; Nomaguchi and Fujita, 2013). Design rationale was successfully

captured using Design Rationale Editor (DRed 2.0) utilising UML class diagram with object

classes and relationships based on an initial version of DRed with functional analysis in

collaboration with Rolls Royce for turbine blades in context to PLM systems (Bracewell et

al., 2009a, 2009b, 2004). DRed/DRed 2.0 as graphical representation were developed after

the limitations of a previous informal representation for design rationale in the form of Issue

Based Information System (IBIS) was realised (Eng et al., 2011).

 70

3.7.2 Object – Process Methodology (OPM)

As discussed earlier, OPM as a methodology enables formal representation in the form of

Object Process Diagrams (OPD) and Object Process Language (OPL) (Dori et al., 2010).

OPM models can be converted to other modelling languages and notations such as BPMN,

UML/SysML as well (Grobshtein and Dori, 2011). However, it uses RDF/XML based

representation of its unified object-process viewpoint of a system (Dori, 2004). Following the

model based system paradigm (MBSE), Tesperanto language was developed as a next layer

to OPL as an enhancement. It is also referred as ‘Technical Esperanto’. The main purpose of

Tesperanto both as a methodology and language is to improve the quality of technical

knowledge in a document following the structure of OPM methodology (Blekhman et al.,

2015; Blekhman and Dori, 2013). One of the very important criteria here is that OPL is

suitable as a low level language for machine readability and code generation but not very

clear and concise for human interpretation. Tesperanto as an enhancement on top of OPL

makes it more human readable. Tesperanto enables both model to text generation and text to

model generation (Blekhman et al., 2015; Blekhman and Dori, 2013). Thus, in-spite of this

strength, this research would be deviating away from Tesperanto as it is more focussed on

high level representation of knowledge from a technical document whereas OPL is more

focussed on low level machine interpretation.

3.7.3 Frames and Semantic Networks

Frames are a formal method of representing an entity and its associated attributes and values

(Minsky et al., 1975). They consist of data structures in the form of slots for allocating the

attributes and values for a particular object (La Rocca, 2011; Obitko, 2007a; Prasad, 2006;

Robin, 2013). The slots can have both values as attributes as well as encode methods or rules.

They can also encode process knowledge or a production rule. Frames provide encapsulation

and inheritance of object properties through slots, so in this manner provide similarities with

 71

O-O paradigm. Through inheritance they can show interdependencies between object

properties. Frames can exhibit declarative knowledge through attributes and procedural

knowledge through methods (Negnevitsky, 2005). Models can be built using frames referred

as frame based models or systems (Obitko, 2007a; Wang et al., 2006). These models use

inheritance of slot values and attributes for marking interdependencies between various

frames. An example of a frame-based model is Open Knowledge Base Connectivity (OKBC).

OKBC can use frames properties to create various instances of a class and follows the O-O

paradigm. Frames allow reasoning through two methods in the form of when-needed and

when-changed (La Rocca, 2011). For ‘when-needed’ the system executes and generates the

value of a slot when demanded by a user. For ‘when-changed’, often referred as demons, the

system executes and generates the value of a slot as soon as the user makes any change.

Semantic networks (Semantic nets) were introduced by Margaret Masterman in 1961 (Sowa,

2008a). Semantic nets, also referred as concept network, is a graphical representation which

uses vertices or nodes to illustrate concepts and edges to illustrate relations between the

concepts (Obitko, 2007b). Semantic nets are mostly used for representing propositional

information (Robin, 2013) and thus are also referred as propositional net. The vertices can

represent physical objects or concepts. Semantic nets also support automated systems for

reasoning on the knowledge represented (Sowa, 2015).

3.7.4 Ontology Languages

Various ontology languages can be devised from DL and FOL. As stated in section 3.6, PSL,

OWL and IDEF5 are ontology-based representations. An ontology-based approach helps

formalise the concepts and provides axioms as a formal means of constraining the meaning of

the concepts in the language. Ontology is defined as the taxonomy of concepts and their

definitions supported by a logical theory. Ontology defines a set of terms, entities and

objects, classes and relationships along with formal definitions and axioms to constrain the

 72

meaning of terms (Pouchard et al., 2000). Ontology can also be defined as ‘a requirement for

conceptualization and illustrates a set of representation primitives with which a domain of

knowledge can be modeled’. It provides machine-readable syntax for a domain knowledge

(Mizoguchi, 2003). Using ontology, declarative formalism is used to represent domain

knowledge as a set of objects. This set of objects represented is referred as universe of

discourse (UoD) (Gruber, 1995). Thus ontology enables interoperability and re-usability of

the data using common semantics of modeled information.

All ontology languages don’t offer same expressivity. The level of expressivity of an

ontology language is governed by its mathematical foundation in the form of logic (Dartigues

et al., 2007). Logic can be defined as a precise and accurate notation for expressing and

representing statements that can be judged whether true or false (Sowa, 2007).The use of

mathematical logic supports automated reasoning. Some ontology languages are based on DL

such as OWL whereas some ontology languages are based on FOL in the form of predicate

logic such as PSL, IDEF5. DL can be considered as a subset or a decidable fragment of FOL

(Obitko, 2007c). According to NIST, ontology languages can be classified as frame based,

description logic, predicate logic and hybrid (Barkmeyer et al., 2003).

Some of the other ontology-based representations not based on formal logic, are Core Plan

Representation (CPR), Workflow Process Definition Language (WPDL), and Planning

Domain Definition Language (PDDL). The ontologies for WPDL and PDDL do provide

common semantics but are unable to provide axioms as a formal means of maintaining the

semantics in the language (Gruninger, 2004).CPR (Pease, 1998) was initiated by the Defense

Advanced Research Projects Agency (DARPA)-sponsored Object Model Working Group

(OMWG). The basic concepts in CPR are action resource, actor, and objective with

additional concepts such as plan and time point. However CPR as a language does not enable

representation of all design decomposition features through its ontology.

 73

3.7.5 Description Logic Based Languages

Description logic (DL) is a knowledge representation (KR) formalism that evolved from

semantic networks and frames but was considered as a subset or fragment of first order

predicate logic (FOPL) (Baader et al., 2003; Wang et al., 2004). DL is primarily used for

representing formal description of concepts and relations (Obitko, 2007d). A knowledgebase

formalised by DL illustrates two components – ‘TBox’ and an ‘ABox’ (Baader et al., 2003).

TBox exhibits intensional knowledge through terminology that is the concepts and their roles.

ABox illustrates extensional knowledge also referred as assertional knowledge, which is

relevant to the individuals for a particular domain of discourse. Thus DL based

representations represent domain knowledge by first defining relevant concepts of the domain

in the form of terminology and then using the concepts to specify the properties of objects

and individuals in the domain. Pertaining to this research, the domain is the engineering

design process for DEA. Languages based on DL support automated reasoning.

3.7.5.1 Web Ontology Language (OWL)

OWL is a web ontology language based on DL for creating and sharing ontologies on the

World Wide Web and is regarded as a W3C recommendation (Bechhofer, 2009). OWL was

developed as an extension of the Resource Description Framework (RDF) and is derived

from the (DAML + OIL) ontology. OWL has three variants – OWL Lite, OWL DL and OWL

Full(Wang et al., 2006, 2004). OWL lite offers ease of implementation but offers the least of

the OWL constructs. It is based on description logic SHIF. OWL DL is based on descriptive

logic and offers more constructs and, more importantly, reasoning ability. It is based on

description logic SHOIN. OWL Full offers the most comprehensive constructs but deviates

from reasoning ability and offers less ease of computation compared to OWL DL (Obitko,

2007e). OWL-S, as a semantic markup for web services built on OWL, enables viewing of

process with inputs, outputs, parameters, precondition and results (Martin et al., 2004). Thus

 74

selection of a particular OWL Language is critical in order to represent design decomposition

features (Bechhofer, 2009; W3C, 2012). OWL is built upon RDF/XML and RDFS supports

interoperable ontological representation of concepts over the semantic web and enables

automated reasoning (Bechhofer, 2009; Hay, 2006; W3C, 2012). It follows OWA (Hennig et

al., 2015). It imposes cardinality upon its classes and properties. OWL adds properties such

as relations between classes for e.g. disjointness, cardinality of properties, transitivity as

compared to RDF Schema (RDFS)(Zhao and Liu, 2008a).

3.7.5.2 Usage of OWL in Engineering Design, Manufacturing and DEA

OWL ontology models for detailed product models including assembly features such as

tolerances, kinematics at system level in OAM along with function and behaviour in

CPM/OAM as abstract concepts have also been developed for usage in PLM systems

(Fiorentini et al., 2007; Sarigecili et al., 2014). OWL ontology has been demonstrated for

manufacturing domain for extensive usage with all machining processes for example

MASON and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012).

OWL ontology has been used for modelling and formal representation of design rationale for

product knowledge (Li et al., 2014) and also in context to CAD systems (Witherell et al.,

2007). Ontology based representation for function and behaviour representation for various

products such as gears, shafts and conveyors with focus on knowledge management has been

performed with querying on the ontology models (Kitamura, 2006; Kitamura and Mizoguchi,

2004). The advancement of DRed 2.0 for knowledge modelling of design rationale for

turbine blades design in the context of PLM systems utilising UML class diagrams was

formally represented using OWL/SWRL ontology for computational and system processing

of the information (Bracewell et al., 2009a).

Product semantic representation language (PSRL) is another ontology-based language, which

is based on (DAML + OIL) and enables open standard usage. It focuses on neutral

 75

representation of product data. Various concepts of non-geometric information such as design

rationale, function, behaviour and part dependencies form an integral part of product data

(Patil et al., 2005). PSRL based on DL with its syntax based on RDF/XML can be used for

product data modelling and computer aided process planning (Liu et al., 2010).

Work has been performed to develop semantic product models with geometric kernels using

OWL/SWRL ontology across heterogeneous CAD systems with various product features and

shapes such as surfaces, faces, edges, vertices, product parameters, datum planes and axis of

rotation (Dartigues et al., 2007; Lu et al., 2016; Noh and Suh, 2008; Qin et al., 2016; Tessier

and Wang, 2013; Zhan et al., 2010). Similarly, OWL has been used as neutral formal logic

representation language with automated reasoning in context to consistency checking and

reducing redundancies during design stage for product models with geometric representations

as per heterogeneous CAD and PLM systems (Franke et al., 2011).

The use of OWL ontology with formal data structures for engineering design knowledge

management with design process functional requirements, manufacturing processes, material

selection for representation along with inference and querying for automation has been

performed (Kitamura and Mizoguchi, 2004; Li et al., 2009; Li and Ramani, 2007; Mehrpoor

et al., 2013). The role of OWL ontology in the context of DEA with a KBE approach has

been adopted and verified (El Kadiri et al., 2015; Furini et al., 2016; Kitamura and

Mizoguchi, 2013).

3.7.6 First-Order Logic Based Languages

First order logic (FOL) is commonly used as a basis for KR enabling automated theorem

proving and usage across the semantic web (Gruninger et al., 2013). FOL extends the

expressiveness of propositional logic by adding quantifiers and variables to the existing

propositional connectives of conjunction, disjunction, negation, implication and bi-

conditional. A universal quantifier expresses that a relation holds true for all instances of a

 76

variable whereas an existential quantifier expresses that a relation holds true for some

specified instances of a variable (Gruninger et al., 2013). DL acts as a subset of FOL.

A graphical representation based on semantic nets and existential graphs is Conceptual

Graphs (CG’s). CG’s provides a logic formalism to illustrate classes, relations, individuals

and quantifiers (Obitko, 2007f; Sowa, 2008a). The simple version of CG’s is referred as Core

CG’s and evolved from simple existential graphs developed by Charles Sanders Peirce.

Extended CG’s provide a superset of the core CG’s (Sowa, 2008a). Although the graphical

representation of CG’s in its linear form (Conceptual Graph Display Form) evolves from

semantic nets but the CG’s express same semantics as FOL based on predicate calculus also

referred as first order predicate logic (FOPL). The instances of concepts are represented in

rectangle and relations between concepts as ellipse or circle. Some of the logical operators

used by Conceptual Graph Display Form are conjunction and existential quantifier in order to

translate the natural language to logic formalism. The formal representation of CG’s is

referred as Conceptual Graph Interchange Format (CGIF) is a part of Common Logic (CL) in

the form of ISO 24707 (Sowa, 2011). CL referred as ISO/IEC 24707 was developed as a

framework for a family of logic based languages to allow information sharing and exchange

with standardised syntax and semantics (Gruninger et al., 2013; Sowa, 2008b). CL evolved

from both CG’s and KIF to be built into single ISO project in the form of ISO/IEC 24707

(Sowa, 2008a). CL offers three dialects –

• Common Logic Interchange Format (CLIF)

• Conceptual Graph Interchange Format (CGIF)

• XCL – XML based notation for Common Logic

(Obitko, 2007g; Sowa, 2011, 2008a, 2008b)

CGIF also exists in two forms – core CGIF and extended CGIF (Sowa, 2008a). Core CGIF

expresses full semantics of CL. Its dialect maps to Pierce’s existential graphs. Core CGIF

 77

uses primitives such as conjunction, negation and existential quantifier. Extended CGIF adds

universal quantifier, type labels for restricting the range of quantifiers, Boolean contexts with

type labels such as - If, Then, Either, Or, Equivalence, and Iff, and the option of importing

external text into any CGIF text (Sowa, 2008a). Thus CL can be used as a logic based

formalism for representing knowledge and allowing automated reasoning. It can be used as a

neutral representation of knowledge allowing re-usability (Gruninger et al., 2013).

KIF (Genesereth et al., 1992) as a computer-oriented language was developed by the

Interlingua Working Group of the DARPA knowledge sharing effort (Knutilla et al., 1998).

KIF as a language expresses its semantics in first order predicate logic and is syntactically

based on LISP (Hayes and Menzel, 2001; Obitko, 2007h). It has formally defined semantics

and breaks down knowledge into the form of objects with related attributes, processes and

functions. Thus it aligns its methodology with OPM (Dori, 2002) and solves a major issue of

pre-defined formal semantics. As stated earlier, OPM as ISO 19450 forms a part of ISO TC

184 / SC5 (ISO, 2015). ISO TC 184 is managed by the International Standards Organization

(ISO) and covers “Standardization in the field of industrial automation and integration

concerning discrete part manufacturing and encompassing the applications of multiple

technologies, i.e. information systems, machines and equipment and telecommunications”

(Pouchard et al., 2005).

3.7.6.1 Process Specification Language (PSL)

To address the shortcoming of formulating common semantics and as a standard for the

exchange of process specification, PSL was designed to facilitate correct and complete

exchange of process information among manufacturing systems, such as scheduling, process

modeling, process planning, production planning, simulation, project management, work flow

and business process re-engineering (Grüninger and Menzel, 2003). A major purpose of PSL

was to enable interoperability of processes utilising different process models and process

 78

representations (Pouchard et al., 2005). PSL ontology is written in KIF format and forms ISO

18629 as an integral part of ISO TC 184 (Pouchard et al., 2005). PSL ontology is based on

FOL(Pouchard et al., 2000). Ontologies based on FOL exhibit more expressiveness compared

to DL and can run inference on the modelled information. KIF exists as a predecessor to

CLIF (Gruninger et al., 2013). Thus PSL can be considered as a process ontology language

based on CLIF (Gruninger et al., 2013; NIST, 2008, 2007). PSL architecture consists of two

parts – PSL Core (Foundation theories) and a set of extensions which can be mapped to

EXPRESS schemas, UML and XML (Gruninger and Cutting-Decelle, 2000; Pouchard et al.,

2005).

PSL ontology is divided into the following four theories – Core theories, Duration and

ordering theories, Resource theories and Actor and agent theories (Gruninger, 2004). The

PSL core provides four kinds of elements as primitive classes – object, activity, activity

occurrence and time point. Within PSL ontology, ‘activity’ can be stated as ‘a repeatable

pattern of behaviour’ and ‘activity occurrence’ can be stated as ‘concrete instantiation of this

pattern’ (Grüninger, 2009). A crucial difference between activity occurrence and time point is

that activity occurrence have preconditions and effects in the form of postconditions whereas

time point just follow linear ordering of time and don’t have any preconditions and

postconditions. The three relations in the PSL core are – before, occurrence_of and

participates_in and the two functions are beginof and endof (NIST, 2004). To represent an

activity-based description, PSL uses an activity role declaration (ARD) along with object

declarations to describe objects being affected by the activities of the process (Grüninger and

Menzel, 2003). The extensions allow for temporal relations between activities. Thus the use

of extensions with experimentation may be used for representing design decomposition

features other than the core theory. As PSL deals with standardized syntax and semantic

sharing of modeled information, it is consistent with ISO 10303, ISO 13584 (PLIB) and ISO

 79

15531 (MANDATE) (Gruninger and Cutting-Decelle, 2000). PSL axioms can represent

inputs, outputs and parameters at both activity and the activity occurrence level but mainly

focus on process specifications as opposed to process execution at run time (Bock and

Gruninger, 2004). An external automated theorem prover is required for execution of PSL

specifications as inference (Bock and Gruninger, 2005).

3.7.6.2 Usage of PSL in Engineering - Manufacturing and Production

PSL core through its object and activity description can represent object material and

resources as inputs and outputs for product realisation along with activity interdependency in

complex manufacturing processes (Qiao et al., 2011). PSL extensions allow for sequencing

and ordering of activities including OR, AND relations and inclusion of sub activities thus

allowing process logic. PSL extensions can also represent object features and form such as

planes, edges and surfaces in correlation to activity flow from a manufacturing point of view

for example machining activities such as milling, drilling, reaming, turning, boring and

grinding. It represents the knowledge in concise neutral formal semantics for interoperable

machine interpretation (Qiao et al., 2011).

For the aerospace industry, process ontologies such as PSL have been used and validated for

knowledge sharing and decision-making for PD but mainly for manufacturing and production

domain with knowledge sharing across product design such as those developed by (Usman,

2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et al., 2013a). Work performed

by both Usman and Chungoora focussed on machining processes and the knowledge

accessibility with engineering design. Min_precedes as a PSL axiom was extensively used to

model manufacturing process flow and sequencing by (Usman, 2012). Min_precedes is

transitive which can be accessed during inference. However, their applicability has been

demonstrated for wide usage in PLM Systems. PSL has been demonstrated for process

modelling for paint and dry manufacturing process with focus on activity inputs and outputs

 80

along with object description (Grüninger and Menzel, 2003). PSL has also been used for

process specification for cutting process by (Deshayes et al., 2005). PSL was effectively

used as a neutral representation of process specification for exchange between heterogeneous

manufacturing software applications such as process planning, scheduling and workflow

execution (Schlenoff et al., 1999).

IDEF5 is another ontology-based formal representation based on the basic concepts of

IDEFX series. It is also written in KIF format and is based on FOL (Benjamin et al., 1994).

The IDEF5 ontology language comprises two languages: the IDEF5 Schematic Language and

the IDEF5 elaboration language. The schematic language is a graphical language that allows

input of information through an automated ontology capture tool. The elaboration language is

a structured text language with full expressive power of FOL which allows input of

information with detailed context (Benjamin et al., 1994). It enables storage and

representation of classes, kinds and first and second order relations as well through the

ontology. Both PSL and IDEF5 as ontology representations based on FOL initially evolved

from KIF format, which originated in LISP application.

3.7.7 Gellish

Gellish is a neutral ontology called STEPlib, although not based on formal logic. Gellish is

extensible and includes concepts from ISO 15926 and ISO 10303 (Van Renssen, 2003, 2005).

Gellish is fact oriented instead of being purely O-O and can represent relations between two

objects with preserved semantics. Some of the basic concepts in Gellish are – anything, role,

relations such as plays role & requires role, individual things, kind of things along with single

and multiple things with specialisation of classes. Gellish models can be exchanged by

different application domains using XML (Van Renssen, 2003). It can be used for

representing both product knowledge as well as design process knowledge including function

and behaviour of an artefact.

 81

3.7.8 Rule Languages (Logic based)

Rule Markup Language (RuleML) is a format or a language for representing and sharing of

rules on the World Wide Web. It is based upon XML, RDF and OWL (Boley et al., 2005).

RuleML also offers 2 modular sublanguages – Derivation RuleML and Production Rule (PR)

RuleML (Hirtle et al., 2006). RuleML has 3 parts as different specifications – Deliberation

RuleML, Consumer RuleML and Reaction RuleML(Boley et al., 2016a, 2016b, 2016c).

Another language in the form of Rule Interchange Format (RIF) offers a neutral

representation language for representing rules, logic and constraints. RIF offers 3 dialects –

Core, BLD (Basic Logic Dialect) and PRD (Production Rules Dialect)(Feigenbaum et al.,

2013; Kifer and Boley, 2010; Morgenstern et al., 2012). RIF core is the basic language and

offers the least constructs or expressiveness. It is also based on XML format similar to

RuleML. RIF BLD offers logic functions along with equality and built-ins as per positive

horn logic. RIF PRD adds forward chaining of rules to RIF BLD (Feigenbaum et al., 2013).

RIF offers a major advantage as it can be expressed in both XML-based syntax and more

importantly can be extended to AP242 of STEP(Lützenberger et al., 2012). It can integrate

with any platform or a CAD/PDM platform (Colombo et al., 2014).

Semantic Web Rule Language (SWRL) combines OWL DL constructs with Unary/Binary

Datalog subset of RuleML (Horrocks et al., 2004; Kuba, 2012) . Thus it allows horn logic

rules to be expressed in addition to OWL concepts(Glimm et al., 2009; Zhao and Liu, 2008a).

SWRL includes basic functions such as comparison, boolean, strings and math such as

multiply, divide, sin, tan, pow (Golbreich, 2004). Semantic Web Services Language (SWSL)

as a language consists of two languages – SWSL-FOL as a first order logic based language

for defining formal ontology for process models and SWSL-Rules as a rule based language

(Battle et al., 2005).

 82

Reasoning on the rule is performed in many ways. Forward reasoning and backward

reasoning are some of them. Forward reasoning is referred as data driven or eager approach

whereas backward reasoning is referred as goal driven or lazy approach (Negnevitsky, 2005).

In forward reasoning, the system matches the statement against and existing rule and

generates all results, which match the statement. In backward reasoning, the statement is

allocated, as hypothetical goal and the rule will be generated which matches the goal

statement. Backward reasoning takes less time as compared to forward reasoning and only

provides specific solutions whereas forward reasoning generates all possible solutions and

takes more time.

Ontologies have been implemented using OWL for engineering design knowledge primarily

including product model and engineering rules using SWRL on top of OWL for DEA (Sanya

and Shehab, 2015, 2014). Similarly, engineering rules have also been formalised using RIF-

PRD and Content MathML on top of OWL for DEA by (Reijnders, 2012) and RIF for

LinkedDesign project by (Colombo et al., 2014; Klein et al., 2014). MathML is also based on

XML syntax and provides 2 versions for representation of math based rules – Presentation

and Content MathML (Ausbrooks et al., 2014). Presentation MathML provides an inbuilt

library of about 30 elements and Content MathML is more exhaustive with an inbuilt library

of 120 elements with functions for complex equations such as partial differentiation and

matrix on top of basic functions (Bos et al., 2011; W3C, 2016).

3.7.9 Schema based Languages – STEP and VRML

Another important ISO standard for product data exchange is STEP which is also regarded as

ISO 10303 (Pratt, 2001; Zha and Du, 2002). STEP is widely used in industry for representing

and exchanging CAD data in a neutral format (H. Wenzel et al., 2011). STEP not only covers

exchange of geometric information between different CAD formats but includes all product

data throughout the lifecycle (Lützenberger et al., 2012; Tang et al., 2001). STEP uses

 83

EXPRESS (ISO, 2004) as a modelling language to represent objects with related attributes

and properties and adopts features from O-O modelling approach (Krima et al., 2009; Peak et

al., 2004). EXPRESS provides inheritance of objects with data types to represent complex

relationships. Although EXPRESS is machine-readable it can represent only static knowledge

and cannot be executed in its original form (Dong et al., 1997; Tang et al., 2001). The

semantics of the product data in EXPRESS schema is not explicitly specified (Krima et al.,

2009; Sarigecili et al., 2014).

STEP allows various formats for product data representation. Some examples are – ISO

10303-21 for text format, ISO 10303-28 for XML serialization, ISO 10303-22 for API, ISO

10303-41 for product identification and product configuration and ISO 10303-46 for visual

representation (Weilkiens, 2007). STEP, UML, Parts library (PLIB), PSL, Manufacturing

Management Data Exchange (MANDATE) are examples of standardized exchange

specifications for sharing of product and process information in industrial data

(Chandrasegaran et al., 2013). STEP as ISO 10303, PSL as ISO 18629 along with

MANDATE as ISO 15531 all comprise part of ISO TC 184/SC4.

Many conversion mechanisms have been devised from STEP to OWL/SWRL in context to

engineering design. Work has been performed to convert STEP EXPRESS schemas to

OWL/SWRL models for development of detailed neutral and interoperable product models

with geometric knowledge for visual display (Zhao and Liu, 2008a, 2008b). Similar work has

been performed to integrate STEP schemas such as Application Protocol (AP) 203 and Part

21 using EXPRESS schemas to OWL/SWRL based ontologies in order to develop

interoperable product models with geometric knowledge such as Onto-STEP and ONTO-

PDM (Barbau et al., 2012; Krima et al., 2009; Panetto et al., 2012).

Virtual Reality Modeling Language (VRML) is a neutral format for 3D rendering of

geometry and allows exchange of product’s geometric intent and knowledge (Hartman and

 84

Wernecke, 1996; Qin et al., 2003; Web3D, 2017). It offers ease of sharing over the web as

compared to STEP, whichdoesn’t support integration over the web for e.g. STEP AP 203.

However, VRML doesn’t successfully render complete geometric information and retain all

intricate features as compared to STEP for efficient product realisation (Cooper and LaRocca,

2007; Szykman et al., 2000a). X3D, which is XML, based for 3D models also offers ease of

sharing over the web(Web3D, 2017).It is a successor to VRML and is more comprehensive.

3.7.10 Schema based languages - Semantic Web Base Standards

RDF offers representation of information over the World Wide Web and is regarded as a

W3C recommendation (Klyne et al., 2004; Manola et al., 2004). The syntax of RDF describes

information by breaking it into a triple form consisting of subject, object and predicate. It also

offers a formal graphical syntax in the form of an RDF Graph. The Uniform Resource

Identifier (URI) is an id, which locates the address of the information over the web. The most

critical aspect of RDF is that it uses XML-based syntax and schema (Klyne et al., 2004).RDF

as a data model for objects and relations provide a simple semantics. RDF schema (RDFS)

provides generalisation of classes and properties (Dean et al., 2004; Mcguinness and Van

Harmelen, 2004). XML can be defined as a universal metalanguage for defining markup and

allows interchange of data between various disparate applications (Antoniou and Van

Harmelen, 2004). XML provides a formal neutral machine interpretable syntax for data.

XML uses a tagging based approach similar to HTML and can be used for various purposes

like marking information in design documents, process information and product models.

However, a shortcoming of XML based representation or tagged information is that it doesn’t

provide clear semantics to the data (Antoniou and Van Harmelen, 2004). This indicates that

the meaning of the information can’t be constrained as sematic clarity and is thus open to

interpretation.

 85

An example of a format for requirements for automotive products based on XML schema as

open standard is Requirements Interchange Format (ReqIF) (OMG, 2013). Similar to UML,

ReqIF is an OMG specification format and provides neutral representation for requirements

such as functional requirements between proprietary tools thus enabling open standards usage

and providing interoperability.

3.7.11 Object-Oriented (O-O) programming languages

Object-Oriented (O-O) programming languages such as LISP, Java, C/C++, Smalltalk,

Python can be considered as formal representation or knowledge representation standards (La

Rocca, 2011). O-O techniques vary from modelling methods or standards such as UML,

SysML and programming languages, which are executable and dynamic as opposed to

UML/SysML, which are static in nature.

As an O-O language, Java can be defined as ‘A simple, object-oriented, network-savvy,

interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded,

dynamic language’ (Toussaint and Cheng, 2002, Pg 335). Java is increasingly used for

developing client-server applications especially over the web. It allows for calling of

information over databases and ontology models as knowledge base enabling automation and

offers cross platform usage with its source code for e.g. through an API such as Apache Jena

Framework (Toussaint and Cheng, 2002). Work performed for DEA using OWL/SWRL

ontologies was converted for visualisation using Java by (Sanya and Shehab, 2015, 2014).

Java enables cross-platform usage as it supports network programming, as compared to other

programming languages such as C/C++ for which explicit codes need to be written to enable

its cross platform usage (Reilly, 2006). Java code also allows for interaction with neutral

format product models such as VRML which can be shared over the web (Qin et al., 2003;

Zeng et al., 2003). Java can also be used for generating code from O-O modelling methods

such as UML (France et al., 2006). Java, C++ and Python are all high level programming

 86

languages (La Rocca, 2011). Even C++ code can be generated from domain models

maintained for design automation applications (Bermell-Garcia, 2007). Both python and C++

codes were used to perform DEA in context to OWL ontologies by (Reijnders, 2012).

LISP is also a high level programming language and stands for LISt processing (Foderaro,

1991). LISP supports declarative approach as well along with procedural approach as

compared to basic O-O programming languages such as C, which are purely procedural in

nature. Thus along with defining LISP allows for change of its own source code thus

allowing extensions to its own syntax and create supersets (Lützenberger et al., 2012), which

result in languages such as Common LISP. Thus Common LISP follows a multi-paradigm

approach by supporting both declarative approach and procedural programming as it evolved

primarily from O-O approach (Evenson et al., 2015). KBE applications vary from most O-O

languages in the sense that they imbibe declarative nature along with the facility of

procedural programming as opposed to purely procedural nature of basic O-O languages

(Prasad, 2006). Because of the advantages of LISP as compared to other O-O languages such

as Java, C++ in the form of being declarative in nature and allowing extensions in its own

syntax thus creating supersets of its own syntax in the form of Common LISP as a superset of

LISP, its various dialects are used for creating and building KBE automation applications

(Lützenberger et al., 2012; Phillip Sainter et al., 2000).

Some of the existing proprietary KBE applications such as Adaptive Modelling Language

(AML) from Technosoft is based on O-O techniques (TechnoSoft Inc, 2003). AML is

primarily based on LISP dialect (Preston et al., 2004; Rocca, 2012) but also uses C++ and

Fortran codes (TechnoSoft Inc, 2003). AML focuses on automation of product design

throughout product lifecycle. From AML’s perspective, capturing knowledge in the form of

objects and properties is critical. AML performs this by defining class definitions for similar

objects and properties in the methods. It also supports class-subclass relation and is dynamic

 87

in nature. It supports constraint mechanism in product alteration by making interdependencies

or dependency backtracking in the unified model along with relation to parameters. It also

invokes events. ICAD is based on ICAD Design Language (IDL), which being a proprietary

KBE application is based on a superset of LISP code in the form of ACL LISP

implementation allowing for declarative nature (Bermell-Garcia, 2007; Bermell-García and

Fan, 2002; La Rocca et al., 2002). Similarly, General Purpose Declarative Language (GDL)

from Genworks as a proprietary KBE language is also based on ANSI standard version of

Common Lisp and uses Common Lisp Object System (CLOS) allowing for declarative

paradigm (J Kulon et al., 2006; La Rocca, 2011; Rocca, 2012).

Frameworks such as Apache Jena provide interface to the OWL/SWRL representation and

support Pellet reasoner for queries and inference results (Chan, 2013; Zhang et al., 2015).

Proprietary DEA applications such as AML, ParaPy are based on O-O programming which

also forms the basis of representation of geometry kernels such as LISP, Java, C/C++. O-O

programming offers few similarities to ontology-based representation in terms of object and

class definition with attributes, encapsulation and inheritance.

DEA in context to KBE is driven highly by engineering rules and thus KBES select

production rule formalism in conjunction with O-O paradigm as KR for achieving DEA.

Table 3-2 illustrates the available formal representation methods for representation of various

design decomposition features as discussed in section 2.6.

 88

Table 3-2: Formal representation methods & techniques available for representing design

decomposition features to enable design process automation

Design Decomposition

Features

Formal Representation

Methods & Techniques
References

Process – Inputs, Outputs

and Parameters

PSL, IDEF5, OWL DL,

OWL-S,

(Bechhofer, 2009; Benjamin et al., 1994; Bock and Gruninger,

2004; Chen and Chen, 2005; Fellmann et al., 2013; Gruninger,

2004; Grüninger, 2009; Gruninger and Cutting-Decelle, 2000;

Grüninger and Menzel, 2003; Martin et al., 2004; Pouchard et

al., 2000, 2005; Schlenoff et al., 2000b; W3C, 2012)

Engineering Rules,

Logic, Constraints,

Rationale

RuleML, Rule Interchange

Format (RIF), SWRL with

OWL DL

(Bechhofer, 2009; Boley et al., 2005; Colombo et al., 2014;

Fellmann et al., 2013; Lützenberger et al., 2012; Lützenberger

et al., 2012; W3C, 2012)

Functional Requirements

Requirements Interchange

Format (ReqIF), SysML

Requirements Diagram

(Colombo et al., 2014; Fellmann et al., 2013; Lützenberger et

al., 2012; Lützenberger et al., 2012; OMG, 2013; Weilkiens,

2007)

3.8 Analysis of Informal/Semiformal and Formal Process Modelling

Standards for DEA

From the observations of comparative analysis of informal/semiformal modelling standards

in context to knowledge capture for achieving design automation in Table 3-1, IDEF suite

with main emphasis on IDEF0/IDEF4, UML/SysML, Modified Petrinet, and signposting

satisfy the criteria as they successfully capture necessary design decomposition features on a

higher level. Petrinet is considered to be one of the methods for process modelling and

representation techniques. Although in its original form, it does not enable design

decomposition to the required level for process automation, MPN can capture design

decomposition features. However, it fails to utilise common semantics and uniformity in

axioms (Grüninger and Menzel, 2003). This highly inhibits its use in a neutral representation

for achieving automation. Also, Petrinets and MPN have their strength in modelling the

synchronisation of concurrent processes, cause and effect relationships between events and

states along with evaluation of modelled systems based on precedence of activities (Bock and

 89

Gruninger, 2005; Peleg and Dori, 1999; Zhang et al., 2013). Similarly, although Signposting

as a modelling method is successfully able to represent product parameters, the confidence

mapping of parameters is not a requirement for DEA as observed from Table 3-1. Also, the

confidence mapping of parameters is upon the discretion of the engineer and is not

standardised. Thus both Petrinet/MPN and Signposting are unable to capture complex

interdependencies of a process model with emphasis on flow of information of design

decomposition features such as activity inputs, outputs, rules, function and behaviour in

context to achieving DEA.

Final selection of an informal model would be suggested after experimentation on formal

representation of the informal model, as all of the necessary design decomposition features in

the form of parameters, inputs and outputs, rationale, logic, rules, constraints, attributes, and

requirements will need to be formally represented. Existing process modelling techniques are

able to represent the design process knowledge at a high level granularity instead of low level

granularity with detailed attributes and complex interdependencies of knowledge required for

DEA (Ding et al., 2009). Integration of all the concepts of engineering design process as

design decomposition features with the complete effect of a re-usable and robust process

model on the product attributes is required before its implementation to a formal

representation framework (Chalupnik et al., 2006).

Engineering rules can be represented in IDEF0 through control component as functional

modelling method and represented formally in rule languages such as RuleML, RIF and as

production rules. In the work of Skarka, using OWL, rules are represented textually, but not

as executable formal representation with link to product attributes which can return values

during reasoning and querying. The reasoner doesn’t perform reasoning on rdfs:comment in

the model (Skarka, 2007). Process flow can be successfully represented in IDEF3 diagram

and UML activity diagrams. Product model can be successfully represented through object

 90

diagrams in IDEF4, UML class diagram, OPM object diagram and even in PSL formal

ontology object instantiation. Resources can be represented in IDEF0 as mechanisms.

Parameters can be successfully represented in signposting and even in PSL formal ontology

with extensions. PSL as a language can be used for process and activity description including

inputs, outputs and parameters from the process model with extensions along with

representing a product description. In order to enable DEA, the formal representation should

enable automated reasoning or inference as execution of its axioms. PSL is similar in

representation to a low level assembly language and needs a compiler to convert its

representation to a high level language such as C or Fortran (Schlenoff et al., 2000a).

The family of IDEFx series has been very successful at systems modelling (Ciocoiu et al.,

2001; Reeker, 1994). IDEF4 design rationale component can provide for design rules under

the design rationale component as partitions (Mayer et al., 1992) but engineering rules can’t

be explicitly stated and with contextual relevance to engineering design process. Design

rationale can be represented as an integral component in IDEF4 standard and DRed tool as

UML class diagram along with formal representation using OWL ontology. UML has been

widely adopted as O-O modelling for software systems (Siricharoen, 2007).UML/SysML

diagrams have also been very successful at modelling and representation of function,

behaviour and structural aspects of engineering systems with complex interaction along with

exchange of knowledge to be consumed with KBE applications (Plateaux et al., 2009).

The results indicate that methods and languages such as the IDEF suite and UML/SysML

informally capture most design decomposition features such as objects, processes with inputs,

outputs along with resources, attributes, requirements, rules, logic, constraints, and rationale

for design process automation. The formal representation framework aims to achieve process

automation by representing all design decomposition features dynamically in a knowledge

model and then running a query and inference as automated reasoning.

 91

Thus design decomposition features are individually supported through existing

informal/semiformal and formal modelling standards. However, as none of the existing

methods is successfully able to capture and represent the complete functional, behavioural

and structural (F-B-S) aspects of engineering design process knowledge, a novel process

model utilising strengths of the existing informal/semiformal standards needs to be

developed. The schema of the novel process model as developed will provide a method to

effectively utilise existing platform independent and neutral formal representation standards

for DEA. The basis of the process model will be analysis of functional requirements for

generative modelling along with the effect of the process model on product’s geometric

attributes.

3.9 Summary

This chapter discusses informal/semiformal and formal standards in order to capture and

represent all design decomposition features as F-B-S aspects of a mechanical design process

with DFM for DEA. The findings have revealed that none of the existing modelling methods

are able to capture the complete mechanical design process knowledge with complex

interdependencies with product attributes at an informal/semiformal level. Thus a hybrid

approach will be adopted to develop a highly granular and integrated novel process model

based on IDEF0/IDEF4 and UML/SysML for DEA based on the findings. The platform

independent and neutral formal representation framework of the process model enabling

DEA with generative modelling has to satisfy the requirements at an implementation level for

the axioms and semantic clarity. In order to recommend the method of schema mapping of

the proposed hybrid process model to neutral formal representation with preserved semantics

in order to fulfill the primary aim of this research, key concepts and relationships of process

model as part of the design decomposition features will be identified for development of

Meta model along with experimentation aspects with pilot use-cases. Requirements will be

 92

formulated for the implementation of the Meta model in neutral formal (machine or system

interpretable) representation with preserved semantics. The identification of these key

concepts and relationships for Meta model along with pilot use case investigation along with

compilation of requirements and comparative analysis of formal representation standards will

be discussed in the next chapter as part of research design.

 93

4 Key Concepts and Relationships of Engineering Processes for

Formalisation with Pilot Use Cases

4.1 Introduction

Chapter 3 elaborated on the existing informal and formal modelling standards, which can

capture and represent the mechanical design process with DFM knowledge for DEA. The

results of the comparative analysis for informal/semiformal modelling standards suggested

that none of the existing standards could fully capture the complete domain knowledge of

mechanical design process with DFM for DEA in context to KBE. In order to address the

research gap identified in chapter 2 and based on the findings of chapter 3, this chapter will

identify key concepts and relations of the process model from design decomposition features

for DEA with a KBE approach and formulate the requirements for the platform independent

formalisation of the Meta model based on these concepts and relationships with neutral

semantics. It will also discuss the pilot use-cases for experimentation with existing formal

standards. The comparative analysis of existing neutral formal representation standards as per

the compiled requirements will yield the implementation method of the schema of the Meta

model based on identified concepts and relationships of the process model.

4.2 A Generic Process Model for DEA with Neutral Formal Representation

Process models can be considered as abstractions of a real process with ambiguity depending

upon the level of granularity required for different purposes such as the engineering design

process for DEA (Eckert et al., 2015; Maier et al., 2017). As per the domain of engineering

design process, both process model and product model are modelled separately but also

require integration (Maier et al., 2017). Thus the process model developed for DEA as part of

this research provides high granularity and integration with the product knowledge with the

behavioural effect of the process model on the change in product’s state in terms of its

 94

geometric attributes. The model driven approach adopted for identifying the key concepts and

relationships of the process model with its neutral formal representation utilises 3 stages is

illustrated with the help of Figure 4-1.

Figure 4-1: Model Driven Approach for Knowledge Modelling and its Equivalent Neutral

Formal Representation for DEA

The working of the process model in this research can be divided into 3 steps – Phase 1,

Phase 2 and Phase 3. Phase 1 refers to informal/semiformal modelling of engineering design

process with focus on mechanical design and DFM for knowledge modelling of all concepts

and relationships. This focuses on visual representation using graphical modelling standards.

The findings of chapter 3 have revealed that a hybrid approach using existing standards such

as IDEF0/IDEF4 and UML/SysML as the basis. Phase 2 refers to equivalent representation of

the informal model with platform independent and neutral formal representation as machine

or system interpretable axioms using existing standards. This will be continued in the next

sections with experimentation with pilot use-cases and requirements analysis for

 95

formalisation for DEA. Phase 3 refers to the automation layer with the help of querying and

inference as reasoning mechanism on the formal axioms as part of the verification for the

method of schema mapping. The method for developing and testing of the process model is

defined in Figure 4-2.

Figure 4-2: Working of the process model for DEA

4.2.1 Phase 1

Firstly domain knowledge of the mechanical product design process with DFM is captured

using a model driven approach as a generic process model with concepts and relations with

high abstraction. The domain knowledge describes the static information and knowledge

objects in an application domain (Schreiber et al., 2000, pg 91). Pertaining to this thesis, the

domain knowledge comprises of the mechanical design process and DFM/DFA with

activities consisting of inputs, outputs, rules and resources along with process function and

behaviour in context to the product attributes.

4.2.2 Phase 2

The process model is finalised in terms of its Meta model based on concepts and relationships

before its implementation in platform independent and neutral formal representation

standards. The domain schema contains all the concepts and relationships of mechanical

design process with DFM/DFA. A domain schema can be defined as ‘a schematic description

 96

of the domain-specific knowledge and information through a number of type definitions’

(Schreiber et al., 2000, pg 91). Population of the schema level model or domain schema with

instances leads to development of the knowledge base. According to Schreiber, ‘a knowledge

base contains instances of the types specified in a domain schema’ (Schreiber et al., 2000, pg

91). Thus the knowledge base will contain population of the mechanical design with

inclusion of DFM aspects as domain schema with instances from all 4 Use cases for

experimentation as neutral formal representation standards. Reasoning and querying can be

performed as execution of the underlying axioms.

4.2.3 Phase 3

This phase focuses on the accuracy of the reasoning mechanism as inference and querying

over the axioms of the knowledgebase along with the completeness of knowledgebase. The

reasoning mechanism helps in deduction of new knowledge based on existing axioms; returns

answers to the user based on multiple scenarios and provide consistency checking. These are

matched to the implementation in a DEA system such as a KBES to verify the correctness of

the reasoner in terms of values generated. The values generated will only match correctly if

the method of population of schema with instances of the process model to its neutral formal

representation is appropriate.

 Thus the novel aspect of the solution as part of the research gap is to initially define a

core set of mechanical design process Meta model based on concepts and relationships with

inclusion of manufacturing knowledge as DFM based on the identified design decomposition

features in section 2.6 and findings in section 3.8. These are discussed in the next section 4.3.

The other main aspect as the primary aim of this research is the method of schema mapping

of the Meta model based on identified concepts and relationships to neutral formal

representation with semantic clarity to constrain the meaning of concepts as part of model

driven formalisation. For this purpose, the experimentation with pilot use cases for key

 97

concepts is performed in section 4.4 and 4.5. The compilation of the requirements for

formalisation is performed in section 4.7 and the comparative analysis for the finalisation of

the representation is performed in section 4.8 and 4.9. Another key aspect which is to test the

automation (DEA) capability of the formalised model using a series of steps for accuracy of

the reasoner and query with the supporting tool. The results of section 4.8 and 4.9 will

contribute to the testing mechanism for DEA.

4.3 Key concepts and relationships of the Process Model

Figure 4-3 illustrates all the high level, intermediate and low level concepts as F-B-S aspects

of the process model for DEA as a Meta Model developed as part of this research. Inputs and

outputs are adopted from the definition - entities consumed and modified during an activity

with engineering rules controlling the behaviour as methods with conversion of inputs to

outputs along with resources which may be a design tool or a physical resource (Ding et al.,

2009). Engineering rules have been modelled for engineering design process knowledge as

part of DEA to control the effect of design variations on product parameters (Bermell-García

and Fan, 2002; Calkins et al., 2000). Product function and behaviour in context to

engineering design process have been modelled as concepts and relationships for

interoperable knowledge sharing using Core Product Model 2 (CPM2) and Open assembly

Model (OAM) (Fenves, 2001; Fenves et al., 2008; Szykman et al., 2001, 2000a, 2000b).

However, very important contributions of process adding semantics to product function and

behaviour throughout the product lifecycle as part of engineering design process have been

made by Frederic Noel (Noel, 2006) and John Gero (Gero and Kannengiesser, 2007a).

 98

Figure 4-3: Concepts for the required Process Model for DEA – Meta Model

The high level concepts formulated by the author are described as follows –

• Process description with activities, inputs, outputs, resources and activity id

• Process inputs & outputs as product geometric attributes

• Engineering rules based on math and logic

• Process functional requirement / function

• Process behaviour

 Thus the following set of research questions arise -

I. How can the mechanical product design process with inclusion of manufacturing

knowledge (DFM/DFA) based on various entities such as activities, rules, logic,

function and behaviour for product realisation as per author’s Meta model, be

captured in a generic and re-usable process model as a model driven approach with

structured knowledge model for automation in a virtual engineering environment?

 99

II. How can the developed process model in line with author’s Meta model be then

formally represented for machine interpretation in platform independent and neutral

representation standards with semantic clarity (clear meaning of concepts) for Design

Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE

approach through open standards?

A 3rd question also arises as a consequence of the 2nd question

III. Can the formalised process model enable automation with generative modelling from

the functional requirements generated at the initiation of the design process as the

design intent with queries and reasoning on developed generic functions?

As observed from the findings in section 3.8, PSL ontology can represent activity with inputs,

outputs and object along with resources from the identified core concepts. Similarly, RuleML

and RIF can both represent math and logic rules. OWL ontology can represent concepts and

binary relationships. All of them have been extensively used in the engineering domain. The

next section will discuss the experimentation of the high level concepts of the process model

with languages such as PSL, RuleML and OWL to demonstrate the effectiveness of these

formal representation languages for DEA in context to KBE.

4.4 Pilot Use Case 1 – Precision Forging of Aero Fan/Compressor Blades as

Design for Manufacturing (DFM)

4.4.1 Preliminary Knowledge Analysis

An informal process has been devised for DFM of aero fan blades by the author as illustrated

in Fig 4-2. The process is precision forging of compressor blades as method of

manufacturing. The activities can be broken down mainly as – ‘Extrusion’, ‘Heading’ and

‘Stamping’. All the detailed knowledge cannot be shown here due to copyright issues as per

the intellectual property rights of the industrial partner.

 100

Figure 4-4: Use Case 1 - Example of a precision forging process of a compressor blade

As observed from Figure 4-4, the process map illustrates inputs, functional requirement,

behaviour and rules along with sub-processes of major activities in the form of extrusion,

heading and stamping. The inputs required for extrusion are material data – billet & dies,

geometries – billet (without glass coating), tongs, dies (Nominal) & punch, temperature to

which the workpiece is heated up in the furnace prior to extrusion, furnace transfer duration,

duration for which the workpiece rests on the die, die temperature, press characterisation

and punch stopping position.

4.4.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML

The formal representation framework is based on the discussion for representing process

information along with other design decomposition features such as rules, logic and

requirements along with flow of information in the form of inputs and outputs.

 101

4.4.2.1 Activities with Inputs & Outputs and Objects: Process Specification

Language (PSL)

The PSL syntax illustrating the flow of information along with extensions to illustrate inputs

and outputs is shown as follows. The inputs and sub-activities are only shown for the

extrusion process in the PSL syntax using the core theories and extensions –

(define-parameter

:variable ?cb

:constraints (compressor blade ?cb))

(define-activity-role

:id s1

:name Extrusion

:successors 2

:preconditions (not extruded ?cb (beginof ?occ))

:postconditions (extruded stem of ?cb(endof ?occ)))

(define-activity-role)

:id s2

:name Heading

:successors 3

:preconditions (extruded stem of ?cb(beginof ?occ))

 x:postconditions (headed shape of ?cb endof ?occ)))

(define-activity-role)

:id s3

:name Stamping

:successors 4

:preconditions (headed shape of ?cb (beginof ?occ))

:postconditions (stamped ?cb (endof ?occ)))

(forall (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)

(implies (= ?s1 extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2))

(and (activity_occurrence ?s1

(Material data – Billet & Dies ?m)

(Geometries – Billet (without glass coating), Tongs, Dies(Nominal) & Punch ?g)

(temperature to which the workpiece is heated up in the furnace prior to extrusion ?t1)

(Furnace Transfer Duration ?t2)

(Duration for which the workpiece rests on the die ?t3)

(Die Temperature ?t4)

(Press Characterisation ?p1)

(Punch stopping position ?p2))))

(forall (?cb ?s1)

 102

(implies (or (occurrence-input ?cb ?s1)

(occurrence-output ?cb ?s1)

(and (object ?cb)

(not (state ?cb))

(activity_occurrence ?s1))))

(forall (?cb ?s1)

(iff (participant ?cb ?s1)

(exists (?t)

(participates_in ?cb ?s1 ?t)))

(forall (?cb ?s1)

(implies (or (occurrence-input ?cb ?s1)

(occurrence-output ?cb ?s1))

(participant ?cb ?s1)))

(exists (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)

(and (occurrence_of ?s1 Extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)

(occurrence-input ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)

(occurrence-output ?m ?g ?t1 ?t2 ?t3 ?t4 ?p1 ?p2)))

(forall (?cb ?s1 ?f)

(implies (or (input-state ?cb ?s1 ?f)

(output-state ?cb ?s1 ?f)

(and (object ?cb)

(not (state ?x)

(activity_occurrence ?s1)

(state ?f))))

(forall (?cb ?s1 ?f)

(implies (input-state ?cb ?s1 ?f)

(and (occurrence-input ?cb ?s1)

(prior ?f ?s1)

(exists_at ?cb (begin_of ?s1)))))

(forall (?cb ?s1 ?f)

(implies (output-state ?cb ?s1 ?f)

(and (occurrence-output ?cb ?s1)

(achieved ?f ?s1)

(exists_at ?cb (end_of ?s1))))

subactivity(Furnace Transfer, Extrusion)

subactivity(Dwell on Die, Extrusion)

subactivity(Extrusion, Extrusion)

subactivity(Air Cooling, Extrusion)

 103

4.4.2.2 Engineering Rules: RuleML

The rule that governs the extrusion process as ExtrusionRule1 is - A short extruded stem left

behind after stamping would cause problems in handling the part while a long stem would

result in excessive material use & high costs.

ExtrusionRule1 is represented in RuleML(Boley et al., 2005) as follows -

<Implies>

<head>

<Atom>

<Rel>stamping</Rel>

<Ind>short extruded stem</Ind>

<Var>problems in handling</Var>

</Atom>

</head>

<body>

<And>

<Atom>

<Rel>stamping</Rel>

<Ind>long stem</Ind>

<Var>excessive material use</Var>

</Atom>

<Atom>

<Rel>stamping</Rel>>

<Ind>long stem</Ind>

<Var>high costs</Var>

</Atom>

</And>

</body>

</Implies>

4.4.2.3 Functional Requirements: SysML Requirement Diagram

The functional requirement of the overall precision forging process is – ‘achieve an accuracy

of +/-2mm in shape prediction, as shape prediction accounts for a bulk of the manufacture

objectives’.The functional requirement for extrusion is - ‘the objective of extrusion modelling

is to ensure that the extruded stem is long enough for the part to be handled in subsequent

operations. The base of the extruded part also needs to have enough material for subsequent

 104

heading, which can be estimated using its length’.The functional requirement of each activity

is captured and represented in SysML requirement diagram as shown below. The underlying

schema of the requirement as illustrated in the Figure 4-5 is the text of the requirement,

identifier, source, kind, method, risk and status. The model can be exchanged via AP233 as

well as discussed in the earlier section.

Figure 4-5: Use Case 1 - SysML Requirement Diagram for capturing functional and

performance based requirements of the precision forging manufacturing method

4.5 Pilot Use Case 2 – Conceptual Design of Aero Fan Blades

4.5.1 Preliminary Knowledge Analysis

The case study discusses design aspects of fan blades (Amoo, 2013). An informal process

capturing design aspects of fan blades has been derived and compiled by the author in a

process map illustrating inputs, enablers, parameters, requirements, rules, logic, behavior, and

attributes along with the object primarily defined as a blade (Amoo, 2013). The blade can be

a fan blade, compressor blade or a turbine blade, which makes the process model generic for

reusability. The process map captures all aspects of a process which IDEF4 captures but does

 105

not demonstrate the IDEF4 syntax in the form of a static, dynamic, and behavioural models in

the present shape. The activities or events are broken down into three basic steps:blade

geometryoptimisation, dovetail attachment and material selection as shown in Fig. 4-6 along

with other design decomposition features. Fig. 4-7 illustrates the object box for the blade.

Figure 4-6: Use Case 2 - An informal process capturing design aspects of a fan blade

Figure 4-7: Use Case 2 - The object box as per IDEF4 methodology

 106

4.5.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML

The formal representation framework is based on the discussion for representing process

information along with other design decomposition features such as rules, logic and

requirements along with flow of information in the form of inputs and outputs.

4.5.2.1 Activities and Objects: Process Specification Language (PSL)

PSL activity role declaration (ARD) and object declaration syntax is explained as follows:

(define-activity-role

:id <number>*

:name <string>

:successors <number>*

:preconditions <PSL sentence>*

:postconditions <PSL sentence>*)

(define-object

:name <KIF constant>

:constraints <PSL sentence>*)

(define-parameter

:variable <KIF variable>

:constraints <PSL sentence>*) (Grüninger and Menzel, 2003)

The object declaration can be a constant as shown in the first object declaration or a variable

as shown in the next object declaration. The PSL syntax illustrating the flow of information

along with extensions to illustrate parameters along with inputs and outputs is shown as

follows, but only for blade geometry optimisation.

(define-parameter

:variable ?fb

:constraints (fan blade ?fb))

(define-activity-role

:id s1

:name Blade geometry optimisation

:successors 2

:preconditions (existing design of ?fb(beginof ?occ))

:postconditions (preliminary optimal geometric design features of ?fb(endof ?occ)))

 107

(define-activity-role)

 :id s2

 :name Dovetail attachment

 :successors 3

 :preconditions (preliminary optimal geometric design features of ?fb(beginof ?occ))

 :postconditions (attached dovetail design features to the design of ?fb endof ?occ)))

(define-activity-role)

:id s3

:name Material selection

:successors 4

:preconditions (attached dovetail design features to the design of ?fb (beginof ?occ))

:postconditions (material allocated to the preliminary design of ?fb (endof ?occ)))

4.5.2.2 Activity Inputs and Outputs: PSL

The parameters and inputs for blade geometry optimisation are broken down informally as:

Parameters: incremental lift created by each blade, ideal power and proper airfoil section,

twist, chord, and pitch angle for optimal thrust distribution. Inputs: aerodynamic forces

acting on a local airfoil and global changes in momentum along with rate of air intake

(Amoo, 2013).

The formal syntax in PSL incorporating extensions is as follows:

(forall (?s1 ?l ?p ?t ?fm ?r)

(implies (= ?s1 Blade geometry optimization(?l ?p ?t ?fm ?r))

(and (activity_occurrence ?s1

(Incremental Lift created by each blade ?l)

(Ideal power ?p)

(Proper airfoil section, twist, chord, and pitch angle for optimal thrust distribution ?t)

(Aerodynamic forces acting on a local airfoil and global changes in momentum ?fm)

(Rate of air intake ?r))))

(forall (?fb ?s1)

(implies (or (occurrence-input ?fb ?s1)

(occurrence-output ?fb ?s1)

(and (object ?fb)

(not (state ?fb))

(activity_occurrence ?s1)))))

(forall (?fb ?s1)

(iff (participant ?fb ?s1)

(exists (?t)

 108

(participates_in ?fb ?s1 ?t))))

(forall (?fb ?s1)

(implies (or (occurrence-input ?fb ?s1)

(occurrence-output ?fb ?s1))

(participant ?fb ?s1)))

(exists (?s1 ?l ?p ?t ?fm ?r)

(and (occurrence_of ?s1 Blade geometry optimisation(?l ?p ?t ?fm ?r)

(occurrence-input ?fm ?r ?s1)

(occurrence-output ?fm ?r ?s1)))

(forall (?fb ?s1 ?f)

(implies (or (input-state ?fb ?s1 ?f)

(output-state ?fb ?s1 ?f)

(and (object ?fb)

(not (state ?fb)

(activity_occurrence ?s1)

(state ?f))))))

(forall (?fb ?s1 ?f)

(implies (input-state ?fb ?s1 ?f)

(and (occurrence-input ?fb ?s1)

(prior ?f ?s1)

(exists_at ?fb (begin_of ?s1)))))

(forall (?fb ?s1 ?f)

(implies (output-state ?fb ?s1 ?f)

(and (occurrence-output ?fb ?s1)

(achieved ?f ?s1)

(exists_at ?fb (end_of ?s1)))))

4.5.2.3 Engineering Rules: RuleML

A few examples of the design rules to be followed during the blade geometry optimisation

process are represented in RuleML (Boley et al., 2005) as follows:

BladeGeometryOptimisationRule1:a 30% hollowing in a hollow fan blade results in about a

13%–16% decrease in torsional rigidity compared to a solid blade design (Amoo, 2013).

rule ml declaration (implication)

<Implies>

<head>

<Atom>

<Rel>hollowing</Rel>

<Ind>30%</Ind>

 109

<Var>hollow fan blade</Var>

<Rel>compared to a solid blade design</Rel>

</Atom>

</head>

<body>

<Atom>

<Rel>decrease</Rel>

<Ind>13-16%</Ind>

<Var>torsional rigidity</Var>

</Atom>

</body>

</Implies>

BladeGeometryOptimisationRule2: The rate of air intake varies and is dictated by factors

such as airfoil geometry, angle of attack, air density, and the speed at which the airfoil moves

through the air (Amoo, 2013).

rule ml declaration (statement)

<Atom>

<Var>rate of air intake</Var>

<Rel>dictated by factors such as</Rel>

<Var>airfoil geometry</Var>

<Var>angle of attack</Var>

<Var>air density</Var>

<Var>speed at which the airfoil moves through the air</Var>

</Atom>

4.5.2.4 Functional Requirements: SysML Requirement Diagram

The functional requirement as derived from the process for blade geometry optimisation is

that– ‘the fan blades spin to accelerate a mass of air into the engine to generate thrust that

propels the aircraft forward. Approximately 80% of the thrust produced by a modern jet

engine is delivered by the fan’. ‘Fan blades also function to reduce total engine damage from

the ingestion of various foreign objects such as birds by radially deflecting outward such

objects rather than passing them through to the core parts of the engine’ (Amoo, 2013). The

functional requirements of the process are captured and represented in a SysML requirement

diagram as shown in Fig. 4-8. The underlying schema of the requirement as illustrated in the

 110

figure is the textual requirement, identifier, source, kind, method, risk, and status. The model

can be exchanged via AP233 of STEP.

Figure 4-8: Use Case 2 - SysML requirement diagram for representing functional

requirements of the design aspects of the fan blades process

4.5.3 Mapping of Informal Process Model Concepts to Formal Representation

Standards: OWL

As part of this research, for the initial process model affecting the product at part level, text

based instances were created for all classes using Use-case 1, 2 & 3 by the author. Initial

naming convention for all instances follows the pattern –

ProcessModel:ActivityNameClassNameNo. For example, the function of the fan blade

exhibited during the activity BladeGeometryOptimisation – ‘The fan blades spin to accelerate

a mass of air into the engine to generate thrust that propels the aircraft forward.

Approximately 80% of the thrust produced by a modern jet engine is delivered by the fan’ is

named as ProcessModel:BladeGeometryOptimisationFunctionalRequirement1.

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name

and no. is 1. The other function of the fan blade exhibited during the activity

 111

BladeGeometryOptimisation – ‘Fan blades also function to reduce total engine damage from

the ingestion of various foreign objects such as birds by radially deflecting outward such

objects rather than passing them through to the core parts of the engine’ is named as

ProcessModel:BladeGeometryOptimisationFunctionalRequirement2.

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name

and no. is 2.All instances will satisfy the class description and properties. SPARQL query is a

method of querying the RDF graph (Composer, 2011). In Topbraid, in the SPARQL tab

queries are run over the asserted triples in the ontology. In order to run the query over both

the asserted and the inferred triples, inference needs to be executed on the model. For this

SPIN rules through OWL 2 RL need to be activated. Only then, the inference window

produces the inferred triples from the ontology model. Performing query in the SPARQL tab

will now perform query over both the asserted triples and inferred triples in the standard

edition of Topbraid. The syntax of SPARQL query is illustrated as follows –

SELECT *

WHERE {

?subject rdfs:subClassOf ?object .

}

SELECT * selects the complete ontology model, subject and object correspond to classes and

individuals, rdfs:subClassOf is the predicate. Using the properties created in the model and

putting them as predicate between classes and instances of the model, objects and subjects

can be retrieved in the SPARQL query tab. Thus although concepts like rationale, function

and behaviour of the process have presently been implemented as literals (datatype

properties) in context to the design process, running a SPARQL query through the property

returns the function and name of rules associated with the activity. For example,

SELECT *

WHERE {

ProcessModel:BladeGeometryOptimisation

 112

ProcessModel:exhibitsFunctionalRequirement ?object . }

Running this query yields the results as

ProcessModel:BladeGeometryOptimisationFunctionalRequirement1 and

ProcessModel:BladeGeometryOptimisationFunctionalRequirement2 as the objects. Clicking

on these specified instances yields other linked properties such as

ProcessModel:hasmethodasBehaviour and the stated functional requirement as a literal with

the help of datatype property in the form of ProcessModel:isdescribedby. The domain of the

property ProcessModel:isdescribedby is defined as FunctionalRequirement class and the

range as a string. The illustration for this query is shown in the Figure 4-9.

Another example of SPARQL query -

SELECT *

WHERE {

 ProcessModel:BladeGeometryOptimisation ProcessModel:followsRule ?object .

}

ProcessModel:BladeGeometryOptimisation is the subject in the query,

ProcessModel:followsRule is the property or the predicate in the query and object needs to be

returned. Running the above query yields the results as

ProcessModel:BladeGeometryOptimisationRule1 and

ProcessModel:BladeGeometryOptimisationRule2 as objects through the property

ProcessModel:followsRule linking the domain and the range.

 113

Figure 4-9: SPARQL Query Illustration: Activity and Functional Requirement

As illustrated, the limitation of SPARQL query is that it only infers the name of the rules as

text. To formally represent rules, they need to be embedded in the model with rule language

such as RuleML, RIF or SWRL formalism on top of OWL2 as shown in section 4.4.1.2.3.

For this reason along with the requirement of the process model to affect product attributes at

the highest level of granularity for DEA, use case 4 and use case 5 have been used to refine

and validate the process model. Use cases 4 and 5 will be discussed in Chapter 5 in detail.

Use case 4 involves making a hole in the block with drilling as the manufacturing process.

Use case 5 includes design of bookshelf implemented in AML as a KBE tool and Siemens

NX, CATIA Knowledgeware as parametric CAD systems from MOKA ICARE forms.

 114

4.6 Findings and Analysis – Pilot Use Case Experimentation

With the help of Use Case 1 & 2, it has been illustrated that PSL enables process

representation with parameters, inputs, and outputs using core theory and extensions in the

ontology(Bock and Gruninger, 2004). It needs more experimentation to illustrate

representation of other design decomposition features such as constraints and attributes.

RuleML (Boley et al., 2005) can be implemented to exhibit for textual rules. Similarly

SysML can exhibit requirements. The formal representation framework will need integration

for simultaneous application. PSL can be directly mapped to UML and hence to the SysML

requirement diagram. RuleML and PSL can be integrated and shared via XML schemas.

Similarly, all formats and languages to be experimented for representing other design

decomposition features will need integration.

4.7 Requirements for a process model for implementation in neutral

formal representation enabling design engineering automation (DEA)

The author has compiled the requirements for a generic process model enabling DEA through

neutral formal representation. The requirements are an amalgamation of 2 sets –1)

requirements for a process model to capture mechanical design domain concepts and

relationships in a unified and integrated model and 2) requirements of the knowledge

representation (KR) or knowledgebase (formal representation of process model) for DEA.

Some of the requirements for KBE methodologies enabling automation can be classified as

flexibility, extensibility, scalability and integration (Colledani et al., 2008). This means that

the process model must be generic and widely applicable to various product design systems,

must be extensible to add both product and process knowledge, and provide all relationships

as interdependencies. Thus some of the key characteristics, which can be deduced as

requirements for process model for mapping to formal representation model, are

 115

encapsulation of concepts and relationships with high level of knowledge abstraction for re-

use. Even as per KNOMAD methodology enabling DEA, the knowledge model needs to

follows these steps although the implementation can vary. These steps as summarised by

Pinto and Martins (Pinto and Martins, 2004) can be stated as

I. Specification – identification of scope of knowledge model

II. Conceptualisation – identification of domain concepts and relationships

III. Formalisation – organising domain concepts in class hierarchies and completion of

axioms to formally model relationships

IV. Implementation – codification of class hierarchies and axioms in a suitable formal

knowledge representation language

V. Maintenance - updating and maintenance of the implemented knowledge model

These steps are critical even though the representations may vary. Some representations have

been implemented as ontologies by Noy & McGuiness as seven-step method (Noy and

McGuinness, 2001), METHONTOLOGY (Fernández-López et al., 1997) and six-stage

methodology (Ahmed et al., 2007).

4.7.1 Requirements for an unified / integrated process model ready for

implementation as formal representation to enable DEA in context of KBE

Thus, some of the key requirements have been deduced by the author for the process model

ready for implementation as formal representation to enable DEA in context of KBE.

I. Modelling of the Meta model based on domain concepts and relationships of the

process model - This includes design process activities, activity inputs & outputs as

product geometric attributes, resources, engineering rules based on logic as well as

mathematics in relation to the design process as well as product geometric attributes for

change of product’s state. This also includes interdependencies between sub-functions

 116

corresponding to activities, products and the design process functional requirements

and process behaviour. It should also be able to represent an interface between the

process model and aspects of product model such as assembly & part structures,

feature, form and fit

II. The modularity of engineering design intent with concise classification of concepts

and relationships and the ability to instantiate - This will enable high re-usability of

the developed process model as high abstraction

III. Suitable axioms for constraining the domain concepts and relationships in a

suitable formal representation language for execution in the form of reasoning and

querying - It should be ensured that there is optimal syntactic and semantic mapping

of the informal/semiformal model to formal model. This was stated as computational

capability in section 3.2

The requirements have been jointly formulated and compiled as per these sources (Colledani

et al., 2008; Danjou et al., 2008; Frank et al., 2014; Klein et al., 2015, 2014; J Kulon et al.,

2006; J. Kulon et al., 2006; Lützenberger et al., 2012; Nomaguchi et al., 2002; Pinto and

Martins, 2004; Rezayat, 2000; Ríos et al., 2005; Tomiyama et al., 2002).

Thus the next steps are to formulate requirements for axiom selection and formal

representation enabling DEA.

4.7.2 Requirements for a knowledge representation system (knowledge base)

enabling DEA

A knowledge representation system (KRS) generally consists of a knowledge representation

(KR) formalism with well-defined syntax and additionally if possible, semantics preserved,

as symbolically encoded knowledge (Shehab and Abdalla, 2002, 2006). The symbolically

encoded knowledge is crucial in making the knowledge representation layer machine

readable or computer readable (Patil, 2005). The symbolically encoded knowledge of the

 117

engineering design process model domain concepts and relationships refers to formal

representation in the context of this thesis. It also contains an inference engine, which means

reasoning mechanism closely built in with the representation layer or language for deducing

queries and consistency checking ensuring the representation is dynamic in nature as opposed

to just a static representation (Davis et al., 1993; Johansson, 2011; Tomiyama et al., 2002). It

may also contain a front-end environment for visualisation and possibly knowledge editing

and debugging (Bullinaria, 2005; Clark, 1996; La Rocca, 2011). The front-end environment

for visualisation is out of scope for this research.

The compiled requirements by the author for KRS enabling DEA in context of KBE can be

classified as follows -

I. Expressiveness – it means the expressive capability of the language to exhibit domain

knowledge of all classifications. In this case, it means representation of engineering

design knowledge as a unified process model with class-subclass relationship,

properties, logical rules, mathematical rules and functional knowledge

II. Inference adequacy and efficiency as execution of its code – the formal

representation system or KRS should be able to perform inference as reasoning and

queries as execution of its code with minimum degree of incompleteness. The system

should enable maximum time and memory efficiency while performing the inference

or execution of its code so that it returns the answer to the user in reasonable amount

of time along with correctness of the answer. This is the layer that adds dynamic

nature to the static representation

III. Explanation for inference – ideally, along with an inference, a system representation

should also be able to tell the reason for selecting an answer through inference

IV. Semantic clarity – additionally if possible, the language should offer well defined

semantics or meaning of terms through its axioms

 118

V. Acquisition efficiency - the efficiency and naturalness of input of domain knowledge

by the knowledge engineer. This indicates syntactic friendliness of the representation

or knowledge base along with graphical display and convenience. It supports

structured and modular knowledgebase

VI. Feedback during knowledge input - the system should not be static. It should be

dynamic and warn of inconsistencies if the axioms entered are incorrect. This is

tangible to consistency checking paradigm

VII. Extensibility and scalability - the system should offer ease of adding new information

to the existing knowledge base. As the size of the knowledge base increases, the

system performance should still function within a reasonable time and performance

shouldn’t degrade quickly

VIII. System Interface to external applications – the system should atleast provide

mechanism to link to other database or application (DEA application including KBE

application in this case). The linkage to an external system won’t be addresses as part

of this thesis

IX. Robustness, portability and ease of integration – the system should offer least bugs

as possible or no bugs at all in an ideal situation. The system should not be too

difficult while transferring its representation to other platforms. In this case, the

neutral representation should enable open standard usage.

The requirements have been jointly formulated and compiled as per these sources (Bullinaria,

2005; Clark, 1996; Colledani et al., 2008; Davis et al., 1993; Frank et al., 2014; Johansson,

2015, 2011, 2008; La Rocca, 2011; Ríos et al., 2005; Rocca, 2012; TechnoSoft Inc, 2003;

Tomiyama et al., 2002; Tomiyama and Hew, 2000; Tor et al., 2008; Van Der Velden et al.,

2012; Van der Velden, 2008)

 119

4.7.3 Compiled requirements for a process model for implementation in neutral

formal representation enabling DEA in context of KBE

Combining both the sets of requirements in a concise manner yields the requirements for a

process model to enable DEA through neutral formal representation in context of KBE -

I. Expressive capability of language to exhibit domain knowledge for the mechanical

design process in the form of Meta model based on domain concepts and

relationships of process model- This should include all entities such as design process

activities with inputs & outputs as product’s geometric attributes, resources,

engineering rules based on logic and math, function, behaviour and interface with

product model as identified in section 4.3 in a unified and integrated approach. It

should support the class-subclass relationship between the concepts and represent all

relationships. Product parameters as object inputs are crucial in product design

process and thus form a critical part of the design process knowledge at the detailed

design stage.

II. Inference (reasoning) and querying with optimum adequacy and efficiency as

execution of its code – the system should allow for deduction of new information

from static domain knowledge through inference making the system dynamic in

nature. It should perform reasoning or execution of its code with optimum

performance between time and memory efficiency and degree of completeness. If

possible, the representation should support consistency checking.

III. Semantic clarity – additionally if possible, the axioms of the language should

constrain the interpretation of domain concepts and relationships

IV. Modularity in the knowledge representation system (KRS) with precise axioms for

domain concepts and relationships - This will ensure structuring of the

knowledgebase along with the ability to instantiate enabling high re-usability

 120

V. Extensibility and scalability - optimum system performance in accordance with

addition of new domain knowledge in the form of concepts, relations and instances of

the engineering design process

VI. Neutral representation - adopted from robustness and portability. Pertaining to this

research, the formal representation should enable open standard usage.

4.8 Basic Comparison of Formal Representation Standards

A brief comparison of formal representation standards is explained before detailed

comparison for implementation of all aspects of the process model in neutral formal

representation.

4.8.1 STEP vs. Ontology Based Approach

STEP based on EXPRESS (ISO 10303-11) (ISO, 2004)provides a schema for product data

model throughout its lifecycle (Zhao and Liu, 2008a). However, it differs from ontology-

based approach in various ways. All ontological languages formalised over various logic

which may be OWL based on DL or PSL based on FOL support automated reasoning (Hay,

2006; NIST, 2008; W3C, 2012). They can deduce new knowledge from the existing

knowledgebase with the help of an inference engine, making the representation dynamic in

nature. STEP based on EXPRESS schema is static in nature as it can’t execute (Dong et al.,

1997; Tang et al., 2001) and doesn’t possess reasoning capability (Qin et al., 2017). However,

the procedural knowledge contained inside class descriptions of EXPRESS can be extended

and merged with external systems and even programming languages such as Java/C++ to

enable execution of the statements (Zha and Du, 2002; Zhao and Liu, 2008a). The execution

of the procedural knowledge inside the EXPRESS schema with the help of externally

integrated systems will make the representation dynamic in nature.

 121

4.8.2 UML/SysML vs. OPM

UML and SysML allow visual representation of an engineering system through multiple

diagrams whereas OPM allows visual representation of an engineering system through an

integrated approach in the form of OPD and OPL which is an added advantage (Reinhartz-

Berger and Dori, 2004). Thus OPM is more favourable for modelling engineering systems at

a higher level such as the conceptual or class and schema level as it doesn’t model the

individual activities of a process. Although, OPM goes to various levels of abstraction to

represent the complete F-B-S of a system, it provides very less relation between the

individual activities of a process and its implementation as formal representation (Subahi,

2015). If the abstraction of knowledge is required at product attribute level, UML class

diagram or SysML Block diagram (Graves, 2009) are more comprehensive in expressing

product model with all its geometric attributes. OPCAT as a tool for OPM allows direct

export of XML information from the OPD and OPL, which form a machine-readable formal

representation. However, a shortcoming of XML based representation is that it only covers

the syntax level and doesn’t impose any constraints on the semantics, hence is open to

interpretation, and also doesn’t provide support for reasoning (Antoniou and Van Harmelen,

2004; Ray and Jones, 2006; Yahia et al., 2012). In order to overcome this shortcoming and

address DEA, formal representation framework beneath the graphical representation will

need to preserve semantic clarity and allow reasoning or inference capability.

4.8.3 Ontology vs. Systems modelling approach as UML/SysML and OPM

Ontology is different from object oriented (O-O) modelling such as UML and object process

methodology (OPM) in various ways. One of the most crucial differences is ontology

modelling is based on logic (Siricharoen, 2007) and allows for automated reasoning or

inference resulting in generation of new knowledge which are not supported by either

languages such as UML/SysML and OPM. According to (Graves, 2009; Graves and

 122

Horrocks, 2008), current systems modelling approaches such as OPM, UML/SysML are

unable to provide formal semantics to the knowledge expressed and represented. UML is

good for graphical display of the ontology but without the logic layer (Zhu et al., 2009). This

is the reason UML can be considered as semiformal representation or light weight formalism

(Chungoora et al., 2013a). Another difference is the built in of properties in ontologies which

are marked at the same level as classes which means object properties can be defined

between classes. O-O modelling limits the relationship between classes to superclass-subclass

relationship (Siricharoen, 2007). Ontology modelling also adds relationships to properties in

the form of symmetric, inverse and transitive, which can be accessed in the reasoning as

against O-O modelling which doesn’t support these features. Ontology modelling supports

multiple inheritance exhibiting complex relationships whereas O-O modelling such as

UML/SysML only allow for single inheritance. Ontology modelling also provides restrictions

for class definition in the form of allvaluesfrom, somevaluesfrom (Zhu et al., 2009). Thus in

spite of various differences in the underlying philosophy of UML/SysML and OPM with

OPM focussing on object and process as kinds instead of UML/SysML on objects/blocks,

both don’t support logic for ontology and relations.

As OWL ontology provides formal semantics to the knowledge represented, it can act as

semantic integration standard (Graves and Horrocks, 2008). Ontologies are thus good for

defining metadata and providing semantic clarity and can be used as a basis of knowledge

representation (KR) or defining metadata for building software and system engineering

applications. Pertaining to this research, ontology encoded in OWL2 can be used as a

backbone (semantic metadata) for DEA applications. As compared to O-O modelling

techniques such as UML/SysML and even OPM for modelling systems, ontology modelling

provides better support for exchange of knowledge across heterogeneous multiple platforms

 123

by offering additional semantic clarity through reasoning mechanisms (Zhu et al., 2009).

Figure 4-10 illustrates the classification of formal logic for knowledge representation.

Figure 4-10: Formal Logic for Knowledge Representation (Grosof et al., 2010)

4.9 Comparative Analysis of Formal Representation Standards

The comparative analysis of the above mentioned formal representation standards as per the

requirements for a process model enabling DEA, performed as part of this research is shown

in Table 4-1.

 124

Table4-1: Comparative Analysis of Formal Representation Standards

Classification

of formal

representation

standards and

languages

Requirements for a generic process model for DEA in context of KBE

References

Expressive

capability to

represent all

concepts and

relationships

Inference

(automated

reasoning),

querying as

execution

of its code

Semantic

clarity

Modularity

with

instantiatio

n for high

re-usability

Extensibility

and

Scalability

Neutral

Representation

(Open

standards)

Semi-formal

and graphical

(non-logic

based)

without

reasoning e.g.

UML/SysML,

OPM

Can represent

most of the

concepts and

relationships

including

product and

process

knowledge

with inputs,

outputs and

resources

efficiently but

not complete

domain

knowledge as

a unified and

granular

process model

Don’t

support

inference.

However,

the models

can be

executed

with the

help of

programmin

g languages

such as

Java/C++

Yes Yes Yes Available open

source tools

such as visual

paradigm,

OPCAT provide

neutral

representation

(Blekhman and

Dori, 2013;

Dori, 2004,

2002; Foufou et

al., 2005;

Graves, 2009;

Grobshtein and

Dori, 2011;

Hart, 2015;

Mordecai et al.,

2016;

Siricharoen,

2007;

Vanderperren et

al., 2008;

Weilkiens,

2007)

Formal and

graphical

(non-logic

based) with

reasoning e.g.

frames,

semantic

networks

Represent

some concepts

and

relationships

but not all

concepts and

relationships

as complete

domain

knowledge of

the process

model

Support

inference

Not

explicit

Yes, but

lack of

contextual

relevance

Yes Only open

source tools

may provide

neutral

representation

(Davis et al.,

1993; La Rocca,

2011; Minsky et

al., 1975;

Obitko, 2007a,

2007b; Prasad,

2006; Robin,

2013; Sowa,

2015, 2008a;

Wang et al.,

2006)

Schema based

representation

in the form of

STEP

(EXPRESS

Schema)

Represent

some concepts

and

relationships

such as

product model

with

extremely

high

efficiency but

not all

concepts and

relationships

as complete

domain

knowledge of

the process

model

Don’t

support

inference.

However,

the

EXPRESS

schema can

be

integrated

with

external

systems and

programmin

g languages

such as

Java/C++

for

execution of

statements

as inference

Not

explicit

Yes, but

lack of

contextual

relevance

Yes EXPRESS

schemas are

available as

neutral

representation

(Barbau et al.,

2012;

Chandrasegaran

et al., 2013;

Dong et al.,

1997; Krima et

al., 2009; Lu et

al., 2016;

Lützenberger et

al., 2012; Peak

et al., 2004;

Pratt, 2001; Qin

et al., 2017;

Sarigecili et al.,

2014; Tang et

al., 2001; Zhao

and Liu, 2008b)

Schema based

representation

in the form of

RDF/RDFS

Represent

some concepts

and

relationships

but not

complete

Support

inference

and query in

the form of

SPARQL

Yes Yes, but

lack of

contextual

relevance

Yes Open source

tools such as

Protégé,

Topbraid

provide neutral

representation

(Beckett and

McBride, 2004;

Bruijn and

Welty, 2013;

Dean et al.,

2004; Hay,

 125

domain

knowledge of

the process

model

2006; Klyne et

al., 2004;

Manola et al.,

2004;

Mcguinness and

Van Harmelen,

2004)

Formal logic

based

languages in

the form of

KIF, CG’s,

CLIF

Represent

most concepts

and

relationships

but not

complete

domain

knowledge of

a unified and

granular

process model

Support

inference

with logic

based

theorem

provers

Yes Yes Yes Only open

source tools

supporting logic

paradigm may

provide neutral

representation

(Genesereth et

al., 1992;

Gruninger et al.,

2013; Hayes

and Menzel,

2001; Knutilla

et al., 1998;

Obitko, 2007f,

2007g, 2007h;

Schlenoff et al.,

2000a; Sowa,

2008b, 2011,

2008a)

Ontology

languages

based on

formal logic

such as OWL,

process

ontology as

PSL and non-

formal logic

based such as

Gellish

Individual

language such

as OWL2 and

Gellish can

represent most

of the

concepts but

not rules, PSL

can represent

process

specification

with inputs,

outputs,

parameters

but not

complete

domain

knowledge as

a unified and

granular

process model

Support

inference or

execution

and

querying

with logic

based

reasoners

for OWL2

and PSL

Yes Yes Yes Open source

tools supporting

logic paradigm

provide neutral

representation

for e.g. Protégé

/Topbraid for

OWL2

(Bechhofer,

2009; Bock and

Gruninger,

2005, 2004;

Chungoora et

al., 2013a;

Grüninger,

2009; Grüninger

and Menzel,

2003; Hay,

2006; Hennig et

al., 2016;

Mcguinness and

Van Harmelen,

2004; NIST,

2008; Obitko,

2007e; Pereira

et al., 2011;

Pouchard et al.,

2000, 2005;

Siricharoen,

2007; Van

Renssen, 2003,

2005, Wang et

al., 2006, 2004)

Rule

languages

based on

formal logic

such as

RuleML, RIF

and

production

rules

Rule

languages can

represent

logical rules

and basic

mathematical

rules but need

to be linked to

other logic

based

representation

s for complete

domain

knowledge as

a unified and

granular

process model

Support

inference

and

querying

with logic

based

reasoners

Yes Yes Yes Open source

tools supporting

logic paradigm

provide neutral

representation

(Boley et al.,

2016a, 2016b,

2005; Davis et

al., 1993;

Feigenbaum et

al., 2013; Hirtle

et al., 2006;

Kifer and

Boley, 2010; La

Rocca, 2011;

Morgenstern et

al., 2012;

Pugliese and

Colombo, 2014)

Object

Oriented and

multi-

Can represent

all concepts

and

Support

dynamic

inference or

Yes, but

proper

and

Yes Yes Original scripts

available as

languages, not

(Bermell-

Garcia, 2007;

Bermell-García

 126

paradigm

dynamic

programming

language in

the form of

LISP and

LISP dialects

such as

Common Lisp

(KBE systems

are based on

proprietary

LISP dialects)

relationships

of the domain

knowledge as

a unified and

granular

process model

execution

by adding

new code,

object

definitions

at runtime.

Support

querying

through

methods

efficient

execution

required

for

precise

semantics

as neutral

representation

standards.

Automation

applications

developed are

not available as

neutral

representation

and Fan, 2002;

Cooper and

LaRocca, 2007;

Evenson et al.,

2015; Foderaro,

1991;

Kaufmann and

Moore, 1997;

La Rocca, 2011;

La Rocca and

Van Tooren,

2010; Lassila,

1990;

Lützenberger et

al., 2012;

Preston et al.,

2004; Rocca,

2012; P Sainter

et al., 2000)

Object

Oriented

programming

based

languages in

the form of

Java, C/C++,

Smalltalk,

Ruby, Python,

Fortran

Can represent

all concepts

and

relationships

of the domain

knowledge as

a unified and

granular

process

model

Support

inference or

execution

but not as

dynamic as

LISP, as

they don’t

add new

code, object

definitions

at runtime.

Support

querying

through

methods

Not

explicit

Yes Yes Java scripts are

available as

cross-platform

language, not as

neutral

representation

standards; for

C/C++ explicit

codes need to be

specified to

enable cross-

platform usage

but still not as

neutral

representation

standard.

Automation

applications

developed are

not available as

neutral

representation

(Barkmeyer et

al., 2003;

Bermell-Garcia,

2007; Goldberg

and Robson,

1983; La

Rocca, 2011;

La Rocca and

van Tooren,

2007; Reilly,

2006; Schlenoff

et al., 2000a;

TechnoSoft Inc,

2003; Toussaint

and Cheng,

2002; Zeng et

al., 2003; Zhao

and Liu, 2008a)

4.9.1 Results and Discussion

As per the results of the Table 4-1, logic based languages seem to be the appropriate

standards. O-O languages specially LISP oriented and combined with other O-O languages

satisfy every criterion for DEA but not in open standards. In the context of this thesis, open

standards enable neutral representation with semantics preserved (Peak et al., 2004; Usman et

al., 2011).

As an open standard logic based language, CLIF, as ISO 24707 is extremely powerful

knowledge representation paradigm with automated theorem prover. However several errors

 127

were identified in 1st edition of CLIF as ISO 24707 (Gruninger et al., 2013) where the authors

recommend the development of 2nd edition of CLIF as ISO 24707. The 2nd edition of CLIF

(ISO, 2017) is under development in the present stage as compared to the 1st edition (ISO,

2007) published in 2007.Thus pertaining to open standard logic based language framework,

integration of multiple languages is required from the observations in Table 4-1.

OWL is an extremely powerful semantic mediator for integration of concepts of the domain

knowledge with contextual reference to be represented formally (Danjou et al., 2008; Graves

and Horrocks, 2008). The formal DL logic as basis of OWL provides open standard usage

enabling interoperability as compared to bespoke platform specific automation (Alexandrou

et al., 2013).

Similar to OWL, the limitation of Gellish in context to the needs of DEA is representation

and codification of engineering rules as multiple ary predicates. For inclusion of engineering

rules, executable languages such as RuleML and RIF have been experimented with use-case

examples.

PSL is the most comprehensive language for representing manufacturing knowledge with

preserved semantics (Cochrane et al., 2009; Zhan et al., 2010). The execution of PSL can be

achieved by either implementing them as methods in an O-O language such as Java/C++

(Cochrane et al., 2009) or with a theorem prover as inference or reasoning (Bock, 2006; Bock

and Gruninger, 2005; Das et al., 2007). As experimented with Use Case 1, 2 and 3, PSL is

very capable to represent process specifications with activity inputs, outputs as parameters

(Bock and Gruninger, 2004). It is limited in representing product’s geometric attributes with

duration along with the actual state of the object in activity occurrence. However, it has been

illustrated that along with binary change of state, change of product’s geometric attributes as

input and output states in activity occurrences can be achieved in PSL. However, it was

identified to incorporate additional non-PSL based axioms in order to fully represent

 128

relationship of product geometric attributes with specific integer and float values as units in

context to DFM for design systems (Cochrane et al., 2009).It was also identified that a more

detailed knowledge based system validation methodology is still required for development of

design support systems with inclusion of manufacturing knowledge as DFM (Cochrane et al.,

2009). The inclusion of change of product’s geometric attributes as states linked to all design

activities including the boolean operations on solid product profiles is extremely crucial for

representing a process model for DEA specifically at detailed design stages.

In order to address the needs of DEA, formal representation of process function and

behaviour are also very crucial as they form an integral part of the engineering design process

specially the early stages such as preliminary and conceptual design. It was found out that the

inclusion of engineering process function, behaviour and rationale in context to product

model attributes has not been integrated in PSL with extensions (Zhan et al., 2010).PSL is

still limited to define objects and concepts needed for finer details for DEA (Niles and Pease,

2001; Schlenoff et al., 2000b). Although it can represent some aspects object model

knowledge such as form and features in terms of activity flow, it is restricted in

representation of inputs and outputs of the process in terms of detailed object model

knowledge such as form, fit and features (Young et al., 2007).

An important factor for DEA is the consideration of the equivalent representation of both

virtual process for design and the corresponding physical process of manufacturing. The

representation of the semantics of virtual process is very crucial for representing the design

process for example; representation of removal of material in the form of hole is an boolean

subtraction activity (extrusion or pocket) as virtual process and different forms of

manufacturing methods such as drilling, reaming, boring as physical process. Similarly,

representation of addition of material is a boolean addition activity (protrusion) as virtual

process and different forms of manufacturing methods such as welding, joining or advanced

 129

methods such as additive manufacturing as physical process. PSL has high representation

capability of a physical process of design in terms of neutral formal representation of

extremely complex manufacturing process with preserved semantics through neutral

standards (Qiao et al., 2011). However, in its present state, PSL does not fully allow the

representation of the equivalent virtual process with preserved semantics through its axioms.

4.9.2 Comparison of Neutral Formal Representation Standards for Mapping of

Key Concepts and Relationships

Table 4-2, compiled as part of this research, will yield the complete framework of individual

neutral representation standards that will represent the syntactic and semantic mapping of the

identified key concepts and relationships as F-B-S aspects of an informal/semiformal process

model as a formal model that intends to achieve DEA by performing execution of its code as

inference and querying on axioms, similar to a DEA system or a KBES (KBE system).

 130

Table4-2: Mapping of Identified Concepts and Relationships to Neutral Formal

Representation Standards

Neutral

formal

representation

standards and

languages

Concepts and relationships for automation in context to DEA system functionality as executable

representation

References

Process

description

with

activities,

inputs,

outputs,

resources

and activity

id

Process

inputs &

outputs as

product

geometric

attributes

Engineering

rules based

on math

Engineering

rules based

on logic

Process

functional

requirement /

function

Process

behaviour

PSL Can represent

activity

inputs,

outputs and

resources as

parameters as

well as

activity id

Can represent

activity

occurrence

inputs and

outputs as

product’s

geometric

attributes to

some extent.

Need

extensions for

full

representation

and validation

Can represent

manufacturing

flow and

sequencing

operations as

process rules.

However,

cannot

comprehensiv

ely represent

rules with

process and

product

knowledge

with variable

geometric

attributes and

nesting of

math

conditions

Can represent

manufacturing

flow and

sequencing

operations as

process rules.

However,

cannot

comprehensiv

ely represent

rules with

process and

product

knowledge

with variable

geometric

attributes and

nesting of

logic

conditions

No, cannot

represent

design process

function with

respect to

product

Can represent

behaviour of

manufacturing

process

models.

However,

cannot

represent

complete

design process

behaviour

with respect to

product

attributes

(Bock, 2006;

Bock and

Gruninger,

2005, 2004;

Chungoora

and Young,

2011;

Cochrane et

al., 2009; Das

et al., 2007;

Usman et al.,

2013; Young

et al., 2007;

Zhan et al.,

2010)

OWL Can represent

activity with

inputs,

outputs,

resources and

activity id if a

structured

methodology

is provided

Can represent

activity inputs

and outputs as

product’s

geometric

attributes if a

structured

methodology

is provided

No, cannot

represent

engineering

rules such as

design and

manufacturing

rules based on

math

No, cannot

represent

engineering

rules such as

design and

manufacturing

rules based on

logic

Can represent

design process

function with

respect to

product if

structured

methodology

is provided

Can represent

design process

behaviour

with respect to

product if

structured

methodology

is provided

(Golbreich et

al., 2012;

Graves and

Horrocks,

2008;

Horridge and

Patel-

Schneider,

2012;

Mcguinness

and Van

Harmelen,

2004; Motik

et al., 2012;

Siricharoen,

2007; W3C,

2012; Wang

et al., 2006,

2004)

Rule ML No, cannot

represent

taxonomic

relations with

activity

inputs,

outputs,

resources and

activity id

No, cannot

represent

activity

inputs,

outputs with

product’s

geometric

attributes

Yes, can

represent

engineering

rules such as

design and

manufacturing

rules with

basic math

built-ins

Yes, can

represent

engineering

rules such as

design and

manufacturing

rules with

horn logic

No, cannot

represent

process

function with

respect to

product

No, cannot

represent

process

behaviour

with respect to

product

(Ball et al.,

2005; Boley

et al., 2016a,

2016b, 2016c,

2005;

Golbreich,

2004; Hirtle et

al., 2006)

RIF No, cannot

represent

taxonomic

No, cannot

represent

activity

Yes, can

represent

engineering

Yes, can

represent

engineering

No, cannot

represent

process

No, cannot

represent

process

(Boley and

Kifer, 2013;

Feigenbaum

 131

relations with

activity

inputs,

outputs,

resources and

activity id

inputs,

outputs with

product’s

geometric

attributes

rules such as

design and

manufacturing

rules with

basic math

built-ins

rules such as

design and

manufacturing

rules with

horn logic

function with

respect to

product

behaviour

with respect to

product

et al., 2013;

Kifer and

Boley, 2010;

Morgenstern

et al., 2012)

OWL / SWRL

(OWL DL+

Unary /Binary

Datalog

RuleML)

Can represent

activity with

inputs,

outputs,

resources and

activity id if a

structured

methodology

is provided

Can represent

activity inputs

and outputs as

product’s

geometric

attributes if a

structured

methodology

is provided

Yes, can

represent

engineering

rules such as

design and

manufacturing

rules with

basic math

built-ins

Yes, can

represent

engineering

rules such as

design and

manufacturing

rules with

horn logic

Can represent

design process

function with

respect to

product if

structured

methodology

is provided

Can represent

design process

behaviour

with respect to

product if

structured

methodology

is provided

(Glimm et al.,

2009;

Golbreich and

Imai, 2004;

Horrocks et

al., 2004;

Kuba, 2012;

Noh and Suh,

2008; Qin et

al., 2016;

Sarigecili et

al., 2014;

Tessier and

Wang, 2013)

Gellish Can represent

activity with

inputs,

outputs,

resources and

activity id if a

structured

methodology

is provided

Can represent

activity inputs

and outputs as

product’s

geometric

attributes if a

structured

methodology

is provided

No, cannot

represent

engineering

rules such as

design and

manufacturing

rules based on

math

No, cannot

represent

engineering

rules such as

design and

manufacturing

rules based on

logic

Can represent

design process

function with

respect to

product if

structured

methodology

is provided

Can represent

design process

behaviour

with respect to

product if

structured

methodology

is provided

(Braaksma et

al., 2011;

Frisch, 2007;

Hennig et al.,

2016, 2015;

Pereira et al.,

2011; Van

Renssen,

2003, 2005)

4.10 Analysis of Findings

Thus, from the results of Table 4-2, OWL/SWRL is a good candidate for representing all

identified key concepts and relationships as unary and binary predicates in the form of classes

and properties of PM-DEA for achieving DEA. Due to the limitation of ontologies based on

OWL2 in representing engineering rules, another formal standard needs to be incorporated to

represent engineering rules with n-ary relationships, which can be based on logic as well as

maths. Similar to OWL, the limitation of Gellish in context to the needs of DEA is

representation and codification of engineering rules as multiple ary predicates.

Engineering rules can be represented either in RuleML or RIF. Both RuleML and RIF are

based on horn logic semantics and have various versions. For example, some aspects of

Datalog RuleML can be mapped to RIF Core Dialect, Derivation RuleML to RIF Basic Logic

Dialect (RIF BLD) and production rule sublanguage of reaction RuleML to RIF Production

 132

Rule Dialect (RIF PRD) (Feigenbaum et al., 2013). Both RuleML and RIF have data types

and built-ins in the form of logical operators for comparison such as greater than, less than

and basic mathematical built-ins such as multiply, divide along with logical operators for

strings and boolean value operations (Horrocks et al., 2004; Polleres et al., 2013). Datalog

RuleML as integrated with OWL becomes SWRL (OWL DL & Unary/Binary Datalog

RuleML). Thus SWRL is a purposeful extension to OWL and covers most of the features of

RIF BLD. Although RIF was although originally designed for exchange of knowledge

between rule languages such as RuleML and SWRL, it can also be considered as a rule

language. However, there are a few differences between RIF and SWRL. As compared to

SWRL, RIF BLD offers a few advantages such as provision of multiple-ary predicates as

properties as compared to unary/binary predicates as properties in SWRL. Also, RIF BLD

has more built in functions as compared to SWRL (Feigenbaum et al., 2013). However, this

problem can be avoided by incorporating additional predicates as properties in SWRL. The

major advantage of SWRL is ease of integration with OWL2 formalism along with the

reasoners which support both DL reasoning and Horn Logic reasoning with separate

reasoners such as Pellet, Racer for DL reasoning and Jess, Drools for Horn Logic reasoning,

within a single integrated development environment (IDE) such as Protégé (Golbreich and

Imai, 2004). Protégé editor also provides both Sematic Query-Enhanced Web Rule Language

(SQWRL) and SPARQL Protocol and RDF Query Language (SPARQL) for querying SWRL

rules and OWL knowledgebase with RDF/XML representation respectively.As OWL/SWRL

is one of the candidates for investigation for formal representation of knowledge in context to

DEA systems (Lützenberger et al., 2012) and in spite of a few limitations such as

unary/binary predicates, SWRL provides ease of integration with OWL.

OWL/SWRL or OWL/RIF as a combined representation come close to the expressivity of

PSL as a single language, although the method of using OWL/SWRL should be precise. Thus

 133

although PSL is more expressive than OWL/SWRL, due to the limitations of PSL for

knowledge representation of design systems and in compliance with the research design

requirement of availability of supporting tool for experimental verification of formal axioms,

OWL/SWRL formalism has been selected within protégé environment with Pellet for DL

reasoning and Drools for Horn Logic reasoning. However, a careful consideration for

implementation of SWRL on top of OWL is that the variables, relations and individuals in

Datalog RuleML as SWRL should consist of OWL ontology elements in the form of classes,

properties and instances. Thus, modelling of the OWL ontology needs to be accurate in order

for SWRL rules to include ontology elements and reasoning to provide accurate results.

4.11 Summary

This chapter has identified the Meta model based on key concepts and relationships as F-B-S

aspects of the process model for DEA as part of the novel aspect of this research. The

experimentation of these concepts was performed using existing platform independent and

neutral formal representation standards such as PSL, RuleML, OWL and SysML.

Requirements were compiled for the formalised representation to enable DEA for all the

specified concepts and relationships. The results of the comparative analysis along with the

research design for a supporting tool to test the axioms for a KR language revealed

OWL/SWRL to be a suitable candidate. Both these tasks will address the other primary novel

aspect of this research by providing a method for ontology development of identified

concepts and relationships in OWL/SWRL as neutral formal representation with inference

and reasoning and semantic clarity. The next chapter will address these aspects by utilising

the high level, intermediate and low level concepts as the Meta model for development of a

generic process model for DEA. The model schema will provide the method for populating

OWL/SWRL as a suitable ontology for DEA with neutral formal semantics.

 134

5 Development and Implementation of Process Model for Design

Engineering Automation: Ontology Based Approach

5.1 Introduction

Chapter 4 identified the key concepts and relationships as Meta model with F-B-S aspects for

development of a generic process model for DEA for mechanical design with DFM. It also

discussed experimentation of the Meta model aspects with neutral formal representation

standards and their comparative analysis as per compiled requirements. This chapter will

initially discuss the development of a generic process model, which is named in the thesis as

“Generative Process Model for Design Engineering Automation (GPM-DEA)” based on the

high level; intermediate and low level concepts as the Author’s Meta model. The second half

will elaborate on the method of the schema mapping of GPM-DEA knowledge model for

mechanical design process with DFM to OWL/SWRL ontology. The ontology development

methodology is in line with the approach discussed in research design in section 1.4.2. It is

claimed that the ontology representation will achieve the requirements of DEA for

mechanical design with DFM process with generative modelling capability as per KBE

perspective based on functional requirements, and with the effect of unified/integrated

process model on product’s geometric attributes. For this purpose, Use case 3 and 4 will be

discussed for system development and experimental verification of the claim in the next

chapters. This will be performed with the assistance of inference results on neutral formal

representation as the use of ontologies, with the help of reasoning and query mechanism on

author developed set of predefined generic functions with semantic clarity.

5.2 Initial Process Model for Design Engineering Automation

An initial process model was developed by the author, with the literature review findings on

knowledge entities of mechanical design process with DFM for formulation of key concepts

 135

and relationships as Meta model, strengths and weaknesses of existing informal/semiformal

and formal modelling standards for their knowledge modelling and experimentation of the

Author’s Meta model concepts and relationships with neutral formal representation standards

based on pilot use-cases. This is illustrated with the help of Figure 5-1.

Figure 5-1: Initial Process Model for DEA as Informal / Semiformal Representation

As it is observed, that although existing modelling standards such as IDEF0, IDEF4, UML,

SysML can capture most high level identified concepts and relationships of the author’s

metamodel of the process model informally but to capture all the aspects requires merging of

existing standards utilising a hybrid approach and modifications for amendments. Thus the

initial version of an instance of the process model consists of these concepts (Meta model) –

design process, activity, product, rule, logic, inputs, outputs, resources, functional

 136

requirements-function, behaviour, state and condition. However, in compliance with the

requirements formulated from a process model for implementation in neutral formal

representation for DEA in context to KBE in section 4.7.1, condition and state classes are not

required as the design process can take multiple routes within a process and just needs to

reflect its output in terms of product’s geometric attributes. These geometric attributes can be

used across different bespoke DEA systems in the form of parametric CAD systems such as

Siemens NX Fusion, CATIA Knowledgeware enabling GA, CAM systems and KBEs such as

AML and ParaPy. In order to further refine the process model and its ontology system

development, Use case 4 and 5 will be instantiated in order to refine the process model and

verify the effect of GPM –DEA on the product’s attributes. A revised version is illustrated in

Figure 5-2.

Figure 5-2: Revised Process Model for DEA as Informal / Semiformal Representation

IDEF0 ICOM – Activity

SysML Requirement Diagram

UML Class Diagram

 137

However, as per the combination of critical analysis of literature review and experimentation

with pilot use-cases, the process model based on the F-B-S aspects of the Meta model was

revised with alterations in order to fully address the needs of DEA system. The formulation

of final version of the process model developed by this research is illustrated as follows.

5.3 Development of final version of GPM-DEA – Relationships of

MetaModel

The purpose of the product design process is to satisfy a set of functional requirements (Chen

et al., 2008). IDEF0 with its syntax is used to describe the structural (S) effect of a process

with functional modelling approach (Chang et al., 2008). This is due to the fact that IDEF0

enables functional modelling.

As developed and refined by author, the one to many relationships for the activity as the

primary concept of the process model with F-B-S aspects for DEA is described as follows –

1. Activity satisfies a function which is a sub-function of the design process functional

requirements (SysML Requirement Diagram)

2. Activity requires inputs for conversion to outputs which are described in terms of

product specific attributes or parameters (UML Class Diagram) as well as

independent re-usable objects

3. Activity is controlled by engineering rule, which may be a design or a manufacturing

rule, which control its completion. There are various types of rules such as process,

logic, heuristic, geometry, math, production and configuration rule. These also

include the trade-offs between design and manufacturing constraints

4. Activity requires resources which may physical elements such as fixture, jig for

manufacturing process and virtual elements such as CAx tool for the design process

 138

5. Activity is described by an integer id, Activity has sub-activity

6. Activity is followed by (successor) an activity

Detailed analysis by author has revealed the following key observations of existing modelling

standards which satisfy few aspects of the Metamodel developed by author to target DEA

with focus on mechanical design with DFM process –

• Strength of IDEF0 is capturing of all points except 1, which shows the simultaneous

function as a sub-function of the design process functional requirements and 6, which

allows for process logic. Thus, these 2 relationships are added to IDEF0 for activity

completion in context to the needs of activity knowledge capture for DEA, which is

elaborated in section 5.3.

• Strength of MBSE language diagrams such as UML class diagram or SysML block

definition diagram is they are able to capture static aspects of product attributes.

Similarly, SysML requirement diagram is able to capture functions of a process in

context to the product for DEA (Finance, 2010). Thus UML class diagram is used to

represent the object attributes and the SysML requirement diagram for functional

requirements. It is important to notice that although UML and SysML activity

diagram are also successful in capturing activities with inputs and outputs (Weilkiens,

2007), thus fulfilling points 2 and 5 of activity relationships but are not able to fulfill

points 3 and 4 as they can’t incorporate resources and rule in the same diagram. This

is the reason for selecting IDEF0 for activities and UML class diagram and SysML

requirement diagram for product model and functional requirements respectively in

context to the needs of DEA.

• Strength of UML class diagram is it can represent engineering rules as methods to

convert activity inputs to activity outputs in terms of product attributes. This

eliminates the need to use the SysML parametric diagram separately for

 139

representation of rules. Both IDEF0 and UML have been used as knowledge objects

for modelling of conceptual design of aerospace assembly processes (Mas et al.,

2013).

The author has added UML condition link on top of IDEF0 to successfully model process

rules for controlling the sequence of individual IDEF0 activities as a red link. Similarly, blue

link is added to represent the sub-activities of individual activities. The author has also added

the behaviour concept separately as a knowledge object to the activity, object and function

thus completing the function-behaviour and structural (F-B-S) aspects of the process model

for DEA. The author has also added a relationship (as an arrow) between IDEF0 ICOM

activity box and its functional mapping to SysML requirement diagram in green borderline

as individual sub-functions with a pink link. An instance of this is illustrated in Figure 5-3.

 140

Figure 5-3: Instance of Generative Process Model for Design Engineering Automation

(GPM-DEA) as Informal / Semiformal Representation – Developed by Author

IDEF0 ICOM – Activity

SysML Requirement Diagram UML Class Diagram

–

Product

 141

5.4 Functioning of GPM-DEA – Coherent Process Knowledge Model

This research has developed a generative process model for design engineering automation

(GPM-DEA), which is dynamic in nature through its ontological neutral formal

representation. It is explained in detail in this section.

5.4.1 Workability

The working of GPM-DEA as developed in this research is shown in Figure 5-4. The

functional requirement of the design process is broken down into sub functions, which are

represented using SysML requirement diagram. SysML requirement diagram is used for

illustrating functional requirements of engineering design process in context to the product as

the primary object (Weilkiens, 2007). In order to generate activities and objects as generative

modelling capabilities developed in this research, the sub functions are matched to activities

and objects, which fulfill the same functions. However, this can only be achieved during

representation of GPM-DEA in formal standards.

The product in initial state is assessed and then its geometric attributes are marked as activity

inputs and outputs. Activity description is captured using an IDEF0 notation. IDEF0 has

inputs, controls, outputs, and mechanisms (ICOM) as described in context to engineering

design processes (Pugliese and Colombo, 2014). Controls can be entities or laws guiding the

process, which in this case become the engineering rules based on logic and maths.

Mechanisms are synonymous to resources, which are used but not consumed or transformed

directly during an activity.

Thus in the developed process model, IDEF0 illustrates design process activities with inputs,

outputs, rules as controls and resources as mechanisms. There are various subclasses of rules

- process rules, logic rules, heuristic rules, math rules, geometry rules, production rules and

configuration rules.

 142

Figure 5-4: Working of Generative Process Model for Design Engineering Automation

(GPM-DEA) – Developed by Author

As IDEF0 corresponds to functional modelling, all design activities satisfy a function. GPM-

DEA, based on IDEF0 for activities, is based on dependency modelling for analytical

purposes in the form of DEA (Wynn and Clarkson, 2017). Process rules for sequencing and

optimisation are represented with UML condition links.

Process adding semantics to product function and behaviour has been imperative in

incorporating both function (functional requirement) and behaviour in respect to process

modelling approach of this research. Similarly, a crucial point is to capture the relationship of

the process function and behaviour in context to the change of state of product through its

 143

attributes as one of the key artefacts especially during the conceptual and preliminary design

phase. Thus, in GPM-DEA process has function & behaviour and structure in terms of an

ICOM box with all aspects in relation to product geometric attributes.

As stated earlier in the thesis, the process model developed by the author also adopts basic

principles of OPM as ISO/PRF PAS 19450 with the change of state of the product from

initial state to final state in context to process execution. However, it was mentioned in

section 4.8.2 that although, OPM goes to various levels of abstraction to represent the

complete F-B-S of a system, it doesn’t fully model the individual activities of a process

model and provides very less relation between the activities and its implementation as formal

representation. This is the reason that OPM notation has not been utilised for

informal/semiformal representation for the activity and related concepts of the process model

developed by the author.

The change of state of product from initial state to final state upon acted upon by a process is

reflected by change in its attributes as also adopted from IDEF3 and IDEF4 methodology. In

order to reflect the effect of process model on product geometric attributes in this work, UML

class diagram is used for product model with attributes and engineering rules as methods.

Interface of the process model with product model is illustrated in Figure 5-4 where, UML

class diagram can represent parts and assembly relations with composition links and also

parent child relations for the product.

Thus GPM-DEA is built upon existing standards such as IDEF0, UML and SysML and

incorporates additional constructs such as sequencing and flow of activities based on

process rules, automatic generation of activities and objects based on function matching for

complete Function-Behaviour-Structure (FBS) representation in order to address the needs of

DEA. As GPM-DEA model has various sub-levels, an instance of GPM-DEA is illustrated in

Figure 5-3 at its highest level of abstraction.

 144

5.4.2 Pilot Use Cases - Function Structure Matching: Basis of Generating

Activities and Objects of GPM-DEA

The instance of GPM-DEA as shown in Figure 5-4 is a graphical representation

corresponding to the knowledgebase consisting of all concepts for FBS representation of the

engineering design process. Figure 5-5 shows the knowledgebase compiled in this work,

where various design processes exist with their functional requirement, which is broken down

into sub functions.

Figure 5-3: Example of Engineering Design Process with corresponding Functional

Requirement and Sub-Functions: Knowledgebase

An example of both design processes and activities from Use Case 1 & 3, which includes

physical, informatical and virtual activities with their corresponding sub-functions as

functional requirements, is illustrated with Figure 5-5 and Figure 5-6 respectively.

 145

Figure 5-4: Example of Engineering Design Process Activities with corresponding Functional

Requirement as Sub-Functions: Knowledgebase

Thus, from Figure 5-5, the engineering design process – Conceptual Design1 Fan blades has

4 sub-functions – ‘generate thrust’, ‘reduce total engine damage from the ingestion of

various foreign objects such as birds’, ‘secure the blades to the hub or disk’ and ‘allocate

material with high damage tolerance, ductility, high cycle fatigue (HCF) strength and yield

strength’. From Figure 5-6, activity ‘Blade Geometry Optimisation’ satisfies the 2 of these

sub-functions - ‘generate thrust’, ‘reduce total engine damage from the ingestion of various

foreign objects such as birds’. Similarly, the activity ‘Dovetail Attachment’ satisfies the

function – ‘secure the blades to the hub or disk’ and the activity ‘Material Selection’ satisfies

– ‘allocate material with high damage tolerance, ductility, high cycle fatigue (HCF) strength

and yield strength’. Thus, the design process - conceptual design1 fan blades should consist

of these 3 activities - ‘Blade Geometry Optimisation’, ‘Dovetail Attachment’ and ‘Material

Selection’.

 146

Similarly, ‘Precision forging1’ as a DFM process satisfies 2 sub-functions – ‘Achieve an

accuracy of +/-2mm’ and ‘shape prediction’. All the existing activities in the knowledgebase,

which fulfill a subset of these functions are - ‘Extrusion’, ‘Heading’ and ‘Stamping’. Thus

‘Precision forging1’ should consist of these 3 activities as ‘Extrusion’, ‘Heading’ and

‘Stamping’. All the activities with their inputs, outputs, controls as rules and mechanisms as

resources along with participating objects as inputs is shown in Figure 5-7. Their

corresponding graphical representation is an ICOM box of IDEF0 standard in GPM-DEA.

Figure 5-5: Example of Engineering Design Process Activities with Inputs, Outputs, Rules

and Resources with Objects: Knowledgebase

A snapshot of the rule description controlling the activities is shown in Figure 5-8.

 Figure 5-6: Example of Engineering Rules controlling the Design Process Activities:

Knowledgebase

 147

5.4.3 Types of Engineering Design Process with Variable Concepts: Function and

Objects

All the sub-classes of the design process cannot be illustrated here in the Figure, as we need

to go to sublevels. For example, the design process for this thesis has to cover conceptual /

preliminary design, embodiment / configuration design, detailed design and other crucial

aspects such as DFM, DFA as part of embodiment design. The detailed hierarchy of

engineering design process, which can be implemented in DEA systems, needs to cover all

aspects of the design process with high level, intermediate and low level concepts identified

in this thesis such as design for assembly (DFA), design for manufacturing (DFM), fluid flow

analysis, structural analysis, thermal analysis, stress analysis, detailed design process aspects

such as form, features and fit with 3D modelling, computer aided engineering (CAE) analysis

process such as computational fluid dynamic (CFD) analysis, finite element analysis (FEA)

analysis, pre-processing, post-processing, computer aided manufacturing (CAM) process

such as casting, joining, machining and so on. In order for function matching to work, which

will be illustrated later, sub functions are classified in this work as – geometric 3d shaping /

sizing, manufacturing feasibility such as attach / connect & positioning, output electrical

magnetic performance such as capacitance, electric field, voltage, energy, power, work,

output mechanical performance such as acceleration, fatigue, force, hardness, momentum,

stiffness, strain, strength, torque, velocity and output thermodynamic performance such as

compression, expansion, flow, foreign object damage, heat, pressure and vibration. The

complete list of both design process and function subclasses are illustrated later.

Pertaining to this research, as the process model has the effect on object attributes used across

DEA systems applications, the object model including the product knowledge needs to cover

basic aspects such as feature, form, fit and material. There is an interface between the process

model and product model as observed from Figure 5-3. The product model can be expanded

 148

to include detailed product knowledge. As part of this research, the following aspects are

included which can be further extended as integration to the product model. Features include

depression / extrusion features such as hole, notch, pocket, slot and protrusion features such

as block, shaft. Fit includes part and assembly relationships. Form is broken down as edge,

face, surface and volume. Edge is further broken down as chamfer, fillet and line. Similarly,

face is broken down as circle, ellipse, hyperbola, parabola and polygon with variable sides.

Surface is broken down as Bézier and Non-uniform rational basis spline (NURBS). Volume

is broken down as box, cone, cylinder, ellipsoid, hyperboloid, paraboloid, polygon volume

and sphere. Material is further classified as alloys, ceramics, composites, ferrous metal, non-

ferrous metal and polymer. Alloys are classified as brass, bronze, duralumin, inconel,

nimonic and manganin. Ceramics are broken down as boron carbide, boron oxide, silicon

carbide and silicon nitride. Composites are broken down as glass fiber, carbon fiber and so

on, ferrous metal as carbon steel, cast iron, mild steel and so on, non-ferrous metal as

aluminium, copper, lead, nickel, tin, titanium, zinc and so on. Similarly, polymers are further

classified as neoprene, plastic, polyethylene, polypropylene and so on.

Product has been divided into two main classes – product_initial and product_final. The

product_initial indicates the state of the product at the beginning of the design process;

product_final indicates the state of the product at the end of the design process.

5.5 Synthesis of GPM-DEA

In order to address the needs of DEA, integration of various engineering design concepts and

relationships with focus on mechanical product design process with DFM knowledge has

been achieved by developing GPM-DEA in this research. GPM-DEA provides a coherent

method to build structured knowledge model and enables automation with generative

modelling by automatic generation of activities and objects by matching the functions as

functional requirements of the design process with corresponding functions of activities and

 149

objects. GPM-DEA includes all concepts of the Author’s Meta model in context to process

modelling for DEA with focus on mechanical design with DFM knowledge, and preserved

semantics based on knowledge entities such as activity, function, behaviour, object and its

attributes as structure being affected by rules and logic in a coherent and structured manner. It

provides categorisation for sub-functions and object knowledge model with geometric

attributes along with integration facilities to the product model. This allows for an

unified/integrated and highly granular process model ready for implementation in a neutral

(open standards) formal representation framework for DEA ensuring correct syntactic and

semantic mapping of the informal/semiformal model to the formal model.

5.5.1 GPM-DEA – Hybrid Representation of Existing Modelling Standards

Thus, in order to develop a coherent and structured process based knowledge model, the

author has exploited the strengths of the existing modelling standards and added the

constructs on top of the integration. The working of the developed process model, GPM-DEA

as informal/semiformal representation for visual display by the author can be summed up as –

1. IDEFO ICOM box for activity description with inputs and outputs in terms of

product attributes along with links to rules as controls and resources

2. UML class diagram for product knowledge with engineering rules as methods

3. SysML requirement diagram for functional requirements

4. UML condition link for process rules and flow

5. Bi-directional relations between function, process links, objects, activity description

behaviour for complete F-B-S of a process model

Thus the author has combined the strengths of IDEF0, UML and SysML and added

constructs on top to develop a hybrid representation of GPM-DEA. Some of the few critical

aspects of a process model for DEA using a KBE approach is generative modelling

capabilities which means that the individual activities should not be static and must be

 150

generated from the initial specification or the design intent in the form of functional

requirement classification. In context of this research, as the design process satisfies a

functional requirement, all the activities, which fulfill functions, as part of the design process

should be automatically generated. Thus in compliance with function structure, the functional

requirements of the design process as captured in SysML requirement diagram are broken

down into sub-functions. All the activities, which match the individual sub-function

instances, should be automatically generated for DEA.

5.5.2 GPM-DEA - Generative Modelling Aspects

The following are the crucial aspects of generative modelling of GPM-DEA, which have

been embedded by the author in formal OWL ontology representation with the help of

predefined set of generic functions in context to DEA with a KBE approach -

1. Generation of activities based on sub-functions as functional requirements

2. Generation of objects based on sub-functions as functional requirements

3. Generation of engineering rules for activities based on logic as the basis of rules

4. Assessment of initial product to generate the initial activity of the process model

5. Virtual and physical activity functional equivalence

These will be elaborated in the next section 5.6 which explains OWL ontology development

based on the schema of GPM-DEA. GPM-DEA has been developed with assistance of pilot

use cases and the requirements formulated for DEA. It has been further refined with the usage

of test use-cases, discussed in the next chapter for refinement of Meta model concepts and

relationships to incorporate product’s geometric attributes and further system development.

The results of comparative analysis of available formal standards as per the formulated

requirements for a KRS to enable DEA as discussed and analysed in section 4.9, has

 151

recommended OWL/SWRL as a suitable ontological neutral formal representation

framework of GPM-DEA with semantic clarity.

5.6 Implementation of GPM-DEA in OWL/SWRL Ontology and Rule

Representation: Neutral Formal Representation

This research thesis has developed an ontology for the mechanical design process with design

for manufacturing (DFM)/ design for assembly (DFA) based on the schema of the structured

GPM-DEA knowledge model. The ontology has been developed using Topbraid Composer

FE (Composer, 2011) and Protégé (Horridge et al., 2011) with formal representation standard

as OWL2 (Golbreich et al., 2012; Hitzler et al., 2012; Horridge and Patel-Schneider, 2012;

Motik et al., 2012) as the basis for axioms. OWL2 is based on formal logic SROIQ (Krötzsch

et al., 2012). The main focus of this work is to develop ontology of the mechanical product

design process for DEA with the effect of the process model on the change of state of the

product in terms of its geometric attributes.

As explained in the earlier sections, engineering rules form a very integral and crucial part of

an engineering design process for DEA and have been extensively formalised. However, a

limitation of binding engineering rules to a process based approach has been a major

limitation as engineering rules have been purely associated with product geometry and

features in DEA systems. It was also observed that function, behaviour have been

individually modelled in context in product modelling and implemented in ontology encoded

in OWL.

The ontology model as OWL/SWRL developed as part of this research constrains the

interpretation of the knowledge base through its axioms and allows for subsumption relation

validation (class-subclass relationship) and reasoning.

 152

5.6.1 Ontology Development in OWL: Classes, Properties and Restrictions

For OWL/SWRL as ontology implementation of GPM-DEA, the master class under Thing as

described in OWL2 is the design process with subclasses as activity and product as one of the

underlying main classes. Under the Design Process with activity and product being the main

classes of focus, all the other concepts including rule, logic, resources, function or functional

requirements and behaviour have been assigned as classes in the developed GPM-DEA.

Design process function and behaviour are very crucial to GPM-DEA with function class

allowing for generative modelling capabilities using SWRL. Subclasses have been clearly

assigned to master classes for example; product_initial and product_final as initial and final

state respectively are subclasses of the product class.Similarly, the rule class has different

types of engineering design rules classified as production rules in the form of ‘If-Then’ and

‘If-Then-Else’ construct, process rules, logic rules, math rules, geometry rules, configuration

rules and heuristic rules as its subclasses. Many rules can be classified under multiple

subclasses as various classes share common characteristics. However, the heuristic rules are

disjoint with logic rules as a member of one class cannot be a member of the other class.

Figure 5-9 illustrates the OWL implementation of GPM-DEA with classes and properties.

The activity description concepts have been adopted from (Ding et al., 2009; Zhang et al.,

2013) including inputs, outputs, resources, activity id and description along with methods as

transformation of inputs to outputs. The methods become synonymous to engineering rules

and logic in the engineering design process. They have been implemented with the help of all

use cases examples. Inputs, outputs of activity and other specified relationships as arrows

between classes in GPM-DEA have been clearly assigned as properties in OWL2 formalism.

Properties have been created between concepts as classes and classified as either object or

datatype properties.

 153

Figure 5-7: OWL implementation of GPM-DEA developed by this research: Classes and

Properties

 154

OWL2 allows object properties between individuals of classes and datatype properties

between individuals and values such as string, integer, and float. Properties link individuals

from domain to range. Thus relationships such as design process satisfies functional

requirement (ProcessModel:satisfiesFunctionalRequirement), activity controlled by rule

(ProcessModel:controlledbyRule), activity requires resources

(ProcessModel:requiresResources) have been implemented as object properties. The

rdfs:domain of the property becomes the initial class and the rdfs:range of the property

becomes the second class.For example, (ProcessModel:satisfiesFunctionalRequirement)

property has been created for which rdfs:domain is the Design_Process class and the

rdfs:range becomes the FunctionalRequirement class.Similarly,

(ProcessModel:controlledbyRule) property has rdfs:domain as Activity class and rdfs:range

as Rule class. This has been illustrated with the help of query in earlier versions of GPM-

DEA with Use Case 3 in Section 4.5.3 in Chapter 4. To model the sequencing and

optimisation of activities an object property called (ProcessModel:has_Sucessors) has been

created with both rdfs:domain and rdfs:range set as Activity class.

Datatype properties have been created such as to model activity has inputs and outputs in

terms of object attributes(ProcessModel:has_Inputs), (ProcessModel:has_Outputs); activity

has id (ProcessModel:has_ID). Both (ProcessModel:has_Inputs) and

(ProcessModel:has_Outputs) have domain as Activity class and range as xsd:float. For

example (ProcessModel:has_Object_Size) has been created as a sub property of

(ProcessModel:has_Attributes) in GPM-DEA.(ProcessModel:has_Attributes) has domain as

Product and Object class and range as xsd:float. (ProcessModel:has_Object_Size) can be

marked as a sub property of (ProcessModel:has_Inputs)under which dimensions of objects

can be assigned values as sub properties of activity inputs. Similarly,

(ProcessModel:has_Object_Position_Coordinates) has been created as a sub property of

 155

(ProcessModel:has_Attributes) to allocate positioning of the parts and assemblies with all 3

co-ordinates as X, Y and Z. (ProcessModel:has_Object_Position_Coordinates) can also be

marked as a sub property of (ProcessModel:has_Inputs) under which position coordinates of

objects can be assigned values as sub properties of activity inputs.Similarly, the datatype

property (ProcessModel:has_Object_Orientation_Angle) created as a sub property of

(ProcessModel:has_Attributes) allows allocation of orientation angle of all parts and

assemblies with respect to X, Y and Z co-ordinates.

(ProcessModel:has_Object_Orientation_Angle) can also be marked as a sub property of

(ProcessModel:has_Inputs) under which orientation angle of objectscan be assigned values as

sub properties of activity inputs.The datatype property (ProcessModel:has_ID) with domain

as Activity class and range as xsd:integer means each activity has an integer id.

OWL2 supports the following types of properties – asymmetric property, symmetric

property, functional property, inverse functional property, reflexive property, irreflexive

property and transitive property. Functional property can be both datatype and object

property whereas inverse functional can only be an object property. Functional property

means that the individual from a class can only be associated with one value. Thus

(ProcessModel:has_ID) property created in the model is a functional property as it can only

be associated with one integer as a datatype property. An inverse functional property means

that the inverse of a property is functional and can only be associated with one value but is

always an object property.

All the other properties are classified under object properties as well.Reflexive property

allows an individual from a class to relate to itself using the property. Any property, which

doesn’t allow individual from a class to relate to itself, becomes an irreflexive property.

Symmetric property means that if the property relates individuals from class A to class B then

the individuals from class B are related to the individuals from class A with the same

 156

property. Property, which doesn’t relate back individuals from different classes with the same

property, is referred as asymmetric property. Transitive property indicates that if a property

relates individuals from class A to class B and also individuals from class B to class C then

the property holds true for individuals from class A to class C. All individuals created as

instances of these classes will follow these properties as relationships.

Restrictions are axioms that constrain class descriptions in OWL. Following restrictions are

supported by OWL2 – quantifier restrictions in the form of existential and universal

restriction, cardinality restrictions in the form of minimum, maximum and exact cardinality

and hasValue restriction. Existential restriction or existential quantifier is referred as

someValuesFrom (some) and may also be denoted as ∃. Universal restriction is referred as

allValuesFrom (only) and may also be denoted as ∀.Existential restriction means that the

individuals from a class must hold the property with atleast one individual from the filler

class or datatype.

For example, in GPM-DEA ontology model developed by this work, activity class has been

created with an existential restriction in the form of (ProcessModel:has_Successors some

ProcessModel:Activity), (ProcessModel:has_Inputs some xsd:float). These axiom in the form

of existential restriction (some) means that all individuals from Activity class will need to

hold (ProcessModel:has_Successors) object property with rdfs:domain set as Activity and

rdfs:range set as Activity with atleast one individual from the filler class Activity. In natural

language, it indicates that all instances of activity will need successor activities in order to

describe them for a DEA system. Similarly, the existential restriction in the form of

(ProcessModel:has_Inputs some xsd:float) constrains that all individuals of the Activity class

must hold (ProcessModel:has_Inputs) datatype property with rdfs:domain set as Activity and

rdfs:range set as xsd:float with atleast one individual from the filler datatype float.In natural

 157

language, it indicates that all instances of activity will need inputs as object attribute float

values in order to describe them for a DEA system.Similarly, an existential restriction has

been created on the Activity class with another datatype property in the form of

(ProcessModel:has_ID). The restriction is stated as (ProcessModel:has_ID some xsd:integer)

which indicates that all instances of Activity class will hold (ProcessModel:has_ID) property

with the filler as an integer datatype. In natural language it indicates that all activities will

hold an ID in order to describe them for a DEA system.The existential restrictions on activity

class along with subclasses of Rule are shown in the Figure 5-10.

Figure 5-8: Axioms for Restrictions on Activity Class

SPARQL query will generate the classes and relationships based on the defined process

model as GPM-DEA.

5.6.2 Function Structures, Design Process and Objects: Class Specification

The engineering design process covers a wide lifecycle from conceptual design to the

detailed design stage as discussed in literature review in Chapter 2 and development of GPM-

DEA. As elaborated in section 5.3.3, the various types of engineering design process with

 158

their stages in class hierarchy in OWL representation are illustrated with the help of Figure 5-

11.

Figure 5-9: Types of Design Processes: Class Hierarchy

Similarly, for function structure, the highest level of class-subclass relationship of functional

requirements for engineering design process, activities and objects has been broken down in

this thesis for representation in OWL2. It is represented with the help of Figure 5-12 and 5-

13.

Similarly, the object knowledge is represented as an interface to the process model with

limited aspects, which can be extended further. The complete object model is illustrated with

the help of Figure 5-14 and Figure 5-15.

 159

Figure 5-10: Function Structure Classification: Class Hierarchy

Figure 5-11: Function Structure Classification: Class Hierarchy Continued

 160

Figure 5-12: Object Model Classification: Class Hierarchy

Figure 5-13: Object Model Classification: Class Hierarchy Continued

As explained earlier in section 5.3.3, in the present state of this work, the object knowledge

consists of high-level classes such as features, form, fit and material selection with further

sub classification as shown in Figure 5-14 and Figure 5-15.

 161

5.6.3 Generative Modelling: Function Structure Matching using SWRL – Based on

Function Structures, Design Process and Objects

In order to satisfy the generative modelling capability of DEA as summarised in section

5.5.2, following functions have been added as part of this research using SWRL for

formalisation.

1. Generation of activities based on sub-functions as functional requirements

2. Generation of objects based on sub-functions as functional requirements

3. Generation of engineering rules for activities based on logic as the basis of rules

4. Assessment of initial product to generate the initial activity of the process model

5. Virtual and physical activity functional equivalence

The following functions represented in SWRL on top of OWL, fulfil these 5 predefined set of

generic functions to generate query and reasoning results on various instances for DEA for

mechanical design with DFM process with semantic clarity and generative modelling.

4. Assessment of initial product to generate the initial activity of the process model

Function1: Generating 1st Activity (Physical): SWRL

Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Physical-Activity(?pa) ^

has_Function(?pa, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?pa)

Function2: Generating 1st Activity (Informatical): SWRL

Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Informatical-Activity(?ia) ^

has_Function(?ia, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?ia)

Function3: Generating 1st Activity (Virtual): SWRL

 162

Design_Process(?dp) ^ consumes_Product_Initial(?dp, ?pi) ^ Virtual-Activity(?va) ^

has_Function(?va, ?f) ^ Assess_Product_Initial(?f) ^ Assesses(?f, ?pi) -

>Starts_with_Activity(?dp, ?va)

1. Generation of activities based on sub-functions as functional requirements

Function 4: Generating other Physical Activities: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Physical-Activity(?pa) ^

has_Function(?pa, ?f) -> consists_of_Activity(?dp, ?pa)

Function 5: Generating other Informatical Activities: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Informatical-

Activity(?ia) ^ has_Function(?ia, ?f) -> consists_of_Activity(?dp, ?ia

Function 6: Generating other Virtual Activities: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Virtual-Activity(?va) ^

has_Function(?va, ?f) -> consists_of_Activity(?dp, ?va)

5. Virtual and physical activity functional equivalence

Function 7: Physical and Virtual Activities Equivalent Function: SWRL

Physical-Activity(?pa) ^ has_Function(?pa, ?f) ^ Virtual-Activity(?va) ^ equivalent_to(?pa,

?va) -> has_Function(?va, ?f)

2. Generation of objects based on sub-functions as functional requirements

Function 8: Generating Objects: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Object(?o) ^

fulfills_Function(?o, ?f) -> consists_of_Object(?dp, ?o)

Function 9: Generating Object Features: SWRL

 163

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Feature(?fe) ^

fulfills_Function(?fe, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^

Product_Final(?pf) -> has_Feature(?pf, ?fe) ^ produces_Product_Final(?dp, ?pf)

Function 10: Generating Object Form: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Form(?fo) ^

fulfills_Function(?fo, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^

Product_Final(?pf) -> has_Form(?pf, ?fo) ^ produces_Product_Final(?dp, ?pf)

Function 11: Generating Object Fit: SWRL

Design_Process(?dp) ^ satisfies_Functional_Requirement(?dp, ?f) ^ Fit(?fi) ^

fulfills_Function(?fi, ?f) ^ Product_Initial(?pi) ^ consumes_Product_Initial(?dp, ?pi) ^

Product_Final(?pf) -> has_Fit(?pf, ?fi) ^ produces_Product_Final(?dp, ?pf)

3. Generation of engineering rules for activities based on logic as the basis of rules

Function 12: Generating Rules controlling Physical Activities: SWRL

Physical-Activity(?pa) ^ affectedbyLogic(?pa, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) ->

controlled_by_Rule(?pa, ?r)

Function 13: Generating Rules controlling Informatical Activities: SWRL

Informatical-Activity(?ia) ^ affectedbyLogic(?ia, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) ->

controlled_by_Rule(?ia, ?r)

Function 14: Generating Rules controlling Virtual Activities: SWRL

Virtual-Activity(?va) ^ affectedbyLogic(?va, ?l) ^ Rule(?r) ^ governedbyLogic(?r, ?l) ->

controlled_by_Rule(?va, ?r)

Function 15: Physical and Virtual Activities Logic Equivalence: SWRL

 164

Physical-Activity(?pa) ^ affectedbyLogic(?pa, ?l) ^ Virtual-Activity(?va) ^

equivalent_to(?pa, ?va) -> affectedbyLogic(?va, ?l)

5.7 Summary

This chapter discusses the development of Generative Process Model for Design

Engineering Automation (GPM-DEA) as a hybrid approach of IDEF0, UML, SysML

individual diagrams and addition of constructs as in informal/semiformal process model for

DEA. The complete working of the model incorporates generative modelling to generate the

activities, objects based on functional requirements and engineering rules based on logic

for a KBE perspective. This leads to the formalisation of GPM-DEA in OWL/SWRL

ontology based on formal logic based on the method as schema mapping thus providing a

method to use ontologies as neutral formal representation for DEA for mechanical design and

DFM/DFA with preserved semantics. The usage of OWL/SWRL syntax and semantics

constrains the meaning of its concepts and relationships through the axioms. GPM-DEA

provides mechanical product design ontology with inclusion of manufacturing knowledge for

DEA with a KBE approach through open standards based on the Meta model developed by

the author. It can be further extended to incorporate other phases of PD such as operations

and maintenance and wider aspects of DEA such as thermal design, structural design. The

next chapter will discuss the test use-cases to further enhance the ontology system

development for experimental verification in chapter 7.

 165

6 Development of Knowledge Representation System with Test

UseCases

6.1 Introduction

This chapter elaborates on the system development and test use-cases in the form of creating

a hole in a block with the drilling process and bookshelf design process collated from

literature. The use cases have been devised to provide a proof of concept working of GPM-

DEA and its formal ontology implementation in OWL/SWRL as described in the previous

chapters. They have been formulated around the research hypothesis as described in chapter 1

to target the DEA needs with a KBE approach. Both the use-cases have been implemented in

a proprietary DEA system such as AML, ParaPy and GA based CATIA Knowledgeware and

Siemens NX KF. The instantiation of GPM-DEA with its implementation in OWL/SWRL

ontology for both these use-cases will be discussed in this chapter.

6.2 Overview of Use Case 3 & 4

In this thesis, concepts from Pilot Use Case 1 and 2 as Meta model partially led to the

development of GPM-DEA and its system development in OWL/SWRL ontology for

platform independent and neutral formal representation to enable DEA with semantic clarity

for mechanical design with DFM/DFA. The automation capability includes a set of geometric

and non-geometric knowledge as F-B-S aspects of mechanical design process with

DFM/DFA for automation. GPM-DEA as a coherent and structured process based knowledge

model provides a schema or a method as a Meta model for ontology development as neutral

formal representation for DEA.

The test use-cases compiled and analysed in this work are targeted to refine the

implementation of GPM-DEA in OWL/SWRL ontology for incorporation of product’s

geometric attributes with numeric values. The working of GPM-DEA with functional

 166

requirements as the basis for generative modelling has been discussed in section 5.5.2 and its

method of implementation in ontologies in section 5.6.3. The automation capability varies

from sub-function structures at conceptual design stage to generation of activities, objects and

engineering rules to show the effect of the process model on the product’s geometric

attributes at the detailed design stage.

As the pilot use cases with experimentation for formalisation as discussed in section 4.4 and

4.5 catered primarily to the conceptual and configuration / embodiment design stage with

DFM, the test use-cases in the next section have been developed to target the detailed design

stage with inclusion of DFM as manufacturing knowledge with datatype float numeric values

for product’s attributes. Both the test use-cases have been devised and implemented in

OWL/SWRL ontology with the method of schema mapping as developed in section 5.5 in

this work. The allocation of use-case is illustrated in Figure 6-1.

Figure 6-1: Use Case Allocation – Created by Author

 167

Use Case 3, as compiled by the author focusses on creating a hole in a block with drilling

process such that the block can be described with numeric values of geometric features. It

will be used for system development on OWL/SWRL ontology as per the devised GPM-DEA

schema or Meta model and is implemented in ParaPy as a KBE based DEA tool. Similarly,

Use Case 4 is based on a bookshelf design process with numeric values to geometric features.

This will be instantiated in GPM-DEA for formalisation in OWL/SWRL ontology. This has

also been implemented in AML, CATIA knowledgeware and Siemens NX KF. Both the use

– cases have been implemented in ontology as per the ontology development methodology

discussed in research design in section 1.4.2. Use case 3 has been devised with motivation

from (Hunter et al., 2005; Monfared, 2000) and the understanding of the research scope. Use

Case 4 has been devised and adopted from (Lützenberger et al., 2012) from the LinkedDesign

project whose focus is on KBE based automation with platform independent and neutral

formal representation of engineering design knowledge. Knowledge has been added to the

Use Case 4 by the author in terms of functions for individual activities and logic description

for rules such that the generative modelling capability developed as part of this research can

be illustrated.

6.3 Test Use Case 3: Creating a Hole in a Block with Drilling Process

The aim of this use case is to refine the system development as OWL/SWRL using the GPM-

DEA schema as Meta Model and at the instance level with incorporation of product

geometric accessible attributes as block dimensions in this work. The DEA process initiates

from the sub-function structures and function mapping of activities and objects to that of the

engineering design process through to the generation of rules to control the drilling process

with its effect on block attributes. The following questions arise which will be verified in the

next chapter –

 168

1. Can the instances of drilling process in a block for creating a hole be automatically

generated based on function structures of individual activities such as drilling,

reaming along with objects such as drill bit and engineering rules for controlling the

effect on geometric attributes of the block?

2. Can the implementation (ontology and rule representation) of the generated activities,

objects and rules generate appropriate and accurate numeric values to block

attributes thus successfully enabling DEA with a KBE approach?

The instantiation of GPM-DEA as informal/semiformal knowledge capture with Use case 3

with its formalisation in OWL/SWRL ontology as system development for formal

representation is discussed in this section.

6.3.1 Function Structure Matching

As observed from Figure 6-2, the drilling process1 has 2 sub-functions – ‘Cut hole of circular

cross section’ and ‘Precision of hole dimensions’. It can be observed from Figure 6-3, all

activities such as drill hole, ream hole, bore hole and punch hole satisfy function – ‘Cut hole

of circular cross section’. Similarly, the activity ‘Set requirements of hole’ satisfies the

function – ‘Precision of hole dimensions’. Thus drilling process1 can have all of these

activities in the form of drill hole, ream hole, bore hole and punch hole along with ‘Set

requirements of hole’.

Figure 6-2: Drilling Process Functional Requirements & Sub Functions: Knowledgebase

 169

Figure 6-3: Activities with Functions & Sub Functions: Knowledgebase

All the activities with their inputs, outputs, controls as rules and mechanisms as resources

along with participating objects as inputs is shown in Figure 6-4. Their corresponding

graphical representation is an ICOM box of IDEF0 standard in GPM-DEA as illustrated in

next section 6.3.2. A snapshot of the rules controlling the activities is shown in Figure 6-5.

Figure 6-4: Activities with Inputs, Outputs, Rules and Resources with Objects for Drilling

Process: Knowledgebase

 170

Figure 6-5: Engineering Rules controlling the Design Process Activities for Drilling Process:

Knowledgebase

6.3.2 Informal / Semiformal Representation: GPM-DEA

The author has devised and instantiated an instance of drilling process in GPM-DEA as

informal / semiformal representation as shown in Figure 6-6. Both physical and virtual

activities are modelled as equivalent activities. For example physical activity ‘Assess block

(workpiece)’ is equivalent to the virtual activity ‘Assess Protruded block (workpiece)’.

Similarly, ‘Drill hole’ as a physical activity is equivalent to virtual activities – ‘Create hole’

and ‘Subtract hole’. As all activities are represented using IDEF0 notation for functional

modelling, equivalent activities correspond to same function. The SWRL Function 4

developed in this work, discussed in section 5.5.3, executes the equivalency as neutral formal

representation.

All activities are represented with inputs, controls as rules, outputs and mechanisms as

resources (ICOM). The process rule for selection between drilling and reaming process based

on tolerance of hole is represented with UML condition link. Thus process-sequencing

options are represented with red links with UML condition link for multiple ‘what-if’

scenarios. Sub-activity in the form of selection and positioning of drill bit as represented

using blue link. The product model representing the initial and the final state as block and

block with hole respectively is represented using UML class diagram with attributes and

 171

engineering rules as methods affecting the attributes. UML class diagram has been used for

representing all participating objects in the form of drill bit. SysML requirement diagram is

used for representing the functional requirements of the drilling process as sub functions in

context to the block and the drill bit as objects.

Figure 6-7 shows a snapshot of function matching of individual activities as function

structures of drilling process functional requirements with links to rules in ICOM box. Figure

6-8 shows a snapshot of product as block in initial state and final state as block with hole with

UML class diagram along with function matching of these objects. As it can be observed,

various engineering rules such as ‘dimension, depth, material, hole depth and hole diameter

rule’ are informally represented as methods inside UML class diagram along with attributes

by the author. It also shows the interface of the process model to the product model.

 172

Figure 6-6: An Instance of Drilling Process in GPM-DEA: Informal / Semiformal

Representation

IDEF0

UML Condition link

UML Class Diagram
SysML Requirement

Diagram

 173

Figure 6-7: Function Structure Matching – Drilling Process Activities with Links to Rules

Figure 6-8: Product in Initial and Final State and Function Matching - Drilling Process Objects with

Description of Rules

UML Class Diagram

IDEF0

SysML Requirement

Diagram

 174

6.3.3 Formal Representation: OWL/SWRL

The instantiated GPM-DEA model for drilling process has been then represented in

OWL/SWRL ontology as neutral formal representation by the author. The activities of the

drilling process in GPM-DEA corresponding to the graphical representation in Figure 6-6and

6-7 as IDEF0 ICOM box are represented formally in OWL2 with associated id, inputs,

outputs, resources and linkage to engineering rules using classes and properties. All the

activities interlinked with product structure with attributes, function as sub-functions and

behaviour corresponding to UML class diagram and SysML requirement diagram are also

represented using OWL2 using classes and properties as illustrated in Figure 6-9.

Figure 6-9: Drilling Process in OWL: TopBraid Composer FE

As observed from Figure 6-9, only OWL2 representation is utilised in Topbraid. All the

classes with class-subclass relationship can be observed on the left. All the properties for

inputs, outputs and other relationships marked as arrows in Fig 6-6and 6-7 are represented on

the right under the properties tab in Figure 6-9. Instances have been produced on the bottom

 175

and all the relationships between instances can be observed in the resource form in the centre

tab. As also observed from Figure 6-9, the drill hole instance of activity tab illustrates its ID

as 3, is controlled by rules such as Drill_Diameter_Rule, Drill_Length_Rule and

Hole_Diameter_Rule. The equivalent activities and functions are also asserted using

specified property in the form of ‘has_Function’.

For the product attributes in UML class diagram as activity inputs and outputs as IDEF0

ICOM, in context to GPM-DEA, datatype properties have been created and instantiated in

this work. As explained in section 5.5.1, (ProcessModel:has_Inputs) and

(ProcessModel:has_Outputs) are the datatype properties created in GPM-DEA to assert

activity inputs and outputs in terms of object attributes. All sub-properties of

(ProcessModel:has_Attributes) such as (ProcessModel:has_Object_Size),

(ProcessModel:has_Object_Position_Coordinates) and

(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted

as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As

observed from Figure 6-9, following properties as sub properties of

(ProcessModel:has_Attributes) have been classified as sub properties of

(ProcessModel:has_Inputs) as activity inputs –

I. ProcessModel:has_Object_Depth

II. ProcessModel:has_Object_Diameter

III. ProcessModel:has_Object_Height

IV. ProcessModel:has_Object_Width

V. ProcessModel:has_Object_X_Coordinate

VI. ProcessModel:has_Object_Y_Coordinate

VII. ProcessModel:has_Object_Z_Coordinate

 176

Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs –

I. ProcessModel:has_Object_Depth

II. ProcessModel:has_Volume

It can be observed that the same property (ProcessModel:has_Object_Depth) has been

classified under both (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) thus

making the model flexible. UML class diagram attributes can thus be neutrally represented

using OWL2 datatype properties. As illustrated in Figure 6-9, all the properties can be

observed on the right tab.

However, as explained earlier, due to the limitations of OWL in representing n-ary

relationships, generative modelling capabilities of GPM-DEA based on the functional

requirements as sub function structures along withthe methods in UML class diagram as

engineering rules based on logic and math the can’t be represented using OWL2. These have

been formally represented using SWRL in this research.

In GPM-DEA, it has been illustrated that IDEFO activities have function. Similarly, an object

fulfills a function, and the design process satisfies functional requirement in the form of

product function. As per the class-subclass relationship of function structures discussed in

section 6.3.1, the sub function - ‘Cut hole of circular cross section’ is an instance of class

‘Remove_Solid_as_Subtracted_Volume_Boolean’ as a subclass of

‘Geometric_3D_Modelling’. It further becomes an instance of class

‘Subtract_Cylinder_Volume’ at the lowest level. The sub function - ‘Precision of hole

dimensions’ is an instance of class ‘Precision_Accuracy’ as a subclass of ‘Quality_Control’,

which further is a subclass of ‘Manufacturing_Feasibility’. Various instances of functions are

shown with the help of Figure 6-10.

 177

Other functions such as – ‘Enlarge_hole’ and ‘High_surface_finish’ have been allocated as

instances of function-sub function class hierarchy as shown in Figure 6-10.

The SWRL functions for generative modelling capabilities of GPM-DEA using function

structure matching in this research have been illustrated in section 5.5.3.Protégé offers a built

in plugin for SWRL.

Figure 6-10: Instances of Functions – Drilling: Topbraid

The implementation of the SWRL generative modelling functions for drilling is illustrated

with the help of Figure 6-11. The URI in the form of ProcessModel: was removed

automatically while importing the turtle (.ttl) file from Topbraid to Protégé.

 178

Figure 6-11: SWRL Functions - Generative Modelling in Drilling: Protégé

It is important to note that Function 10 has been specifically added and tailored to the drilling

process to reflect the change in state of block through extrusion as subtracted volume with a

constraint on created ontology that if the volume subtracted is a cylinder than the face of the

block should be circular. Figure 6-11 illustrates the representation or codification of

functions, which allow GPM-DEA to generate activities and objects based on the sub

functions of each activity and the object along with rules based on logic.

The verification of the generative modelling capability of GPM-DEA through drilling use-

case will be discussed in next chapter by testing the reasoning capability of the drools

reasoner on SWRL axioms and SQWRL query language. For the instantiated drilling use case

example in GPM-DEA, the initial product is the block and the final product is block with

hole as feature after the drilling process has been performed. Multiple holes can be created as

instances of Hole class as a subclass of Depression_Extrusion feature. SPARQL query for

activity to function mapping for ‘Drill_hole’ and ‘Ream_hole’ activities is illustrated with

Figure 6-12 and 6-13.

 179

Figure 6-12: SPARQL Query Result: Activity to Function Mapping – Drill hole

Figure 6-13: SPARQL Query result: Activity to Function Mapping – Ream hole

 180

The function – ‘Cut_hole_of_circular_cross_section’ is a function of type

‘Subtract_Cylinder_Volume’, ‘Enlarge_hole’ belongs to Function of type

‘Manufacturing_Feasibility’ and ‘High_surface_finish’ is a function of type

‘Precision_Accuracy’. All the function structures of GPM-DEA have been elaborated in

Figure 5-12 and 5-13 in section 5.5.2.

Similarly, SPARQL query for object to function mapping for physical objects – ‘Drill Bit’ and

‘Reamer’ is shown with Figure 6-14 and rule to logic description mapping with Figure 6-15.

Figure 6-14: SPARQL Query Result – Object to Function Mapping – Drill bit and Reamer

Figure 6-15: SPARQL Query Result – Rule to Logic Mapping – Drilling Process

 181

The engineering rules represented informally in GPM-DEA as methods in UML have also

been codified using SWRL as neutral formal representation in this research. From the

knowledgebase, shown in Figure 6-5, consisting of engineering rules for the drilling use case,

all the rules in SWRL axioms are illustrated as follows –

1. SWRL Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm,

H>=50 mm, D>=50mm)

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^

swrlb:greaterThanOrEqual(?w, "50.0"^^xsd:float) ^ hasHeight(?p, ?h) ^

swrlb:greaterThanOrEqual(?h, "50.0"^^xsd:float) ^ hasDepth(?p, ?d) ^

swrlb:greaterThanOrEqual(?d, "50.0"^^xsd:float) -> sqwrl:select("Block adheres to

dimensions")

2. SWRL Depth Rule - D=W*1.5

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:multiply(?x, ?w,

"1.5"^^xsd:float) -> hasDepth(?p, ?x)

3. SWRL Material Rule - If W>100 Then M = Metallic_Aluminium)

SWRL Representation - Product(Block) ^ hasWidth(Block, ?w) ^

swrlb:greaterThan(?w, "100.0"^^xsd:float) -> hasMaterial(Block,

Metallic_Aluminium)

4. SWRL Volume Rule - V1=W*H*D

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ hasHeight(?p, ?h) ^

hasDepth(?p, ?d) ^ swrlb:multiply(?v, ?w, ?h, ?d) -> hasVolume(?p, ?v)

5. SWRL Hole Depth Rule - Hole depth should be less than or equal to depth of block,

HD2<=D

SWRL Representation - Product(?p) ^ hasDepth(?p, ?d) ^ Hole(?h) ^ hasDepth(?h,

?d2) ^ swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select(("Hole adheres to

dimensions")

 Else

Product(?p) ^ hasDepth(?p, ?y) ^ Hole(?h) ^ hasDepth(?h, ?z) ^swrlb:greaterThan(?z,

?y) -> sqwrl:select("Hole can't be created")

 182

6. SWRL Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H

SWRL Representation - Product(?p) ^ hasWidth(?p, ?a) ^ hasHeight(?p, ?b) ^

Hole(?h) ^ hasDiameter(?h, ?c) ^swrlb:multiply(?d, ?c, "1.25"^^xsd:float) ^

swrlb:lessThan(?d, ?a) ^ swrlb:lessThan(?d, ?b) ->sqwrl:select("Hole adheres to

dimensions")

 Else

Product(?p) ^ hasWidth(?p, ?e) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i,

?g, "1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?e) -> sqwrl:select("Hole can't

be created")

 Else

Product(?p) ^ hasHeight(?p, ?f) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i,

?g, "1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't

be created")

7. SWRL Hole Volume Rule - Volume of Hole (VH) = [(3.14*HD1*HD1)/4]*HD2)]

SWRL Representation - Hole(?h) ^ hasDiameter(?h, ?hd1) ^ hasDepth(?h, ?hd2) ^

swrlb:multiply(?x, "3.14"^^xsd:float, ?hd1, ?hd1, ?hd2) ^ swrlb:divide(?vh, ?x,

"4.0"^^xsd:float) -> hasVolume(?h, ?vh)

8. SWRL Volume2 Rule - Final Volume (V2) = V1-HV)

SWRL Representation - Product_Initial(?p) ^ hasVolume(?p, ?v1) ^ Product_Final(?p2) ^

hasFeature(?p2, ?i) ^ Depression(?i) ^ hasVolume(?i, ?v2) ^ swrlb:subtract(?j, ?v1, ?v2) ->

hasVolume(?p2, ?j)

9. SWRL Process Rule1 - If <Tolerance of the hole is less than 0.2 mm for high

accuracy>perform reaming else drilling

SWRL Representation - Activity(Set_requirements_of_hole) ^ Hole(?h) ^

has_Tolerance(?h, ?t) ^ swrlb:lessThan(?t, "0.2"^^xsd:float) ->

has_Successors(Set_requirements_of_hole, ReamingProcess)

Else

Activity(Set_requirements_of_hole) ^ Hole(?h) ^ has_Tolerance(?h, ?t) ^

swrlb:greaterThan(?t, "0.2"^^xsd:float) -> has_Successors(Set_requirements_of_hole,

Drill_hole)

 183

Figure 6-16, Figure 6-17 and Figure 6-18 illustrate the SWRL representation of engineering

rules for the drilling use case in Protégé IDE.

Figure 6-16: Engineering Rules – Drilling Process: Protégé

Figure 6-17: Engineering Rules 2 – Drilling Process: Protégé

 184

Figure 6-18: Engineering Rules 3 – Drilling Process: Protégé

6.4 Test Use Case 4: Designing a bookshelf (KBE and Neutral Formal

Representation with MOKA methodology): Adapted from

LinkedDesign

Pertaining to this research, the aim of this use case is to further refine and verify the system

development as OWL/SWRL using the GPM-DEA schema as Meta Model and at the

instance level with incorporation of product geometric accessible attributes as bookshelf

dimensions and illustrate wider applicability. The DEA process initiates from the sub-

function structures and function mapping of activities and objects to that of the engineering

design process through to the generation of rules to control the bookshelf design process with

its effect on bookshelf attributes. The following questions arise which will be verified in the

next chapter –

1. Can the instances of bookshelf design process be automatically generated based on

function structures of individual activities along with objects and engineering rules

for controlling the effect on geometric attributes of the bookshelf?

 185

2. Can the implementation (ontology and rule representation) of the generated activities,

objects and rules generate appropriate and accurate numeric values to bookshelf

attributes thus successfully enabling DEA with a KBE approach?

The instantiation of GPM-DEA with Use case 4 with its formalisation in OWL/SWRL as

system development is discussed in this section.

6.4.1 Function Structure Matching

As observed from Figure 6-19, the bookshelf design process has 3 sub-functions –

‘Detailed_design_3D_model_bookshelf’, ‘Variable_input_output_parameters’ and

‘Virtual_positioning’. It can be observed from Figure 6-20, activity ‘Input bookshelf

parameters’ satisfies function – ‘Detailed_design_3D_model_bookshelf’. Similarly, activities

such as ‘Compute parameters NDW, NSH’ and ‘Compute parameters SHL, WAL,

SHS’satisfy function – ‘Variable_input_output_parameters’. Similarly, the activity

‘Positioning of the bookshelf’ satisfies the function – ‘Virtual_positioning’. Thus from the

activity knowledgebase, bookshelf design processshould have all of the above mentioned four

activities.

Figure 6-19: Bookshelf Design Process Functional Requirements & Sub Functions:

Knowledgebase

 186

Figure 6-20: Activities with Functions & Sub Functions: Knowledgebase

All the activities with their inputs, outputs, controls as rules and mechanisms as resources

along with participating objects as inputs is shown in Figure 6-21. Their corresponding

graphical representation is an ICOM box of IDEF0 standard in GPM-DEA as illustrated in

next section 6.4.2. A snapshot of the rules controlling the activities is shown in Figure 6-22.

Figure 6-21: Activities with Inputs, Outputs, Rules and Resources with Objects for Bookshelf

Design Process: Knowledgebase

 187

Figure 6-22: Engineering Rules controlling the Design Process Activities for Bookshelf

Design Process: Knowledgebase

6.4.2 Informal / Semiformal Representation: GPM-DEA

An instance of bookshelf design process has been devised and instantiated in GPM-DEA as

informal / semiformal representation as shown in Figure 6-23. All activities are virtual

activities in context to the bookshelf design process as the process is realised at the detailed

design stage in the form of geometric modelling. For example ‘input bookshelf parameters’

will allow user to enter input values to bookshelf geometric attributes such as Width (W),

Height (H), Depth (T) and other attributes. All activities are represented using IDEF0

notation for functional modelling, and satisfy a function. As explained in the working of

GPM-DEA in section 5.3.1 with the help of Figure 5-3, if the functions of activities are not

available in the knowledgebase as inputs then the user will need to enter the functions of

activities and objects to successfully enable generative modelling capability of the model.

All activities are represented with inputs, controls as rules, outputs and mechanisms as

resources (ICOM).

The process-sequencing options are represented with red links as UML condition link for

multiple ‘what-if’ scenarios. Sub-activities can be represented using blue link. The product

model representing the initial and the final state as bookshelf design parameter values and the

 188

designed bookshelf in virtual 3d model representation is represented using UML class

diagram with attributes and engineering rules as methods affecting the attributes. As

explained in Chapter 4 and 5, UML class diagram is used for representing all participating

objects in the engineering design process. Similarly, SysML requirement diagram is used for

representing the functional requirements of the bookshelf design process as sub functions in

context to the bookshelf as product.

Figure 6-24 shows a snapshot of function matching of individual activities as function

structures of bookshelf design process functional requirements with links to rules in ICOM

box.

Figure 6-25 shows a snapshot of product as bookshelf in initial and final state with UML

class diagram along with function matching of these objects. As it can be observed, various

engineering rules such as dividing walls, shelves, side and dividing walls, sidewall position

and topshelf position rules are informally represented as methods inside UML class diagram

along with attributes in this research. It also shows the interface of the process model to the

product model with part and assembly features of the bookshelf such as shelf, frame and

dividing walls using UML composition and aggregation structural links.

 189

Figure 6-23: An Instance of Bookshelf Design Process in GPM-DEA: Informal / Semiformal

Representation

IDEF0

UML Class Diagram
SysML Requirement

Diagram

UML Composition and

Aggregation Links

 190

Figure 6-24: Function Structure Matching – Bookshelf Design Process Activities with Links

to Rules

Figure 6-25: Product in Initial and Final State and Function Matching – Bookshelf Design

Process Objects with Description of Rules

SysML Requirement

Diagram

IDEF0

UML Class Diagram

UML Composition and

Aggregation Links

 191

6.4.3 Formal Representation: OWL/SWRL

The instantiated GPM-DEA model for bookshelf design process has been then represented in

OWL/SWRL as neutral formal representation in this research. The activities of the bookshelf

design process in GPM-DEA corresponding to the graphical representation in Figure 6-23

and 6-24 as IDEF0 ICOM box are represented formally in OWL2 with associated id, inputs,

outputs, resources and linkage to engineering rules using classes and properties. All the

activities interlinked with product structure with attributes, function as sub-functions and

behaviour corresponding to UML class diagram and SysML requirement diagram are also

represented using OWL2 using classes and properties as illustrated in Figure 6-26.

Figure 6-26: Bookshelf Design Process in OWL: TopBraid Composer FE

As observed from Figure 6-26, only OWL2 representation is utilised in Topbraid. All the

classes with class-subclass relationship can be observed on the left. All the properties for

inputs, outputs and other relationships marked as arrows in Fig 6-23 and 6-24 is represented

 192

on the right under the properties tab in Figure 6-26. Instances have been produced on the

bottom and all the relationships between instances can be observed in the resource form in

the centre tab. As also observed from Figure 6-26, the ‘input bookshelf parameters’ instance

of activity tab illustrates its ID as 1, allows user to enter input values to this activity in terms

of bookshelf geometric attributes as object attributes such as Object_Height_H being given

value 5000 mm, Object_Horizontal_length_1_shelf_HS being given value 1000 mm. The

equivalent activities and functions are also asserted using specified property in the form of

‘has_Function’.

For the product attributes in UML class diagram as activity inputs and outputs as IDEF0

ICOM, in context to GPM-DEA, datatype properties have been created and instantiated. As

explained in section 5.5.1, (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) are

the datatype properties created in GPM-DEA to assert activity inputs and outputs in terms of

object attributes. All sub-properties of (ProcessModel:has_Attributes) such as

(ProcessModel:has_Object_Size), (ProcessModel:has_Object_Position_Coordinates) and

(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted

as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As

observed from Figure 6-22, following properties as sub properties of

(ProcessModel:has_Attributes) have been classified as sub properties of

(ProcessModel:has_Inputs) as activity inputs –

I. ProcessModel:has_Object_Depth_T

II. ProcessModel:has_Object_Height_H

III. ProcessModel:has_Object_Horizontal_length_1_shelf_HS

IV. ProcessModel:has_Object_Thickness_bottom_shelf_TB

V. ProcessModel:has_Object_Thickness_dividing_walls_TD

VI. ProcessModel:has_Object_Thickness_inner_shelf_TSH

 193

VII. ProcessModel:has_Object_Thickness_side_walls_TS

VIII. ProcessModel:has_Object_Thickness_top_shelf_TT

IX. ProcessModel:has_Object_Vertical_length_1_shelf_VS

X. ProcessModel:has_Object_Width_W

Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs –

I. ProcessModel:has_Object_Length_of_side_and_dividing_walls_WAL

II. ProcessModel:has_Object_No_dividing_walls_NDW

III. ProcessModel:has_Object_No_shelves_NSH

IV. ProcessModel:has_Object_Shelf_length_SHL

V. ProcessModel:has_Object_Vertical_space_between_shelves_SHS

VI. ProcessModel:has_Object_X_Coordinate

VII. ProcessModel:has_Object_Y_Coordinate

VIII. ProcessModel:has_Object_Z_Coordinate

UML class diagram attributes can thus be neutrally represented using OWL2 datatype

properties. All the properties can be observed in Figure 6-26 on the right tab.

As per the class-subclass relationship of function structures discussed in section 6.4.1, the sub

function - ‘Detailed_design_3D_model_bookshelf’ is an instance of class

‘Geometric_3D_Modelling’. The sub functions - ‘Variable_input_output_parameters’ and

‘Virtual_positioning’ are also instances of class ‘Geometric_3D_Modelling’. Various

instances of functions are shown with the help of Figure 6-27.

 194

Figure 6-27: Instances of Functions – Bookshelf Design Process: Topbraid

The implementation of the SWRL generative modelling functions for bookshelf design

process is illustrated with the help of Figure 6-28.

Figure 6-28: SWRL Functions - Generative Modelling in Bookshelf Design: Protégé

 195

Figure 6-28 illustrates the representation or codification of functions developed in this work,

which allow GPM-DEA to generate activities and objects based on the sub functions of each

activity and the object along with rules based on logic. The verification of the generative

modelling capability of GPM-DEA through bookshelf design use-case will be discussed in

next chapter by testing the reasoning capability of the drools reasoner on SWRL axioms and

SQWRL query language.

For the instantiated bookshelf design use case example in GPM-DEA, the final product is the

virtual representation of bookshelf as 3D model.The fit class becomes the most crucial class

in representing the part and assembly relations of the bookshelf. As illustrated with the help

of Figure 6-23 and 6-25, there are 6 parts of the bookshelf – dividing walls, frame, shelves,

bottom shelf, side walls and top shelf along with bookshelf and frame as assembly. All the

parent child relationships are shown graphically in the informal/semiformal model. The

assembly parts relations of the bookshelf are shown in OWL2 with the help of Figure 6-29.

Figure 6-29: Fit: Assembly and Part Relations for Bookshelf: Topbraid Composer FE

 196

The assembly relationships can be queried in the SPARQL query tab to generate the results

required from the user. These queries results are illustrated with the help of Figure 6-30.

Figure 6-30: SPARQL Query Result: Bookshelf Part and Assembly Relations

Figure 6-31: SPARQL Query Result – Activity Function Mapping – Bookshelf Design

 197

Similarly, to illustrate the SPARQL query for activity-function mapping for the activity -

‘Input bookshelf parameters’ is illustrated with Figure 6-31.

SPARQL query for illustrating the rule to logic mapping for bookshelf design process with a

few examples is shown in Figure 6-32.

Figure 6-32: SPARQL Query Result: Rule to Logic Mapping – Bookshelf Design Process

The engineering rules represented informally in GPM-DEA as methods in UML are also

codified using SWRL as neutral formal representation in this work. From the knowledgebase,

shown in Figure 6-22, consisting of engineering rules for the bookshelf design use case, all

the rules in SWRL axioms are illustrated as follows –

1. SWRL Dividing Walls Rule– NDW is based on HS and W, If (W<0.5*HS,

"ERROR") elseif (W<=HS, NDW=0) else (NDW=Int(W/HS)-1)

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x,

"0.5"^^xsd:float, ?hs) ^ swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow

for a bookshelf")

 And

Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x,

"0.5"^^xsd:float, ?hs) ^ swrlb:greaterThan(?w, ?x) ^ swrlb:lessThanOrEqual(?w, ?hs)

-> has_Object_No_dividing_walls_NDW(?p, "0.0"^^xsd:float)

And

Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:greaterThan(?w, ?hs) ^

 198

swrlb:divide(?y, ?w, ?hs) ^ swrlb:subtract(?z, ?y, "1.0"^^xsd:float) ->

has_Object_No_dividing_walls_NDW(?p, ?z)

2. SWRL Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif

(2*VS>H, NSH=0) else (NSH=Int((H/VS)-1))

SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:greaterThan(?vs, ?h) ->

sqwrl:select("Error - Too low for even one space in the bookshelf")

 And

Product(?p) ^ has_Object_Height_H(?p, ?h) ^

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:lessThan(?vs, ?h) ^

swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^ swrlb:greaterThan(?a, ?h) ->

has_Object_No_shelves_NSH(?p, "0.0"^^xsd:float)

 And

Product(?p) ^ has_Object_Height_H(?p, ?h) ^

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:multiply(?a,

"2.0"^^xsd:float, ?vs) ^ swrlb:lessThan(?a, ?h) ^ swrlb:divide(?b, ?h, ?vs) ^

swrlb:subtract(?c, ?b, "1.0"^^xsd:float) -> has_Object_No_shelves_NSH(?p, ?c)

3. SWRL Shelf Length Rule - (SHL=(W-(2*TS + TD*NDW))/(NDW+1))

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Thickness_side_walls_TS(?p, ?ts) ^

has_Object_Thickness_dividing_walls_TD(?p, ?td) ^

has_Object_No_dividing_walls_NDW(?p, ?ndw) ^ swrlb:multiply(?a1,

"2.0"^^xsd:float, ?ts) ^ swrlb:multiply(?b1, ?td, ?ndw) ^ swrlb:add(?c1, ?ndw,

"1.0"^^xsd:float) ^ swrlb:add(?d1, ?a1, ?b1) ^ swrlb:subtract(?e1, ?w, ?d1) ^

swrlb:divide(?f1, ?e1, ?c1) -> has_Object_Shelf_length_SHL(?p, ?f1)

4. SWRL Side and Dividing Walls Rule - (WAL=H-(TB +TT))

SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^

has_Object_Thickness_top_shelf_TT(?p, ?tt) ^ swrlb:add(?d, ?tb, ?tt) ^

swrlb:subtract(?e, ?h, ?d) ->

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?e)

5. SWRL Vertical Space Rule - (SHS=(WAL-NSH*TSH)/NSH)

SWRL Representation - Product(?p) ^

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?wal) ^

has_Object_No_shelves_NSH(?p, ?nsh) ^

has_Object_Thickness_inner_shelf_TSH(?p, ?tsh) ^ swrlb:multiply(?f, ?nsh, ?tsh) ^

 199

swrlb:subtract(?g, ?wal, ?f) ^ swrlb:divide(?h, ?g, ?nsh) ->

has_Object_Vertical_space_between_shelves_SHS(?p, ?h)

6. SWRL Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0)

SWRL Representation - Part(Dividing_Walls1) ^ Product(?p) ^

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ has_Object_Shelf_length_SHL(?p,

?shl) ^ has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ swrlb:add(?i, ?ts, ?shl) ->

has_Object_X_Coordinate(Dividing_Walls1, ?i) ^

has_Object_Y_Coordinate(Dividing_Walls1, ?tb) ^

has_Object_Z_Coordinate(Dividing_Walls1, "0.0"^^xsd:float)

7. SWRL Shelf Position Rule - (X3=TS,Y3=TB-TSH,Z3=0)

SWRL Representation - Part(Shelves1) ^ Product(?p) ^

has_Object_Thickness_side_walls_TS(?p, ?ts) ^

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^

has_Object_Thickness_inner_shelf_TSH(?p, ?tsh) ^swrlb:subtract(?j, ?tb, ?tsh) ->

has_Object_X_Coordinate(Shelves1, ?ts) ^ has_Object_Y_Coordinate(Shelves1, ?j) ^

has_Object_Z_Coordinate(Shelves1, "0.0"^^xsd:float)

8. SWRL Side Walls Position Rule - (X5=0,Y5=TB,Z5=0)

SWRL Representation - Part(Side_Walls1) ^ Product(?p) ^

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ->

has_Object_X_Coordinate(Side_Walls1, "0.0"^^xsd:float) ^

has_Object_Y_Coordinate(Side_Walls1, ?tb) ^

has_Object_Z_Coordinate(Side_Walls1, "0.0"^^xsd:float)

9. SWRL Top Shelf Position Rule - (X7=0,Y7=TB+WAL,Z7=0)

SWRL Representation - Part(Top_Shelf1) ^ Product(?p) ^

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^

has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?wal) ^ swrlb:add(?k, ?tb,

?wal) -> has_Object_X_Coordinate(Top_Shelf1, "0.0"^^xsd:float) ^

has_Object_Y_Coordinate(Top_Shelf1,?k) ^ has_Object_Z_Coordinate(Top_Shelf1,

"0.0"^^xsd:float)

Figure 6-33 illustrates all the SWRL rules for the bookshelf use case implemented in protégé

SWRL tab.

 200

Figure 6-33: Engineering Rules – Bookshelf Design Process: Protégé

6.5 Summary

This chapter has discussed and elaborated on the 2 test use-cases for system development and

verification of GPM-DEA in OWL/SWRL ontology and rule representation for DEA with a

KBE approach with the effect of the process model on product’s geometric attributes. The

product’s attributes can be accessed at the detailed design stage across proprietary platform

specific DEA applications such as AML, ParaPy, CATIA Knowledgeware and Siemens NX

KF. Both these use-cases follow the method of GPM-DEA schema mapping at the Meta

model level and the instance level, developed as part of this research based on pilot use-cases

and literature analysis, where the initial product is assessed at the beginning and the product

with final state is produced at the completion of the process. The next chapter is going to

perform experiments on these use-cases with appropriate reasoning and query mechanism

and semantic clarity to test and verify the accuracy of the results produced from ontology and

rule representation.

 201

7 Experimental Verification of Knowledge Representation System

7.1 Introduction

This chapter elaborates on working and experimentation of the developed system with test

use-cases in order to explore various aspects of GPM-DEA implementation in ontology and

rule representation. It will provide experimental verification of the research hypothesis in

order to satisfy and provide proof of the novelty of this research work. Test use-cases in the

form of drilling a hole in a block and bookshelf design process collated from literature have

been instantiated in GPM-DEA and then formalised in OWL/SWRL as platform independent

and neutral representation as described in chapter 6 for system development. Aspects of both

these use-cases such as rules with links to activities and objects generated from functional

requirements, with their effect on product’s geometric attributes have been implemented in

proprietary platform specific DEA system applications such as AML, ParaPy with KBE

functionalities and CATIA Knowledgeware, Siemens NX KF with parametric modelling

providing GA. The comparison of the results generated from formal representation semantics

of GPM-DEA in OWL/SWRL will also be performed with corresponding rule

implementations in platform specific DEA systems.

7.2 Overview of the process model

Some of the critical aspects developed by this research that were discussed in section 5.5.2

are re-instated here as follows. These are considered to be an integral part for OWL/SWRL

ontology implementation using GPM-DEA method or schema as the basis for DEA with a

KBE approach for generative modelling as discussed in section 5.6.3. These would target

engineering design with focus on mechanical design and DFM/DFA with inclusion of both

geometric and non-geometric knowledge thus incorporating F-B-S aspects of a process model

for DEA.

 202

1. Generation of activities based on sub-functions as functional requirements

2. Generation of objects based on sub-functions as functional requirements

3. Generation of engineering rules for activities based on logic as the basis of rules

4. Assessment of initial product to generate the initial activity of the process model

5. Virtual and physical activity functional equivalence

To test the above formulated criteria, experimental system verification should satisfy the

following points in a nutshell –

I. Generative Modelling - The formal system should generate activities and objects of

the engineering design process based on the devised function structures as part of

functional requirements. It should also generate rules for activities based on logic. For

a generic process an initial step should be assessment of an object as product initial.

Also, for a DFM process with manufacturing knowledge, both the physical and virtual

representation of a product should be incorporated.

II. SWRL Rules - The engineering rules that are generated can incorporate product

knowledge such as configuration and attributes which can be accessed during detailed

geometric modelling such as features, parts, assemblies, location and orientation

inside a virtual environment

III. Output - The output of SWRL rules as platform independent and neutral

representation through reasoning and query should produce accurate results, which

should match the values upon execution of these rules inside platform specific DEA

systems. This will ensure the robustness and reusability of loaded ontology, as the

SWRL rules will only produce accurate results if the class hierarchy and properties of

ontology with instances has been modelled correctly. If the results of the SWRL rules

controlling the product parameters and configuration match to the specific rule

outputs inside platform specific DEA systems such as AML, ParaPy and GA based

 203

CATIA Knowledgeware and Siemens NX KF; this will prove that the ontology and

rule representation works appropriately.

This will satisfy the aims and objectives by verifying the working of GPM-DEA, which

provides the method through schema to use ontologies as platform independent and neutral

representation in context of DEA with a KBE approach with semantic clarity, traceability and

transparency of concepts and relationships. This will ensure re-usability of modelled

knowledge as well.

7.3 Design of the Experimental System

Figure 7-1 illustrates the method of experimental system verification adopted by the author.

The first stage consists of the process knowledgebase consisting of mechanical design

process with DFM knowledge as high level intermediate and low level concepts formulated

as part of this research in section 4.3 of chapter 4. The second stage leads to formulation of

GPM-DEA based on the Author’s Metamodel as per developed concepts and relationships

with generative modelling capabilities for generation of activities and objects based on

functional requirements along with rules controlling the product’s attributes based on logic

and assessment of initial product. This is in line with the development and working of GPM-

DEA as described in section 5.3 of chapter 5. The mapping of the various concepts and

relationships as shown in Figure 7-1 is described in section 5.2 and 5.3. GPM-DEA is

described using a graphical representation as lightweight formalism using DrawIo. This is

saved as an XML file. The method of development of GPM-DEA along with its neutral

formal representation semantics in this research has been based on the findings of chapter 4

and described in detail in chapter 5. The third stage is the platform independent and neutral

formal representation of GPM-DEA using OWL/SWRL formalism as a .ttl file. The

equivalent implementation of GPM-DEA in OWL/SWRL as ontology and rule representation

is described in section 5.5 of chapter 5 thus providing a method to use ontologies in the

 204

context of DEA. Test use-cases have been elaborated with their formalisation as per the

developed GPM-DEA schema or method in chapter 6. Their inference and query results as

part of experimental verification of the developed system are discussed here.

Figure 7-1: Overview of Formalisation of GPM-DEA & Experimental System Investigation

Protégé is a tool that enables an integration of OWL2 ontology and SWRL as a rule language

through an in-built interface. This is the most important stage for experimental system

investigation and verification in this research. The generative capability of GPM-DEA has

been represented using SWRL functions as explained in section 5.5.3 in chapter 5. This is

 205

based on function structures described in section 5.5.2. Similarly, the engineering rules have

also been represented using SWRL functions. Querying and inference (automated reasoning)

is performed on the integrated knowledgebase as OWL/SWRL with preserved semantics

using SQWRL and Drools reasoner on top of SPARQL and Pellet reasoner enabling DEA

and exploration. The reasoning results and the query results are added as axioms in the

existing knowledgebase and can be saved as new .ttl file. If there are any conflicts in results,

modifications can be made in the classes and properties with instances for both text and

values such that the reasoner and query can then generate accurate results. All assertions and

queries with Pellet reasoner and SPARQL query on OWL2 ontology, Drools reasoner and

SQWRL on SWRL rule language have been tested and verified.

7.4 Illustration of Experiments

The following structured experiments have been devised to test and verify various research

aspects of this thesis. These will be tested with the drilling process and bookshelf design

process ontology and rule representation along with the discussion on results.

1. Generative Modelling Capability - Do the SWRL functions represented through the

inbuilt plugin enable generative modelling byautomatically generating activities and

objects that fulfil the same sub-functions as functional requirement of the design

process along with assessment of the initial product? This includes virtual and physical

activity functional equivalence and generation of engineering rules for activities based

on logic as the basis of rules.

2. SWRL Rules with Variation in Values - Do the SWRL engineering rules represented

through the inbuilt plugin add axioms on to the existing knowledgebase with both

object and datatype properties with real and float values to product attributes? How

does the system handle variation in values assigned?

 206

3. SQWRL Query with Violation in Asserted Values- Does the SQWRL return the correct

result while querying the knowledgebase? How does the system handle the violations in

assertions against the engineering rules?

4. Comparison of SWRL and SQWRL Rule Outputs to Platform Specific DEA Systems-

Does the SWRL/SQWRL outputs match to the outputs of axioms inside a DEA system?

7.5 Use Case 3: Experimentation

The first step in the experimental verification of the developed GPM-DEA in OWL/SWRL

for design process of drilling a hole in a block is the deployment of the instantiated model. As

observed from Figure 6-11 in section 6.3.3 in chapter 6, the generative modelling functions

for drilling use case have been represented using SWRL. Figure 7-2 shows the loaded

ontology in Protégé where the drilling process has 3 functional requirements with the axiom –

satisfies_Functional_Requirement (section E).

Figure 7-2: Drilling Process Ontology: Protégé

 207

All the classes with hierarchical structure (section A) and binary relationships of GPM-DEA

for drilling process as properties have been instantiated (section B) and populated in the IDE

as axioms. It illustrates both physical and virtual view of drilling process by allocating it as a

subclass of extrusion process as well (section D). Text annotation properties (section C)

provide semantic clarity to the axioms. Using this standardised tab, other instances can be

populated in the corresponding tabs in protégé IDE. All the experiments for drilling process

in a block are discussed in this section.

7.5.1 Experiment 1 – Generative Modelling Capability

Figure 7-3 shows a snapshot where assertions have been made for ‘drill hole’ and ‘assess

block’ activity as marked in red rectangles. Assertions have been made for the functional

requirements as sub functions of the activity, which will be tested in this section. The first

step is to activate the Pellet Reasoner followed by the Drools reasoner. Figure 7-4 illustrates

the tab that enables this functionality in the protégé IDE.

Figure 7-3: Axioms assertion for Drill Hole and Assess Block Activity with Sub-functions

 208

Figure 7-4: Activating the Pellet and Drools Reasoner

It can be observed from section E of Figure 7-2 and Figure 7-3 assertions, both the activities

in the form of – ‘assess block’ and ‘drill hole’ satisfy sub-functions, which are equivalent to

the function structures as part of functional requirements of the drilling process. As observed

from Figure 7-5, upon activating both Pellet and Drools reasoners, all the activities in the

knowledgebase which match the drilling process functional requirements have been added as

axioms due to the SWRL generative modelling functions developed in this research. As per

the assessment of the block as the initial product, the axiom – ‘Starts_with_Activity’

indicates that the drilling process for block needs to start with the activity ‘Assess block’,

which has an equivalent virtual representation in the form of ‘Assess protruded block’.

 209

Figure 7-5: Generative Modelling Capability - SWRL functions activated for drilling process ontology

for Block

It is important to notice that ‘Drill hole’ is a physical activity, which also has equivalent

virtual activities in the form of –‘Create hole’ and ‘Subtract hole’, which are realised in the

virtual engineering environment. These activities fulfil the same functions due to the SWRL

Function 7 stated in section 5.5.3 in chapter 5 and implemented for drilling process for block

in section 6.3.3 in chapter 6. As observed from Figure 7-5, these virtual activities are also

automatically generated for drilling process due to the inference on generative modelling

functions. Thus GPM-DEA provides both physical and the virtual representation of the

drilling process in terms of design process and manufacturing process requirements with the

SWRL functions developed as part of this research. Figure 7-6 illustrates inferred knowledge

with Pellet reasoner for ‘Assess block’ and equivalent ‘Assess protruded block’ as initial

activities as well as ‘Drill hole’ and other activities of the drilling process for block. The

SWRL functions are illustrated in section 5.5.3 in chapter 5 and implemented for this use-

 210

case in section 6.3.3 in chapter 6. Some engineering rules are governed by logic such as

Dimension, Material, Hole Depth, Hole Diameter Rule and others in this case. Heuristic rules

are not governed by logic and are disjoint from this relation.

Figure 7-6: Inferred knowledge – Drilling Process Activities

7.5.2 Experiment 2 – SWRL Rules with Variation in Values

As observed from inferred knowledge in Figure 7-6, ‘Assess block’ activity is controlled by

the following rules – ‘Dimension, Material’ due to logic relation. However, as observed from

the graphical representation of Drilling process1 in Figure 6-6 in chapter 6, ‘Assess block’

activity is also controlled by the Depth rule. This relation was not inferred, as Depth rule is

not associated with logic in the knowledgebase. ‘Assess block’ activity has equivalent virtual

 211

activity – ‘Assess protruded block’ which is also controlled by ‘Volume rule’, as the block

occupies 3D volume in a virtual domain. Figure 7-7 illustrates the loaded block and hole

attribute values along with its position coordinates as the initial product for the drilling

process.

Figure 7-7: Asserted and Inferred values to Block and Hole attributes - Drilling Process

Ontology / SWRL Rules for Block

As also observed from inferred knowledge in Figure 7-6, some of the rules that control the

‘Drill hole’ activity are Hole Depth and Hole Diameter Rule. All these rules are explained in

section 6.3.3 in chapter 6. Figure 6-16 and 6-17 shows the SWRL representation of these

engineering rules for the drilling process ontology.

 212

Figure 7-7 also illustrates the inferred knowledge in the form of Block Depth and Volume

along with Volume of Hole when the Drools reasoner is activated for the SWRL rules. As the

asserted width of the block is less than 100.00 mm, no material is allocated to the block as per

the Material Rule. Upon changing values of Block and Hole in terms of its size and

coordinates using datatype properties, changes in output values to Block Depth, Volume and

Hole Volume can be observed from Figure 7-8.

Figure 7-8: Modification in Asserted Values with Variation in Output Values - Drilling

Process Ontology / SWRL Rules for Block

Figure 7-9 shows the implementation of Process Rule1 based on the Tolerance of hole as

asserted value. According to the semantics of the Process Rule shown in Figure 6-18 in

chapter 6, if the tolerance of the hole is less than 0.2mm reaming should be performed, else

drilling should be performed.

 213

Figure 7-9: Process Rule1: Drilling Process SWRL

7.5.3 Experiment 3 – SQWRL Query with Violation in Asserted Values

The SQWRL runs the query on the OWL knowledgebase as the SWRL API supports an

OWL profile as OWL 2 RL based reasoner in the form of drools (Horridge et al., 2011; Kuba,

2012). For the asserted value to block and hole attributes in Figure 7-7, the query results for

all the 3 rules are illustrated with the help of Figure 7-10. All the results are satisfied as none

of the asserted values violate any of the engineering rules as represented in SWRL.

 214

Figure 7-10: Query Results: SQWRL Rules

‘Assess block’ activity is controlled by Dimension rule whereas ‘Drill hole’ activity is

controlled by Hole Depth rule. A few violations in terms of block width value 49.0 mm

(<50.0 mm as per dimension rule) and hole depth value 76.0 mm (>{1.5*50}=75.0 mm

[block depth]) are asserted as shown in Figure 7-11. As illustrated, the activity – ‘Drill hole’

 215

is also controlled by Hole Diameter rule. A violation is asserted to hole attributes in terms of

hole diameter 50.0 mm ({50*1.25}=62.5>60.0 mm [block width]) as shown in Figure 7-11.

All the SQWRL query results are illustrated in accordance with violation of Dimension, Hole

Depth and Hole Diameter Rule in line with semantic clarity.

Figure 7-11: Violation of Asserted Axioms against Dimension Rule, Hole Depth Rule and

Hole Diameter Rule – OWL/SWRL

 216

7.5.4 Experiment 4 – Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems

An instance of the rules of the drilling process for block have been represented and codified

inside ParaPy as a platform specific DEA system by the author. Similar variations to values

as OWL/SWRL have been performed inside ParaPy and the results have been compared in

this section. It is important to note that ParaPy is based on inbuilt classes and has a built in

Graphical User Interface (GUI) geometry modeller to reflect the changes in product’s state

whereas the present OWL/SWRL representation reflects the changes in the query (SQWRL)

and reasoning (SWRL) tab without the visual representation of product’s geometric state. As

observed from Figure 7-7 in section 7.5.2, same values have been instantiated for both block

and hole inside ParaPy as observed from Figure 7-12 and 7-13. The representation of

engineering rules follows O-O representation in the form of a method.

 217

Figure 7-12: Inputs and Evaluated values inside ParaPy: Drilling Process – Block

 218

Figure 7-13: Inputs and Evaluated values with modifications to asserted values inside ParaPy:

Drilling Process – Block

It can be observed that the calculated and evaluated values for block and hole attributes are

same as the values inside OWL/SWRL (platform independent and neutral representation)

inferred knowledge in Protégé IDE. Similarly, upon modifications in the asserted values to

hole attributes, which are same as those in OWL/SWRL representation of drilling process in

Figure 7-8, same values are evaluated inside ParaPy as a platform specific DEA system as

observed from bottom Figure 7-13. However, there is a slight difference in the volume of the

 219

hole as calculated in SWRL as 28260.0 mm3 and 44156.25 mm3 as observed from Figure 7-

7and 7-8 against the calculated value of 28274.33 mm3 and 44178.64 mm3 as observed from

Figure 7-12 and 7-13. This is due to the fact that a value of 3.14 is used in SWRL rule, which

is rounded up to two decimal places against the actual value of π (3.141592653589793238)

inside ParaPy. A few violations are introduced for the block attributes (Block Width=49.0

mm< 50.0 mm as per Dimension Rule), hole attributes (Hole Depth=76.0

mm>{1.5*50}=75.0 mm [Block Depth] as per Hole Depth Rule), Hole Diameter (Hole

Radius=25.0 mm {2.5*25}=62.5>60.0 mm Block Width), all of which are of same value in

OWL/SWRL in Figure 7-11.

Figure 7-14: Violation of Asserted Axioms against Dimension Rule - ParaPy

 220

Figure 7-15: Violation of Asserted Axioms against Hole Depth and Hole Diameter Rule –

ParaPy

 221

Figure 7-14 illustrates the output in ParaPy as no block is created in the graphical user

interface (GUI) for violation of Dimension rule. Similarly, as observed from Figure 7-15, no

hole is created in GUI for violation of Hole Depth and Hole Diameter Rule. The text in the

run and compiler window also indicates that it could not bind the value to the Block Width,

Hole Height (Depth) and Hole Radius respectively, which are the same results in the query

tab in SQWRL in Figure 7-11.

7.6 Use Case 4: Experimentation

This use-case has been derived from the LinkedDesign project (Lützenberger et al., 2012) as

illustrated in chapter 6 with addition of knowledge to develop a more comprehensive

knowledgebase for this research. The main purpose of this use-case is to ensure the proposed

working of GPM-DEA through its OWL/SWRL representation for a bookshelf design

process, which varies from the design process of drilling a hole in a block and thus creates a

different product. Similar steps and experiments have been conducted for this use-case to

illustrate the generic and uniform working of the developed process model GPM-DEA

enabling DEA through its neutral formal representation. This further strengthens the research

hypothesis and provides verification to the research objectives.

The first step in the experimental verification is the deployment of the instantiated model. As

observed from Figure 6-28 in chapter 6, the generative modelling functions for bookshelf

design processuse case have been represented using SWRL. Figure 7-16 shows the loaded

ontology in Protégé where the bookshelf design process has 3 functional requirements with

the axiom – satisfies_Functional_Requirement (section E).

All the classes (section A), binary relationships of GPM-DEA and text annotation properties

(section C) for bookshelf design process as properties (section B) have been instantiated and

 222

populated in the IDE as axioms. All the experiments for bookshelf design process are

discussed in this section.

Figure 7-16: Bookshelf Design Process: Ontology

7.6.1 Experiment 1 – Generative Modelling Capability

Figure 7-17 illustrates the asserted axioms for activities such as ‘Input bookshelf parameters’,

‘Compute parameters NDW NSH’ and ‘Positioning of the bookshelf’. Sub-functions for these

activities have been instantiated using object property – ‘has_Function’ and bookshelf

attributes have been allocated using datatype properties as a subclass of – ‘has_Inputs’ as

explained in section 6.2.2.3 in chapter 6.

 223

Figure 7-17: Axiom Assertions for Activities: Object and Datatype properties

Generative modelling capabilities of this research are illustrated with the help of Figure 7-18.

Upon activating the Pellet and Drools reasoner, all the activities are inferred as the individual

activity sub-functions match the functional requirements of the bookshelf design process. As

per the assessment of initial product based on SWRL functions, ‘Starts with activity’ axiom is

also inferred. Similarly, engineering rules such as ‘Dividing walls Rule’, ‘Shelves Rule’,

‘Side walls position Rule’ are governed by logic, which is represented as text under ‘Logic’

 224

class. As individual activities are also affected by this logic, SWRL functions infer the rules

controlling the individual activities.

Figure 7-18: Generative Modelling and Inferred Knowledge – Bookshelf design process –

SWRL functions

7.6.2 Experiment 2 - SWRL Rules with Variation in Values

As observed from Figure 7-18, the rules controlling the activities based on logic are inferred.

Values are asserted to bookshelf attributes using inputs property as shown in Figure 7-19.

The SWRL rules for the bookshelf are represented in the SWRL tab as illustrated in Figure 6-

 225

33 in chapter 6. Upon activating the pellet and drools reasoner and addition of axioms to the

knowledgebase enables deduction of other attributes based on all the generated rules at

specified asserted values, which are inferred as shown in Figure 7-19 along with other rules

which are not based on logic.

Figure 7-19: Asserted and Inferred values to Bookshelf Attributes: SWRL Rules

Similarly, the asserted and inferred values to subassembly components of Bookshelf such as

the Dividing walls, Shelves and Frames are also shown in Figure 7-19. All the corresponding

informal part and assembly relations of the bookshelf are illustrated in Figure 6-23 and 6-25

in chapter 6.

 226

Figure 7-20: Asserted and Inferred value to Bookshelf Sub-assembly: SWRL Rules

To illustrate changes in the inferred values as per changes in asserted value of the bookshelf

and its subassembly attributes, as per the SWRL engineering rules, a few dimensions are

altered as shown in Figure 7-21. The changes in asserted values are illustrated with the help

of Figure 7-22.

Figure 7-21: Modifications in asserted values – Bookshelf and subassembly attributes

 227

Figure 7-22: Changes in Inferred Values: Bookshelf and Subassembly attributes

As, it can be observed by comparison of Figures 7-19, 7-20, 7-21 and 7-22, in spite of the fact

that the value of Thickness of inner shelf (TSH) is kept at the same value of 20.0 mm, the

position co-ordinates of the shelves in the virtual space still change as inferred values as they

are dependent upon other attributes such as Thickness of side walls (TS) and Thickness of

bottom shelf (TB) along with TSH as per the Shelves Position SWRL rule. All the other

attributes such as No. of dividing walls (NDW), No. of shelves (NSH), Vertical

 228

spacebetweenShelves (SHS), Shelf Length (SHL) and Length of Side and Dividing walls

(WAL) are altered as per their corresponding SWRL rules such as Dividing walls rule,

Shelves, Shelf Length, Side and Dividing Walls along with Vertical Space Shelves rule.

Similarly, the position coordinates of the Dividing walls, Shelves, Top shelf and Side walls

are also altered as per the SWRL positioning rules such as Dividing walls Position rule,

Topshelf position and Side Walls position rule.

7.6.3 Experiment 3 – SQWRL Query with Violation in Asserted Values

A few violations are asserted as per the Dividing walls rule and Shelves rule to calculate the

No. of Dividing walls and Shelves. As per the semantics and the SWRL representation,

violations to bookshelf attributes are illustrated with the help of Figure 7-23.

Figure 7-23: Violations of assertions and SQWRL Query Results – Dividing walls and Shelves Rule

 229

As per the semantics of Dividing walls rule, If (W<HS*0.5), then its an error as no dividing

wall can be created. Thus as per assertion in figure 7-23, W=2000.0 mm, HS=4200.0 mm and

hence the initial clause is correct. The SQWRL query returns the result ‘ERROR- Too narrow

for a bookshelf’ as illustrated. Similarly, as per the Shelves rule, If (VS>H), then no shelf can

be created. Thus as per asserted values in Figure 7-23, VS = 2500.0 mm, H=2000.0 mm and

thus the SQWRL query returns ‘ERROR – Too low for even one space in the bookshelf’.

Same values to W=8000.0 mm, HS=2000.0 mm, VS=2000.0 mm and H=7000.0 mm are

asserted to bookshelf in Figure 7-24 and 7-21. As observed from Figure 7-22, NDW is

inferred at value 3.0, the query result of Dividing walls rule1 clause should not return

‘ERROR’.

Figure 7-24: Modifications to Asserted Values and Change in SQWRL Query Results –

Dividing walls and Shelves Rule

 230

Similarly, as observed from Figure 7-22, NSH is inferred at 2.5, the query result of Shelves

rule1 clause should not return ‘ERROR’. As can be observed from Figure 7-22, the SQWRL

result are not generated which is in line with the semantic clarity of the represented SWRL

syntax of the represented rules.

7.6.4 Experiment 4 - Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems

This section has elaborated upon the comparison of testing to attributes of bookshelf in GPM-

DEA with OWL/SWRL and its implementation inside proprietary DEA systems such as

AML, Siemens NX Knowledge Fusion (KF) and CATIA Knowledgeware as part of this

thesis. Although the bookshelf has been implemented in all three DEA systems, the method

of implementation varies as AML is a true KBE system and enables generative modelling

through functional requirements but GA based CAD systems such as Siemens NX KF and

CATIA knowledgeware enable parametric modelling but don’t enable generative modelling.

Thus the knowledge analysis is performed after the geometric design stage in Siemens NX

KF and CATIA knowledgeware whereas the knowledge analysis is done prior to the

geometric design stage in DEA through a KBE approach, which is the adopted method in this

research.

 231

Figure 7-25: Input values to bookshelf attributes – Siemens NX Expression Window

(Lützenberger et al., 2012, Pg 39)

For experimental verification of the implementation, the same values are instantiated to

bookshelf attributes in the developed ontology as shown in Figure 7-19 and 7-20 as compared

to the implementation in Siemens NX expression window in Figure 7-25. The output values

of attributes based on rules inside the expression windows are illustrated with Figure 7-26.

 232

Figure 7-26: Output values to bookshelf attributes – Siemens NX Expression Window

(Lützenberger et al., 2012, Pg 40, 41, 43)

On comparison of the inferred values for the bookshelf design in OWL/SWRL in Figure 7-19

and 7-20 to the attributes inside Siemens NX Expression Window in Figure 7-26, it can be

observed that the values are exactly the same such as NDW=9, NSH=4, SHL=983 mm,

WAL=4920 mm, Topshelf position coordinates as (0,4970,0) and Dividing Walls position

coordinates as (1023, 50, 0).

An anomaly is also compared in both OWL/SWRL and AML as a violation of assertion.

Figure 7-27 illustrates the specified incorrect value to asserted parameters – Bookshelf height

(H) as 2.5 m and Vertical spacing between shelves (VS) as 2.6 m inside AML.

 233

Figure 7-27: Incorrect value to H and VS parameters inside AML – Bookshelf Design

Process (Lützenberger et al., 2012, Pg 73)

It is important to note the difference in units in AML, which is in Meters (m) and Siemens

NX Expression window and OWL/SWRL (Protégé) in Millimeters (mm). Upon assertion of

the same set of values to H and VS and all the other bookshelf attributes in OWL/SWRL

model in this research as shown in Figure 7-28, the query result of the shelves rule1 clause

shows “Error – Too low for even one space in the bookshelf” which offers the same result as

the output message inside AML in Figure 7-27.

The AML code for the rules for the bookshelf design is shown in Appendix.

 234

Figure 7-28: Incorrect value to H and VS parameters in OWL/SWRL – Bookshelf Design

Process

7.7 Discussion of the experimentation results

The results of the Use Case 3 & 4 experiment prove that the inference and query mechanism

in OWL/SWRL for GPM-DEA enables DEA in a virtual environment with both design and

manufacturing knowledge by providing accurate results with transparency of knowledge. It is

important to state platform specific DEA systems such as ParaPy, Siemens NX and AML

have an inbuilt GUI to show the effect of assertions and violations directly on the product’s

visual form through an inbuilt geometry modeller but without any semantic clarity, which is

open to interpretation by engineers. The OWL/SWRL representation formulated in this

research doesn’t provide a GUI interface through incorporation of an inbuilt product

geometry modeller to show the effect of GPM-DEA on the product’s visual form in the

present stage. However, the inference and query results with variation in assertions and

violations are created as text and numerical values to show the effect of the process model on

product’s attributes and provide much more semantic clarity as compared to ParaPy, AML as

a DEA system. Thus the GPM-DEA schema, developed by this research, provides a method

to use ontologies with rule representation in context to achieving DEA with a KBE approach

 235

with semantic clarity, transparency, traceability and re-usability of developed Meta model in

this research. GPM-DEA provides a robust, structured and coherent method to build

knowledge model with usage of formal OWL/SWRL ontologies as knowledge

representation (KR) in context to achieving KBE based DEA. The ontology and rule based

OWL/SWRL representation adopted by the author successfully represents the equivalent

platform independent and neutral formal representation.

7.8 Summary

This chapter has provided experimental verification of various research aspects of this

thesis with the testing of the functionality of GPM-DEA implemented in OWL/SWRL

ontology and rule representation as formal logic based neutral representation. Thus it has

been proven that the GPM-DEA in its informal /semiformal representation, through

OWL/SWRL as platform independent and neutral formal representation enables DEA with

generative modelling catering to multiple mechanical design with DFM/DFA cases and

provides accurate results similar to a platform specific DEA system. The experimentation

with both Use Case scenarios provides proof of generic working of GPM-DEA with both re-

usable and product specific knowledge. An important point of consideration is the fact that

the first step of representing the informal / semiformal knowledge is manually represented in

OWL/SWRL as platform independent and neutral formal representation with accurate

semantics. The inference (automated reasoning) and the query mechanism on the formally

represented OWL/SWRL knowledge returns accurate results with varied generic and product

specific concepts and relations of the process model with semantic clarity for DEA with both

design and manufacturing viewpoints during the design stage. The inference and query

results are shown as text and numerical values to product’s attributes as compared to the

product’s geometric form with GUI inside a proprietary DEA system.

 236

8 Conclusion

8.1 Introduction

The research work discussed in this thesis has developed a Generative Process Model for

Design Engineering Automation (GPM-DEA) with neutral formal semantics utilising

OWL/SWRL ontology and rule representation formalism for DEA with a KBE approach.

GPM-DEA built on the author’s Meta model provides a model driven approach utilising

strengths of existing modelling standards such as UML/SysML and IDEFO for building

structured knowledge models of mechanical design process with DFM knowledge for human

access and aid as an informal/semiformal representation. It provides a method to use formal

OWL/SWRL ontologies through its schema for the use of DEA with a KBE perspective with

generative modelling based on generic SWRL functions developed by the author for queries

and reasoning. With experimental system development and verification through 2 test use-

cases, it has been demonstrated that the corresponding platform independent and neutral

formal representation of GPM-DEA, for machine interpretation, using OWL/SWRL enables

DEA for mechanical product design process with DFM/DFA with preserved semantics within

a virtual engineering environment and with generative modelling capabilities using the

SWRL functions developed in this research as explained in section 5.6.3. This chapter

compiles the discussion, provides conclusion from the results and suggests some future work

based on the research work completed in this thesis.

8.2 Summary of Thesis and Discussion

The current research has introduced a novel Generative Process Model for Design

Engineering Automation (GPM-DEA) with exploration of formal representation with

machine interpretation. The schema of the process knowledge model provides a method to

use formal logic based ontology representation to achieve DEA with a KBE perspective with

 237

generative modelling. Various concepts and relations of mechanical design process with

manufacturing knowledge based on the authors Meta Model have been informally captured in

GPM-DEA as a process model and then formally represented in OWL/SWRL as platform

independent and neutral formal representation with preserved semantics to address the needs

of DEA with a KBE approach. The research work satisfies the aim and objectives stated in

section 1.3, which helped raise a few research questions in section 4.3. This research is based

on the shortcomings of KBE methodologies such as MOKA being a comprehensive one,

others such as KNOMAD and CommonKADS, in order to target the needs of DEA.

‘This aim of this research is to provide a coherent method to develop platform independent

and neutral formal representation of an engineering process model, with focus on

mechanical product design process with manufacturing knowledge, and semantic clarity for

DEA. This coherent method will capture various knowledge entities and relationships such as

activity, product attributes, rule, function and behaviour as Meta Model, identified with

literature analysis in an informal process model (for human aid and interpretation). The 2nd

step will provide a method to represent the schema of the structured process model in neutral

formal representation (for machine/system interpretation) with open standards for DEA with

KBE as a holistic approach. This will include generative modelling capability by building

queries as per a set of generic predefined functions. It will perform DEA with effect of the

process model on product attributes with the help of inference (automated reasoning) and

querying’

Post MOKA, Systems engineering approach such as Model Based Systems Engineering

(MBSE) based UML/SysML have been used by academics and researchers to capture

knowledge with a model driven approach along with formal logic based ontology languages

to formally represent engineering design knowledge for machine interpretation with neutral

semantics. Chapter 2 described DEA with various perspectives such as CAx

 238

(CAD/CAE/CAM), PDM/PLM and KBE where it was identified that KBE as a design

method provides a more holistic automation enabling generative modelling and with a

process oriented approach. This provided accomplishment of research objective 1 –

1. To investigate different approaches for Design Engineering Automation (DEA)

including CAx, PLM and KBE for product and process based automation

Under the KBE umbrella with a focus on platform independent and neutral knowledge

models for design automation, crucial work has been performed by (Sanya and Shehab, 2015,

2014) for usage of OWL/SWRL ontologies, utilisation of OWL/RIF/MathML based ontology

representation by (Reijnders, 2012) and RIF for product design engineering rules by

(Colombo et al., 2014; Lützenberger et al., 2012). An application was also developed in the

form of Design and Engineering Engine (DEE) by (Curran et al., 2010). However, some of

the shortcomings that were identified were a structured knowledge modelling method for

engineering design with focus on mechanical design and DFM/DFA by developing a process

model whose schema can be utilised to effectively use formal ontologies such as OWL based

languages to address the needs of DEA in a standardised way. The platform independent and

neutral model developed should provide re-usability, transparency, traceability of concepts

and relationships based on Meta Model analysis and provide generative modelling. The

knowledge should include both geometric and non-geometric knowledge with Function-

Behaviour-Structural (F-B-S) aspects such that the developed system can enable rule based

modelling and geometry automation (GA) along with wider design space exploration with

functional requirements with reasoning and query mechanism on the formal axioms thus

targeting DEA for mechanical product design process with DFM/DFA aspects.

The compliance of the outcomes of this research work as per the set objectives, identified

research gap along with critical analysis of the developed process model with the ontology

system development and its experimental verification is presented in this section.

 239

8.2.1 Development and Formulation of GPM-DEA model

Research Question 1 in section 4.3 is stated as -

I. ‘How can the mechanical product design process with inclusion of manufacturing

knowledge (DFM/DFA) based on various entities such as activities, rules, logic,

function and behaviour for product realisation as per author’s Meta model, be

captured in a generic and re-usable process model as a model driven approach with

structured knowledge model for automation in a virtual engineering environment?’

The answer to this question caters to research objectives 2 and 4 in section 1.3 which are

stated again as –

2. To analyse and compare various informal and semiformal process modelling methods

to capture various aspects of an engineering design process with focus on mechanical

product design with design for manufacturing knowledge for automation

4. To develop and build a detailed informal/semiformal process model with explicit

relationships between identified knowledge entities of a mechanical product design

process with design for manufacturing knowledge.

After careful assessment of existing literature for addressing the needs of DEA with KBE as a

holistic approach, requirements were formulated for informal/semiformal modelling methods

for knowledge modelling of various mechanical design process with manufacturing

knowledge concepts such as activities with inputs, outputs, engineering rules, resources,

function, behaviour and its effect on the product in section 3.2. Comparative analysis of

informal/semiformal modelling methods was performed against the formulated requirements

in section 3.5. The results in section 3.8 indicated that, individual modelling methods are

able to informally capture certain aspects for mechanical design knowledge with

manufacturing aspects such as IDEF0 for process knowledge with inputs, outputs, links to

rules as controls and resources and UML and SysML for product knowledge with

 240

attributes and methods. However, none of the modelling methods are able to capture all

aspects in a unified process model, with its effect on product attributes. This includes

function, behaviour and structure (F-B-S) in context to the process model.

The findings of careful literature analysis in chapter 3 for research question 1, demonstrate

that a hybrid approach needs to be adopted for knowledge modelling of a complete

mechanical design process knowledge covering manufacturing aspects. GPM-DEA is

developed by this research which can informally capture all the aspects of mechanical

design process with inclusion of manufacturing knowledge as DFM/DFA based on the

authors Meta model utilising a hybrid approach of existing modelling standards along with

addition of new knowledge objects. It achieves this by integration of existing modelling

methods such as IDEF0-based function modelling of activities, UML class diagram, UML

condition link, SysML requirement diagram and the addition of constructs on top of this to

demonstrate behaviour such as bidirectional arrows as properties between IDEF0

activities, SysML requirement diagram and UML class diagram. The activities include

inputs and outputs in terms of product geometric attributes as parameters with float values,

engineering rules based on both text and math along with resources. The engineering rules

vary from purely process rules to an integrated product specific and process knowledge.

Process rules are represented with UML condition links to control the sequence of

activities. Engineering rules controlling the topology of the product are represented using

UML class diagram methods.

Thus, GPM-DEA provides a model-driven approach for knowledge modelling of mechanical

design processes for DEA. The breakdown of the design process functional requirements into

sub-functions for various stages of the design process along with objects has been explained

in section 5.3.1 and 5.3.2 along with the integration of the process model with its interface to

the detailed product model in UML class diagram. The complete functioning of GPM-DEA

 241

with generative modelling capability for DEA with KBE approach has been explained with

Figure 5-4 in section 5.4 and section 5.5, which satisfies research objectives 2 and 4 and

provides the answer to research question 1. Along with literature analysis, the development of

GPM-DEA has been completed in compliance with the results of the comparative analysis in

section 4.8 and 4.9, and in-line with the research methodology in section 1.4.2.

8.2.2 Neutral formal representation of GPM-DEA in OWL/SWRL ontology and

rule representation

Research question 2 in section 4.3 is stated as -

II. ‘How can the developed process model in line with author’s Meta model be then

formally represented for machine interpretation in platform independent and neutral

representation standards with semantic clarity (clear meaning of concepts) for Design

Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE

approach through open standards?’

The answer to this question satisfies the needs of research objectives 3 and 5 in section 1.3

which have been stated as

3. To analyse and compare state of the art in existing formal representation (machine

readable) techniques and standards.

5. To formalise the process model in platform independent and neutral formal

representation standards for DEA with semantic clarity. This will incorporate

generative modelling capability by generating the activities, objects of the process

and rules based on logic as per set of developed generic functions.

GPM-DEA is built as a process model for knowledge modelling of mechanical design

process with DFM knowledge for DEA with MOKA as the basis for knowledge modelling

and formalisation. Section 2.5.3 discussed various KBE methodologies such as

 242

KOMPRESSA, KCM, CommonKADS, MOKA and KNOMAD. MOKA methodology is one

of the most comprehensive and is focussed on the product design process. Section 2.5.3

showed that the MOKA formal knowledge model in the form of MML wasn’t successful in

achieving DEA with its formal representation. It was verified that UML/SysML based

notation as an MBSE language lacks formal semantics and is suitable as semiformal or

lightweight formal representation for visual display (Chungoora et al., 2013a, 2013b; Graves,

2009). Thus in order to represent all formulated concepts and relations of GPM-DEA with

neutral formal semantics, knowledge representation (KR) languages such as PSL, OWL,

RuleML and RIF were considered. Requirements for a generic and re-usable process model

for DEA with neutral formal representation with semantic clarity have been compiled in

section 4.7. The comparative analysis of formal representation standards against the compiled

requirements has been performed in section 4.8 and 4.9.

The results indicate that all the concepts and one-to-many relations of GPM-DEA as

described in section 5.2 in chapter 5, cannot be semantically mapped to a single existing

neutral formal representation language such as OWL, PSL, RuleML, RIF and MathML.

Thus, as discussed in section 4.9.1, PSL comes across as a very capable ontology for neutral

formal process descriptions for manufacturing and production operations. Although OWL is

less expressive than PSL, it provides a neutral platform to formally represent concepts and

binary relations of GPM-DEA for mechanical design processes with both design and

manufacturing knowledge. Rule language is required to formally represent the rules

represented in UML class diagram with its interdependency on IDEF0 rules to activities such

as RuleML, RIF and MathML. Thus integration of ontology with rule language is mandatory

to fully represent the GPM-DEA with its F-B-S on neutral formal representation. The final

results concluded that OWL/SWRL as a combination of both ontology and rule language is a

suitable candidate for the semantic mapping of GPM-DEA concepts and relations.

 243

According to the research methodology in section 1.4.2, the ontology development

methodology (Noy and McGuinness, 2001) for GPM-DEA needs to be experimentally

verified to show the effectiveness of its working. In spite of the fact that process model

aspects as part of pilot use-cases have been experimented with PSL syntax in section 4.4, due

to the lack of availability of tools for experimental verification of formal axioms with PSL

along with its limitation to represent knowledge for design systems, OWL with its ease of

integration with Datalog dialect of RuleML as OWL/SWRL within Protégé IDE (Horridge et

al., 2011) as the editing tool was finalised. The GPM-DEA is saved as an XML file using

DrawIo tool before being manually mapped to OWL/SWRL ontology.

8.2.3 Functioning of OWL/SWRL system

Research question 3 in section 4.3 is stated as –

III. ‘Can the formalised process model enable automation with generative modelling from

the functional requirements generated at the initiation of the design process as the

design intent with queries and reasoning on developed generic functions?’

The answer to this question satisfies the needs of research objectives 5 and 6 in section 1.3

which are stated again as –

5. To formalise the process model in platform independent and neutral formal

representation standards for DEA with semantic clarity. This will incorporate

generative modelling capability by generating the activities, objects of the process and

rules based on logic as per set of developed generic functions.

6. To perform experiments in order to validate and verify the process based knowledge

model with its platform independent and neutral formal representation for re-usability,

transparency and accuracy.

The OWL/SWRL representation for GPM-DEA is illustrated in section 5.5. The generative

modelling capability of GPM-DEA has been added as a very crucial part of this research

 244

with the help of SWRL functions on top of OWL ontology and has been demonstrated in

section 5.6.3 and validated with experimental verification of test use-cases in chapter 7. It

is based on function structures of design process with activities and objects functional

requirements as illustrated in section 5.5.2. All the knowledge objects such as activity, rules,

resources, function have been created as classes within OWL ontology whereas inputs and

outputs for activities have been created as datatype properties as binary relations between

classes and float values. This is explained in section 5.5.1. The engineering rules as methods

in the UML class diagram are also represented using SWRL formalism. All the class types,

properties and restrictions for the OWL/SWRL are illustrated in section 5.5.

The application of the complete OWL/SWRL model for GPM-DEA as Knowledge

Representation (KR) system development has been elaborated in detail in chapter 6 using test

use-cases as Use Case 3 and 4. Use-case 3 is an instance of drilling as a design process in a

block as a product. The initial task is to break down the function structures of various

activities such as drilling, reaming, boring which all can achieve the desired functional

requirement of creating a hole along with the assessment of the initial product as block. This

has been discussed in section 6.3.1. An instance has been visually represented using GPM-

DEA concepts and relations with the Figure 6-6, 6-7 and 6-8 as informal/semiformal

representation in section 6.3.2. The corresponding OWL model with classes, properties,

restrictions, SWRL rules and the SWRL generative modelling functions for the instance of

the drilling process in the plug-in have been explained in section 6.3.3.

The wider applicability and re-usability of this work is proven with the experimentation with

another test use-case (Use Case 4), which includes designing a bookshelf. The application of

GPM-DEA and its neutral formal representation in OWL/SWRL follows a similar approach

to the instance of drilling and is described in section 6.4. The initial step is breaking down of

the function structures for bookshelf design process activities and objects along with

 245

assessment of the initial product as described in section 6.4.1. The informal/semiformal

representation is illustrated in section 6.4.2 with the OWL/SWRL as neutral formal

equivalent representation in section 6.4.3. This includes all the classes, properties,

restrictions, SWRL rules and the SWRL generative modelling functions based on existing

classes and properties in the OWL model.

8.2.4 Reasoning and querying on OWL/SWRL model

Research question 2 and 3 also provide answer to the research objective 6 in section 1.3. The

OWL/SWRL provides a platform independent and neutral representation to the coherent

model driven GPM-DEA thus providing DEA for mechanical design process and DFM with

generative modelling based on authors set of generic SWRL functions. The OWL/SWRL

model has been populated with test use-cases to demonstrate generic working, re-usability

and traceability of Meta model concepts along with the effect of the process model from

functional requirements analysis to inclusion of product parameters. The rule outputs from

both these use-cases have been validated inside proprietary platform specific DEA systems

such as KBE based AML, ParaPy and GA based parametric CAD based Siemens NX KF and

CATIA Knowledgeware. The reasoning and querying on the OWL/SWRL knowledge model

has been performed with the rule outputs being compared with corresponding implementation

inside DEA systems to test the accuracy of reasoning and querying with semantic clarity.

Various experiments were designed as described in section 7.3 to experimentally test and

verify the reasoning capability of OWL/SWRL for both test use-cases. Section 7.7 discusses

the results, which indicate that the generative modelling functions generate appropriate

results for activities and objects based on functional requirements along with rule

generation based on logic and initial assessment of product. The input of the model is a

product in initial state and the output of the model is a product in final state where state is

indicated by product attributes. The SWRL rules also provide accuracy in float value with

 246

variation in both datatype and object properties based on engineering rules. The SQWRL

query also returns appropriate results with preserved semantics based on variation in values

and violation of asserted rule axioms. The SQWRL results are text based, which provide

semantic clarity. However, they can incorporate float and integer values as well in the query

tab. The comparison of both SWRL reasoning and SQWRL query results as rule outputs

match to the values of the rule outputs for product configuration inside ParaPy, AML as a

KBE based DEA system and Siemens NX KF and CATIA Knowledgeware as GA for

parametric modelling based which proves that the inference with Pellet and Drools reasoner

is accurate for the equivalent OWL/SWRL model of GPM-DEA schema.

However, a limitation of the OWL/SWRL model in this research is the generation of text

and numerical based results with reasoning and querying which provide semantic clarity

but are unable to show the exact effect on product attributes with the help of GUI to show

the results on product’s visual form as a product model with an inbuilt geometry modeller.

8.3 Applicability and Effectiveness of the Research Outputs

GPM-DEA was developed with generic and re-usable engineering concepts such as activity,

product attributes, rule, function-functional requirements, behaviour based on authors Meta

model for knowledge modelling with a model driven approach (MDA). The MDA approach

led to the development of GPM-DEA with functional modelling as the basis, as the purpose

of the engineering mechanical design process is to satisfy a set of functional requirements in

context to a product (Chen et al., 2008). After experimental verification of the OWL/SWRL

as system development based on GPM-DEA schema, the concepts and relations of GPM-

DEA have been proven effective for generic and product specific design processes with

concepts and relations such as activity with inputs and outputs, engineering rules comprising

of both design and manufacturing constraints, function and product architecture covering a

wide array of cases. GPM-DEA contains both declarative and procedural design process

 247

knowledge with more focus on declarative knowledge to satisfy the needs of DEA with a

KBE approach as against purely procedural approach for DEA with other virtual engineering

approaches such as CAx tools and PDM/PLM systems (Cooper and LaRocca, 2007; Prasad,

2006). The use of OWL ontology and SWRL rules as a platform independent and neutral

knowledge model for DEA supports both representation of declarative and procedural

knowledge, supports modularity and re-usability (Siricharoen, 2007).

8.3.1 Positioning of the Model in Comparison to Related Work

Work performed by (Usman, 2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et

al., 2013a) has elaborated on the usage of Common Logic based PSL ontology as neutral

formalised semantics for equivalent UML based lightweight formal representation for

machining processes with knowledge sharing and access across product design. Their work

caters to the needs of PLM systems and can also be used for automation purposes specially

manufacturing and production automation. However, as discussed, pertaining to the

engineering design domain, due to the lack of formal axioms for design systems such as

functional requirements analysis and finer product attributes with form, fit and features

(Cochrane et al., 2009; Young et al., 2007; Zhan et al., 2010) along with the lack of

supporting tools for PSL in accordance with research design, OWL/SWRL based ontology

has been adopted in line for the needs of developing neutral knowledge models for DEA.

Work has been performed in developing neutral knowledge model for DEA in context to a

KBE approach specifically for the aerospace industry (Sanya and Shehab, 2015, 2014).

Following the MOKA methodology and formulation of platform independent models for

ensuring high abstraction, modularity and re-usability of represented knowledge,

OWL/SWRL as a combination of semantic web representation language was chosen to

formalise the design knowledge with Protégé as a tool. Although the knowledge model was

based on functional requirements as the basis, more focus was laid on design intent in the

 248

form of design parameters, constraints and rules for specific aerospace components such as

compressors and turbines based on feature and shapes such as sleeve, panel and flanges as

compared to the more generic and re-usable process oriented approach as part of this

research. GPM-DEA developed as part of this research has been validated for wider

applicability with use-cases from aerospace components with pilot use-cases, DFM aspect

with drilling process and bookshelf design process. It was also recognised that using semantic

web based languages such as OWL ontology for DEA with a KBE approach, there was a lack

of common model based on a set of activities which would deploy the OWL based model for

use in KBE applications with a lack of widely adopted ontology development for engineering

design and DEA (Sanya and Shehab, 2014). This research bridges this gap by not only using

OWL/SWRL as a platform independent and neutral representation of mechanical design

knowledge with DFM for DEA in a KBE environment, but also providing clear and concise

method of modelling of the knowledge into ontology development with reusable classes and

properties in OWL using concepts and relationships in the structured knowledgebase as

formulation of GPM-DEA schema. The population of GPM-DEA with multiple use-cases as

instances verifies the effective working of the process model. The work carried out by Sanya

and Shehab focussed on the usage of BPMN along with UML for process modelling on

context to DEA as informal representation. Contrary to this approach, research work in this

thesis has elaborated on the usage of IDEF0 and UML/SysML as the basis and then

addition of concepts and relationships as illustrated in section 8.2.1 to formulate a more

comprehensive informal process model with generative modelling capability with initial

assessment of product as GPM-DEA. It was also recognised that there was lack of research

between ontology development and engineering design (Sanya and Shehab, 2015). This

research also bridges this gap by merging and mapping engineering design aspects for DEA

and ontology development using OWL/SWRL.

 249

Post MOKA, another contribution was made by (Reijnders, 2012) in developing platform

independent and formal representation of engineering design knowledge for aerospace

industry for DEA with a KBE approach using a combination of OWL, RIF Production Rule

Dialect (PRD) and Content MathML using a commercial implementation tool AllegroGraph

based on Allegro Common Lisp platform. Although both product and process knowledge was

represented, the main focus of the captured and represented knowledge was based on

engineering rules for product design as compared to a process based approach performed in

this thesis. MOKA ICARE forms were used as informal representation with the

corresponding platform independent formal representation of rules in RIF-PRD and Content

MathML (Reijnders, 2012). As explained earlier, this research has developed an advanced

process model GPM-DEA that is much more comprehensive than MOKA ICARE forms for

knowledge modelling or informal representation for mechanical design. In Reijnders work,

although the forward reasoning works on the rules leading to the successful implementation

of design knowledge, the predicates of the rules such as the antecedent and the consequent

couldn’t be queried due to integration between RIF-PRD and OWL leading to loss of

contextual relevance of rules with co-related knowledge. On the contrary, this research has

used SWRL, which offers ease of integration with OWL making the query on the internal

predicates of the rules relatively easier thus also preserving the semantic clarity of the

represented knowledge of GPM-DEA. Also, it was stated that single rules related to an object

or a process were easily modelled, but multiple rules were difficult to implement. However,

in this research multiple rules related to an object or a process have been modelled at the

same level as a singular rule within the SWRL tab with the same ease of implementation for

inference and querying.

Other work that was also similar in developing platform independent and neutral knowledge

models for DEA with a KBE perspective was performed by (Lützenberger et al., 2012;

 250

Pardalis and Kadiri, 2014; Pugliese and Colombo, 2014), where the authors recommended

the usage of RIF, as the focus was purely on formal representation of engineering rules. The

investigation of OWL/SWRL as the potential for representation of neutral knowledge models

for DEA with a KBE perspective was recognised which is discussed in Table 2-3 in section

2.8 of Chapter 2. This research has bridged this gap by potential investigation of

OWL/SWRL for knowledge representation for DEA based on the developed model GPM-

DEA, along with Use Case 4 adopted from this project and verified by experimentation that

OWL/SWRL as ontology and rule representation is successful as platform independent and

neutral formal representation of mechanical design knowledge for automation.

Also, as compared to AMAAD (Van Der Velden et al., 2012) for DEA with a KBE

perspective, this research has successfully provided a structured method to perform detailed

activities with product architecture knowledge. This research has also provided the

association of the activities of the process model with the working of the developed

OWL/SWRL system attributes, which is explained in chapter 5.

Thus, as compared to the previous work by Sanya, Rejinders and LinkedDesign project,

GPM-DEA provides a method to describe mechanical design process models with DFM in

platform independent and neutral formal representation as OWL/SWRL enabling DEA with

generative modelling capabilities and preserved semantics, with a KBE approach. The

working of the GPM-DEA model in OWL/SWRL proves that logic based formalisms such as

OWL based on DL and SWRL based on Horn Logic do have the potential capability as

knowledge representation formalisms for DEA.

8.3.2 Integration and Extension of the Model to other Engineering Applications

The GPM-DEA working has been validated with multiple use cases varying from aerospace

components such as compressor and fan blades design and manufacturing processes at a

preliminary level to a simpler drilling process and bookshelf design process at the detailed

 251

product attribute level. Even though the ontology model contains extensive manufacturing

aspects, the verification of the model has not been performed for all complete

manufacturing domains with tooling for e.g. additive manufacturing. Although the model

provides the sub-functions as functional requirements of various CAE analysis processes,

the testing and verification of the model with CAE analysis processes such as stress

analysis, structural analysis and thermal analysis has not been performed. Thus the model

may need extensions in its classes and relationships along with SWRL rules to fully cover

the CAE analysis process lifecycle along with wider manufacturing domain with newer

methods.

In its present stage, the testing and verification of the model has proved that it is

comprehensive for mechanical design, manufacturing and design for manufacturing

(DFM)/design for assembly (DFA) stages of the product development lifecycle based on the

functional requirements. The current model has proven to be generic and high level for a

mechanical design process with manufacturing knowledge for DEA. The implementation of

the model in OWL/SWRL can be extended for detailed manufacturing and production

processes domain along with Design for Manufacturing (DFM) ontologies such as MASON

and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012).

As the main strength and applicability of GPM-DEA is a process modelling approach with its

effect on product attributes with an interface to the product model, its corresponding

implementation in OWL/SWRL also provides compatibility with detailed product models

with geometry kernels for visualisation, for DEA. This research provides scope of integration

with previous work in developing semantic product models with geometric kernels using

OWL/SWRL ontology across heterogeneous CAD systems with various product attributes as

parameters, features and shapes such as surfaces, faces, edges (Lu et al., 2016; Qin et al.,

2016; Tessier and Wang, 2013) which have been included in this research to show the effect

 252

of the process model on product geometric attributes with an interface. This also includes

features such as holes, extrusion and chamfering with Boolean representations, which have

been embedded in this research with SWRL, making this directly compatible as a KR

language for integration with GPM-DEA as a process model for DEA.

This work can also be integrated with non-geometric product models. An example as

illustrated in section 3.7.5.2, an ontology was developed for UML based CPM/OAM product

model with both non-geometric and geometric attributes along with function and behaviour,

although it was not fully validated for visual display using geometry kernel as it was targeted

for PLM systems (Fiorentini et al., 2007). Other work for integration to the process model in

this research are ontology based neutral product models for visual display with geometry

kernels across CAx systems, which have been developed. These include mapping of STEP

based EXPRESS schemas to OWL/SWRL based ontologies in order to develop neutral

product models with geometric knowledge such as Onto-STEP and ONTO-PDM (Barbau et

al., 2012; Krima et al., 2009; Zhao and Liu, 2008a, 2008b). The reason for conversion of

OWL ontology to STEP schemas for product models for geometric representation is that

STEP is the current widely adopted neutral product model representation across various CAx

and DEA systems. Thus, the OWL/SWRL process model of GPM-DEA provides a good

foundation as KR formalism with automated reasoning to integrate with detailed platform

independent and neutral product models with geometric kernels for DEA. As stated in section

3.7.1 and 3.7.5.2, work has been performed for capturing design rationale with the help of

DRed (Design Rationale editor) and DRed 2.0 based on both UML/SysML and OWL/SWRL

based ontology as formal representation for access in PLM systems and also across CAD

applications (Bracewell et al., 2009a, 2009b; Eng et al., 2011). Although, GPM-DEA in the

present stage doesn’t include the Rationale class as rationale in not a necessary

requirement for DEA, it can be added both informally based on UML notation and its

 253

corresponding ontological representation in OWL/SWRL. Thus GPM-DEA as a

knowledgebase can be extended with rationale for mechanical design process. Similarly,

although presently, GPM-DEA is quite exhaustive for function and behaviour as FBS for a

mechanical design process with manufacturing knowledge for DEA, it can be extended and

merged with functional and behavioural aspect of other engineering processes and products

both informally and with ontologies as formal representation. The working of the

OWL/SWRL model with drilling a hole in a block and bookshelf design process has been

validated inside platform specific DEA systems such as KBE based AML, ParaPy and GA

based parametric CAD applications such as CATIA Knowledgeware and Siemens NX KF at

the product geometric attribute level. Thus the OWL/SWRL model of GPM-DEA with its

interface to the product model to illustrate the effect of mechanical design process on the

geometric attributes of the product, can be used as a basis for integrating with a product

model in neutral format using a front-end visual DEA application with product form, shapes

and features using X3D (Web3D, 2017) based geometry kernels. Along with extension to

wider domain such as design rationale, function and behaviour of engineering design and

manufacturing, it can also be used as a back end platform for visualisation of queries and

inference results to the design engineer for decision support and DEA with the support of

semantic web pages. This visualisation of automation results over the semantic web pages

can be achieved with the help of an API written on OWL/SWRL with languages such as Java

such as those supported by Apache Jena framework.

8.4 Contributions to Knowledge

a. This research has developed a standardised and coherent method to use ontology

based structured knowledge model as formal representation to address Design

Engineering Automation (DEA) for mechanical design and DFM process with a KBE

 254

perspective with semantic clarity and generative modelling by building queries and

reasoning on author’s set of generic SWRL functions.

b. The method to use OWL/SWRL ontology is based on the schema of developed

informal/semiformal model GPM-DEA as a structured knowledge modelling method,

based on author’s Meta model which is built on strengths of IDEF0, UML/SysML and

addition of modelling constructs by the author.

The main strengths and contribution of this research work are -

8.4.1 Model Driven Approach for Knowledge Modelling and Automation for

Mechanical Design Process with DFM

The knowledge modelling method through GPM-DEA with an MBSE approach provides a

generic, re-usable process model with transparency and traceability of concepts and

relationships as per author’s Meta model based on activity, product attributes, rules and logic,

function-functional requirements, behaviour for mechanical design processes with DFM. It is

based on F-B-S based modelling and includes functional requirements analysis, activity-

object-rule association and an interface to the product model with geometric attributes and

form-features-fit, thus including both geometric and non-geometric knowledge to cover and

address automation for mechanical product design process with DFM/DFA. Thus the

knowledgebase acts as superset of platform specific DEA applications.

8.4.2 Utilisation of Formal Logic for Implementation of a Process Model for DEA

The successful implementation of GPM-DEA with OWL/SWRL ontology and rule

representation proves that formal logic is able to capture the semantic meaning of various

mechanical design process concepts and properties with inclusion of manufacturing

knowledge. Thus it provides a suitable machine interpretation of mechanical design

knowledge for DEA with its automated reasoning on the formal axioms as syntax with depth

of meaning of classes and relationships as concepts and bi-directional properties with OWL

 255

(DL) and addition of forward chaining reasoning capability on classes and properties using

SWRL (Horn logic) with math, boolean and comparison built-ins. The inclusion of float

datatype properties ensures that product parameters as geometric attributes can be included in

the model although it depends upon careful execution of the OWL/SWRL model.

8.4.3 Neutral (Open Standard) Usage of the Ontology Knowledge Model across

Platform Specific DEA Systems with Semantic Clarity

The developed process model GPM-DEA with its mapping to equivalent OWL/SWRL

representation as platform independent formal representation with semantic clarity provides a

structured method to use formal ontologies for DEA with a KBE perspective within a virtual

engineering environment. Ontology provides open standard usage and provides neutral

knowledge model outside of platform specific DEA applications such as KBE based AML,

ParaPy and GA based CATIA Knowledgeware, Siemens NX KF.

8.4.4 Extensibility and Scalability of the Knowledge Base

The model offers ease of extensibility with the aid of formal OWL/SWRL representation.

Ontology based on formal logic with semantic clarity provides scalability with addition of

classes, properties and instances. The model can be extended to cover other aspects of

engineering knowledge depending upon the end user such as design rationale, function-

behaviour and product data models, advanced and detailed manufacturing, maintenance

and operations for production including tooling. The new knowledge objects can be easily

integrated or merged in the OWL/SWRL ontology representation to cater to specific

engineering requirements.

8.4.5 Web Based Decision Support for Engineering Applications

The knowledge within the platform independent and neutral model can be extracted to

platform specific DEA applications or web pages to provide decision support for a wider

design space exploration for the designer by developing an API on the OWL/SWRL model.

 256

These can be developed using languages such as Java. Ontology models can be directly

exported to Java code within Protégé IDE. Methods have been devised to map OWL/SWRL

ontology methods to O-O programming which can pave the way for retrieving the knowledge

in neutral file format, developed as part of this research, for direct utilisation inside the

proprietary DEA applications.

8.4.6 Integration of Generative Modelling Capability within Process Model

The developed formal model enables generative modelling capabilities by building queries

and reasoning on author’s generic set of SWRL functions by automatically generating the

activities and objects based on the functional requirements as sub-function structures of the

mechanical design process with DFM along with process sequencing. It also provides initial

assessment of a product to adapt and provide re-usability of processes and activities for

different products. The automatic generation of the activities, objects based on matching the

functional requirements as sub-function structures to those of the mechanical design process

along with the initial assessment of product is achieved with implementation of developed

SWRL functions as part of this research. For engineering rules based on logic, the rules are

automatically generated based on SWRL functions by matching the engineering logic

structures developed as part of this research. All the SWRL inference and query results have

been validated during experimentation including the execution of generic and product

specific engineering rules for block and bookshelf usage as test use-cases.

8.4.7 Ontology Representation of Design and Manufacturing Knowledge within a

Unified Process Model

The process model includes manufacturing knowledge and DFM/DFA aspects during the

mechanical design stage and represents both physical and virtual representation of the

products in context to mechanical product design with DFM processes. Both design and

manufacturing requirements have been included in the functional requirements (equivalent to

 257

function) class and sub-class as function structures with instantiation. The individual

activities can be classified as physical, virtual and informatical and the equivalence between

physical and virtual representation is achieved with the SWRL functions developed as part of

this research.

8.5 Limitations

Although the research contributes to the body of scientific knowledge by satisfying the aim

and objectives thus verifying the research hypothesis, there are a few limitations due to the

scope and the context in which the results are valid.

Firstly, the focus of both pilot and test use-cases collected from industrial partner and

literature is on mechanical design, DFM with manufacturing processes as part of product

development cycle. Although the ontology model is quite exhaustive, it has not been verified

through use cases for all aspects of manufacturing/production methods with tooling such as

additive manufacturing. Although CAE analysis process concepts such as stress analysis,

thermal analysis, structural analysis have been included as subclasses in the OWL/SWRL

model for GPM-DEA, the model has not been instantiated or populated and verified with

analysis process use-cases to validate the implementation results. Also, the complexity of the

model based on Meta model concepts such as activity, product attributes, rule and logic,

function-functional requirements and behaviour may need extension to cover these other

engineering processes not covered in this research. Secondly, the reasoning results of GPM-

DEA as a process model with an interface to the product model on OWL/SWRL as formal

logic based representation generates both text and numeric values for product parameters as

geometric attributes as described within a CAx virtual platform. However it doesn’t

incorporate the visual representation of product form, shape and features through its

geometry kernels. In spite of the limitations, the model is widely applicable to mechanical

design and manufacturing along with DEA both within a KBE context and GA based

 258

parametric CAD automation, which proves that GPM-DEA is robust, structured, generic and

re-usable as extensions can be applied within a specific domain for highly granular

capabilities within the mechanical design space.

8.6 Recommendations for Future Work

Based on the results of this research work, further work can be conducted in the following

areas for the applicability of this research to a wider problem domain -

• The integration of geometry kernels for detailed product model visual representation

through a GUI in terms of its form, features and shapes using neutral format such as

X3D for DEA. This will help the designer visualise the direct impact of the process

model on the geometry with open standards. This can cover different kernels such as

NURBS, splines and closed profiles for surface along with extrusion, pockets, notch for

volume representation as part of neutral product model

• The mapping or equivalent formal representation of GPM-DEA in OWL/SWRL

ontology as a proof–of-concept follows a manual approach in accordance with research

design to ensure the correctness of formal syntax, preserved semantics and detailed

implementation for accurate reasoning results. Although the inference and query results

are found accurate for the test use-cases during experimentation, the process of

populating the knowledgebase is slightly time consuming. In order to reduce the

translation time for high volume use-cases and industrial implementation, automatic

mapping can be addressed to a certain extent from GPM-DEA schema as

informal/semiformal process model to OWL/SWRL knowledge model

• For platform independent and neutral formal representation of mathematical rules with

complex equations currently not supported by built-in SWRL plugins, MathML with

various dialects such as Presentation MathML with focus on Content MathML can be

investigated for integration on top of OWL/SWRL as an additional layer.

 259

8.7 Closing Summary

GPM-DEA is a process model with F-B-S modelling, based on authors Meta model, as an

MBSE approach and its effect on the product parameters as geometric attributes with form-

features-fit through an interface. It combines the strengths of UML/SysML and IDEF0 and

addition on authors constructs, is a high level, generic, re-usable and extensible process

model for knowledge modelling of mechanical design processes with incorporation of

DFM/DFA as manufacturing knowledge. The model enables DEA through OWL/SWRL as a

platform independent and neutral formal representation with generative modelling based on

generic SWRL functions developed by the author. The development of GPM-DEA follows a

model driven approach with equivalent ontology and rule representation as neutral standards

with open standard usage. OWL/SWRL provides combination of DL and horn logic based

formal logic representation with automated reasoning capabilities for the developed process

model GPM-DEA to satisfy the needs of DEA. The inference and query results on

OWL/SWRL have been experimentally verified at generic as well as product specific level

for mechanical design, manufacturing and DFM as part of engineering processes. GPM-DEA

can be extended or merged with other function-behaviour, rationale, product data models and

integrate with manufacturing and production domain both at the informal level and at the

OWL/SWRL as formal model. Thus a contribution to knowledge has been made in terms of

fulfilment of aim and objectives, which verifies the research hypothesis and can be stated as-

“Platform independent and neutral formal representation of an engineering design

process model with focus on mechanical product design and manufacturing knowledge

built on standardised concepts and relationships, structured and well defined axioms

along with semantic clarity can achieve the requirements of design engineering

automation (DEA) enabling generative modelling and re-usability of knowledge”

 260

References

Abdullah, M.S., Kimble, C., Paige, R., Benest, I., Evans, A., 2005. Developing a UML

profile for modelling knowledge-based systems, in: Model Driven Architecture.

Springer, pp. 220–233.

Aguilar-Saven, Ruth, S., 2004. Business process modelling: Review and framework. Int. J.

Prod. Econ. 90, 129–149.

Ahmed, S., Kim, S., Wallace, K.M., 2007. A methodology for creating ontologies for

engineering design. J. Comput. Inf. Sci. Eng. 7, 132–140.

Al-Ahmari, A.M.A., Ridgway, K., 1999. An integrated modelling method to support

manufacturing systems analysis and design. Comput. Ind. 38, 225–238.

Alexandrou, D., Clobes, J., Maza, S. de la, Parrotta, S., Domenica, E.M., Louw, E., Buda, A.,

Kristensen, K., Pardalis, K., Iversen, G., Milicic, A., Lutzenberger, J., Wartner, C.,

2013. D10.6 LinkedDesign Demonstration Plan, Linked Knowledge in Manufacturing,

Engineering and Design for Next-Generation Production. LinkedDesign Consortium.

LinkedDesign Consortium.

Alvarez Cabrera, A.A., Erden, M.S., Tomiyama, T., 2009. On the Potential of Function-

Behavior-State (FBS) Methodology for the Integration of Modeling Tools. Proc. 19th

CIRP Des. Conf. Des. 30–31.

Amadori, K., 2012. Geometry Based Design Automation: Applied to Aircraft Modelling and

Optimization. Doctoral dissertation, Linköping University Electronic Press.

doi:10.1016/S0965-9978(01)00041-2

Amigo, C.R., Iritani, D.R., Rozenfeld, H., Ometto, A., 2013. Product development process

modeling: state of the art and classification. Smart Prod. Eng. Springer B, 169–179.

Ammar-Khodja, S., Perry, N., Bernard, a., 2008. Processing Knowledge to Support

Knowledge-based Engineering Systems Specification. Concurr. Eng. 16, 89–101.

doi:10.1177/1063293X07084642

Amoo, L.M., 2013. On the design and structural analysis of jet engine fan blade structures.

Prog. Aerosp. Sci. 60, 1–11. doi:10.1016/j.paerosci.2012.08.002

Andrews, P.T.J., Shahin, T.M.M., Sivaloganathan, S., 1999. Design reuse in a CAD

environment — Four case studies. Comput. Ind. Eng. 37, 105–109. doi:10.1016/S0360-

8352(99)00033-9

Antoniou, G., Van Harmelen, F., 2004. A Semantic Web Primer. MIT press.

doi:10.5860/CHOICE.46-1523

Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S., Devitt, S., Diaz, A.,

Dooley, S., Hunter, R., Ion, P., Kohlhase, M., Lazrek, A., Libbrecht, P., Miller, B.,

Miner, R., Rowley, C., Sargent, M., Smith, B., Soiffer, N., Sutor, R., Watt, S., 2014.

Mathematical Markup Language (MathML) Version 3.0 2nd Edition [WWW

Document]. W3C Recomm. URL http://www.w3.org/TR/MathML3/ (accessed 11.1.15).

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., 2003. The

Description Logic Handbook: Theory, Implementation, and Applications. Descr. Log.

Handb. 622. doi:10.2277/0521781760

Badica, A., Badica, C., 2011. Formal Verification of Business Processes as Role Activity

 261

Diagrams, in: 2011 Federated Conference on Computer Science and Information

Systems (FedCSIS).

Badica, C., Badica, A., Litoiu, V., 2003. Role activity diagrams as finite state processes, in:

Second International Symposium on Parallel and Distributed Computing (ISPDC’03).

doi:10.1109/ISPDC.2003.1267638

Badica, C., Teodorescu, M., Spahiu, C., Badica, A., Fox, C., 2005. Integrating Role Activity

Diagrams and Hybrid IDEF for Business Process Modeling Using MDA, in: SYNASC.

pp. 71–74.

Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B., 2005. Implementing RuleML Using

Schemas, Translators, and Bidirectional Interpreters [WWW Document]. W3C. URL

https://www.w3.org/2004/12/rules-ws/paper/49/ (accessed 12.1.16).

Bancroft, C.N., Crump, S.J., Lovett, P.J., Bone, D., Kightley, N.J., 2000. Taking KBE into

the Foundry. Proc. 7th ISPE Int. Conf. Concurr. Eng. 24, 17–20.

Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S., Sriram, R.D.,

2012. OntoSTEP: Enriching product model data using ontologies. Comput. Des. 44,

575–590. doi:10.1016/j.cad.2012.01.008

Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P., Wallace,

E.K., 2003. Concepts for automating systems integration, National Institute of Standards

and Technology, Technical Report. doi:10.1109/ICASSP.2004.1326632

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Martin,

D., McIlraith, S., McGuinness, D., Su, J., Tabet, S., 2005. Semantic Web Services

Language (SWSL) [WWW Document]. W3C Memb. Submiss. URL

http://www.w3.org/Submission/SWSF-SWSL/ (accessed 11.1.15).

Baxter, D., Gao, J., Case, K., Harding, J., Young, B., Cochrane, S., Dani, S., 2007. An

engineering design knowledge reuse methodology using process modelling. Res. Eng.

Des. 18, 37–48.

Bechhofer, S., 2009. OWL: Web Ontology Language. Encycl. Database Syst.

Beckett, D., McBride, B., 2004. RDF/XML Syntax Specification (Revised) [WWW

Document]. W3C Recomm. URL http://www.w3.org/TR/2004/REC-rdf-syntax-

grammar-20040210/ (accessed 6.1.15).

Benjamin, P.C., Menzel, C.P., Mayer, R.J., Fillion, F., Futrell, M.T., Dewitte, P.S., Lingineni,

M., 1994. Information Integration for Concurrent Engineering (IICE) IDEF5 Method

Report.

Bermell-Garcia, P., 2007. A metamodel to annotate knowledge based engineering codes as

enterprise knowledge resources. Cranfield University.

doi:10.1017/CBO9781107415324.004

Bermell-García, P., Fan, I.-S., 2002. A kbe system for the design of wind tunnel models using

reusable knowledge components. doi:DOI

Bermell-garcia, P., Fan, I., Murton, A., 2007. Towards the Semantic Interoperability Between

Kbe and Plm Systems. Artif. Intell. 1–12.

Bermell-Garcìa, P., Fan, I.S., Li, G., Porter, R., Butter, D., 2001. Effective abstraction of

engineering knowledge for KBE implementation, in: ICED (Vol. 1., No. 1). pp. 99–106.

Bernard, A., 2005. Virtual engineering: Methods and tools. Proc. Inst. Mech. Eng. Part B J.

 262

Eng. Manuf. 219, 413–421. doi:10.1243/095440505X32238

Beynon-Davies, P., Carne, C., Mackay, H., Tudhope, D., 1999. Rapid Application

Development (RAD): an empirical review. Eur. J. Inf. Syst. 8, 211–223.

Bhaskara, S., 2010. DSM Based Approach for Managing Requirements, Rules and Design

Parameters in Knowledge Based Design Process, in: DSM 2010: Proceedings of the

12th International DSM Conference, Cambridge, UK, 22.-23.07. 2010.

Blekhman, A., Dori, D., 2013. Tesperanto – A Model-Based System Specification

Methodology and Language. INCOSE Int. Symp. 23, 139–153. doi:10.1002/j.2334-

5837.2013.tb03009.x

Blekhman, A., Wachs, J.P., Dori, D., 2015. Model-Based System Specification With

Tesperanto: Readable Text From Formal Graphics. Syst. Man, Cybern. Syst. IEEE

Trans. PP, 1. doi:10.1109/TSMC.2015.2406753

Bluntzer, J.-B., Gomes, S., Sagot, J.-C., 2009. Definition of a Knowledge Representation

Based on Functional CAD Models. DS 58-8 Proc. ICED 09, 17th Int. Conf. Eng. Des.

Vol. 8, Des. Inf. Knowledge, Palo Alto, CA, USA, 24.-27.08. 2009.

Bock, C., 2006. Interprocess Communication in the Process Specification Language, US

Department of Commerce, National Institute of Standards and Technology. Citeseer.

Bock, C., Gruninger, M., 2005. PSL: A semantic domain for flow models. Softw. Syst.

Model. 4, 209–231. doi:10.1007/s10270-004-0066-x

Bock, C., Gruninger, M., 2004. Inputs and Outputs in the Process Specification Language,

US Department of Commerce, Technology Administration, National Institute of

Standards and Technology. Citeseer.

Bodein, Y., Rose, B., Caillaud, E., 2009. Improving CAD Performance: A Decisional Model

for Knowledgeware Implementation. Proc. Int. Conf. Eng. Des. 311–322.

Boley, H., Grosof, B., Tabet, S., 2005. RuleML Tutorial [WWW Document]. URL

http://ruleml.org/papers/tutorial-ruleml-20050513.html (accessed 4.1.15).

Boley, H., Kifer, M., 2013. RIF Basic Logic Dialect (Second Edition) [WWW Document].

W3C Recomm. URL https://www.w3.org/TR/rif-bld/ (accessed 12.1.15).

Boley, H., Paschke, A., Tabet, S., 2016a. Specification of RuleML [WWW Document].

RuleML. URL http://wiki.ruleml.org/index.php/Specification_of_RuleML (accessed

10.1.15).

Boley, H., Paschke, A., Tabet, S., 2016b. RuleML Home [WWW Document]. RuleML. URL

http://wiki.ruleml.org/index.php/RuleML_Home (accessed 7.1.15).

Boley, H., Paschke, A., Tabet, S., 2016c. Introducing RuleML [WWW Document]. RuleML.

URL http://wiki.ruleml.org/index.php/Introducing_RuleML (accessed 5.1.16).

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling Language User Guide.

Pearson Education India.

Bos, B., Carlisle, D., Chavchanidze, G., Ion, P.D.F., Miller, B.R., 2011. A MathML for CSS

Profile [WWW Document]. W3C Recomm. URL https://www.w3.org/TR/mathml-for-

css/ (accessed 2.1.16).

Braaksma, A.J., Klingenberg, W.W., van Exel, P.P., 2011. A review of the use of asset

information standards for collaboration in the process industry. Comput. Ind. 62, 337–

350. doi:10.1016/j.compind.2010.10.003

 263

Bracewell, R., Gourtovaia, M., Moss, M., Knott, D., Wallace, K., Clarkson, P.J., 2009a.

DRed 2.0: a method and tool for capture and communication of design knowledge

deliberated in the creation of technical products, in: DS 58-6: Proceedings of ICED 09,

the 17th International Conference on Engineering Design, Vol. 6, Design Methods and

Tools (Pt. 2), Palo Alto, CA, USA, 24.-27.08. 2009.

Bracewell, R., Wallace, K., Moss, M., Knott, D., 2009b. Capturing design rationale. Comput.

Des. 41, 173–186. doi:10.1016/j.cad.2008.10.005

Bracewell, R.H., Ahmed, S., Wallace, K.M., 2004. DRed and design folders: a way of

capturing, storing and passing on-knowledge generated during design projects, in:

Proceedings of the ASME Design Engineering Technical Conference, 1pp. American

Society of Mechanical Engineers, pp. 235–246. doi:10.1115/DETC2004-57165

Browning, T.R., 2009. The Many Views of a Process: Toward a Process Architecture

Framework for Product Development Processes. Syst. Eng. 12, 69–90.

Browning, T.R., 2002. Process Integration Using the Design Structure Matrix. Syst. Eng. 5,

180–193.

Browning, T.R., Fricke, E., Negele, H., 2006. Key concepts in modeling product

development processes. Syst. Eng. 9, 104–128.

Bruijn, J. de, Welty, C., 2013. RIF RDF and OWL Compatibility (Second Edition) [WWW

Document]. W3C Recomm. URL https://www.w3.org/TR/rif-rdf-owl/ (accessed 4.1.16).

Brunetti, G., Golob, B., 2000. A feature-based approach towards an integrated product model

including conceptual design information. Comput. Des. 32, 877–887.

Bruun, H.P.L., Mortensen, N.H., Harlou, U., Wörösch, M., Proschowsky, M., 2015. PLM

system support for modular product development. Comput. Ind. 67, 97–111.

doi:10.1016/j.compind.2014.10.010

Bullinaria, J.A., 2005. IAI : Knowledge Representation 1–20.

Burkett, M., O’Marah, K., Carrillo, L., 2003. CAD Versus ERP Versus PDM: How Best To

Anchor a PLM Strategy?, AMR Research, Sept.

Calkins, D., Egging, N., Scholz, C., 2000. Knowledge-based engineering (KBE) design

methodology at the undergraduate and graduate levels [J]. Int. J. Engng Ed. 16, 21–38.

Ćatić, A., Malmqvist, J., 2007. Towards integration of KBE and PLM, in: Proceedings of the

International Conference on Engineering Design (ICED07), Paper.

Cederfeldt, M., Elgh, F., 2005. Design Automation in SMEs-Current State, Potential, Need

and Requirements, in: DS 35: Proceedings ICED 05, the 15th International Conference

on Engineering Design, Melbourne, Australia, 15.-18.08. 2005.

Chalupnik, M., Eckert, C., Clarkson, P., 2006. Modelling design processes to improve

robustness, in: IPD 2006: 6th Workshop on Integrated Product Development,

Magdeburg, Germany, 18.-20.09. 2006.

Chan, P.K.M., 2013. A new methodology for the development of simulation workflows:

Moving beyond MOKA. Delft University of Technology. doi:10.1007/978-0-387-

35350-0_3

Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao,

W., 2013. The evolution, challenges, and future of knowledge representation in product

design systems. Comput. Des. 45, 204–228. doi:10.1016/j.cad.2012.08.006

 264

Chang, X., Rai, R., Terpenny, J., 2010. Development and Utilization of Ontologies in Design

for Manufacturing. J. Mech. Des. 132, 21009. doi:10.1115/1.4000697

Chang, X., Sahin, A., Terpenny, J., 2008. An ontology-based support for product conceptual

design. Robot. Comput. Integr. Manuf. 24, 755–762. doi:10.1016/j.rcim.2008.03.004

Chapman, C.., Pinfold, M., 1999. Design engineering—a need to rethink the solution using

knowledge based engineering. Knowledge-Based Syst. 12, 257–267.

Chapman, C., Preston, S., Pinfold, M., Smith, G., 2007. Utilising enterprise knowledge with

knowledge-based engineering. Int. J. Comput. Appl. Technol. 28, 169–179.

Chapman, C.B., Pinfold, M., 2001. The application of a knowledge based engineering

approach to the rapid design and analysis of an automotive structure. Adv. Eng. Softw.

32, 903–912.

Chen, A.-P., Chen, M.-Y., 2005. A Unifying Ontology Modeling for Knowledge

Management, in: Knowledge-Based Intelligent Information and Engineering Systems.

Springer Berlin Heidelberg, pp. 318–324.

Chen, Y.-M.J.M.Y.-J., Chen, Y.-M.J.M.Y.-J., Chu, H.-C.C., Kao, H.-Y.Y., 2008. On

technology for functional requirement-based reference design retrieval in engineering

knowledge management. Decis. Support Syst. 44, 798–816.

doi:10.1016/j.dss.2007.10.003

Christophe, F., 2012. Semantics and Knowledge Engineering for Requirements and Synthesis

in Conceptual Design: Towards the Automation of Requirements Clarification and the

Synthesis of Conceptual Design Solutions. Dr. Diss. Ec. Cent. Nantes

(ECN)(ECN)(ECN)(ECN); Aalto Univ.

Chulvi, V., Sancho, A., Cebrián, D., Jiménez, R., Muñoz, C., Vidal, R., 2007. Knowledge-

Based Engineering in Cranioplasty Implant Design, in: Proceedings of the 16th

International Conference on Engineering Design (ICED’07), Paris. pp. 365–384.

Chung, J., Lee, K., 2002. A framework of collaborative design environment for injection

molding. Comput. Ind. 47, 319–337. doi:10.1016/S0166-3615(02)00004-0

Chungoora, N., 2010. A Framework to Support Semantic Interoperability in Product Design

and Manufacture. Glob. Prod. Dev. doi:10.1007/978-3-642-15973-2_44

Chungoora, N., Cutting-Decelle, A.-F., Young, R., Gunendran, G., Usman, Z., Harding, J.A.,

Case, K., 2013a. Towards the ontology-based consolidation of production-centric

standards. Int. J. Prod. Res. 51, 327–345. doi:10.1080/00207543.2011.627885

Chungoora, N., Young, R.I., Gunendran, G., Palmer, C., Usman, Z., Anjum, N.A., Cutting-

Decelle, A.F., Harding, J.A., Case, K., 2013b. A model-driven ontology approach for

manufacturing system interoperability and knowledge sharing. Comput. Ind. 64, 392–

401. doi:10.1016/j.compind.2013.01.003

Chungoora, N., Young, R.I.M., 2011. The configuration of design and manufacture

knowledge models from a heavyweight ontological foundation. Int. J. Prod. Res. 49,

4701–4725. doi:10.1080/00207543.2010.504754

Ciocoiu, M., Nau, D.S., Gruninger, M., 2001. Ontologies for Integrating Engineering

Applications. J. Comput. Inf. Sci. Eng. 1, 12–22. doi:10.1115/1.1344878

Clark, P., 1996. Requirements For a Knowledge Representation System: Working Note 10.

Clarkson, P.J., Hamilton, J.R., 2000. “Signposting”, a parameter-driven task-based model of

 265

the design process. Res. Eng. Des. 12, 18–38.

Cochrane, S., Young, R., Case, K., Harding, J., Gao, J., Dani, S., Baxter, D., 2009.

Manufacturing knowledge verification in design support systems. Int. J. Prod. Res. 47,

3179–3204. doi:10.1080/00207540701802452

Colledani, M., Terkaj, W., Tolio, T., Tomasella, M., 2008. Development of a Conceptual

Reference Framework to Manage Manufacturing Knowledge Related to Products,

Processes and Production Systems, in: Methods and Tools for Effective Knowledge

Life-Cycle-Management. Springer Berlin Heidelberg, pp. 259–284. doi:10.1007/978-3-

540-78431-9_15

COLOMBO, G., CUGINI, U., PUGLIESE, D., PULLI, M., 2005. Levels of knowledge

representation for Product Design, in: PLM’05: International Conference on Product

Life Cycle Management. pp. 137–146.

Colombo, G., Pugliese, D., Klein, P., Lutzemnberger, J., 2014. A study for neutral format to

exchange and reuse engineering knowledge in KBE applications, in: Engineering,

Technology and Innovation (ICE), 2014 International ICE Conference On. IEEE. IEEE,

pp. 1–10.

Colquhoun, G.J., Baines, R.W., Crossley, R., 1993. A state of the art review of IDEF0. Int. J.

Comput. Integr. Manuf. 6, 252–264.

Composer, T., 2011. TopBraid Composer TM Getting Started Guide Version 3.0.

TopQuadrant, Inc. (2011) July 18th.

Cooper, D., LaRocca, G., 2007. Knowledge-based Techniques for Developing Engineering

Applications in the 21st Century, in: 7th AIAA ATIO Conference, Belfast, Northern

Ireland. Belfast, Northern Ireland.

Cooper, S., Fan, I., Li, G., 1999. Achieving Competitive Advantage Through Knowledge-

Based Engineering: A Best Practice Guide, Prepared by Dept. of Enterprise Integration,

Cranfield University.

Corallo, A., Laubacher, R., Margherita, A., Turrisi, G., 2009. Enhancing product

development through knowledge-based engineering (KBE): A case study in the

aerospace industry. J. Manuf. Technol. Manag. 20, 1070–1083.

doi:10.1108/17410380910997218

Creswell, J.W., 2003. Research Design - Qualitative, Quantitative, and Mixed Methods

Approaches, Second. ed. SAGE Publications.

Curran, R., Verhagen, W.J., Van Tooren, M.J., 2010. The KNOMAD methodology for

integration of multi-disciplinary engineering knowledge within aerospace production.

Am. Inst. Aeronaut. Astronaut. doi:10.2514/6.2010-1315

Danjou, S., Lupa, N., Koehler, P., 2008. Approach for Automated Product Modeling Using

Knowledge-Based Design Features. Comput. Aided. Des. Appl. 5, 622–629.

doi:10.3722/cadaps.2008.xxx-yyy

Dartigues, C., Ghodous, P., Gruninger, M., Pallez, D., Sriram, R., 2007. CAD/CAPP

integration using feature ontology. Concurr. Eng. 15, 237–249.

doi:10.1177/1063293X07079312

Das, B., Cutting-Decelle, A.-F., Young, R.I., Case, K., Rahimifard, S., Anumba, C.J.,

Bouchlaghem, N., 2007. Towards the understanding of the requirements of a

communication language to support process interoperation in cross-disciplinary supply

 266

chains. Int. J. Comput. Integr. Manuf. 20, 396–410. doi:10.1080/09511920600873741

Davis, R., Shrobe, H., Szolovits, P., 1993. What is a Knowledge Representation? AI Mag. 14,

17.

Dean, M., Schreiber, G., Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I.,

McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A., 2004. OWL Web Ontology

Language Reference, W3C Recommendation February.

Deshayes, L.M.L.M., Beqqali, O.E., Bouras, A., El Beqqali, O., Bouras, A., 2005. The use of

Process Specification Language for cutting processes. Int. J. Prod. Dev. 2, 236–253.

Ding, L., Giess, M., Goh, Y.M., McMahon, C.A., Thangarajah, U., 2009. Component-based

records: A novel method to record transaction design work. Adv. Eng. Informatics 23,

332–347. doi:10.1016/j.aei.2009.03.001

Dong, Y., Chee, C.F.Y., He, Y., Goh, A., 1997. Active database support for STEP/EXPRESS

models. J. Intell. Manuf. 8, 251–261. doi:10.1023/A:1018581426556

Dori, D., 2004. ViSWeb - The Visual Semantic Web: Unifying human and machine

knowledge representations with Object-Process Methodology. VLDB J. 13, 120–147.

doi:10.1007/s00778-004-0120-x

Dori, D., 2002. Object-Process Methodology: A Holistic Systems Paradigm. Springer

Science & Business Media, Berlin. doi:10.1007/978-3-642-56209-9

Dori, D., Howes, D., Blekhman, A., Martin, R., 2010. OPM as a Basis for Model-Based

Enterprise Standards. Tokyo.

Eckert, C., Albers, A., Bursac, N., Chen, H.X., Clarkson, P.J., Gericke, K., Gladysz, B.,

Maier, J.F., Rachenkova, G., Shapiro, D., Wynn, D., 2015. Integrated product and

process models: Towards an integrated framework and review, in: Proceedings of 20th

International Conference on Engineering Design. pp. 1–10.

El Kadiri, S., Kiritsis, D., 2015. Ontologies in the context of product lifecycle management:

state of the art literature review. Int. J. Prod. Res. 53, 5657--5668.

El Kadiri, S., Terkaj, W., Urwin, E.N., Palmer, C., Kiritsis, D., Young, R., 2015. Ontology in

Engineering Applications, in: International Workshop Formal Ontologies Meet

Industries. Springer, pp. 126–137. doi:10.1007/978-3-319-21545-7

Elgh, F., 2008. Supporting management and maintenance of manufacturing knowledge in

design automation systems. Adv. Eng. Informatics 22, 445–456.

doi:10.1016/j.aei.2008.05.004

Elgh, F., 2007. Computer-Supported Design for Producibility : Principles and Models for

System Realisation and Utilisation. Product and Production Development, Chalmers

University Of Technology, Gothenburg, Sweden.

Elgh, F., 2006. Automated cost estimation of product variants-a tool for enhanced

producibility. Chalmers University of Technology.

Elgh, F., Johansson, J., 2014. Knowledge Object-a Concept for Task Modelling Supporting

Design Automation., in: ISPE CE. pp. 192–203. doi:10.3233/978-1-61499-440-4-192

Eng, N., Aurisicchio, M., Bracewell, R., Armstrong, G., 2011. More space to think: Eight

years of visual support for rationale capture, creativity and knowledge management in

aerospace engineering, in: DETC/CIE. American Society of Mechanical Engineers.

doi:10.1115/DETC2011-47911

 267

Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A., 1994. A Model-Based Method for

Organizing Tasks in Product Development. Res. Eng. Des. 6, 1–13.

Erden, M.S., Komoto, H., Van Beek, T.J., D’Amelio, V., Echavarria, E., Tomiyama, T.,

2008. A Review of Function Modeling: Approaches and Applications. Artif. Intell. Eng.

Des. Anal. Manuf. 22, 147–169. doi:10.1017/S0890060408000103

Estefan, J.A., 2007. Survey of Model-Based Systems Engineering (MBSE) Methodologies.

Incose MBSE Focus Gr. 25, 1–12. doi:10.1109/35.295942

Evenson, M., Huelsman, E., Mommer, M.S., Yang, C., 2015. Common Lisp [WWW

Document]. Common Lisp Found. URL https://common-lisp.net/ (accessed 10.1.16).

Feigenbaum, L., Booth, D., Cyganiak, R., Manola, F., Brickley, D., 2013. RIF FAQ [WWW

Document]. W3C Powered by MediaWiki. URL

https://www.w3.org/2005/rules/wiki/RIF_FAQ (accessed 10.1.16).

Fellmann, M.., Zarvić, N.., Sudau, a. ., Nobbe, L., 2013. Ontology-Based Assistance for

Semi-Formal Process Modeling. Proc. 5th Int. Work. Enterp. Model. Inf. Syst. Archit.

(EMISA 2013) 119–132.

Fenves, S.J., 2001. A core product model for representing design information, US

Department of Commerce, Technology Administration, National Institute of Standards

and Technology.

Fenves, S.J., Foufou, S., Bock, C., Sriram, R.D., 2008. CPM2: a core model for product data.

J. Comput. Inf. Sci. Eng. 8, 14501.

Fernández-López, M., Gómez-Pérez, A., Juristo, N., 1997. METHONTOLOGY: From

Ontological Art Towards Ontological Engineering, in: Ontological Engg. AAAI-97

Spring Symposium Series, Stanford University, Stanford. pp. 33–40.

doi:10.1109/AXMEDIS.2007.19

Finance, G., 2010. SysML Modelling Language explained.

Fiorentini, X., Gambino, I., Liang, V., Foufou, S., Rachuri, S., Bock, C., Mahesh, M., 2007.

Towards an ontology for open assembly model, in: International Conference on Product

Lifecycle Management. pp. 445–456.

FIPS PUBS, 1993. Announcing the Standard for: Integration Definition for Function

Modelling (IDEF0), Draft Federal Information Processing Standards Publication 183.

Foderaro, J., 1991. LISP: introduction. Commun. ACM 34, 27.

Foufou, S., Fenves, S.J., Bock, C., Rachuri, S., Sriram, R.D., 2005. A core product model for

plm with an illustrative xml implementation. Int. Conf. Prod. Lifecycle Manag. 21–32.

Främling, K., Terzi, S., Louw, E., Potter, D., Parmar, S., Maharjan, M., Voigt, K., 2012. D4.1

Knowledge exploitation framework – architecture and bundle draft specification, Linked

Knowledge in Manufacturing, Engineering and Design for Next-Generation Production.

LinkedDesign Consortium. LinkedDesign Consortium.

France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A., 2006. Model-Driven Development

Using UML 2.0: Promises and Pitfalls. Computer (Long. Beach. Calif). 39, 59–66.

doi:10.1109/MC.2006.65

Frank, G., Entner, D., Prante, T., Khachatouri, V., Schwarz, M., 2014. Towards a Generic

Framework of Engineering Design Automation for Creating Complex CAD Models. Int.

J. Adv. Syst. Meas. 7, 179–192.

 268

Franke, M., Klein, P., Schroder, L., Thoben, K.-D., 2011. Ontological semantics of standards

and PLM repositories in the product development phase, in: Global Product

Development. Springer, pp. 473–482. doi:10.1007/978-3-642-15973-2-48

Frisch, H.P., 2007. Model-Based Systems.

Furini, F., Rossoni, M., Colombo, G., 2016. Knowledge Based Engineering and Ontology

Engineering Approaches for Product Development: Methods and Tools for Design

Automation in Industrial Engineering, in: ASME 2016 International Mechanical

Engineering Congress and Exposition. American Society of Mechanical Engineers, p.

V011T15A032--V011T15A032. doi:10.1115/IMECE2016-67292

Genesereth, M.R., Fikes, R.E., Others, 1992. Knowledge Interchange Format - Version 3.0:

Reference Manual, Logic Group: Report Logic-92-1. Computer Science Department,

Stanford University, Stanford, California.

Gero, J.S., Kannengiesser, U., 2007a. A function-behavior-structure ontology of processes.

Ai Edam 21, 379–391. doi:10.1017/S0890060407000340

Gero, J.S., Kannengiesser, U., 2007b. An ontology of situated design teams. Ai Edam 21,

295–308. doi:10.1017/S0890060407000297

Gero, J.S., Kannengiesser, U., 2004. The situated function–behaviour–structure framework.

Des. Stud. 25, 373–391. doi:10.1016/j.destud.2003.10.010

Gingele, J., Childe, S.J., Miles, M.E., 2002. A modelling technique for re-engineering

business processes controlled by ISO 9001. Comput. Ind. 49, 235–251.

doi:10.1016/S0166-3615(02)00113-6

Glimm, B., Horridge, M., Parsia, B., Patel-Schneider, P., 2009. A Syntax for Rules in OWL

2, in: Proceedings of the 6th International Conference on OWL: Experiences and

Directions-Volume 529. pp. 29–38.

Golbreich, C., 2004. Combining rule and ontology reasoners for the semantic web. Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics) 3323 LNCS, 6–22. doi:10.1007/978-3-540-30504-0_2

Golbreich, C., Imai, A., 2004. Combining SWRL rules and OWL ontologies with Protégé

OWL Plugin, Jess, and Racer, in: 7th International Protégé Conference, Bethesda, MD.

Golbreich, C., Wallace, E.K., Patel-Schneider, P.F., 2012. OWL 2 Web Ontology Language

New Features and Rationale (Second Edition) [WWW Document]. W3C Recomm. URL

https://www.w3.org/TR/2012/REC-owl2-new-features-20121211/ (accessed 1.1.16).

Goldberg, A., Robson, D., 1983. Smalltalk-80: the language and its implementation.

Addison-Wesley Longman Publishing Co., Inc.

Gómez, A., Mas, F., Menéndez, J.L., Ríos, J., 2013. A knowledge based application for

industrialization design. Procedia Eng. 63, 318–326. doi:10.1016/j.proeng.2013.08.178

Graves, H., 2009. Integrating SysML and OWL. CEUR Workshop Proc. 529, 117–124.

Graves, H., Horrocks, I., 2008. Application of OWL 1.1 to systems engineering, in: OWL

Experiences and Directions April Workshop.

Grobshtein, Y., Dori, D., 2011. Generating SysML views from an OPM model: design and

evaluation. Syst. Eng. 14, 327–340. doi:10.1002/sys

Grosof, B., Dean, M., Kifer, M., 2010. Web Rules: Fundamentals, Standards, and

Applications., ISWC2010 tutorial.

 269

Gruber, T.R., 1995. Toward principles for the design of ontologies used for knowledge

sharing. Int. J. Hum. Comput. Stud. 43, 907–928. doi:citeulike-article-id:230211

Gruninger, M., 2013. Common Logic (ISO 24707), SC32 WG2 Meeting, Santa Fe, NM.

Gruninger, M., 2004. Ontology of the process specification language, in: Handbook on

Ontologies. Springer Berlin Heidelberg, pp. 575–592.

Grüninger, M., 2009. Using the PSL Ontology. Handb. Ontol. 423–443. doi:10.1007/978-3-

540-92673-3

Gruninger, M., Cutting-Decelle, A., 2000. ISO TC184/SC4/WG8 N225.

Gruninger, M., Katsumi, M., Mossakowski, T., 2013. Revision of ISO 24707 (Common

Logic).

Grüninger, M., Menzel, C., 2003. The Process Specification Language (PSL) Theory and

Applications. AI Mag. 24, 63–74. doi:10.1609/aimag.v24i3.1719

Hart, L.E., 2015. Introduction To Model-Based System Engineering (MBSE) and SysML,

Delaware Valley INCOSE Chapter Meeting: Lockheed Martin Corporation.

Hartman, J., Wernecke, J., 1996. The VRML 2.0 handbook: building moving worlds on the

web. Addison Wesley Longman Publishing Co., Inc.

Hay, D., 2006. Data Modeling, RDF, & OWL – Part One: An Introduction To Ontologies

[WWW Document]. URL http://tdan.com/data-modeling-rdf-owl-part-one-an-

introduction-to-ontologies/5025 (accessed 9.1.15).

Hayes, P., Menzel, C., 2001. A semantics for the knowledge interchange format, in: IJCAI

2001 Workshop on the IEEE Standard Upper Ontology. p. 145.

Heidari, F., Loucopoulos, P., Brazier, F., 2013. Business Process Modelling for Measuring

Quality. Int. J. Adv. Intell. Syst. 6, 342–355.

Helgoson, M., Kalhori, V., 2012. A conceptual model for knowledge integration in process

planning. Procedia CIRP 3, 573–578. doi:10.1016/j.procir.2012.07.098

Hennig, C., Eisenmann, H., Viehl, A., Bringmann, O., 2015. On Languages for Conceptual

Data Modeling in Multi-disciplinary Space Systems Engineering, in: Model-Driven

Engineering and Software Development (MODELSWARD), 2015 3rd International

Conference on. IEEE, pp. 384–393.

Hennig, C., Hoppe, T., Eisenmann, H., Viehl, A., Bringmann, O., 2016. SCDML: A language

for Conceptual Data Modeling in Model-based Systems Engineering. Model. Eng.

Softw. Dev. (MODELSWARD), 2016 4th Int. Conf. 184–192.

Hew, K.P., Fisher, N., Awbi, H.B., 2001. Towards an integrated set of design tools based on

a common data format for building and services design. Autom. Constr. 10, 459–476.

Hirtle, D., Dema, T., Boley, H., 2006. The Modularization of RuleML [WWW Document].

URL http://ruleml.org/modularization/#Model (accessed 8.1.15).

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S., 2012. OWL 2 Web

Ontology Language Primer (Second Edition) [WWW Document]. W3C Recomm. URL

https://www.w3.org/TR/owl2-primer/ (accessed 1.1.16).

Holt, A.W., Ramsey, H.R., Grimes, J.D., 1983. Coordination system technology as the basis

for a programming environment. Electr. Commun. 57, 307–314.

Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C., Jupp, S., Moulton, G.,

 270

Drummond, N., Brandt, S., 2011. A Practical GuideTo Building OWL Ontologies Using

Protege 4 and CO-ODE Tools: Edition 1.3.

Horridge, M., Patel-Schneider, P.F., 2012. OWL 2 Web Ontology Language Manchester

Syntax (Second Edition) [WWW Document]. W3C Work. Gr. Note. URL

https://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/ (accessed

1.1.16).

Horrocks, I., Patel-schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., 2004. SWRL:

A Semantic Web Rule Language Combining OWL and RuleML, W3C Member

Submission.

Hsu, W., Woon, I.M.Y., 1998. Current and Future Research in the Conceptual Design of

Mechanical Products. Comput. Des. 30, 377–389.

Hunter, R., Vizán, A., Pérez, J., Ríos, J., 2005. Knowledge model as an integral way to reuse

the knowledge for fixture design process. J. Mater. Process. Technol. 164–165, 1510–

1518. doi:10.1016/j.jmatprotec.2005.02.181

INCOSE, 2007. Systems Engineering Vision 2020, INCOSE-TP-2004-004-02.

Isaksson, O., 2003. A generative modeling approach to engineering design.

ISO, 2017. Information technology -- Common Logic (CL) -- A framework for a family of

logic-based languages [WWW Document]. ISO/IEC PRF 24707. URL

https://www.iso.org/standard/66249.html (accessed 9.1.16).

ISO, 2015. Automation systems and integration — Object-Process Methodology, ISO/PAS

19450:2015(en).

ISO, 2012. Information technology -- Object Management Group Unified Modeling

Language (OMG UML) -- Part 1: Infrastructure, ISO/IEC 19505-1:2012.

ISO, 2007. Information technology -- Common Logic (CL): a framework for a family of

logic-based languages [WWW Document]. ISO/IEC 24707:2007. URL

https://www.iso.org/standard/39175.html (accessed 7.1.16).

ISO, 2005. Information technology -- Open Distributed Processing -- Unified Modeling

Language (UML) Version 1.4.2, ISO/IEC 19501:2005.

ISO, 2004. ISO 10303-11:2004: Industrial automation systems and integration -- Product data

representation and exchange -- Part 11: Description methods: The EXPRESS language

reference manual.

Ivanov, V., Knorr, M., Leite, J., 2015. Reasoning over Ontologies and Non-monotonic Rules.

Port. Conf. Artif. Intell. 388–401. doi:10.1007/978-3-319-23485-4_39

Johansson, J., 2015. Howtomation© Suite: A Novel Tool for Flexible Design Automation, in:

ISPE CE. Advances in Transdisciplinary Engineering, pp. 327–336. doi:10.3233/978-1-

61499-544-9-327

Johansson, J., 2011. Automated Computer Systems for Manufacturability Analyses and

Tooling Design: Applied to the Rotary Draw Bending Process. Chalmers Reproservice.

Johansson, J., 2008. Design Automation Systems for Production Preparation: Applied on the

Rotary Draw Bending Process. Chalmers.

Jubierre, J.R., Borrmann, A., 2015. Knowledge-based engineering for infrastructure facilities:

assisted design of railway tunnels based on logic models and advanced procedural

geometry dependencies. J. Inf. Technol. Constuction 20, 421–441.

 271

Kaufmann, M., Moore, J.S., 1997. An industrial strength theorem prover for a logic based on

common lisp. IEEE Trans. Softw. Eng. 23, 203–213. doi:10.1109/32.588534

Kifer, M., Boley, H., 2010. RIF Overview [WWW Document]. W3C Work. Gr. Note. URL

https://www.w3.org/TR/2010/NOTE-rif-overview-20100622/ (accessed 6.1.16).

Kim, C.-H., Weston, R.H., Hodgson, a., Lee, K.-H., 2003. The complementary use of IDEF

and UML modelling approaches. Comput. Ind. 50, 35–56. doi:10.1016/S0166-

3615(02)00145-8

Kitamura, Y., 2006. Roles of ontologies of engineering artifacts for design knowledge

modeling. Des. METHODS Pract. 21–23.

Kitamura, Y., Mizoguchi, R., 2013. Ontological characterization of functions: Perspectives

for capturing functions and modeling guidelines. AI EDAM 27, 259–269.

doi:10.1017/S0890060413000267

Kitamura, Y., Mizoguchi, R., 2004. Ontology-based systematization of functional

knowledge. J. Eng. Des. 15, 327–351. doi:10.1080/09544820410001697163

Klein, P., Luetzenberger, J., Thoben, K.-D., 2015. A proposal for knowledge formalization in

product development processes, in: DS 80-10 Proceedings of the 20th International

Conference on Engineering Design (ICED 15) Vol 10: Design Information and

Knowledge Management Milan, Italy, 27-30.07. 15.

Klein, P., Pugliese, D., Lützenberger, J., Colombo, G., Thoben, K.D., 2014. Exchange of

knowledge in customized product development processes. Procedia CIRP 21, 99–104.

doi:10.1016/j.procir.2014.03.149

Klyne, G., Carroll, J.J., McBride, B., 2004. Resource Description Framework (RDF):

Concepts and Abstract Syntax [WWW Document]. W3C Recomm. URL

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (accessed 5.1.15).

Knutilla, A., Schlenoff, C., Ray, S., Polyak, S.T., Tate, A., Cheah, S.C., Anderson, R.C.,

1998. Process Specification Language: An Analysis of Existing Representations. Natl.

Inst. Stand. Technol. (NIST), Gaithersbg. (MD), NISTIT 6160.

Kopena, J., Regli, W.C., 2003. Extensible Semantics for Representing Electromechanical

Assemblies. ASME 2003 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 581–590.

doi:10.1115/DETC2003/CIE-48233

Kossiakoff, A., Sweet, W.N., Seymour, S., Biemer, S.M., 2011. Systems engineering

principles and practice: second edition. John Wiley & Sons.

Krasner, J., 2015. How Product Development Organizations can Achieve Long- Term Cost

Savings Using Model-Based Systems Engineering (MBSE).

Krima, S., Barbau, R., Fiorentini, X., Sudarsan, R., Sriram, R.D., 2009. OntoSTEP: OWL-DL

ontology for STEP. Natl. Institue Stand. Technol. NISTIR 7561.

Krötzsch, M., Simancik, F., Horrocks, I., 2012. A Description Logic Primer. arXiv Prepr.

arXiv1201.4089.

Kuba, M., 2012. OWL 2 and SWRL Tutorial [WWW Document]. URL

http://dior.ics.muni.cz/~makub/owl/ (accessed 10.1.16).

Kulon, J., Broomhead, P., Mynors, D., 2006. Applying knowledge-based engineering to

traditional manufacturing design. Int. J. Adv. Manuf. Technol. 30, 945–951.

doi:10.1007/s00170-005-0067-0

 272

Kulon, J., Mynors, D.J., Broomhead, P., 2006. A knowledge-based engineering design tool

for metal forging. J. Mater. Process. Technol. 177, 331–335.

doi:10.1016/j.jmatprotec.2006.04.062

La Rocca, G., 2011. Knowledge Based Engineering Techniques to Support Aircraft Design

and Optimization. TU Delft, Delft University of Technology.

La Rocca, G., Krakers, L., van Tooren, M.J.L., 2002. Development of an ICAD Generative

Model for Blended Wing Body Aircraft Design. 9th AIAA/ISSMO Symp. Multidiscip.

Anal. Optim. 4-6 Sept. 2002, Atlanta, Georg. 1–10.

La Rocca, G., Tooren, M. Van, 2012. Knowledge based engineering to support complex

product design. Adv. Eng. Informatics 26, 157–158. doi:10.1016/j.aei.2012.02.008

La Rocca, G., van Tooren, M., 2007. A Knowledge Based Engineering Approach to Support

Automatic Generation of FE Models in Aircraft Design, in: 45th AIAA Aerospace

Sciences Meeting and Exhibit. doi:10.2514/6.2007-967

La Rocca, G., Van Tooren, M., 2007. Enabling distributed multi-disciplinary design of

complex products: a knowledge based engineering approach. J. Des. Res. 5, 333–352.

doi:10.1504/JDR.2007.014880

La Rocca, G., Van Tooren, M.J., 2010. Knowledge-Based Engineering To Support Aircraft

Multidisciplinary Design and Optimisation, in: Institution of Mechanical Engineers, Part

G: Journal of Aerospace Engineering. SAGE Publications, pp. 1041–1055.

Lange, C., 2013. Ontologies and languages for representing mathematical knowledge on the

semantic web. Semant. Web 4, 119–158. doi:10.3233/SW-2012-0059

Lassila, O., 1990. Frames or Objects , or Both ? Abstract : 1–8.

Lee, J., Fenves, S., Bock, C., Suh, H., Rachuri, S., Fiorentini, X., Sriram, R., 2010. A

semantic product modeling framework and language for behavior evaluation. NIST IR

7681. doi:10.1109/COASE.2010.5584462

Lee, J.H., Fenves, S.J., Bock, C., Suh, H.-W., Rachuri, S., Fiorentini, X., Sriram, R.D., 2010.

Product modeling framework and language for behavior evaluation. 2010 IEEE Int.

Conf. Autom. Sci. Eng. CASE 2010 136–143. doi:10.1109/COASE.2010.5584462

Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A., 2006. MASON: A proposal for an

ontology of manufacturing domain, in: Distributed Intelligent Systems: Collective

Intelligence and Its Applications, 2006. DIS 2006. IEEE Workshop on. IEEE, pp. 195–

200. doi:10.1109/DIS.2006.48

Li, L., Qin, F., Gao, S., Qin, X., 2014. Ontology-Based Design Rationale Retrieval

Supporting Natural Language Query, in: ASME 2014 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference.

American Society of Mechanical Engineers, p. V01BT02A017--V01BT02A017.

Li, Z., Ramani, K., 2007. Ontology-based design information extraction and retrieval. Ai

Edam 21, 137–154. doi:10.1017/S0890060407070199

Li, Z., Yang, M.C., Ramani, K., 2009. A methodology for engineering ontology acquisition

and validation. AI EDAM 23, 37–51. doi:10.1017/S0890060409000092

Lin, M.-C., Lin, Y.-H., Chen, M.-S., Lin, J.-Y., 2013. Development of a Parametric Form

Generation Procedure for Customer-Oriented Product Design, in: 20th ISPE

International Conference on Concurrent Engineering. pp. 235–243. doi:10.3233/978-1-

61499-302-5-235

 273

Lingzhi, L., Leong, A.C., Gay, R.K.L., 1996. Integration of Information Model (IDEF1) with

Function Model (IDEF0) for CIM Information Systems Design, in: Expert Systems with

Applications. Elsevier, pp. 373–380.

Liu, T., Xu, W., 2001. A review of web-based product data management systems. Comput.

Ind. 44, 251–262. doi:10.1016/S0166-3615(01)00072-0

Liu, Y.-J., Lai, K.-L., Dai, G., Yuen, M.M.-F., 2010. A semantic feature model in concurrent

engineering. IEEE Trans. Autom. Sci. Eng. 7, 659–665.

Lohith, M., Prasanna, L., Vaderahobli, D.H., 2013. Translating MOKA based Knowledge

models into a Generative CAD model in CATIA V5 using Knowledgeware, in:

International Conference on Modeling, Simulation and Visualization Methods(MSV).

The Steering Committee of The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp).

Lu, W., Qin, Y., Qi, Q., Zeng, W., Zhong, Y., Liu, X., Jiang, X., 2016. Selecting a semantic

similarity measure for concepts in two different CAD model data ontologies. Adv. Eng.

Informatics 30, 449–466. doi:10.1016/j.aei.2016.06.001

Lützenberger, J., Marthinusen, I., Kristensen, K., Iversen, G., Klein, P., Sivertsen, O.I.,

Rutkowska, G., 2012. D6.1 Methods for KBE related knowledge acquisition and

codification, Linked Knowledge in Manufacturing, Engineering and Design for Next-

Generation Production. LinkedDesign Consortium. LinkedDesign Consortium.

Lützenberger, J., Marthinusen, I., Kristensen, K., Iversen, G., Klein, P., Sivertsen, O.I.,

Rutkowska, G., 2012. Methods for KBE related knowledge acquisition and codification,

Linked Knowledge in Manufacturing, Engineering and Design for Next-Generation

Production. LinkedDesign Consortium. LinkedDesign Consortium.

Lyons, K.W., Duffey, M.R., Anderson, R.C., 1995. Product Realization Process Modeling: A

study of requirements, methods and research issues. US Department of Commerce,

Technology Administration, National Institute of Standards and Technology,

Gaithersburg, MD.

Maier, J.F., Eckert, C.M., Clarkson, P.J., 2017. Model granularity in engineering design –

concepts and framework. Des. Sci. 3. doi:10.1017/dsj.2016.16

Manola, F., Miller, E., McBride, B., 2004. RDF Primer [WWW Document]. W3C Recomm.

URL http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (accessed 5.1.15).

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan, S.,

Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K., 2004. OWL-S:

Semantic Markup for Web Services [WWW Document]. W3C Memb. Submiss. URL

http://www.w3.org/Submission/OWL-S/ (accessed 6.1.15).

Martínez-Pellitero, S., Barreiro, J., Cuesta, E., Álvarez, B.J., 2011. A new process-based

ontology for KBE system implementation: Application to inspection process planning.

Int. J. Adv. Manuf. Technol. 57, 325–339. doi:10.1007/s00170-011-3285-7

Mas, F., Rios, J., Menendez, J.L., Gomez, A., Ríos, J., Menéndez, J.L., Gómez, A., 2013. A

process-oriented approach to modeling the conceptual design of aircraft assembly lines.

Int. J. Adv. Manuf. Technol. 67, 771–784. doi:10.1007/s00170-012-4521-5

Mayer, R.J., 1992. IDEF1 Information Modeling. A Reconstruction of the Original Air Force

Wright Aeronautical Laboratory Technical Report AFWAL-TR-81-4023.

Mayer, R.J., Keen, A., Wells, M.S., 1992. Information Integration for Concurrent

 274

Engineering (IICE) IDEF4 object-oriented design method report (No. KBSI-IICE-90-

STR-01-0592-01).

Mayer, R.J., Menzel, C.P., Painter, M.K., Dewitte, P.S., Blinn, T., Perakath, B., 1995.

Information integration for concurrent engineering (IICE) IDEF3 process description

capture method report (No. KBSI-IICE-90-STR-01-0592-02).

Mcguinness, D.L., Van Harmelen, F., 2004. OWL Web Ontology Language Overview, W3C

recommendation.

Medeiros, A.P. De, Schwabe, D., Pereira, A., Daniel, D.M., Feijó, B., 2005. Design Rationale

for Model-Based Designs in Software Engineering 163–168.

Mehrpoor, M., Gulla, J.A., Ahlers, D., Kristensen, K., Ghodrat, S., Sivertsen, O.I.,

Marthinusen, I., Kalavrytinos, C., Sivertsen, O.I., Mehrpoor, M., Gjarde, A., Sivertsen,

O.I., Shyi-Ming Chen, Ke, J., Jin-Fu Chang, Takeda, H., Takeda, H., Veerkamp, P.,

Veerkamp, P., Tomiyama, T., Tomiyama, T., Yoshikawa, H., Yoshikawa, H., Mehrpoor,

M., Gulla, J.A., Ahlers, D., Kristensen, K., Ghodrat, S., Sivertsen, O.I., Zhao, W., Liu,

J.K.K., Marthinusen, I., Kalavrytinos, C., Sivertsen, O.I., Mehrpoor, M., Gjarde, A.,

Sivertsen, O.I., Shyi-Ming Chen, Ke, J., Jin-Fu Chang, Takeda, H., Takeda, H.,

Veerkamp, P., Veerkamp, P., Tomiyama, T., Tomiyama, T., Yoshikawa, H., Yoshikawa,

H., Mehrpoor, M., Gulla, J.A., Ahlers, D., Kristensen, K., Ghodrat, S., Sivertsen, O.I.,

Zhao, W., Liu, J.K.K., 2013. Using process ontologies to contextualize recommender

systems in engineering projects for knowledge access improvement, in: Computers in

Industry. Academic Conferences International Limited, p. 2013.

doi:10.1016/j.compind.2008.02.002

Michel, J., 2005. Terminology extracted from some manufacturing and modelling related

standards. CEN/TC 310, N1119R2.

Milton, N.R., 2007. Knowledge acquisition in practice: a step-by-step guide. Springer

Science & Business Media.

Minsky, M., Horn, B., Shirai, Y., Waltz, D., Winston, P.H., 1975. The psychology of

computer vision. McGraw-Hill, New York. doi:10.1016/0010-4485(73)90095-X

Mizoguchi, R., 2003. Tutorial on ontological engineering. New Gener. Comput. 21, 363–364.

doi:10.1007/BF03037310

Mocan, A., Iversen, G., Rutkowska, G., Tonne, J., Cartino, S., Kristensen, K., Kadiri, S. El,

Främling, K., Lützenberger, J., Klein, P., Buda, A., Peuqert, E., 2015. D10.11 The

LinkedDesign Solution, Linked Knowledge in Manufacturing, Engineering and Design

for Next-Generation Production. LinkedDesign Consortium. LinkedDesign Consortium.

Monfared, R.P., 2000. A component-based approach to design and construction of change

capable manufacturing cell control systems. Dr. Diss. © RP Monfared.

Mordecai, Y., Orhof, O., Dori, D., 2017. Model-Based Interoperability Engineering in

Systems-of-Systems and Civil Aviation. IEEE Trans. Syst. Man, Cybern. Syst.

doi:10.1109/TSMC.2016.2602543

Morgenstern, L., Welty, C., Boley, H., Hallmark, G., 2012. RIF Primer (Second Edition)

[WWW Document]. W3C Powered by MediaWiki. URL

https://www.w3.org/2005/rules/wiki/Primer (accessed 9.1.16).

Motik, B., Patel-Schneider, P.F., Grau, B.C., Horrocks, I., Parsia, B., Sattler, U., 2012. OWL

2 Web Ontology Language Direct Semantics (Second Edition) [WWW Document].

 275

W3C Recomm. URL https://www.w3.org/TR/2012/REC-owl2-direct-semantics-

20121211/ (accessed 1.1.16).

Muehlen, M. Zur, Recker, J., 2008. How much language is enough? Theoretical and practical

use of the business process modeling notation. Adv. Inf. Syst. Eng. - Proc. 20th Int.

Conf. Adv. Inf. Syst. Eng. 465–479. doi:10.1007/978-3-540-69534-9_35

Murata, T., 1989. Petri Nets: Properties, Analysis and Applications, in: IEEE. pp. 541–580.

Nan, J., Li, Q., 2012. Design Automation Systems – Supporting Documentation and

Knowledge Management. Dr. Diss. Master Thesis, Jönköping Univ. Jönköping, Sweden.

Jönköping University, Jönköping.

Natekar, D., Zhang, X., Subbarayan, G., 2004. Constructive solid analysis: A hierarchical,

geometry-based meshless analysis procedure for integrated design and analysis.

Comput. Des. 36, 473–486. doi:10.1016/S0010-4485(03)00129-5

Negnevitsky, M., 2005. Artificial intelligence: a guide to intelligent systems. Pearson

Education.

Niles, I., Pease, A., 2001. Towards a Standard Upper Ontology, in: Proceedings of the

International Conference on Formal Ontology in Information Systems-Volume 2001.

ACM, pp. 2–9. doi:10.1145/505168.505170

NIST, 2008. Process Specification Language (PSL) - A few PSL Basics [WWW Document].

NIST Natl. Inst. Stand. Technol. URL http://www.mel.nist.gov/psl/ (accessed 3.1.15).

NIST, 2007. Process Specification Language (PSL) - PSL Ontology -- Current Theories and

Extensions (version 2.8) [WWW Document]. NIST Natl. Inst. Stand. Technol. URL

http://www.mel.nist.gov/psl/ontology.html (accessed 10.1.15).

NIST, 2004. PSL Core [WWW Document]. NIST Natl. Inst. Stand. Technol. URL

http://www.mel.nist.gov/psl/psl-ontology/pslcore_page.html (accessed 1.1.16).

Noel, M.F., 2006. A dynamic multi-view product model to share product behaviours among

designers : how process model adds semantic to the behaviour paradigm. Int. J. Prod.

lifecycle Manag. 1, 380–390.

Noh, J.-D., Suh, H.-W., 2008. Layered Product Knowledge Representation and Reasoning

with OWL & SWRL, in: ASME 2008 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference IDETC/CIE

2008. American Society of Mechanical Engineers, pp. 607–616.

Nomaguchi, Y., Fujita, K., 2013. Knowledge representation framework for interactive

capture and management of reflection process in product concepts development. Adv.

Eng. Informatics 27, 537–554. doi:10.1016/j.aei.2013.06.004

Nomaguchi, Y., Shimomura, Y., Tomiyama, T., 2004. Management of design knowledge for

knowledge-based CAD. TMCE. Lausanne, Switz. 1–9.

Nomaguchi, Y., Yoshioka, M., Tomiyama, T., 2002. Document-based Design Process

Knowledge Management for Knowledge Intensive Engineering. From Knowl. Intensive

CAD to Knowl. Intensive Eng. 131–144.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford Knowl. Syst. Lab. 25. doi:10.1016/j.artmed.2004.01.014

O’Donovan, B., Clarkson, P., Eckert, C., 2003. Signposting: Modelling uncertainty in design

processes, in: DS 31: Proceedings of ICED 03, the 14th International Conference on

 276

Engineering Design, Stockholm. Stockholm.

Obitko, M., 2007a. Frame Based Models [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/frame-based-models.html

(accessed 9.1.15).

Obitko, M., 2007b. Semantic Networks [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/semantic-networks.html

(accessed 8.1.15).

Obitko, M., 2007c. Translation to FOPL [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/translation-to-fopl.html

(accessed 10.1.15).

Obitko, M., 2007d. Description Logics [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/description-logics.html

(accessed 9.1.15).

Obitko, M., 2007e. Web Ontology Language OWL [WWW Document]. Ontol. Semant. Web.

URL http://www.obitko.com/tutorials/ontologies-semantic-web/web-ontology-language-

owl.html (accessed 8.1.15).

Obitko, M., 2007f. Conceptual Graphs [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/conceptual-graphs.html

(accessed 11.1.15).

Obitko, M., 2007g. Common Logic [WWW Document]. Ontol. Semant. Web. URL

http://www.obitko.com/tutorials/ontologies-semantic-web/common-logic.html (accessed

7.1.15).

Obitko, M., 2007h. Knowledge Interchange Format [WWW Document]. Ontol. Semant.

Web. URL http://www.obitko.com/tutorials/ontologies-semantic-web/knowledge-

interchange-format.html (accessed 8.1.15).

Olivetti, N., 2011. Introduction to Non Monotonic Reasoning.

OMG, 2016. Unified Modeling LanguageTM (UML®), Object Management Group.

OMG, 2013. Requirements Interchange Format (ReqIF) Version 1.1, Object Management

Group (OMG).

Ovtcharova, J.G., 2010. Virtual Engineering: Principles , Methods and Applications, in: DS

60: Proceedings of DESIGN 2010, the 11th International Design Conference,

Dubrovnik, Croatia.

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.H., 2007. Engineering Design: A Systematic

Approach, Third Edition (Translators and Editors: Ken Wallace and Luciënne T. M.

Blessing). Springer-Verlag London. doi:10.1007/978-1-84628-319-2

Panetto, H., Dassisti, M., Tursi, A., 2012. ONTO-PDM: Product-driven ONTOlogy for

Product Data Management interoperability within manufacturing process environment.

Adv. Eng. Informatics 26, 334–348. doi:10.1016/j.aei.2011.12.002

Pardalis, K., Kadiri, S. El, 2014. D3.3 The LinkedDesign Ontology, Linked Knowledge in

Manufacturing, Engineering and Design for Next-Generation Production. LinkedDesign

Consortium. LinkedDesign Consortium.

Patil, L., Dutta, D., Sriram, R., 2005. Ontology-based exchange of product data semantics.

IEEE Trans. Autom. Sci. Eng. 2, 213–224. doi:10.1109/TASE.2005.849087

 277

Patil, L.M., 2005. Interoperability of formal semantics of product data across product

development systems. University of Michigan.

Peak, R.S., Lubell, J., Srinivasan, V., Waterbury, S.C., 2004. STEP, XML, and UML:

Complementary Technologies. J. Comput. Inf. Sci. Eng. 4, 379–390.

doi:10.1115/1.1818683

Pease, A., 1998. Core plan representation, Object Model Focus Group.

Peleg, M., Dori, D., 1999. Extending the object-process methodology to handle real-time

systems. JOOP 11, 53–58.

Peng, G., Wang, H., Zhang, H., Zhao, Y., Johnson, A.L., 2017. A collaborative system for

capturing and reusing in-context design knowledge with an integrated representation

model. Adv. Eng. Informatics 33, 314–329. doi:10.1016/j.aei.2016.12.007

Penoyer, J., Burnett, G., Fawcett, D., Liou, S.-Y., 2000. Knowledge based product life cycle

systems: principles of integration of KBE and C3P. Comput. Des. 32, 311–320.

doi:10.1016/S0010-4485(00)00014-2

Perales, F., de la Maza, S., 2015. D10.12 LinkedDesign Demonstrators Evaluation, Linked

Knowledge in Manufacturing, Engineering and Design for Next-Generation Production.

LinkedDesign Consortium. LinkedDesign Consortium.

Pereira, C.A., Correa, A., Yogui, R., de Lima, C.M., 2011. Interoperability Among

Engineering Systems and Their Relevance to the Effectiveness of the Engineering

Project’s Life Cycle--Regulation, Well Succeeded Examples and Proposed Actions. 21st

Brazilian Congr. Mech. Eng. (COBEM), Natal, Brazil 24–28.

Pinfold, M., Chapman, C., 2001. Application of KBE techniques to the FE model creation of

an automotive body structure. Comput. Ind. 44, 1–10. doi:10.1016/S0166-

3615(00)00079-8

Pinfold, M., Chapman, C., Preston, S., 2008. Knowledge acquisition and documentation for

the development of a KBE system for automated FE analysis. Int. J. Knowl. Manag.

Stud. 2, 163–174. doi:10.1504/IJKMS.2008.018319

Pinto, H.S., Martins, J.P., 2004. Ontologies: How can They be Built? Knowl. Inf. Syst. 6,

441–464. doi:10.1007/s10115-003-0138-1

Plaia, A., Carrie, A., 1995. Application and assessment of IDEF3-process flow description

capture method. Int. J. Oper. Prod. Manag. 15, 63–73. doi:10.1108/01443579510077214

Plateaux, R., Choley, J.Y., Penas, O., Riviere, A., 2009. Towards an integrated mechatronic

design process, in: Mechatronics, 2009. ICM 2009. IEEE International Conference On.

IEEE. pp. 1–6.

Polleres, A., Boley, H., Kifer, M., 2013. RIF Datatypes and Built-Ins 1.0 (Second Edition)

[WWW Document]. W3C Recomm. URL https://www.w3.org/TR/rif-dtb/ (accessed

9.1.16).

Poole, D., Mackworth, A., 2010. Non-monotonic Reasoning [WWW Document]. Artif. Intell.

Found. Comput. Agents. URL http://artint.info/html/ArtInt_129.html (accessed 1.1.16).

Pooley, R., King, P., 1999. The unified modelling language and performance engineering, in:

Software, IEE Proceedings-, Vol. 146, No. 1. IET. pp. 2–10.

Poorkiany, M., Johansson, J., Elgh, F., 2016. Capturing, structuring and accessing design

rationale in integrated product design and manufacturing processes. Adv. Eng.

 278

Informatics 30, 522–536. doi:10.1016/j.aei.2016.06.004

Pouchard, L., Ivezic, N., Schlenoff, C., 2000. Ontology engineering for distributed

collaboration in manufacturing, in: Proceedings of the AIS2000 Conference.

Pouchard, L.C., Cutting-Decelle, A.F., Michel, J.J., Grüninger, M., 2005. ISO 18629 PSL: A

Standardised language for specifying and exchanging process information. IFAC Proc.

Vol. 38, 37–45.

Prasad, B., 2006. Best Practices in Knowledge-based Engineering - Catia Operators

Exchange (COE) Report, ResearchGate. doi:10.13140/2.1.4370.5602

Prasad, B., 2005. What distinguishes KBE from automation, COE NewsNet.

Pratt, M.J., 2001. Introduction to ISO 10303 - the STEP Standard for Product Data Exchange.

J. Comput. Inf. Sci. Eng. 1, 102–103.

Preston, S.T., Chapman, C.B., Pinfold, M., 2004. Process Integration and Design Exploration.

Prijic, A., Chapman, C., Burton, P., 2005. Knowledge Based Engineering (KBE) Past,

present and Future, in: Beograd 2005 EAEC European Automotive Congress. Coventry,

UK.

Pugh, S., 1991. Total design: integrated methods for successful product engineering. 1990.

Pugliese, D., Colombo, G., 2014. D6.3 “Rule Interchange Format ” standardisation

document, Linked Knowledge in Manufacturing, Engineering and Design for Next-

Generation Production. LinkedDesign Consortium. LinkedDesign Consortium.

Qiao, L., Kao, S., Zhang, Y., 2011. Manufacturing process modelling using process

specification language. Int. J. Adv. Manuf. Technol. 55, 549–563. doi:10.1007/s00170-

010-3115-3

Qin, F., Gao, S., Yang, X., Li, M., Bai, J., 2016. An ontology-based semantic retrieval

approach for heterogeneous 3D CAD models. Adv. Eng. Informatics 30, 751–768.

doi:10.1016/j.aei.2016.10.001

Qin, S.F., Harrison, R., West, A.A., Jordanov, I.N., Wright, D.K., 2003. A framework of

web-based conceptual design. Comput. Ind. 50, 153–164. doi:10.1016/S0166-

3615(02)00117-3

Qin, Y., Lu, W., Qi, Q., Liu, X., Zhong, Y., Scott, P.J., Jiang, X., 2017. Status, Comparison,

and Issues of Computer-Aided Design Model Data Exchange Methods Based on

Standardized Neutral Files and Web Ontology Language File. J. Comput. Inf. Sci. Eng.

17, 10801. doi:10.1115/1.4034325

Rachuri, S., Baysal, M., Roy, U., Foufou, S., Bock, C., Fenves, S., Subrahmanian, E., Lyons,

K., Sriram, R., 2005. Information models for product representation: core and assembly

models. Int. J. Prod. Dev. 2, 207–235.

Rachuri, S., Han, Y.-H., Foufou, S., Feng, S.C., Roy, U., Wang, F., Sriram, R.D., Lyons,

K.W., 2006. A Model for Capturing Product Assembly Information. J. Comput. Inf. Sci.

Eng. 6, 11–21. doi:10.1115/1.2164451

Ray, S.R., Jones, A.T., 2006. Manufacturing interoperability. J. Intell. Manuf. 17, 681–688.

doi:10.1007/s10845-006-0037-x

Reddy, E.J., Sridhar, C.N. V., Rangadu, V.P., 2015. Knowledge Based Engineering: Notion,

Approaches and Future Trends. Am. J. Intell. Syst. 5, 1–17.

doi:10.5923/j.ajis.20150501.01

 279

Reeker, L.H., 1994. Tools for Representing and Managing Knowledge : Some Practical

Requirements and Suggestions, in: Tools with Artificial Intelligence, 1994.

Proceedings., Sixth International Conference on. IEEE, pp. 240–244.

doi:10.1109/TAI.1994.346485

Regli, W.C., Hu, X., Atwood, M., Sun, W., 2000. A Survey of Design Rationale Systems:

Approaches, Representation, Capture and Retrieval. Eng. Comput. 16, 209–235.

doi:10.1007/PL00013715

Reijnders, A.W., 2012. Integrating Knowledge Management and Knowledge-Based

Engineering. Delft University of Technology.

Reilly, D., 2006. Inside Java : The Java Programming Language [WWW Document]. Insid.

Java. URL http://www.javacoffeebreak.com/articles/inside_java/insidejava-nov99.html

(accessed 12.1.16).

Reinhartz-Berger, I., Dori, D., 2004. Object-Process Methodology (OPM) vs. UML-a Code

Generation Perspective. CAiSE Work. 275–286.

Rezayat, M., 2000. Knowledge-based product development using XML and KCs. Comput.

Des. 32, 299–309. doi:10.1016/S0010-4485(00)00013-0

Rihoux, B., Ragin, C.C., 2009. Configurational comparative methods. Qualitative

Comparative Analysis (QCA) and related techniques (Applied Social Research

Methods). Thousand Oaks and London: Sage.

Ríos, J., Jiménez, J. V, Pérez, J., Vizán, A., Menéndez, J.L., Más, F., 2005. KBE Application

for the Design and Manufacture of HSM Fixtures. Acta Polytech. 45.

Robin, 2013. Category: “Knowledge Representation” [WWW Document]. Artif. Intell. URL

http://intelligence.worldofcomputing.net/category/knowledge-representation# (accessed

8.1.15).

Rocca, G. La, 2012. Knowledge based engineering: Between AI and CAD. Review of a

language based technology to support engineering design. Adv. Eng. Informatics 26,

159–179. doi:10.1016/j.aei.2012.02.002

Roy, U., Pramanik, N., Sudarsan, R., Sriram, R.D., Lyons, K.W., 2001. Function-to-form

mapping: Model, representation and applications in design synthesis. CAD Comput.

Aided Des. 33, 699–719. doi:10.1016/S0010-4485(00)00100-7

Sainter, P., Oldham, K., Larkin, A., 2000. Achieving benefits from knowledge-based

engineering systems in the longer term as well as in the short term., in: Proceedings of:

6th International Conference on Concurrent Enterprising. Citeseer.

Sainter, P., Oldham, K., Larkin, A., Murton, A., Brimble, R., 2000. Product knowledge

management within knowledge-based engineering systems, in: Design Engineering

Technical Conference, Baltimore, Setembro. Baltimore.

Sandberg, M., 2003. Knowledge based engineering-in product development, Lulea University

of Technology, Sweden. Department of Applied Physics and Mechanical Engineering,

Division of Computer Aided Design, Lulea University of Technology, Sweden.

Sandberg, M., Tyapin, I., Kokkolaras, M., Lundbladh, A., Isaksson, O., 2017. A knowledge-

based master model approach exemplified with jet engine structural design. Comput.

Ind. 85, 31–38. doi:10.1016/j.compind.2016.12.003

Sanya, I., Shehab, E., Lowe, D., Maksimovic, M., Al-Ashaab, A., 2011. Towards a Semantic

Knowledge Life Cycle Approach for Aerospace Design Engineering. Improv. Complex

 280

Syst. Today 285–292.

Sanya, I.O., Shehab, E.M., 2015. A framework for developing engineering design ontologies

within the aerospace industry. Int. J. Prod. Res. 53, 2383–2409.

doi:10.1080/00207543.2014.965352

Sanya, I.O., Shehab, E.M., 2014. An ontology framework for developing platform-

independent knowledge-based engineering systems in the aerospace industry. Int. J.

Prod. Res. 52, 6192–6215. doi:10.1080/00207543.2014.919422

Sarigecili, M.I., Roy, U., Rachuri, S., 2014. Interpreting the semantics of GD&T

specifications of a product for tolerance analysis. Comput. Des. 47, 72–84.

doi:10.1016/j.cad.2013.09.002

Scheuerlein, H., Rauchfuss, F., Dittmar, Y., Molle, R., Lehmann, T., Pienkos, N., Settmacher,

U., 2012. New methods for clinical pathways - Business Process Modeling Notation

(BPMN) and Tangible Business Process Modeling (t.BPM). Langenbeck’s Arch. Surg.

397, 755–761. doi:10.1007/s00423-012-0914-z

Schlenoff, C., Ciocoiu, M., Libes, D., Gruninger, M., 1999. Process Specification Language

(PSL): results of the first pilot implementation, in: Proceedings of IMECE: International

Mechanical Engineering Congress and Exposition. pp. 1–10.

Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J., 2000a. The Essence of the Process

Specification Language. Trans. Soc. Comput. Simul. Int. 16, 1–43.

Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J., 2000b. The Process

Specification Language (PSL) Overview and Version 1.0 Specification. NISTIR.

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R. De, Shadbolt, N., Velde, W. Van

De, Wielinga, B., 2000. Knowledge engineering and management: The CommonKADS

Methodology. MIT Press, Cambridge, MA.

Section 6.0 Author’s Guide to Creating IDEF1 Diagrams, n.d. . Texas.

Sharma, D.K., Hitesh, Rao, V., 2014. Configurable business process modeling notation.

Souvenir 2014 IEEE Int. Adv. Comput. Conf. IACC 2014 1424–1429.

doi:10.1109/IAdCC.2014.6779535

Shehab, E., Abdalla, H.S., 2002. An intelligent knowledge-based system for product cost

modelling. Int. J. Adv. Manuf. Technol. 19, 49–65. doi:10.1007/PL00003967

Shehab, E.M., Abdalla, H.S., 2006. A Cost-Effective Knowledge-Based Reasoning System

for Design for Automation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220, 729–743.

doi:10.1243/095440554JEM298

Shintre, N., Shakir, A., 2011. Knowledge based engineering across Product Realization.

Shukla, N., Keast, J.E., Ceglarek, D., 2014. Improved workflow modelling using role activity

diagram-based modelling with application to a radiology service case study. Comput.

Methods Programs Biomed. 116, 274–98. doi:10.1016/j.cmpb.2014.05.005

Shyamsundar, N., Gadh, R., 2002. Collaborative virtual prototyping of product assemblies

over the Internet. Comput. Aided Des. 34, 755–768. doi:10.1016/S0010-4485(01)00204-

4

Shyamsundar, N., Gadh, R., 2001. Internet-based collaborative product design with assembly

features and virtual design spaces. CAD Comput. Aided Des. 33, 637–651.

doi:10.1016/S0010-4485(01)00069-0

 281

Siricharoen, W. V, 2007. Ontologies and Object models in Object Oriented Software

Engineering. IAENG Int. J. Comput. Sci. 33, 19–24.

Skarka, W., 2007. Application of MOKA methodology in generative model creation using

CATIA. Eng. Appl. Artif. Intell. 20, 677–690. doi:10.1016/j.engappai.2006.11.019

Smith, R.P., Eppinger, S.D., 1997. Identifying Controlling Features of Engineering Design

Iteration. Manage. Sci. 43, 276–293.

Smith, R.P., Morrow, J.A., 1999. Product development process modeling. Des. Stud. 20,

237–261.

Sorli, M., Maksimovic, M., Al-Ashaab, A., Sulowski, R., Shehab, E., Sopelana, A., 2012.

Development of KBE system to support LeanPPD application, in: Engineering,

Technology and Innovation (ICE), 2012 18th International ICE Conference on. IEEE,

pp. 1–8. doi:10.1109/ICE.2012.6297671

Sowa, J.F., 2015. Semantic Networks. doi:10.3115/1118735.1118739

Sowa, J.F., 2011. Introduction to Common Logic [WWW Document]. URL

http://www.jfsowa.com/talks/clintro.pdf (accessed 4.1.15).

Sowa, J.F., 2008a. Conceptual Graphs. Found. Artif. Intell. Handb. Knowl. Represent. 3,

213−237. doi:10.1016/0950-7051(92)90028-E

Sowa, J.F., 2008b. Common Logic: A Framework for a Family of Logic-Based Languages.

Sowa, J.F., 2007. Fads and fallacies about logic. IEEE Intell. Syst. 22, 84–87.

doi:10.1109/MIS.2007.29

Stacey, M., Clarkson, P.J., Eckert, C., 2000. Signposting: An AI approach to supporting

human decision making in design. DETC ’00 ASME 2000 Des. Eng. Tech. Conf.

Comput. Inf. Eng. Conf. 1–20.

Stark, J., 2011. Product Lifecycle Management: 21st Century Paradigm for Product

Realisation (2nd edition). Springer-Verlag London.

Stokes, M., 2001. Managing Engineering Knowledge: MOKA: Methodology for Knowledge

Based Engineering Applications, MOKA Consortium. Professional Engineering Publ.

Subahi, A.F., 2015. A Business User Model-Driven Engineering Method for Developing

Information Systems. Doctoral dissertation, University of Sheffield.

Sudarsan, R., Fenves, S.J., Sriram, R.D., Wang, F., 2005. A product information modeling

framework for product lifecycle management. Comput. Des. 37, 1399–1411.

doi:10.1016/j.cad.2005.02.010

SWRL Section 8. Built-Ins [WWW Document], 2009. URL

http://www.daml.org/swrl/proposal/builtins.html (accessed 6.1.16).

Szykman, S., Fenves, S.J., Keirouz, W., Shooter, S.B., 2001. A foundation for

interoperability in next-generation product development systems. Comput. Des. 33,

545–559. doi:10.1016/S0010-4485(01)00053-7

Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., Senfaute, J., 2000a. Design

repositories: engineering design’s new knowledge base. IEEE Intell. Syst. Their Appl.

15, 48–55.

Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., Senfaute, J., 2000b. Design

repositories: next-generation engineering design databases. IEEE Intell. Syst. 15, 48–55.

 282

Tang, D., Zheng, L., Li, Z., Chin, K.S., 2001. STEP-based product modeling for concurrent

stamped part and die development. Comput. Ind. 46, 75–94. doi:10.1016/S0166-

3615(01)00116-6

TechnoSoft Inc, 2003. The Adaptive Modeling Language. A Technical Perspective.

Terpenny, J.P., Strong, S., Wang, J., 2000. A methodology for knowledge discovery and

classification, in: Tenth FAIM 2000 - Flexible Automation and Intelligent

Manufacturing Conference.

Tessier, S., Wang, Y., 2013. Ontology-based feature mapping and verification between CAD

systems. Adv. Eng. Informatics 27, 76–92. doi:10.1016/j.aei.2012.11.008

Tomiyama, T., Hew, K.P., 2000. Knowledge Intensive Computer Aided Design: Past, Present

and Future, in: Knowledge Intensive Computer Aided Design. Springer, pp. 3–18.

Tomiyama, T., Van Beek, T.J., Cabrera, A.A.A., Komoto, H., D’Amelio, V., 2013. Making

function modeling practically usable. Ai Edam 27, 301–309.

doi:10.1017/S0890060413000309

Tomiyama, T., Yoshioka, M., Tsumaya, A., 2002. A knowledge operation model of

synthesis, in: Engineering Design Synthesis. Springer London, pp. 67–90.

Tor, S., Lee, S., Britton, G., Zhang, W., 2008. Knowledge-based functional design of

industrial robots. Int. J. Prod. Res. 46, 4501–4519.

Toussaint, J., Cheng, K., 2002. Design agility and manufacturing responsiveness on the Web.

Integr. Manuf. Syst. 13, 328–339. doi:10.1108/09576060210429784

Tyapin, I., Sandberg, M., Kokkolaras, M., Lundbladh, A., Isaksson, O., 2012. Jet Engine

Design Optimization Using a Knowledge-Based Master Model, in: ASME Turbo Expo

2012: Turbine Technical Conference and Exposition. American Society of Mechanical

Engineers, pp. 41–47.

Ullman, D.G., 2010. The Mechanical Design Process - Fourth Edition. McGraw-Hill

Science/Engineering/Math.

Ullman, D.G., 2002. Toward the ideal mechanical engineering design support system. Res.

Eng. Des. 13, 55–64. doi:10.1007/S00163-001-0007-4

Ulrich, K.T., Eppinger, S.D., 2012. Product Design and Development, Fifth Edition.

McGraw-Hill. doi:10.1016/B978-0-7506-8985-4.00002-4

Umeda, Y., Tomiyama, T., 1997. Functional reasoning in design. IEEE Expert 12, 42–48.

doi:10.1109/64.585103

Usman, Z., 2012. A Manufacturing Core Concepts Ontology to Support Knowledge Sharing.

(Doctoral Diss. © Zahid Usman).

Usman, Z., Young, R.I.M., Chungoora, N., Palmer, C., Case, K., Harding, J., 2011. A

manufacturing core concepts ontology for product lifecycle interoperability, in:

International IFIP Working Conference on Enterprise Interoperability. Springer Berlin

Heidelberg, pp. 5–18. doi:10.1007/978-1-84996-257-5_14

Usman, Z., Young, R.I.M., Chungoora, N., Palmer, C., Case, K., Harding, J.A.J., 2013.

Towards a formal manufacturing reference ontology. Int. J. Prod. Res. 51, 6553–6572.

doi:10.1080/00207543.2013.801570

Van der Velden, C.A., 2008. Application of Knowledge Based Engineering Principles to

Intelligent Automation Systems.

 283

Van Der Velden, C., Bil, C., Xu, X., 2012. Adaptable methodology for automation

application development. Adv. Eng. Informatics 26, 231–250.

doi:10.1016/j.aei.2012.02.007

Van Renssen, A., 2003. Gellish: an information representation language, knowledge base and

ontology, in: Standardization and Innovation in Information Technology, 2003. The 3rd

Conference on. IEEE, pp. 215–228.

Van Renssen, A.S.H.P., 2005. Gellish: a generic extensible ontological language-design and

application of a universal data structure. Delft University Press.

doi:http://dx.doi.org/10.1108/17506200710779521

Van Tooren, M., La Rocca, G., Krakers, L., Beukers, A., 2003. Design and technology in

aerospace. Parametric modeling of complex structure systems including active

components, in: 13th International Conference on Composite Materials. S. Diego.

Vanderperren, Y., Mueller, W., Dehaene, W., 2008. UML for electronic systems design: a

comprehensive overview. Des. Autom. Embed. Syst. 12, 261–292.

Vaziri, M., Jackson, D., 2000. Some Shortcomings of OCL, the Object Constraint Language

of UML, in: TOOLS (34). pp. 555–562.

Verhagen, W.J., Curran, R., 2010. Knowledge-based engineering review: conceptual

foundations and research issues, in: New World Situation: New Directions in Concurrent

Engineering. Springer London, pp. 267–276.

Verhagen, W.J.C., Bermell-Garcia, P., Van Dijk, R.E.C., Curran, R., 2012. A critical review

of Knowledge-Based Engineering: An identification of research challenges. Adv. Eng.

Informatics 26, 5–15. doi:10.1016/j.aei.2011.06.004

Vernadat, F., 2002. UEML : towards a unified enterprise modelling language. Int. J. Prod.

Res. 40, 4309–4321.

Viola, N., Corpino, S., Fioriti, M., Stesina, F., 2012. Functional analysis in systems

engineering: methodology and applications, in: Systems Engineering-Practice and

Theory. InTech.

W3C, 2016. What is MathML? [WWW Document]. W3C Math Home. URL

https://www.w3.org/Math/ (accessed 10.1.15).

W3C, 2012. OWL 2 Web Ontology Language Document Overview (Second Edition) [WWW

Document]. W3C Recomm. URL http://www.w3.org/TR/owl2-overview/ (accessed

6.1.15).

Wagner, W.P., Chung, Q.B., Najdawi, M.K., 2003. The impact of problem domains and

knowledge acquisition techniques: a content analysis of P/OM expert system case

studies. Expert Syst. Appl. 24, 79–86. doi:10.1016/S0957-4174(02)00085-4

Wagner, W.P., Najdawi, M.K., Chung, Q.Q.., 2001. Selection of knowledge acquisition

techniques based upon the problem domain characteristics of production and operations

management expert systems. Expert Syst. 18, 76–87.

Wang, H.H., Noy, N., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S., Tudorache, T.,

Drummond, N., Horridge, M., Others, 2006. Frames and OWL side by side, in:

Presentation Abstracts. Citeseer, p. 54. doi:10.1080/j.1440-1614.2006.01852.x

Wang, L., Shen, W., Xie, H., Neelamkavil, J., Pardasani, A., 2002. Collaborative conceptual

design—state of the art and future trends. Comput. Des. 34, 981–996.

doi:10.1016/S0010-4485(01)00157-9

 284

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K., 2004. Ontology based context modeling and

reasoning using OWL, in: Pervasive Computing and Communications Workshops, 2004.

Proceedings of the Second IEEE Annual Conference on. IEEE, pp. 18–22.

doi:10.1109/PERCOMW.2004.1276898

Web3D, 2017. X3D & VRML, The Most Widely Used 3D Formats [WWW Document].

Web3D Consort. URL http://www.web3d.org/x3d-vrml-most-widely-used-3d-formats

(accessed 10.1.16).

Weilkiens, T., 2007. Systems Engineering with SysML/UML-Modeling, Analysis, Design,

Systems Engineering with SysML/UML. Morgan Kaufmann, OMG press, Burlington.

doi:10.1016/B978-0-12-374274-2.00001-8

Wenzel, H., Gondhalekar, A., Balachandran, L., Guenov, M., Nunez, M., 2011. Automated

generation of Isight-Models through a neutral workflow description, in: 2011 SIMULIA

Customer Conference. Barcelona.

Wenzel, H., Nunez, M., Gondhalekar, A.C., Guenov, M.D., Balachandran, L.K., 2011.

Neutral Description and Exchange of Design Computational Workflows, in: 18th

International Conference on Engineering Design, ICED11, Impacting Society through

Engineering Design, Vol 1: Design Processes, 15-19.08.2011. Lyngby/Copenhagen,

Denmark.

Witherell, P., Krishnamurty, S., Grosse, I.R., 2007. Ontologies for supporting engineering

design optimization. J. Comput. Inf. Sci. Eng. 7, 141–150. doi:10.1115/1.2720882

Woestenenk, K., Bonnema, G.M., Alvarez Cabrera, A.A., Tomiyama, T., 2011. Capturing

design process information in complex product development, in: ASME 2011

International Design Engineering Technical Conferences & Computers and Information

in Engineering Conference IDETC/CIE 2011 August 29-31, 2011, Washington, DC,

USA. ASME.

Woestenenk, K., Tragter, H., Bonnema, G.M., Cabrera, A.A.A.A., Tomiyama, T., 2010.

Multi domain design: integration and reuse, in: ASME 2010 International Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference. American Society of Mechanical Engineers, pp. 519–528.

Wuest, T., Liu, A., Wei, W., Lu, S.C.Y.Y., Thoben, K.D., 2015. Utilization of state drivers to

support design for manufacturing. Procedia CIRP 36, 72–77.

doi:10.1016/j.procir.2015.01.081

Wynn, D.C., Clarkson, P.J., 2017. Process models in design and development. Res. Eng. Des.

1–42. doi:10.1007/s00163-017-0262-7

Wynn, D.C., Wyatt, D.F., Nair, S.M.T., Clarkson, P.J., 2010. An Introduction to the

Cambridge Advanced Modeller 19–20.

Yahia, N., Mokhtar, S.A., Ahmed, A., 2012. Automatic Generation of OWL Ontology from

XML Data Source. arXiv Prepr. arXiv1206.0570.

Young, R., Gunendran, A., Cutting-Decelle, A., Gruninger, M., 2007. Manufacturing

knowledge sharing in PLM: a progression towards the use of heavy weight ontologies.

Int. J. Prod. Res. 45, 1505–1519. doi:10.1080/00207540600942268

Zeng, J., Chen, W., Ding, Q., 2003. A Web-based CAD system. J. Mater. Process. Technol.

139, 229–232. doi:10.1016/S0924-0136(03)00225-5

Zeng, Y., Gu, P., 1999. A science-based approach to product design theory Part I:

 285

Formulation and formalization of design process. Robot. Comput. Integr. Manuf. 15,

331–339. doi:10.1016/S0736-5845(99)00029-0

Zha, X.., Du, H., 2002. A PDES/STEP-based model and system for concurrent integrated

design and assembly planning. Comput. Des. 34, 1087–1110.

Zhan, P., Jayaram, U., Kim, O., Zhu, L., 2010. Knowledge Representation and Ontology

Mapping Methods for Product Data in Engineering Applications. J. Comput. Inf. Sci.

Eng. 10, 21004. doi:10.1115/1.3330432

Zhang, H., Wang, H., Chen, D., Zacharewicz, G., 2010. A model-driven approach to

multidisciplinary collaborative simulation for virtual product development. Adv. Eng.

Informatics 24, 167–179. doi:10.1016/j.aei.2009.07.005

Zhang, Q., Deniaud, I., Baron, C., Caillaud, E., 2013. Proposal of an Activity-Based Adaptive

Process Model for Innovative Design, in: ASME 2013 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference.

American Society of Mechanical Engineers, p. V005T06A032--V005T06A032.

Zhang, S., Wang, G., Zhang, L., Fang, X., 2009. CNC programming system for complex

components based on KBE within integrated environment of CAD/CAPP/CAM. Front.

Mech. Eng. China 4, 97–102. doi:10.1007/s11465-009-0007-z

Zhang, Y., Luo, X., Zhao, Y., Zhang, H.C., 2015. An ontology-based knowledge framework

for engineering material selection. Adv. Eng. Informatics 29, 985–1000.

doi:10.1016/j.aei.2015.09.002

Zhao, W., Liu, J., 2008a. OWL/SWRL representation methodology for EXPRESS-driven

product information model: Part I. Implementation methodology. Comput. Ind. 59, 580–

589. doi:10.1016/j.compind.2008.02.002

Zhao, W., Liu, J., 2008b. OWL/SWRL representation methodology for EXPRESS-driven

product information model: Part II: Practice. Comput. Ind. 59, 590–600.

doi:10.1016/j.compind.2008.02.002

Zhu, L., Jayaram, U., Jayaram, S., Kim, O., 2009. Ontology-driven integration of CAD/CAE

Applications: Strategies and comparisons, in: 2009 ASME IDETC/CIE Conference.

American Society of Mechanical Engineers.

 286

Appendix 1: Ontology Development Methodology

A. Introduction

Ontology is a formal explicitdescription of concepts in a domain of discourse (classes

(referred as concepts)),properties of each concept describing various features and attributes of

the concept (slots(referred as roles or properties)), and restrictions on slots (facets (referred as

role restrictions)). Ontology together with a set of individual instances of classesconstitutes a

knowledge base(Noy and McGuinness, 2001). Ontologies have been used in engineering

applications as part of artificial intelligence and can be used for various purposes such as

those of CAD systems, PLM systems and KBE applications along with adopted as part of

model driven approach for interoperability. They have been used for product and process

model and structure, design automation, requirements engineering, manufacturing and

production processes for exchange of knowledge and automation (El Kadiri et al., 2015; El

Kadiri and Kiritsis, 2015).

B. Steps adopted to create an Ontology for Design Engineering Automation

In order to create an ontology to address Design Engineering Automation (DEA) with

inclusion of manufacturing knowledge, high-level ontology development methodology has

been adopted from (Noy and McGuinness, 2001) as shown in Figure A 1. Specifically

catering to engineering design domain with manufacturing knowledge for optimisation,

ontology development methodology has been also adopted from (Ahmed et al., 2007;

Witherell et al., 2007) as shown in Figure A 2.

 287

Figure A 1: Ontology Development Methodology [Adopted from (Noy and McGuinness,

2001)]

Figure A 2: Ontology Development Approach for Engineering Design Optimisation with

DFM [Adopted from (Ahmed et al., 2007; Witherell et al., 2007)]

As observed from Figure A 1 and A 2, the various steps include –

• Define the scope of the problem domain – Engineering knowledge capture based on a model

driven approach with focus on re-usable and generic processes wit their effect on product

attributes

 288

• Formulating the problem domain with knowledge entities such as activities, object, rule,

logic, function and behaviour as high-level concepts. The complete 3 level description of

concepts has been illustrated in Figure 4-3 in Chapter 4

• The optimisation method should involve inference and query supporting OWL/SWRL as an

integrated layer based on description logic and fragment of horn logic. The optimisation

should generate both text based description as string type and product attributes as float type

• Define the class hierarchy, properties with data typing as string, float and population with

instances based on pilot and validation use-cases

• Input all the specified data using Protégé IDE as the supporting tool

• Run the Pellet reasoner along with Drools and SQWRL query language on the

knowledgebase to generate results

• Verify the inference and query results with specific rule outputs to the rule outputs

controlling product configuration and topology inside platform specific DEA systems.

C. OWL Ontology Model – Platform Independent and Neutral Formal

Representation System

This document contains the classes, properties and restrictions of the GPM-DEA model

mapped to its OWL2 based ontology model, developed in this research.

i. Class Hierarchy

owl:Thing

ProcessModel:Activity (http://example.org/ProcessModel#Activity)

ProcessModel:Informatical-Activity

ProcessModel:Physical-Activity

ProcessModel:Virtual-Activity

ProcessModel:Engineering_Design_Process(http://example.org/ProcessModel#Engineering_

Design_Process)

 ProcessModel:Computational_Fluid_Dynamics_CFD

 ProcessModel:Fluid_Flow_Analysis

 ProcessModel:Thermal_Analysis

http://example.org/ProcessModel#Activity
http://example.org/ProcessModel#Engineering_Design_Process
http://example.org/ProcessModel#Engineering_Design_Process

 289

 ProcessModel:Design_for_Cost

 ProcessModel:Design_for_Ergonomics

 ProcessModel:Design_for_Manufacturing_Assembly

 ProcessModel:Additive_Manufacturing

 ProcessModel:Casting

 ProcessModel:Centrifugal_Casting

 ProcessModel:Die_Casting

 ProcessModel:Permanent_Mould_Casting

 ProcessModel:Forming

 ProcessModel:Blanking

 ProcessModel:Extrusion

 ProcessModel:Cold_Extrusion

 ProcessModel:Hot_Extrusion

ProcessModel:Forging

 ProcessModel:Cold_Forging

 ProcessModel:Drop_Forging

 ProcessModel:Hot_Forging

 ProcessModel:Precision_Forging

 ProcessModel:Press_Forging

ProcessModel:Heading

 ProcessModel:Punching_Piercing

 ProcessModel:Rolling

 ProcessModel:Cold_Rolling

 ProcessModel:Hot_Rolling

 ProcessModel:Stamping_or_Pressing

 ProcessModel:Cold_Pressing

 ProcessModel:Hot_Pressing

 ProcessModel:Thermo_Forming

 ProcessModel:Vacuum_Forming

 ProcessModel:Joining

 ProcessModel:Brazing

 ProcessModel:Riveting

 ProcessModel:Welding

 ProcessModel:Machining

 ProcessModel:Boring

 ProcessModel:CNC_Machining

 ProcessModel:Drilling

 ProcessModel:Electrical_Discharge_Machining

 ProcessModel:Electro_Chemical_Machining

 ProcessModel:Milling

 ProcessModel:Reaming

 290

 ProcessModel:Turning

 ProcessModel:Moulding

 ProcessModel:Blow_Moulding

 ProcessModel:Compression_Moulding

 ProcessModel:Injection_Moulding

 ProcessModel:Design_for_Recycling

 ProcessModel:Finite_Element_Analysis_FEA

 ProcessModel:Stress_Analysis

 ProcessModel:Structural_Analysis

 ProcessModel:Mechanical_Design

 ProcessModel:Feature

 ProcessModel:Attach_Connect_Parts

 ProcessModel:Depression_Extrusion

 ProcessModel:Hole

 ProcessModel:Notch

 ProcessModel:Pocket

 ProcessModel:Slot

 ProcessModel:Protrusion

 ProcessModel:Block

 ProcessModel:Shaft

 ProcessModel:Fit

 ProcessModel:Assembly

 ProcessModel:Part

 ProcessModel:Form

 ProcessModel:Edge

 ProcessModel:Chamfer

 ProcessModel:Fillet

 ProcessModel:Line

 ProcessModel:Face

 ProcessModel:Circle

 ProcessModel:Ellipse

 ProcessModel:Hyperbola

 ProcessModel:Parabola

 ProcessModel:Polygon

 ProcessModel:Surface

 ProcessModel:Bézier_Surface

 ProcessModel:NURBS_Surface

 ProcessModel:Volume

 ProcessModel:Box

 ProcessModel:Cone

 ProcessModel:Cylinder

 291

 ProcessModel:Ellipsoid

 ProcessModel:Hyperboloid

 ProcessModel:Paraboloid

 ProcessModel:Polygon_Volume

 ProcessModel:Sphere

 ProcessModel:Material_Selection

 ProcessModel:Alloys

 ProcessModel:Brass

 ProcessModel:Bronze

 ProcessModel:Duralumin

 ProcessModel:Inconel

 ProcessModel:Manganin

 ProcessModel:Nimonic

 ProcessModel:Ceramics

 ProcessModel:Boron_Carbide

 ProcessModel:Boron_Oxide

 ProcessModel:Silicon_Carbide

 ProcessModel:Silicon_Nitride

 ProcessModel:Composites

 ProcessModel:Carbon_Fiber

 ProcessModel:Glass_Fiber

 ProcessModel:Kevlar

 ProcessModel:Reinforced_Plastic

 ProcessModel:Ferrous_Metal

 ProcessModel:Carbon_Steel

 ProcessModel:Cast_Iron

 ProcessModel:Mild_Steel

 ProcessModel:Stainless_Steel

 ProcessModel:Wrought_Iron

 ProcessModel:Non_Ferrous_Metal

 ProcessModel:Aluminium

 ProcessModel:Copper

 ProcessModel:Lead

 ProcessModel:Nickel

 ProcessModel:Tin

 ProcessModel:Titanium

 ProcessModel:Zinc

 ProcessModel:Polymer

 ProcessModel:Neoprene

 ProcessModel:Plastic

 ProcessModel:Polyethylene

 292

 ProcessModel:Polypropylene

 ProcessModel:Polystyrene

 ProcessModel:Polyvinyl_Chloride

 ProcessModel:Wood

 ProcessModel:Multi_Body_Dynamics_MBD

 ProcessModel:Electromagnetic_Analysis

 ProcessModel:Kinematic_Analysis

 ProcessModel:Stages

 ProcessModel:Conceptual_Design

 ProcessModel:Detailed_Design

 ProcessModel:Computer_Aided_Design_CAD

 ProcessModel:Computer_Aided_Engineering_CAE_Analysis

 ProcessModel:Computer_Aided_Manufacturing_CAM

 ProcessModel:Embodiment_Design

ProcessModel:Function—

FunctionalRequirement(http://example.org/ProcessModel#Function--FunctionalRequirement)

 ProcessModel:Assess_Product_Initial

 ProcessModel:Geometric_3D_Analysis

 ProcessModel:Analysis_Stage

 ProcessModel:Analysis_Solving

 ProcessModel:Post_Processing

 ProcessModel:Pre_Processing

 ProcessModel:Apply_Boundary_Conditions

 ProcessModel:Dirichlet_Boundary_Conditions

 ProcessModel:Neumann_Boundary_Conditions

 ProcessModel:Robin_Boundary_Conditions

 ProcessModel:Meshing

 ProcessModel:Hexahedron

 ProcessModel:Pyramid

 ProcessModel:Quadrilateral

 ProcessModel:TetraHedron

 ProcessModel:Triangle_

 ProcessModel:Triangular_Prism

 ProcessModel:Geometric_3D_Modelling

 ProcessModel:Create_Point_Cloud

 ProcessModel:Create_Solid_as_Added_Volume_Boolean

 ProcessModel:Add_Box_Volume

 ProcessModel:Add_Cone_Volume

 ProcessModel:Add_Cylinder_Volume

 ProcessModel:Add_Ellipsoid_Volume

 ProcessModel:Add_Polygon_Volume

http://example.org/ProcessModel#Function--FunctionalRequirement

 293

 ProcessModel:Add_Sphere_Volume

 ProcessModel:Create_Surface_Volume_Boolean

 ProcessModel:Create_Surface_Volume_Bézier

 ProcessModel:Create_Surface_Volume_NURBS

 ProcessModel:Remove_Solid_as_Subtracted_Volume_Boolean

 ProcessModel:Subtract_Box_Volume

 ProcessModel:Subtract_Cone_Volume

 ProcessModel:Subtract_Cylinder_Volume

 ProcessModel:Subtract_Ellipsoid_Volume

 ProcessModel:Subtract_Polygon_Volume

 ProcessModel:Subtract_Sphere_Volume

 ProcessModel:Manufacturing_Feasibility

 ProcessModel:Attach_Connect

 ProcessModel:Assemble_Parts

 ProcessModel:Attach_Connect_Fixture

 ProcessModel:Attach_Connect_Jig

 ProcessModel:CNC_Path_Instructions

 ProcessModel:Costing

 ProcessModel:Manufacturing_Method

 ProcessModel:Material_Allocation

ProcessModel:Positioning

 ProcessModel:Axial

 ProcessModel:Circumferential

 ProcessModel:Concentric

 ProcessModel:Radial

 ProcessModel:Tangential

 ProcessModel:Quality_Control

 ProcessModel:Measurement_Capability

 ProcessModel:Precision_Accuracy

 ProcessModel:Tool_Selection

 ProcessModel:Output_Performance_Evaluation

 ProcessModel:Electrical_Magnetic_Performance

 ProcessModel:Capacitance

 ProcessModel:Current

 ProcessModel:Electric_Field

 ProcessModel:Electro_Magnetic_Energy

 ProcessModel:Electric_Energy

 ProcessModel:Magnetic_Energy

 ProcessModel:Electro_Magnetic_Power

 ProcessModel:Electro_Magnetic_Work

 ProcessModel:Induction

 294

 ProcessModel:Magnetic_Field

 ProcessModel:Voltage

 ProcessModel:Mechanical_Performance

 ProcessModel:Acceleration

 ProcessModel:Angular_Momentum

 ProcessModel:Fatigue

 ProcessModel:Force

 ProcessModel:Foreign_Object_Damage

 ProcessModel:Hardness

 ProcessModel:Linear_Momentum

 ProcessModel:Mechanical_Energy

 ProcessModel:Elastic_Energy

 ProcessModel:Gravitational_Energy

 ProcessModel:Kinetic_Energy

 ProcessModel:Potential_Energy

 ProcessModel:Mechanical_Power

 ProcessModel:Mechanical_Work

 ProcessModel:Pressure

 ProcessModel:Speed

 ProcessModel:Stiffness

 ProcessModel:Strain

 ProcessModel:Strength

 ProcessModel:Stress

 ProcessModel:Torque

 ProcessModel:Velocity

 ProcessModel:Vibration

 ProcessModel:Thermodynamic_Performance

 ProcessModel:Compression

 ProcessModel:Expansion

 ProcessModel:Flow

 ProcessModel:Foreign_Object_Damage

 ProcessModel:Heat

 ProcessModel:Pressure

 ProcessModel:Thermodynamic_Energy

 ProcessModel:Kinetic_Energy

 ProcessModel:Potential_Energy

 ProcessModel:Thermal_Energy

 ProcessModel:Thermodynamic_Power

 ProcessModel:Thermodynamic_Work

 ProcessModel:Velocity

 ProcessModel:Vibration

 295

ProcessModel:Logic

ProcessModel:Object(http://example.org/ProcessModel#Object)

(The object model has the same classes as Feature, Form, Fit and Material Selection. All

these 4 classes with their class hierarchy have been assigned subclasses of both Object class

and Mechanical Design Class by the author. The object model has 1 additional sub-class,

which is shown below)

 ProcessModel:Product

 ProcessModel:Product_Final

 ProcessModel:Product_Initial

ProcessModel:Resources (http://example.org/ProcessModel#Resources)

ProcessModel:Rule (http://example.org/ProcessModel#Rule)

 ProcessModel:Configuration_Rule

 ProcessModel:Geometry_Rule

 ProcessModel:Heuristic_Rule

 ProcessModel:Logic_Rule

 ProcessModel:Math_Rule

 ProcessModel:Process_Rule

 ProcessModel:Production_Rule

ProcessModel:Sub-Activity(http://example.org/ProcessModel#Sub-Activity)

It can be observed from the class hierarchy that a few classes such as Velocity, Vibration,

Kinetic energy, and Potential energy occur under more than 1 class. In the ontology editor,

these classes only exist as 1 class and have been marked as subclasses of multiple classes

such as Thermodynamic performance and Mechanical performance in this work, similar to

the object model class hierarchy.

ii. Properties

1. Object Properties with Domain and Range

ProcessModel:affectedbyLogic

Domain - ProcessModel:Activity

Range - ProcessModel:Logic

ProcessModel:Assesses

Domain - ProcessModel:Assess_Product_Initial

http://example.org/ProcessModel#Object
http://example.org/ProcessModel#Resources
http://example.org/ProcessModel#Rule
http://example.org/ProcessModel#Sub-Activity

 296

Range - ProcessModel:Product_Initial

ProcessModel:consists_of_Activity

Domain - ProcessModel:Engineering_Design_Process

Range - ProcessModel:Activity

ProcessModel:consists_of_Object

Domain - ProcessModel:Engineering_Design_Process

Range - ProcessModel:Object, ProcessModel:Product

ProcessModel:consumes_Product_Initial

Domain - ProcessModel:Engineering_Design_Process

Range - ProcessModel:Product_Initial

ProcessModel:controlled_by_Rule

Domain - ProcessModel:Activity

Range - ProcessModel:Rule

ProcessModel:fulfills_Function

Domain - ProcessModel:Object, ProcessModel:Product

Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:governedbyLogic

Domain - ProcessModel:Rule

Range - ProcessModel:Logic

ProcessModel:has_Edge

Domain - ProcessModel:Object, ProcessModel:Product

Range - ProcessModel:Edge

ProcessModel:has_Face

Domain - ProcessModel:Object, ProcessModel:Product

Range - ProcessModel:Face

ProcessModel:has_Feature

Domain - ProcessModel:Assembly, ProcessModel:Object, ProcessModel:Part

Range - ProcessModel:Feature

ProcessModel:has_Form

Domain - ProcessModel:Object, ProcessModel:Product

 297

Range - ProcessModel:Form

ProcessModel:has_Function

Domain - ProcessModel:Activity

Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:has_Object_Material

Domain - ProcessModel:Object, ProcessModel:Product

Range - ProcessModel:Material_Selection

ProcessModel:has_Part

Domain - ProcessModel:Assembly

Range - ProcessModel:Part

ProcessModel:has_Successors

Domain - ProcessModel:Activity

Range - ProcessModel:Activity

ProcessModel:has_Surface

Domain - ProcessModel:Object, ProcessModel:Product

Range - ProcessModel:Surface

ProcessModel:hasSub-Activity

Domain - ProcessModel:Activity

Range – ProcessModel:Sub-Activity

ProcessModel:produces_Product_Final

Domain - ProcessModel:Engineering_Design_Process

Range - ProcessModel:Product_Final

ProcessModel:requires_Resources

Domain - ProcessModel:Activity

Range - ProcessModel:Resources

ProcessModel:satisfies_Functional_Requirement

Domain - ProcessModel:Engineering_Design_Process

Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:Starts_with_Activity

Domain - ProcessModel:Engineering_Design_Process

 298

Range - ProcessModel:Activity

2. Datatype Properties with Domain and Range

ProcessModel:has_Attributes

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

Following have been created as the sub-properties of the datatype property in this work -

ProcessModel:has_Attributes -

ProcessModel:has_Object_Orientation_Angle,

ProcessModel:has_Object_Position_Coordinates, ProcessModel:has_Object_Size

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

Following have been created as the sub-properties of

ProcessModel:has_Object_Orientation_Angle -

ProcessModel:has_Object_Orientation_X_Axis,

ProcessModel:has_Object_Orientation_Y_Axis,

ProcessModel:has_Object_Orientation_Z_Axis

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

Following have been created as the sub-properties of

ProcessModel:has_Object_Position_Coordinates –

ProcessModel:has_Object_X_Coordinate, ProcessModel:has_Object_Y_Coordinate,

ProcessModel:has_Object_Z_Coordinate

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

Following have been created as the basic sub-properties of ProcessModel:has_Object_Size –

ProcessModel:has_Object_Depth, ProcessModel:has_Object_Height,

ProcessModel:has_Object_Width

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

However, it is very crucial to note that other properties can be created by the user as

additional sub-properties of ProcessModel:has_Object_Size, as it has been illustrated with

both test case 4 and 5 in this thesis. For example, test case 4 has an additional sub-property

 299

named as ProcessModel:has_Object_Diameter as a sub-property of

ProcessModel:has_Object_Size.

Other datatype properties have been created such as -

ProcessModel:has_Surface_Area, ProcessModel:has_Surface_Finish,

ProcessModel:has_Tolerance, ProcessModel:has_Volume

Domain - ProcessModel:Object, ProcessModel:Product

Range - xsd:float

ProcessModel:has_Temperature_Limit, ProcessModel:has_Youngs_Mod

Domain - ProcessModel:Material_Selection

Range – xsd:float

ProcessModel:has_ID

Domain - ProcessModel:Activity

Range - xsd:integer

ProcessModel:has_Inputs, ProcessModel:has_Outputs

Domain - ProcessModel:Activity

Range – xsd:float

Pertaining to a specific use-case, all the object properties as described above can be classified

as sub-properties of ProcessModel:has_Inputs, ProcessModel:has_Outputs to indicate inputs

and outputs of activity completion and execution in terms of its product attributes as

developed in this research. Both test use-cases 4 and 5 have adopted the same approach to

create properties with various object attributes as activity inputs and outputs to reflect the

working of the model GPM-DEA as developed by the author.

Existential restrictions have been created on the activity class in order to describe it for a

DEA system in this research, as explained in chapter 5. These are illustrated here as follows -

Class Name - - ProcessModel:Activity

Existential Restrictions –

ProcessModel:has_ID some xsd:integer

ProcessModel:has_Inputs some xsd:float

ProcessModel:has_Successors some ProcessModel:Activity

 300

D. SWRL in built operators for utilisation and representation of Generative

Modelling Functions and Engineering Rules

SWRL offers comparison, math and boolean built-ins on top of OWL classes, properties and

restrictions and thus enhances the expressiveness of OWL (“SWRL Section 8. Built-Ins,”

2009). These have been adopted by the author to represent generative modelling functions as

described in chapter 5 and specific engineering rules for test use cases as described in chapter

6 as part of system development. These have been further experimentally verified in this

research using the Pellet and Drools reasoner along with SQWRL query language using the

test use cases in chapter 7 using Protégé IDE. Some of the in built operators by the author

have been adopted from the following set as described in this appendix.

i. Comparison Operators

1. swrlb:equal(op:numeric-equal, op:compare, op:boolean-equalop:yearMonthDuration-equal,

op:dayTimeDuration-equal, op:dateTime-equal, op:date-equal, op:time-equal,

op:gYearMonth-equal, op:gYear-equal, op:gMonthDay-equal, op:gMonth-equal, op:gDay-

equal, op:anyURI-equal)

Satisfied if the first argument and the second argument are the same.

2. swrlb:notEqual(from swrlb:equal)

The negation of swrlb:equal.

3. swrlb:lessThan (from XQuery op:numeric-less-than, op:compare, op:yearMonthDuration-

less-than, op:dayTimeDuration-less-than, op:dateTime-less-than, op:date-less-than, op:time-

less-than)

Satisfied if the first argument and the second argument are both in some implemented type

and the first argument is less than the second argument according to a type-specific ordering

(partial or total), if there is one defined for the type. The ordering function for the type of

untyped literals is the partial order defined as string ordering when the language tags are the

same (or both missing) and incomparable otherwise.

4. swrlb:lessThanOrEqual (from swrlb:lessThan, swrlb:equal)

Either less than, as above, or equal, as above.

5. swrlb:greaterThan(from XQuery op:numeric-greater-than, op:compare,

op:yearMonthDuration-greater-than, op:dayTimeDuration-greater-than, op:dateTime-greater-

than, op:date-greater-than, op:time-greater-than)

Similarly to swrlb:lessThan.

http://www.w3.org/TR/xpath-functions/#func-numeric-equal
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-boolean-equal
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-equal
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-equal
http://www.w3.org/TR/xpath-functions/#func-dateTime-equal
http://www.w3.org/TR/xpath-functions/#func-date-equal
http://www.w3.org/TR/xpath-functions/#func-time-equal
http://www.w3.org/TR/xpath-functions/#func-gYearMonth-equal
http://www.w3.org/TR/xpath-functions/#func-gYear-equal
http://www.w3.org/TR/xpath-functions/#func-gMonthDay-equal
http://www.w3.org/TR/xpath-functions/#func-gMonth-equal
http://www.w3.org/TR/xpath-functions/#func-gDay-equal
http://www.w3.org/TR/xpath-functions/#func-gDay-equal
http://www.w3.org/TR/xpath-functions/#func-anyURI-equal
http://www.w3.org/TR/xpath-functions/#func-numeric-less-than
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-less-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-less-than
http://www.w3.org/TR/xpath-functions/#func-date-less-than
http://www.w3.org/TR/xpath-functions/#func-time-less-than
http://www.w3.org/TR/xpath-functions/#func-time-less-than
http://www.w3.org/TR/xpath-functions/#func-numeric-greater-than
http://www.w3.org/TR/xpath-functions/#func-compare
http://www.w3.org/TR/xpath-functions/#func-yearMonthDuration-greater-than
http://www.w3.org/TR/xpath-functions/#func-dayTimeDuration-greater-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-greater-than
http://www.w3.org/TR/xpath-functions/#func-dateTime-greater-than
http://www.w3.org/TR/xpath-functions/#func-date-greater-than
http://www.w3.org/TR/xpath-functions/#func-time-greater-than

 301

6. swrlb:greaterThanOrEqual (from swrlb:greaterThan, swrlb:equal)

Similarly to swrlb:lessThanOrEqual.

ii. Math Operators

1. swrlb:add(from XQuery op:numeric-add)

Satisfied if the first argument is equal to the arithmetic sum of the second argument through

the last argument.

2. swrlb:subtract (from XQuery op:numeric-subtract)

Satisfied iff the first argument is equal to the arithmetic difference of the second argument

minus the third argument.

3. swrlb:multiply (from XQuery op:numeric-multiply)

Satisfied if the first argument is equal to the arithmetic product of the second argument

through the last argument.

4. swrlb:divide (from XQuery op:numeric-divide)

Satisfied iff the first argument is equal to the arithmetic quotient of the second argument

divided by the third argument.

5. swrlb:integerDivide (from XQuery op:numeric-integer-divide)

Satisfied if the first argument is the arithmetic quotient of the second argument idiv the third

argument. If the numerator is not evenly divided by the divisor, then the quotient is the

xsd:integer value obtained, ignoring any remainder that results from the division (that is, no

rounding is performed).

6. swrlb:mod (from XQuery op:numeric-mod)

Satisfied if the first argument represents the remainder resulting from dividing the second

argument, the dividend, by the third argument, the divisor. The operation a mod b for

operands that are xsd:integer or xsd:decimal, or types derived from them, produces a result

such that (a idiv b)*b+(a mod b) is equal to a and the magnitude of the result is always less

than the magnitude of b. This identity holds even in the special case that the dividend is the

negative integer of largest possible magnitude for its type and the divisor is -1 (the remainder

is 0). It follows from this rule that the sign of the result is the sign of the dividend

7. swrlb:pow

Satisfied if the first argument is equal to the result of the second argument raised to the third

argument power.

8. swrlb:abs (from XQuery fn:abs)

Satisfied if the first argument is the absolute value of the second argument.

9. swrlb:round (from XQuery fn:round)

Satisfied if the first argument is equal to the nearest number to the second argument with no

fractional part.

http://www.w3.org/TR/xpath-functions/#func-numeric-add
http://www.w3.org/TR/xpath-functions/#func-numeric-subtract
http://www.w3.org/TR/xpath-functions/#func-numeric-multiply
http://www.w3.org/TR/xpath-functions/#func-numeric-divide
http://www.w3.org/TR/xpath-functions/#func-numeric-integer-divide
http://www.w3.org/TR/xpath-functions/#func-numeric-mod
http://www.w3.org/TR/xpath-functions/#func-abs
http://www.w3.org/TR/xpath-functions/#func-round

 302

10. swrlb:sin

Satisfied if the first argument is equal to the sine of the radian value the second argument.

11. swrlb:cos

Satisfied if the first argument is equal to the cosine of the radian value the second argument.

iii. Strings

1. swrlb:stringConcat (from XQuery fn:concat)

Satisfied if the first argument is equal to the string resulting from the concatenation of the

strings the second argument through the last argument.

2. swrlb:substring (from XQuery fn:substring)

Satisfied if the first argument is equal to the substring of optional length the fourth argument

starting at character offset the third argument in the string the second argument.

3. swrlb:contains (from XQuery fn:contains)

Satisfied if the first argument contains the second argument (case sensitive).

4. swrlb:containsIgnoreCase

Satisfied if the first argument contains the second argument (case ignored).

5. swrlb:startsWith (from XQuery fn:starts-with)

Satisfied if the first argument starts with the second argument.

6. swrlb:endsWith (from XQuery fn:ends-with)

Satisfied if the first argument ends with the second argument.

7. swrlb:matches (from XQuery fn:matches)

Satisfied if the first argument matches the regular expression the second argument.

8. swrlb:replace (from XQuery fn:replace)

Satisfied if the first argument is equal to the value of the second argument with every

substring matched by the regular expression the third argument replaced by the replacement

string the fourth argument.

http://www.w3.org/TR/xpath-functions/#func-concat
http://www.w3.org/TR/xpath-functions/#func-substring
http://www.w3.org/TR/xpath-functions/#func-contains
http://www.w3.org/TR/xpath-functions/#func-starts-with
http://www.w3.org/TR/xpath-functions/#func-ends-with
http://www.w3.org/TR/xpath-functions/#func-matches
http://www.w3.org/TR/xpath-functions/#regex-syntax
http://www.w3.org/TR/xpath-functions/#func-replace
http://www.w3.org/TR/xpath-functions/#regex-syntax

 303

Appendix 2: – Use Case 4 and 5 Axioms – Test Cases

E. Use Case 4

i. ParaPy Source Code – Created by Author

As shown in experimental verification with test use cases in chapter 7 in this work, one of the

targets for the 4th experiment as designed by the author is to compare the rule output in

ontology model as platform independent and neutral formal representation standards to the

specific rule outputs inside platform specific and proprietary DEA systems such as ParaPy.

The following is the source code created by the author in ParaPy as a platform specific DEA

system to represent some of the specific engineering rules controlling the topology and

configuration of the block as a product.

from __future__ import division

from parapy.core import *

from parapy.geom import *

from math import pi, degrees, radians

class Block(GeomBase):

 #: Block Dimensions - Width, Length(Height), Height(Depth)

 #: :type: float

 block_width = Input(50) # Block Width(W)

 block_length = Input(60) # Block Height(H) #User Inputs

 @Attribute

 def block_height(self): # Block Depth(D) #Depth Rule

 return self.block_width*1.5

 @Part

 def block1(self):

 return Box(self.block_width if self.block_width>=50 else "ERROR",

#Dimension Rule

 304

 self.block_length if self.block_length>=50 else "ERROR", # Block Height(H)

#Dimension Rule

 self.block_height if self.block_height>=50 else "ERROR", # Block Depth(D)

#Dimension Rule

 color="red")

 #: Hole Dimensions - Radius(Diameter/2), Length(Depth)

 #: :type: float

 hole_diameter = Input(30) # Hole Diameter(HD1) #User Input

 @Attribute

 def hole_radius(self):

 return self.hole_diameter/2 # Hole Radius = HD1/2

 hole_height = Input(40) # Hole Depth(HD2) #User Input

 @Part

 def hole1(self):

 return Cylinder(self.hole_radius if self.hole_radius*2.5<self.block_width

 and

 self.hole_radius*2.5<self.block_length else "ERROR",

 #HoleDiameter Rule

 self.hole_height if self.hole_height<=self.block_height else "ERROR",

#Hole Depth Rule

 color="blue", position=self.position.translate('x', 30, 'y', 20, 'z', 35))

 @Part

 def blockwithhole1(self):

 return SubtractedSolid(shape_in=self.block1,

 tool=self.hole1) #Subtraction of Volume for Drilling

if __name__ == '__main__':

 from parapy.gui import display

 obj = Block()

 display(obj)

 305

ii. Variation of SWRL Rule Outputs for Block and Hole Attributes in Ontology

and Comparison with ParaPy

The source code created by the author has resulted in variations in output with block and hole

attributes in ParaPy as a platform specific DEA application in this research as shown below –

Figure B 1: ParaPy Source Code – Inputs and Rules for Block and Hole Attributes

The SWRL rule representation of the specified engineering rules in this research as part of

the developed ontology model corresponding to GPM-DEA schema are explained as follows

Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm, H>=50 mm,

D>=50mm)

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:greaterThanOrEqual(?w,

"50.0"^^xsd:float) ^ hasHeight(?p, ?h) ^ swrlb:greaterThanOrEqual(?h, "50.0"^^xsd:float) ^

hasDepth(?p, ?d) ^ swrlb:greaterThanOrEqual(?d, "50.0"^^xsd:float) -> sqwrl:select("Block

adheres to dimensions")

 306

Depth Rule - D=W*1.5

SWRL Representation - Product(?p) ^ hasWidth(?p, ?w) ^ swrlb:multiply(?x, ?w,

"1.5"^^xsd:float) -> hasDepth(?p, ?x)

Hole Depth Rule - Hole depth should be less than or equal to depth of block, HD2<=D

SWRL Representation - Product(?p) ^ hasDepth(?p, ?d) ^ Hole(?h) ^ hasDepth(?h, ?d2) ^

swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select(("Hole adheres to dimensions")

 Else

Product(?p) ^ hasDepth(?p, ?y) ^ Hole(?h) ^ hasDepth(?h, ?z) ^swrlb:greaterThan(?z, ?y) ->

sqwrl:select("Hole can't be created")

Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H

SWRL Representation - Product(?p) ^ hasWidth(?p, ?a) ^ hasHeight(?p, ?b) ^ Hole(?h) ^

hasDiameter(?h, ?c) ^swrlb:multiply(?d, ?c, "1.25"^^xsd:float) ^ swrlb:lessThan(?d, ?a) ^

swrlb:lessThan(?d, ?b) ->sqwrl:select("Hole adheres to dimensions")

 Else

Product(?p) ^ hasWidth(?p, ?e) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, ?g,

"1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?e) -> sqwrl:select("Hole can't be

created")

 Else

Product(?p) ^ hasHeight(?p, ?f) ^ Hole(?h) ^ hasDiameter(?h, ?g) ^ swrlb:multiply(?i, ?g,

"1.25"^^xsd:float) ^ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't be

created")

The output in product form through the Graphical User Interface (GUI) for visual display is

illustrated with Figure B 3 and B4.

 307

Figure B 2: ParaPy Source Code – Virtual Subtraction of Hole Volume

Figure B 3: ParaPy GUI – Output with Root View

 308

Figure B 4: ParaPy GUI – Output with Subtracted Volume View

The comparison of these specific values for block attributes and representation of SWRL engineering

rules on top of OWL as platform independent and neutral representation with those against ParaPy as

platform specific DEAS is shown below with Figure B 5 –

Figure B 5: Asserted Input Values – Block and Hole in OWL/SWRL Ontology

 309

The output of SQWRL query results for the dimension, hole depth ad hole diameter rule is

shown with Figure B 6 and B7.

Figure B 6: SQWRL Query Results – Hole Diameter and Hole Depth Rule

 310

Figure B 7: SQWRL Query Result – Dimension Rule

It can be observed that the query results are inline with the specific output attributes of block

and hole inside ParaPy although the output is supported by visual display through an inbuilt

GUI. However, the ontology model although doesn’t currently support and inbuilt GUI, the

query results are accurate and provide semantic clarity. Similarly, the SWRL rule output for

hole volume is supported with Figure B 8 and B 9.

It can be observed that the hole volume is similar inside both ontology model and ParaPy.

However, there is a slight difference from 44178.64 mm3 to 44156.25 mm3due to the value of

pi as π =3.141592653589793238 inside ParaPy and 3.14 used inside SWRL rule.

 311

Figure B 8: Computed Hole Volume – ParaPy

Figure B 9: Inferred Hole Volume – Hole Volume Rule – OWL/SWRL Ontology Model

 312

A violation is also introduced by increasing the hole diameter from 25 to 50 mm which

violates the Hole Diameter Rule keeping the block attributes same as above. The output

inside ParaPy is shown with the help of Figure B 10.

Figure B 10: Violation of Hole Diameter Rule – ParaPy

 313

The output of violation of hole diameter as per Hole Diameter Rule in ontology model is

explained with Figure B 11

Figure B 11: Violation of Hole Diameter Rule – OWL/SWRL ontology model

Thus, all the results are in line with the results from the experimental verification of the

knowledge representation system for Use Case 4 as Test Case performed in Chapter 7.

 314

F. Use Case 5

iii. AML Source Code snippets

As illustrated in Chapter 6 and 7, Use Case 5 as Test Case is adopted from (Lützenberger et

al., 2012) with addition of knowledge such as function, activity and object and rule

association. The following section shows small snippets of AML source code as a platform

specific DEA system for the engineering rules controlling the bookshelf topology and

configuration.

;;;Filename: kbe-bookshelf-input-mixin.aml

(in-package :AML)

(define-class kbe-bookshelf-input-mixin

:inherit-from (object)

:properties (

;;; parameters set in GUI

height-input 5

width-input 3

max-hs-input 0.5

vertical-spacing-shelves-input 0.5

shelf-depth 0.7

thickness-bottom-shelf-input 0.05

thickness-top-shelf-input 0.05

thickness-dividing-walls-input 0.05

thickness-of-shelves-input 0.05

thickness-side-walls-input 0.05 #Input Parameters

)

:subobjects (

)

) (Lützenberger et al., 2012, Pg 58, 59)

;;;--

;;;Method for verification of width-input and max-hs-input

;;;--

(define-method kbe-validate-bookshelf-width kbe-bookshelf-data-model-class ()

(if (< !width-input (* 0.5 (!max-hs-input)))

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too narrow. Adjust

bookshelf width or maximum horizontal length of one shelf. ")

nil #Dividing Walls Rule

 315

)

)

;;;--

;;;Method for verification of height-input and vs-input

;;;--

(define-method kbe-validate-bookshelf-height kbe-bookshelf-data-model-class ()

(if (> !vertical-spacing-shelves-input !height-input)

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too low

for even one vertical space in the bookshelf. Adjust bookshelf height or vertical

spacing between shelves. ")

nil #Shelves Rule

)

) (Lützenberger et al., 2012, Pg 61, 62)

iv. Variation in SWRL Rule Outputs for Bookshelf Attributes in Ontology

A few variations are produced in the bookshelf design ontology model by the author as per

the modelled semantics of Dividing Walls Rule. These are shown with the support of Figure

B 12, B 13 and B 14. Similarly, asserted values to bookshelf attributes as violation of Shelves

Rule is shown with Figure B 15. The rule and their SWRL representations developed by this

research are illustrated as follows -

Dividing Walls Rule – NDW is based on HS and W, If (W<0.5*HS, "ERROR") elseif

(W<=HS, NDW=0) else (NDW=Int(W/HS)-1)

SWRL Representation - Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, "0.5"^^xsd:float,

?hs) ^ swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow for a bookshelf")

 And

Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:multiply(?x, "0.5"^^xsd:float,

?hs) ^ swrlb:greaterThan(?w, ?x) ^ swrlb:lessThanOrEqual(?w, ?hs) ->

has_Object_No_dividing_walls_NDW(?p, "0.0"^^xsd:float)

And

Product(?p) ^ has_Object_Width_W(?p, ?w) ^

has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) ^ swrlb:greaterThan(?w, ?hs) ^

swrlb:divide(?y, ?w, ?hs) ^ swrlb:subtract(?z, ?y, "1.0"^^xsd:float) ->

has_Object_No_dividing_walls_NDW(?p, ?z)

Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif (2*VS>H, NSH=0)

else (NSH=Int((H/VS)-1))

 316

SWRL Representation - Product(?p) ^ has_Object_Height_H(?p, ?h) ^

has_Object_Vertical_length_1_shelf_VS(?p, ?vs) ^ swrlb:greaterThan(?vs, ?h) ->

sqwrl:select("Error - Too low for even one space in the bookshelf")

 And

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ has_Object_Vertical_length_1_shelf_VS(?p,

?vs) ^ swrlb:lessThan(?vs, ?h) ^ swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^

swrlb:greaterThan(?a, ?h) -> has_Object_No_shelves_NSH(?p, "0.0"^^xsd:float)

 And

Product(?p) ^ has_Object_Height_H(?p, ?h) ^ has_Object_Vertical_length_1_shelf_VS(?p,

?vs) ^ swrlb:multiply(?a, "2.0"^^xsd:float, ?vs) ^ swrlb:lessThan(?a, ?h) ^ swrlb:divide(?b,

?h, ?vs) ^ swrlb:subtract(?c, ?b, "1.0"^^xsd:float) -> has_Object_No_shelves_NSH(?p, ?c)

Figure B 12: Violation of Dividing Walls Rule1: Bookshelf Design Process Ontology Model

 317

Figure B 13: Dividing Walls Rule Clause 2

Figure B 14: Dividing Walls Rule Clause 3 – Variation in asserted Values

 318

Figure B 15: SQWRL Query Output - Violation of Shelves Rule

Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0)

SWRL Representation - Part(Dividing_Walls1) ^ Product(?p) ^

has_Object_Thickness_side_walls_TS(?p, ?ts) ^ has_Object_Shelf_length_SHL(?p, ?shl) ^

has_Object_Thickness_bottom_shelf_TB(?p, ?tb) ^ swrlb:add(?i, ?ts, ?shl) ->

has_Object_X_Coordinate(Dividing_Walls1, ?i) ^

has_Object_Y_Coordinate(Dividing_Walls1, ?tb) ^

has_Object_Z_Coordinate(Dividing_Walls1, "0.0"^^xsd:float)

 319

The dividing walls position as per the semantics of Dividing Walls Position Rule is indicated

with Figure B 16. A variation in values is illustrated with Figure B 17.

Figure B 16:Inferred Dividing Walls Position Coordinates as per Asserted Values

Figure B 17:Modifications in Dividing Walls Position – Variation in Asserted Bookshelf

Attributes

 320

Appendix 3: Experimentation of Pilot Use-Cases with Neutral Formal

Semantics

G. Process Specification Language

Process Specification Language has been investigated as potential knowledge representation

formalism for activity description with focus on manufacturing and production processes

based on pilot use-cases. PSL is based on Common Logic Interchange Format (CLIF) and is

regarded as ISO 18629. It is based on first order calculus or first order predicate logic

(FOPL). The syntax for activity and object description for engineering processes is illustrated

as follows –

PSL activity role declaration (ARD) and object declaration syntax:

(define-activity-role

:id <number>*

:name <string>

:successors <number>*

:preconditions <PSL sentence>*

:postconditions <PSL sentence>*)

(define-object

:name <KIF constant>

:constraints <PSL sentence>*)

(define-parameter

:variable <KIF variable>

:constraints <PSL sentence>*) (Grüninger and Menzel, 2003)

For representation of inputs and outputs axioms for pilot use-cases, the syntax has been

adopted from (Bock and Gruninger, 2004) as explained with the help of a milling process in

Figure B 1.

 321

Figure C 1: Inputs and Outputs for a Milling Process (Bock and Gruninger, 2004, Pg 3)

Inputs and Outputs in PSL syntax:

Parameterised term for activities -

(forall (?a ?m ?i ?o)

(implies (= ?a milling(?m ?i ?o))

(and (activity ?a)

(metal ?m)

(instructions ?i)

(oil ?o))))

Inputs and outputs at activity occurrence –

(forall (?x ?s)

(implies (or (occurrence-input ?x ?s)

 (occurrence-output ?x ?s))

(and (object ?x)

(not (state ?x))

(activity_occurrence ?s))))

(forall (?x ?s)

(iff (participant ?x ?s)

(exists (?t)

(participates_in ?x ?s ?t))))

(forall (?x ?s)

(implies (or (occurrence-input ?x ?s)

(occurrence-output ?x ?s))

(participant ?x ?s)))

 322

(forall (?x ?s2)

(implies (and (occurrence-input ?x ?s2)

(legal ?s2))

(exists (?s1)

(and (occurrence-output ?x ?s1)

(earlier ?s2 ?s1)))))

(exists (?sDrill ?sMill ?m ?i ?o)

(and (occurrence_of ?sDrill drilling(?m ?i ?o)

(occurrence_of ?sMill milling(?m ?i ?o)

(occurrence-input ?m? sDrill)

(occurrence-output ?m ?sDrill)

(occurrence-input ?m ?sMill)

(occurrence-output ?m ?sMill)

(earlier ?sDrill ?sMill)

(legal ?sMill)))))

(forall (?x ?s ?f)

(implies (or (input-state ?x ?s ?f)

 (output-state ?x ?s ?f))

(and (object ?x)

(not (state ?x))

(activity_occurrence ?s)

(state ?f))))

(forall (?x ?s ?f)

(implies (input-state ?x ?s ?f)

(and (occurrence-input ?x ?s)

(prior ?f ?s)

(exists_at ?x (begin_of ?s)))))

(forall (?x ?s ?f)

(implies (output-state ?x ?s ?f)

(and (occurrence-output ?x ?s)

(achieved ?f ?s)

(exists_at ?x (end_of ?s)))))

subactivity(subactivity1, activity)

subactivity(subactivity2, activity)

H. RuleML

RuleML is a markup language for representing rules using semantic standards and based on

horn logic. For experimentation of engineering rules of pilot use-cases with Datalog version

of RuleML (Boley et al., 2005), based on XML, RDF, XSLT and OWL, the following syntax

was adopted for engineering rule axioms –

 323

Natural Language Sentence - "Peter Miller's spending has been min 5000 euro in the

previous year."

Datalog RuleML syntax –

<Atom>

<Rel>spending</Rel>

<Ind>Peter Miller</Ind>

<Ind>min 5000 euro</Ind>

<Ind>previous year</Ind>

</Atom>

Natural Language Sentence - "A customer is premium if their spending has been min 5000

euro in the previous year."

Datalog RuleML syntax –

<Implies>

<head>

<Atom>

<Rel>premium</Rel>

<Var>customer</Var>

</Atom>

</head>

<body>

<Atom>

<Rel>spending</Rel>

<Var>customer</Var>

<Ind>min 5000 euro</Ind>

<Ind>previous year</Ind>

</Atom>

</body>

</Implies>

Natural Language Sentence - The discount for a customer buying a product is 7.5 percent if

the customer is premium and the product is luxury."

Datalog RuleML syntax –

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>customer</Var>

<Var>product</Var>

<Ind>7.5 percent</Ind>

</Atom>

</head>

<body>

 324

<And>

<Atom>

<Rel>premium</Rel>

<Var>customer</Var>

</Atom>

<Atom>

<Rel>luxury</Rel>

<Var>product</Var>

</Atom>

</And>

</body>

</Implies>

Natural Language Sentence - "The discount for Peter Miller buying a Porsche is 7.5 percent"

Datalog RuleML syntax –

<Atom>

<Rel>discount</Rel>

<Ind>Peter Miller</Ind>

<Ind>Porsche</Ind>

<Ind>7.5 percent</Ind>

</Atom>

