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Abstract

An engineering design process as part of product development (PD) needs to satisfy ever-
changing customer demands by striking a balance between time, cost and quality. In order to
achieve a faster lead-time, improved quality and reduced PD costs for increased profits,
automation methods have been developed with the help of virtual engineering. There are
various methods of achieving Design Engineering Automation (DEA) with Computer-Aided
(CAX) tools such as CAD/CAE/CAM, Product Lifecycle Management (PLM) and
Knowledge Based Engineering (KBE). For example, Computer Aided Design (CAD) tools
enable Geometry Automation (GA), PLM systems allow for sharing and exchange of product

knowledge throughout the PD lifecycle.

Traditional automation methods are specific to individual products and are hard-coded and
bound by the proprietary tool format. Also, existing CAXx tools and PLM systems offer
bespoke islands of automation as compared to KBE. KBE as a design method incorporates
complete design intent by including re-usable geometric, non-geometric product knowledge
as well as engineering process knowledge for DEA including various processes such as

mechanical design, analysis and manufacturing.

It has been recognised, through an extensive literature review, that a research gap exists in the
form of a generic and structured method of knowledge modelling, both informal and formal
modelling, of mechanical design process with manufacturing knowledge (DFM/DFA) as part
of model based systems engineering (MBSE) for DEA with a KBE approach. There is a lack
of a structured technique for knowledge modelling, which can provide a standardised method
to use platform independent and neutral formal standards for DEA with generative modelling
for mechanical product design process and DFM with preserved semantics. The neutral
formal representation through computer or machine understandable format provides open

standard usage.



This thesis provides a contribution to knowledge by addressing this gap in two-steps:

In the first step, a coherent process model, GPM-DEA is developed as part of MBSE
which can be used for modelling of mechanical design with manufacturing knowledge
utilising hybrid approach, based on strengths of existing modelling standards such as
IDEFO, UML, SysML and addition of constructs as per author’s Metamodel. The
structured process model is highly granular with complex interdependencies such as
activities, object, function, rule association and includes the effect of the process
model on the product at both component and geometric attributes.

In the second step, a method is provided to map the schema of the process model to
equivalent platform independent and neutral formal standards using OWL/SWRL
ontology for system development using Protégé tool, enabling machine
interpretability with semantic clarity for DEA with generative modelling by building

queries and reasoning on set of generic SWRL functions developed by the author.

Model development has been performed with the aid of literature analysis and pilot use-

cases. Experimental verification with test use-cases has confirmed the reasoning and

querying capability on formal axioms in generating accurate results. Some of the other

key strengths are that knowledgebase is generic, scalable and extensible, hence provides

re-usability and wider design space exploration. The generative modelling capability

allows the model to generate activities and objects based on functional requirements of

the mechanical design process with DFM/DFA and rules based on logic. With the help of

application programming interface, a platform specific DEA system such as a KBE tool

or a CAD tool enabling GA and a web page incorporating engineering knowledge for

decision support can consume relevant part of the knowledgebase.

Keywords: Design engineering automation, process model, platform independent and neutral

formal representation, knowledge modelling, semantic clarity, generative modelling
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1 Introduction

1.1 Research Context

The commercial success of a manufacturing enterprise substantially depends upon the
efficiency of product development (PD) (Ulrich and Eppinger, 2012). In order to maximise
profits, the PD process should have an optimum balance between achieving product quality,
cost and development time (Ulrich and Eppinger, 2012). The main task of engineers in the
PD stage is to apply their scientific knowledge to generate solutions for technical problems
and optimise them based on requirements and constraints such as material, functional,
economic, legal and environmental considerations (Pahl et al., 2007).There are complex
interdependencies between the design process and the product involved in engineering design
(Chalupnik et al., 2006). Engineering knowledge should be efficiently captured, modelled

and retrieved for re-use and enhancing the efficiency of the PD process.

One of the methods to improve the efficiency of the PD process is Design Engineering
Automation (DEA). DEA is performed in a virtual engineering environment at various stages
of the PD lifecycle (Ovtcharova, 2010). Many tools and methods have been utilised by
industries to address various aspects of DEA. Different Computer-Aided (CAX) tools such as
Computer-Aided Design (CAD), Computer-Aided Engineering (CAE) and Computer-Aided
Manufacturing (CAM) tools assist the PD process at the design and manufacturing stages of a
PD process (Shintre and Shakir, 2011). CAD tools allow visualisation and representation of
product’s shape and form with 2D and 3D models (Bernard, 2005). Advancements in CAD
tools have led to DEA with parametric modelling facilities to modify the product’s shape
with variation in dimensional parameters (Bodein et al., 2009). Knowledge intensive CAD
(KIC) allowed representation of additional product and engineering design process

knowledge buy restricted within a CAD architecture (Tomiyama and Hew, 2000). These can



be referred as Geometry Automation (GA) (Amadori, 2012). CAE tools assist in analysis of a
product’s performance such as such as finite element analysis (FEA) and computational fluid
dynamics (CFD) (Tyapin et al., 2012). CAM tools allow simulation of the manufacturing and
production processes for physical realisation of the designed and analysed product (Corallo et
al., 2009). Thus, all CAx tools address some aspects of DEA varying from parametric
modelling to knowledge sharing with inclusion of manufacturing knowledge for product
design. However, due to different file formats of CAXx tools there is loss of knowledge while

utilising the combined benefits of these DEA methods (Zhang et al., 2009).

As part of virtual engineering, Product Data Management (PDM)/Product Lifecycle
Management (PLM) systems allow storage and representation of product and design process
knowledge and provide integration of knowledge between CAD/CAE and CAM tools
depending upon their configuration and application. However, a major limitation of PLM
systems is lack of representation of product’s geometric attributes within a unified knowledge
model as they mostly link different knowledge sources from CAXx tools through a common

platform (Burkett et al., 2003).

In order to address the limitations of these existing virtual engineering applications to address
the needs of DEA, KBE as a design method was adopted to provide an integrated approach to
DEA. CAx and PDM/PLM systems provide islands of automation in context to a more
holistic approach for DEA with KBE. KBE is generally regarded as an umbrella term
describing the application of knowledge to automate or assist in the engineering task. It can
be applied to a wide variety of design processes (Hew et al., 2001). According to Stokes,
Knowledge Based Engineering (KBE) can also be defined as ‘The use of advanced software
techniques to capture and re-use product and process knowledge in an integrated way’

(Stokes, 2001).



1.2 Overview of DEA with a KBE approach

‘KBE systems aim to capture product and process information in such a way so as to allow
businesses to model engineering design processes, and then use the model to automate all or
part of the process’ (Chapman and Pinfold, 1999, Pg 259). Alternatively, KBE systems can
also be defined as ‘an evolution of knowledge based systems pertaining to the engineering
domain’ (La Rocca, 2011; Rocca, 2012).Figure 1-1 demonstrates a reduction in the product

design lifecycle time using KBE vs. Traditional CAD based design methodology.
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Figure 1-1: KBE vs. Traditional CAD (Skarka, 2007, Pg 678)

The creation of an informal model is the first step in knowledge modelling of an engineering
design process and is considered to be one of the most critical step in developing a KBE
system (KBES) (Pinfold et al., 2008). The most integral purpose of creating the informal
model is to formulate neutral formal representation of the knowledge model for machine
interpretation, which can assist the designer for achieving DEA as well as the knowledge
engineer for developing automation application using a KBES. The abstraction of
engineering knowledge in context of KBE environment can be stated as ‘the process in which
the engineering and design knowledge is structured and analysed for being represented in

terms of objects and engineering rules in a computer understandable language or code’



(Bermell-Garcia et al., 2001). As KBE as a design method allows inclusion of both product’s
geometric and non-geometric knowledge for design, analysis, manufacturing and design
process decision making, knowledge modelling through knowledge management techniques
constitutes a major bottleneck. The challenge is to perform the abstraction in a neutral (open
standards) format with semantic clarity to ensure re-usability of the domain knowledge of
engineering design process for DEA (Jubierre and Borrmann, 2015). Open standard usage
becomes a key issue when the engineering design knowledge has to be transferred between
different KBE applications (Bermell-garcia et al., 2007). Thus engineering design knowledge
should be represented in open architecture as neutral representation for DEA in context to

KBE approach (Penoyer et al., 2000; Zhang et al., 2009).

Various methods and techniques have been used for knowledge acquisition and
representation in context to DEA with KBE approach. Some of them are used as informal
representation for human interpretation and exchange of design process knowledge such as
IDEFxX (Integrated Definition for Functional Modelling), Model Based Systems Engineering
(MBSE) methods such as Unified Modelling Language (UML) and Systems Modelling
Language (SysML) for DEA. Other techniques such as W3C standards in the form of Web
Ontology Language (OWL), RuleML and International Standards Organization (ISO)
standards such as Process Specification Language (PSL) have also been investigated for
machine interpretation of design process knowledge with axioms as formal representation for
DEA. Investigation of existing KBE methodologies such as Methodology and tools oriented
to knowledge-based engineering applications (MOKA), Knowledge Nurture for Optimal
Multidisciplinary Analysis and Design (KNOMAD), Knowledge Capture Methodology
(KCM), and Knowledge Oriented Methodology for the Planning and Rapid Engineering of
Small-Scale Applications (KOMPRESSA) has revealed a few shortcomings to address DEA.

Some of the identified shortcomings to enable DEA with KBE as a holistic approach are



neutral representation techniques of an engineering design process model with uniform
axioms and preserved semantics that will allow usage across multiple platforms with open
standards. The next sections will discuss the aims and objectives in order to address the

existing challenges.

1.3 Aim and Objectives

This aim of this research is to provide a coherent method to develop platform independent
and neutral formal representation of an engineering process model, with focus on mechanical
product design process with manufacturing knowledge, and semantic clarity for DEA. This
coherent method will capture various knowledge entities and relationships such as activity,
product attributes, rule, function and behaviour as Meta Model, identified with literature
analysis in an informal process model (for human aid and interpretation). The 2" step will
provide a method to represent the schema of the structured process model in neutral formal
representation (for machine/system interpretation) with open standards for DEA with KBE as
a holistic approach. This will include generative modelling capability by building queries as
per a set of generic predefined functions. It will perform DEA with effect of the process

model on product attributes with the help of inference (automated reasoning) and querying.
In order to achieve the aim, the following objectives have been developed—

1. To investigate different approaches for Design Engineering Automation (DEA)

including CAx, PLM and KBE for product and process based automation.

2. To analyse and compare various informal and semiformal process modelling methods
to capture various aspects of an engineering design process with focus on mechanical

product design with design for manufacturing knowledge for automation.

3. To analyse and compare state of the art in existing formal representation (machine

readable) techniques and standards.



4. To develop and build a detailed informal/semiformal process model with explicit
relationships between identified knowledge entities of a mechanical product design

process with design for manufacturing knowledge.

5. To formalise the process model in platform independent and neutral formal
representation standards for DEA with semantic clarity. This will incorporate
generative modelling capability by generating the activities, objects of the process and

rules based on logic as per set of developed generic functions.

6. To perform experiments in order to validate and verify the process based knowledge
model with its platform independent and neutral formal representation for re-usability,

transparency and accuracy.

1.4 Research Method

The research method in order to meet the aim and objectives of this research is to hypothesise

and test. The research hypothesis is described below.
1.4.1 Research Hypothesis
The hypothesis of this research work is -

“Platform independent and neutral formal representation of an engineering design
process model with focus on mechanical product design and manufacturing knowledge
built on standardised concepts and relationships, structured and well defined axioms
along with semantic clarity can achieve the requirements of design engineering

automation (DEA) enabling generative modelling and re-usability of knowledge”

In order to test the research hypothesis a two-step strategy has been developed. The first step
involves careful analysis of informal and semiformal modelling standards, which provide a
coherent method of knowledge modelling of an engineering design process with focus on

mechanical product design and manufacturing knowledge for automation. The second step



covers the schema mapping of the developed structured process based knowledge model, as a
method in neutral formal representation with machine interpretable semantics enabling DEA

with generative modelling.
1.4.2 Research Design

The research design consists of the following four building blocks — (1) Literature Review,
(2) Use Case Collection and Analysis, (3) Development of process model as GPM-DEA and
its implementation in Neutral Formal Representation Standards along with (4) Test for

Transparency, Accuracy and Reusability of Knowledgebase. It is illustrated in Figure 1-2.

Literature Review Use Case Collection & Analysis
. . . = TUse Case 1 [Pilot Use Case] — Conceptual/Configuration Design & Design
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» Formal Representation of Engincering Design Process Hole

Models
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A
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» Evaluatethe Reusability & Generic Working of GPM-DEA with Successful Instantiation of
4 Usc—Cases with Reasoning

= Testand Validate the Completion ofthe Knowledge in GPM-DEA & the Exccution of the
Formal Representation with Use Case 3 & 4

Figure 1-2: Research Design

In order to address the research gap, literature review and analysis, use case collection and
analysis along with comparative analyses has been the main cornerstone for the development
work with experimental verification of the developed process model. The literature review

consists of broadly three topics — DEA and KBE in context to DEA with knowledge entities



for engineering design, informal process modelling for knowledge capture of an engineering
design process and formal representation standards for representing an engineering process
model at a system level for machine interpretation instead of natural text for human

interpretation.

Use cases 1 and 2 have been used as pilot case studies. Use cases 1 has been collected from
the industrial partner from SILOET2 grant such that knowledge can be accessed in the form
of engineering design intent for mechanical design and design for manufacturing (DFM)
aspects with manufacturing guidelines of jet engine fan / compressor blades spanning
conceptual and embodiment design stages. Due to commercial sensitivity, the analysed
knowledge in Use-case 1 won’t be shared in detail. Use case 2 has been compiled from the
literature review and includes jet engine fan blades conceptual design stage. All the Use cases
have helped in the initial development of process model as GPM-DEA. Test use cases 3 and
4 have been compiled with the help of literature review and analysis. Use case 3 has been
devised in terms of creating a hole in a block to test the effect of GPM-DEA at product’s
geometric attributes for virtual representation in detailed design stage. Similarly, Use case 4
has been devised and analysed from literature review with added knowledge in terms of
bookshelf design process as a KBE method from LinkedDesign project. Both Use case 3 and
4 have been validated with the help of reasoner/inference and query as execution results,
which are also compared with specific rule implementation in KBES. Targeting DEA for
mechanical product design process with Design for Manufacturing (DFM) knowledge, GPM-
DEA through its neutral representation format will also enable generative modelling with the
aid of developed generic functions for query and reasoning and allow for ease of exchange

and re-usability of knowledge.

Qualitative methods is adopted for data collection and analysis from use-cases based on

document data in order to fully comprehend the research problem and develop an initial



prototype of the process model (Creswell, 2003). Comparative analysis has been performed
for both informal (natural language) and formal (machine interpretable) standards for
developing the process model and its implementation in neutral formal standards along with
results from pilot use-cases (Rihoux and Ragin, 2009). The method of schema mapping of
engineering knowledge from informal/semiformal process model to formal representation
with preserved semantics and experimental verification to test the research hypothesis
follows an ontology development approach by (Noy and McGuinness, 2001). The method of
system development and experimental verification with test use cases using ontology
development also aligns with engineering design optimisation and DEA with DFM aspects
(Ahmed et al., 2007; Witherell et al., 2007). The proposed ontology development method
aligns its principles with the research aims and objectives and aids in the verification by
testing DEA capabilities with the help of supporting tools such as Protégé and Topbraid with

assertion of axioms and reasoning / inference and query capability.

1.5 Research Scope

This research thesis is part of a larger research project, Platform Independent Knowledge
Model (PIKM), where the initial case selection is based around the SILOET 2 grant as access
to materials and experts can be built into the project. Two steps are critical in development of

the process model in context to this research —

1. The first step is the structured knowledge modelling of domain knowledge as informal
process model. The scope of the knowledge modelling as part of pilot use-cases is
mechanical design along with DFM process of the compressor blades. The knowledge
modelling is initially performed from the existing technical documentation of the
design intent or specification of the industrial partner such as design rules and aids
along with materials and mechanical methods as the collated knowledge. The collated

knowledge is the raw and unstructured informal knowledge. This is followed by the



breakdown of the collated knowledge as per the engineering design process knowledge
entities comprising of activities, input and output relationships, functional requirements
and behaviour, constraints/rules, logic and product knowledge for efficient product
realisation in the form of topological and geometric configuration along with
manufacturing processes and rules. This is an integral step of knowledge analysis for
developing a generic process model.

2. The second step is the structured method of schema mapping of the developed process
model to platform independent and neutral formal representation. The platform
independent and neutral representation with preserved semantics outside of a CAX
system should enable DEA with KBE aspects such as generative modelling with the aid

of suitable reasoning and query method.

Thus, this constrains the focus of this research. In order to meet the aims and objectives, the

research scope includes the following aspects —
1.5.1 Design Engineering Automation (DEA)

All virtual engineering approaches for DEA such as CAx tools; PDM/PLM systems,
workflow automation and KBE have been discussed. Various knowledge entities of an
engineering design process with focus on mechanical product design and DFM knowledge in

context to automation have been elaborated along with knowledge modelling methods.
1.5.2 Informal Process Modelling

Discussion and analysis of various informal (natural language) modelling methods has been
performed in context to knowledge modelling of engineering processes. This includes
methods such as IDEFx series, Design Structure Matrix (DSM), Business Process Modelling
Notation (BPMN), Signposting, Role Activity Diagram (RAD) along with semiformal

modelling languages in the form of Model Based Systems Engineering (MBSE) standards

10



such as UML, SysML to represent complete domain knowledge of a mechanical design

process with manufacturing knowledge for automation with KBE as a holistic approach.
1.5.3 Formal Representation

This includes detailed analysis of formal (machine interpretable) representation in the form of
Frames and Frame based languages, Description Logic (DL) and First Order Logic (FOL),
Schema based representations and Object Oriented (O-O) languages. It also include
discussion and analysis of ontology languages such as PSL, OWL, IDEF5 and rule languages
such as RuleML, Rule Interchange Format (RIF) and Semantic Web Rule Language (SWRL).
The informal or semiformal process model aspects for DEA should map onto suitable formal
standards. The formal representation framework will have well-defined syntax, axioms and
semantics and will be compliant with International Standards for process exchange and
product model definition (Grininger and Menzel, 2003; Pouchard et al., 2005). The execution

of neutral formal representation layer will be similar to the functioning of a KBES.
1.5.4 Development of Process Model

After careful analysis of existing knowledge modelling standards based on standardised
engineering concepts and relationships, along with review of an integrated approach of
existing methods with modifications, a Generative Process Model (GPM-DEA) has been
developed. This has been developed with the aid of literature analysis, industrial and
literature based pilot use cases and comparative analysis of informal/semiformal standards as
per the requirements of DEA for mechanical product design process with DFM knowledge.
This is performed using Drawlo tool, which supports UML/SysML, and IDEFO constructs

along with additional concepts and relationships.
1.5.5 System Development - Neutral Formal Representation of Process Model

The implementation of process model in platform independent and neutral representation as

system development has been performed after comparative analysis of formal representation

11



standards based on the requirements of DEA in context to KBE. The results have shown
OWL/SWRL as a suitable candidate. The ontology development is performed using Protégé
(Horridge et al., 2011) which supports both OWL/SWRL and Topbraid (Composer, 2011) for

OWL.
1.5.6 Experimental Verification

Experimental verification of the developed system of process model with ontologies as
neutral formal representation has been performed with the aid of test use-cases. Important
aspects include testing of generic working, re-usability and traceability of concepts and
relationships such that the coherent and structured model can represent complete domain
knowledge of a mechanical design process with DFM knowledge for automation. The other
aspect involves the accuracy of DEA capability with generative modelling of the detailed
process model through reasoner/inference and query results based on set of developed generic
functions using SWRL and its comparison with specific rule implementation in platform

specific DEA system / KBES such as Advanced Modelling Language (AML) and ParaPy.

1.6 Thesis Structure

Figure 1-3 illustrates the outline of the thesis. The thesis is divided in 8 chapters. Chapter 1 is
the introduction. Chapter 2 provides existing literature review with overview of DEA and
various methods in virtual engineering for DEA. It leads to the identification of the research
gap, which this thesis addresses. Chapter 3 then elaborates on literature analysis with
informal and formal standards for knowledge modelling of engineering design process. This
leads to refinement of the research gap. Chapter 4 addresses the novel aspects of this research
with the help of pilot use-cases collated from both industry and literature. It discusses
experimentation of neutral formal representation languages including ontology language such

as PSL and OWL, rule languages such as RuleML and existing MBSE languages such as

12



UML, SysML with design process knowledge entities. The generative process model for
DEA in the form of GPM-DEA is then developed with the help of pilot use-case analysis and
compiled requirements of DEA. Chapter 5 discusses the implementation of GPM-DEA
schema in OWL/SWRL as the developed method of using ontologies. This is performed as
per the comparative analysis of neutral formal representation standards against the
requirements. Chapter 6 compiles two additional test use cases from literature for
instantiation in GPM-DEA and in OWL/SWRL as proof of concept. Chapter 7 illustrates the
experimental verification by testing the reasoning and inference accuracy of the developed
system with the help of Protégé as supporting tool. The results are compared with the
implementation results of use-case rule outputs inside platform specific DEA system such as
AML and ParaPy. Chapter 8 presents the final conclusion based on discussion, contribution

to knowledge, limitations and possible extensions for future research.
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2 Design Engineering Automation and KBE

2.1 Introduction

The goal of the Product Development (PD) process is to transform customer requirements
into a physical product. A robust PD process needs to achieve optimum product performance
and quality with short lead-time to market and reduced costs (Ulrich and Eppinger, 2012).
Design Engineering Automation (DEA) techniques greatly help solve this purpose. In order
to enhance PD efficiency with DEA, virtual engineering methods were adopted by industries
worldwide (Bernard, 2005; Zhang et al., 2010). It consists of various domains such as CAX
consisting of Computer Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer
Aided Manufacturing (CAM); information systems such as Product Data Management
(PDM)/Product Lifecycle Management (PLM), decision support tools and KBES, with all
systems represented in heterogeneous formats. However, it was realised that interoperability
is one of the key areas of improvement in order to prevent compatibility issues between
different virtual engineering applications and file formats (Bernard, 2005). In order to provide
holistic and complex DEA, the scope of neutral representation of engineering design process
for interoperable product realisation in context to KBE has been recognised. This chapter
provides an overview of various virtual engineering aspects as part of PD. This will lead to

discussion on DEA and KBE with existing models for DEA.

2.2 Engineering Design Process for Product Development

Product Development (PD) process can be stated as ‘a sequence of activities that an
organization follows in order to conceptualise, design and manufacture a product
commercially’ (Ulrich and Eppinger, 2012). PD process can be divided broadly into five
stages as per Ulrich (Ulrich and Eppinger, 2012) — ‘requirements analysis & conceptual

design, systems development & configuration design, detailed design, testing & refinement,
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and production’. The PD process consists of engineering design, analysis for testing and
manufacturing which span all these five stages. The first stage of the engineering design
process is the identification of customer requirements, which are then translated into
functional requirements of the product as design specifications or design intent. The
functional requirements drive the engineering design process which are used to specify
product profiles utilising engineering knowledge and creative thinking (Chen et al.,
2008).The engineering design process is considered to be a set of comprehensive and
knowledge intensive activities depending upon existing engineering knowledge which
consists of bothdesign and manufacturing knowledge (Chen et al., 2008; Peng et al.,
2017).According to Pahl and Beitz (Pahl et al., 2007), engineering design is very complex
and requires a very systematic approach. An engineering design process for PD can be
subdivided into various categories such as conceptual design, embodiment or configuration
design and detailed design (Pahl et al., 2007; Ullman, 2010; Zeng and Gu, 1999). All the

stages are described as follows -
2.2.1 Conceptual Design Stage

The conceptual design stage encompasses high-level concepts to meet design specifications
or design intent as requirements (Pahl et al., 2007; Zeng and Gu, 1999). Concept generation
is very crucial at this stage (Ullman, 2010). Conceptual design process includes basic
building of physical structure of the product guided by design specifications as functional
requirements of the design process or product’s function (Qin et al., 2003; Viola et al., 2012).
The analysis of functional requirements or product’ function is very crucial at this stage as
design specifications can be highly abstract (Wang et al., 2002). Division of functions as sub
functions can be achieved by various ways such as brainstorming (Ullman, 2010). Some
examples of function are - “increase pressure, transfer torque and reduce speed” (Pahl et al.,

2007, pg 31).
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2.2.2 Embodiment Design Stage / Configuration Design Stage

The configuration design stage or embodiment design focuses on the refinement of initial
concepts to product configuration at the component and subcomponent levels along with the
development of design parameters. It greatly assists the designer in concept evaluation and
selection. It also helps in technology readiness by identifying critical parameters (Ullman,
2010). Various methods such as Pugh’s (Pugh, 1991), decision matrix can be used at this

stage for risk and feasibility analysis of generated concepts.
2.2.3 Detailed Design Stage

The detailed design stage focuses on the development of detailed parameters of the product
architecture and structure such as form with the assistance of geometric dimensions and
tolerances, fit as components with parts and assemblies, features and material allocation (Pahl
et al., 2007; Zeng and Gu, 1999). Product evaluation is very critical at this stage before
proceeding to the manufacturing stage (Ullman, 2010). Product evaluation involves
performance analysis of product’s function such as electrical energy, mechanical energy and

thermal energy within the prescribed boundary conditions.

The boundary between all stages of the design process overlaps due to the iterative
nature of the design process. Design for manufacturing (DFM) is very crucial stage of the
design process and mainly comes under configuration or embodiment design although it can
be considered at conceptual design and detailed design stage as well. DFM includes
manufacturing and production feasibility, lifecycle and quality aspects (Wuest et al., 2015).
Thus it includes manufacturing knowledge as feedback or inputs at the design stage, which
may include manufacturing processes for example machining processes such as welding,
drilling and processes such as moulding, casting for the product specification. Similarly,
design for assembly (DFA), design for ergonomics, design for recycling are some of the other

crucial aspects of the embodiment or configuration design stage (Pahl et al., 2007). All
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techniques such as DFM, DFA, design for ergonomics, and design for recycling are part of

DFX techniques for improved productivity of the engineering design process (Elgh, 2006).

Collection and representation of design knowledge with the help of computing is
crucial for all these phases. Computer based data processing in the form of Computer Aided
Design (CAD) is very prevalent among designers. However, routine tasks should also be
taken by a computer to allow designers to focus on new design tasks. The development of
knowledge based systems (KBS) for engineering design can be used as a computer tool for
knowledge modelling and retrieval, which should incorporate both design process and
product knowledge. These systems assist the designer in analysis and optimisation of
solutions by providing decision-making capability (Pahl et al., 2007). It is widely
acknowledged that for knowledge storage and re-use for engineering design, capture and
representation of abstract forms such as high level concepts and function are extremely
beneficial for design evaluation and rapid retrieval of knowledge as query for archive designs
as well as the complete design lifecycle from conceptual design to detailed design (Andrews
et al., 1999; Ullman, 2002). Thus, capture, representation and querying of design intent will
greatly improve the efficiency of the engineering design process as part of PD. Functional
requirements are very crucial to generate artifacts for design optimisation and evaluation
process (Roy et al., 2001). This includes non-geometric knowledge pertaining to the
conceptual design and configuration design stage affecting the topology of the product from
the functional requirements as goals of the design process. Thus, a suitable domain specific
model of engineering design should link decomposed functional requirements of the

engineering design process to the form of the product (Roy et al., 2001).

Figure 2-1 illustrates various stages of design lifecycle with representation methods for

engineering knowledge.
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Figure 2-1: Stages of Engineering Design with Knowledge Representation Methods
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2.3 Product Development: Advancement with Virtual Engineering

Virtual engineering helps transform the physical engineering design process in virtual system
domain at all stages of the product lifecycle. The engineering design, analysis process and the
manufacturing process as part of PD are realised in the virtual world with CAx tools
(platforms) such as CAD, CAE and CAM (Frank et al., 2014; Shintre and Shakir, 2011).
CAE generally consists of CAD and CAM tools along with analysis of CAD models such as
structural analysis, fluid analysis, and thermal analysis depending upon product’s functional

requirements (Cati¢ and Malmgqvist, 2007).
2.3.1 CAD & Geometry Automation: Parametric Modelling

CAD tools allow building and visualisation of product’s geometric shapes based on points,

curves, surfaces, and volumes along with features (Bernard, 2005; Shyamsundar and Gadh,
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2002). The underlying representation in most CAD tools is based on B-Rep and Constructive
Solid Geometry (CSG). They also provide compilation of Engineering Drawings (ED) and
Bill of Materials (BOM) thus illustrating the product structure (Shyamsundar and Gadbh,
2001). CAD provides support during the configuration and most importantly detailed design
stage of the PD process. Updates and enhancements in CAD tools such as CATIA
Knowledgeware provide Geometry Automation (GA) (Amadori, 2012) through parametric
modelling (Bodein et al., 2009), knowledge based CAD (Nomaguchi et al., 2004) and
Knowledge Intensive CAD (KIC) (Tomiyama and Hew, 2000). Parametric CAD systems
utilise Geometric Constraint Solvers (CSG) for parametric modelling (Jubierre and
Borrmann, 2015). They mainly affect geometric attributes in the form of points, lines and
circles as constraints. This allows for modelling of intelligent automation through variant
design in terms of product’ geometric parameters. However, the file format of these CAD
tools enabling design engineering automation (DEA) are in proprietary formats and are still

limited to shape and form variation (Frank et al., 2014).
2.3.2 CAE & Analysis

CAE tools allow the virtual simulation and analysis of 3D CAD models as geometric product
representation (Ulrich and Eppinger, 2012). CAE includes processes such as finite element
analysis (FEA) and computational fluid dynamics (CFD) analysis in the form of thermal
analysis, flow analysis, stress analysis, aerodynamic analysis and kinematic analysis with
CAD model as the master model (Tyapin et al., 2012). Some of the CAE operations include
meshing and applying boundary conditions in order to perform accurate analysis in the form
of preprocessing and postprocessing. CAE provides a major platform during testing and
refinement stage of the PD process. The results of the CAE analysis models are evaluated as
per the formulated functional requirements. However, the transition of geometric product

model from CAD to CAE tools requires transformations due to heterogeneous file formats
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between CAD and CAE systems (platforms) thus limiting the combined advantage (Corallo

et al., 2009).
2.3.3 CAM & Manufacturing

CAM tools allow simulating and performing the production/manufacturing processes as
physical processes for realisation of the product with the help of virtual environment (Corallo
et al., 2009). CAM tools generally include tool paths such as CNC programming and
machining operations, manufacturing methods, tool cutting data such as speed and feed,
clamping, jigs and fixture strategy along with product’s physical properties such as material,
features, tolerances and surface finish (Helgoson and Kalhori, 2012). These may include
operations such as milling, drilling and boring. CAM provides a major platform during the
production stage of the PD process. However, the transfer of knowledge from the CAD/CAE
stage to CAM stage is highly complex due to variation in platform representations (Corallo et

al., 2009; Zhang et al., 2009).

Due to heterogeneity in CAXx tools (platform) representations, there is loss of valuable
knowledge. Thus there is a lack of coherent engineering design knowledge for PD process in
a multidisciplinary environment, which can be re-used (Zhang et al., 2009). In order to
overcome the loss of knowledge in CAx tools, various environments have been devised as
part of Concurrent Engineering (CE). Concurrent Engineering (CE) provides utilisation of
varied knowledge inputs simultaneously to speed up PD process by integrating down-stream
processes such as analysis and manufacturing in the early stage of engineering design
(Chapman and Pinfold, 1999). One example is Computer Integrated Manufacturing
Environment (CIM) to overcome the loss of knowledge between CAD ad CAM systems due
to lack of neutral formats as well as the overall content of CAD knowledge (Natekar et al.,
2004). CIM allows for feature recognition in order to convert from product form and shape in

CAD to manufacturing process planning in CAM using a neutral format such as Initial
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Graphics Exchange Specification (IGES). The feature recognition algorithm is written on top
of IGES for extraction of CAD features to CAM operations. Advancements in proprietary
systems such as Unigraphics solutions UG NX5 also provide integrated CAD, CAM and
CAE systems as part of CE, thus providing a unified platform for engineering design with

rich semantic product data knowledge for cross functional PD (Liu et al., 2010).

Thus in order to facilitate efficient knowledge transfer between CAX tools, neutral formats
such as IGES and STandard for the Exchange of Product model data (STEP) should be
utilised. STEP retains most of the product’s model knowledge while transfer between
different CAD platforms (Pratt, 2001). However, these neutral formats in the form of STEP
mainly represent product’s geometric knowledge pertaining to detailed design and
manufacturing including 3D model but don’t contain other aspects of engineering design

process knowledge covering all aspects of product’s lifecycle (Framling et al., 2012).
2.3.4 Product Data Management (PDM)/Product Lifecycle Management (PLM)

Other attempts in the field of virtual engineering to overcome the loss of knowledge between
different CAx tools are Product Data Management (PDM)/Product lifecycle Management
(PLM) systems. According to John Stark, PLM systems can be defined as follows — ‘PLM is
the business activity of managing a company's products all the way across their
lifecycles,from the very first idea for a product all the way through until it is retired and
disposed of, in the mosteffective way’ (Stark, 2011). The initial versions of PLM systems
were generally referred as PDM systems. Generally PDM systems allow integration of
disparate knowledge between various CAD, CAE and CAM tools (Bruun et al., 2015; Catié
and Malmqvist, 2007). They consist of product geometry knowledge, assembly and
functional relations, analysis and manufacturing knowledge depending upon their
configuration. PLM is like an extension to PDM facilities for more comprehensive coverage

and can also provide workflow automation. Some examples of PDM/PLM systems are
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TeamCenter PDM, Collaborative product development (cPDM) and virtual product
development (VPDM) (Bruun et al., 2015). Similarly, other versions of PLM systems to
address the needs of CE are Product Life Cycle Systems (PLCS), which provide integration
of CAD, CAM, CAE and Product Information Management (PIM) systems thus allowing

coherent flow of knowledge for collaborative environment (Penoyer et al., 2000).

2.3.4.1 Workflow Automation

Workflow automation in context to PLM systems can be performed in tools such as Isight (H
Wenzel et al., 2011). Workflows and their execution logic can be shared and exchanged
between heterogeneous design platforms as platform independent representation using neutral
format in the form of eXtensible Mark-up Language (XML). The building blocks of the
simulated workflows are individual components such as the object parameters, sub processes

and connected components (H. Wenzel et al., 2011).

2.4 Design Engineering Automation - CAx, PDM/PLM
2.4.1 Design Engineering Automation (DEA)

As illustrated, various CAx and PDM/PLM systems fulfill automation techniques for
engineering design process. Automation methods satisfy the following objectives as part of a
PD process - reduce lead-time and costs, improve quality of products and provide variation in
product design process as per changes in customer requirements (Cederfeldt and Elgh, 2005).
Design Engineering Automation (DEA) can be defined as capturing and formalising
engineering design knowledge consisting of a set of building blocks for automated design and
PD processes for satisfaction of customer requirements (Frank et al., 2014). DEA provides
added value by optimisation of PD process and incorporating all types of knowledge for
automation including both product’s geometric knowledge as well non-geometric knowledge

in the form of engineering design process knowledge.
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According to work performed by Cederfeldt & Elgh, DEA refers to ‘Engineering support by
implementation of information and knowledge in solutions,tools, or systems, that are pre-
planned for reuse and support the progress of thedesign process. The scope of the definition
encompasses computerized automation oftasks that directly or indirectly are related to the
design process in the range ofindividual components to complete products’ (Cederfeldt and
Elgh, 2005, Pg 2). DEA can be categorised into two types — information handling (knowledge
representation and retrieval with inference or automated reasoning) and knowledge

processing (Elgh, 2008; Nan and Li, 2012).
The purpose of DEA is to provide support in following areas (Elgh, 2008, 2007) —

e Design synthesis - this includes optimisation of design parameters and product
geometry and decision support for engineering design with the assistance of functional
requirements and manufacturing constraints

e Design analysis - this includes model analysis for testing such as finite element
analysis, geometry preparation for analysis in the form of meshing, preprocessing and
post processing and evaluation of design characteristics

e Plan for manufacture — this includes manufacturing processes for physical production
of the designed parts and components. This may include production methods, sequence
of operations and tooling description such as fixture and jigs

2.4.2 CAx, PDM/PLM for DEA

All CAXx tools such as CAD, CAE, CAM along with PDM/PLM systems comprise main
virtual engineering applications for engineering design process and enabling some aspects of
DEA (Cati¢ and Malmqvist, 2007). However, there is a difference in the knowledge content
of CAXx tools such as CAD systems and PDM/PLM systems. The main strength of CAXx tools
specifically CAD systems is the representation of product’s geometric knowledge as part of

detailed design stage which is a narrow part of PD in its proprietary platform representation
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(Foufou et al., 2005). On the other hand, PDM/PLM systems are tailored to represent
product’s non geometric knowledge in its proprietary format such as requirements analysis,
product function and behaviour and are used as linking or information management system
for product’s geometric knowledge by documenting and managing CAD files, drawings,
CAE and CAM files along with product related documents in different computer formats
(Bruun et al., 2015; Burkett et al., 2003). The most comprehensive usage of PDM/PLM as
database management systems is a common platform for knowledge access and integration
across various CAXx tools and product definitions across different formats (Penoyer et al.,

2000).

Thus, one of the limitations of this existing virtual engineering approach is lack and ease of
integration of geometry kernels as part of CAD systems within a unified PDM/PLM system
representation for DEA (Penoyer et al., 2000). Also, individual automation applications such
as workflow automation using Isight and excel based macros for specific purposes are very
rarely linked to CAx tools or PDM/PLM systems. Another cause of concern of these
individual virtual engineering approach is that the representation of individual CAE and
CAM tools is specific, knowledge management is very rigid with respect to the underlying
platform along with lack of an integrated, unified and structured approach for DEA (Cati¢
and Malmagqvist, 2007).

Another method of addressing the needs of DEA is solved through Knowledge based
Engineering (KBE). As illustrated with the help of Fig 2-2, all CAx tools such as CAD, CAE
and CAM along with PDM/PLM systems provide small isolated islands of DEA in context to
a KBE approach, which provides an integrated and unified approach for DEA (Cati¢ and

Malmqvist, 2007).
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Figure 2-2: KBE with respect to CAx, PDM/PLM (Cati¢ and Malmqvist, 2007, Pg 1)

2.5 Knowledge Based Engineering (KBE)

‘Knowledge Based Engineering (KBE) represents an evolutionary step in Computer-Aided
Engineering (CAE) and is an engineering method that represents a merging of Object-
Oriented Programming (OOP), artificial intelligence (Al) and Computer-Aided Design
(CAD) technologies, giving benefit to customised or variant design automation solutions’
(Chapman and Pinfold, 2001, Pg 905). One of the main objectives of KBE systems is to
reduce the time and cost of product design lifecycle by automating repetitive and non-

creative design tasks (Cooper and LaRocca, 2007; Sandberg, 2003).

A few examples where usage of KBE technology has led to a decrease in product design life
cycle time are demonstrated as follows. In the automotive domain, Chapman and Pinfold
utilised a KBE system (KBES) in the form of Advanced Modelling Language (AML)
(TechnoSoft Inc, 2003) for automation of geometry creation and finite element (FE) analysis
process using meshing and applying boundary conditions (Chapman and Pinfold, 2001;
Pinfold and Chapman, 2001). Pertaining to the aerospace domain, a KBES was employed by
La Rocca and Van Tooren for automation and generation of blended wings and low pressure

turbines (La Rocca and Van Tooren, 2007).

The focus of KBE is knowledge capture and representation of both geometric and non-
geometric knowledge to enable product and process centred automation for all stages of the

engineering design process lifecycle including conceptual design, embodiment design and
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detailed design including the manufacturing phase (Corallo et al., 2009; Prijic et al., 2005).
Traditionally, in design engineering the output of the preliminary and the detailed design is in
the form of a geometric CAD model directly created from requirements or problem
definition.KBE as a design method captures product and process-based data and helps in
building a virtual prototype in a system which encapsulates rules, requirements, product
attributes, features and rationale for building a geometric model along with downstream
processes such as material selection for static and dynamic analysis, and manufacturing
capability enabling complex design automation. It enables generative modelling along with
feature based parametric modelling and reasoning mechanism by acting as an expert system
(Cooper and LaRocca, 2007; La Rocca and Tooren, 2012). KBE adds a major dimension also
referred to as product decomposition (Calkins et al., 2000) and helps in developing a
complete repository of design engineering knowledge for efficient product design &
realisation process.Thus it gives options to the designer to test the geometric model for

realisation more efficiently due to the availability of a complete knowledgebase.

A system implementation of KBE can be defined as ‘the use of dedicated software language
tools in order to capture and re-use product and process engineering knowledge in a
convenient and maintainable fashion’ (Cooper and LaRocca, 2007). A system implementing
KBE is dynamic such that it offers true engineering automation including application
development, geometric modelling, application deployment and tools integration (Calkins et

al., 2000).
2.5.1 KBE and CAx, PDM/PLM for DEA

KBE as an area of artificial intelligence (Al) provides a unified and integrated approach for
complex DEA and effectively combines CAx and PDM/PLM automation facilities along with
assistance in knowledge re-use and decision making (Zhang et al., 2009). The formal

representation in a KBES performs DEA with various reasoning mechanisms, which can vary
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such as rule-based reasoning and case-based reasoning. A successful KBE implementation
depends upon various stages — knowledge acquisition, knowledge representation and
reasoning (Zhang et al., 2009). Thus, KBE offers enrichment of CAD models with non-
geometric knowledge and also assists knowledge management (KM) with knowledge
acquisition and representation of engineering design knowledge (Cooper et al., 1999). One of
the distinct advantages of KBE approach towards DEA is generative modelling capability,
which ensure that engineering design knowledge is generated as instantiated data from
requirements analysis by explicit declaration of codified knowledge. It also offers multiple
view-points such as design, analysis, manufacturing, ergonomics within a unified

environment (Bermell-garcia et al., 2007).

Thus KBE tools capture design rules with much higher granularity in contrast to PDM/PLM
systems as they combine the knowledge content of CAx and PDM consisting of both
geometric and non-geometric knowledge. The most important aspect of a KBE approach for
DEA is the integration of geometry kernel closely integrated with non-geometric knowledge
(Bermell-garcia et al., 2007; Cati¢ and Malmqvist, 2007). This includes product’s form and
geometry in the CAD environment, topological variation in product design with both
parametric and generative modelling and non geometrical knowledge which is generally
contained in PDM systems thus providing a systematic approach for knowledge acquisition,

re-use for automation and efficient decision making (Sandberg et al., 2017; Sorli et al., 2012).

Generative modelling is one of the most important aspects of DEA with KBE
approach. KBE as a design method not only enables generative modelling at the detailed
design stage with GA but also at the conceptual and embodiment design stage (Isaksson,
2003). This provides flexibility in design variation at all stages of engineering design, which

is not possible with any CAXx tool. The generative modelling capability captures both product
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and engineering design process knowledge and can be used for DEA and design evaluation

based on the product’s functional requirements ‘on the fly’ basis (Isaksson, 2003).

Thus, KBE approach combines capabilities of CAx tools and PDM/PLM systems for
complex DEA enabling knowledge re-use and decision making in a modular and integrated

environment (Isaksson, 2003).
2.5.2 Achieving DEA with KBE - Integral Features

Traditional DEA approaches follow procedural style of programming where the knowledge
or the design intent from a source is hard coded and integrated to a system or an application
(Prasad, 2006). In procedural programming style the sequence of steps has to be explicitly
mentioned. However, KBESoffer slightly different approach to conventional DEA. They
follow declarative style as against a purely procedural style (Cooper and LaRocca, 2007;
Prasad, 2006). This means that the sequence of steps for a process in the form of design intent
doesn’t need to be explicitly mentioned during execution. The system or the application will
automatically determine which activity to implement based on the requirements. KBES offer
functional coding style which states that the code returns values to the user instead of simply
modifying or updating the model (Cooper and LaRocca, 2007). KBES follow Object-
Oriented(O-0) representation with high probability of embedding LISP based dialects
(Cooper and LaRocca, 2007; La Rocca, 2011; Rocca, 2012)along with being dynamic, which
means the formal design intent will update, and new concepts and relationships are inferred

as changes at runtime. Conventional DEA is not dynamic in nature.
Some of the integral features of KBES are listed as follows -

e Functional and declarative style as opposed to pure procedural style in conventional

DEA — it supports both declarative and procedural paradigm

e Dynamic data types

28



¢ Runtime value caching and Dependency tracking
e Demand driven

e Generative modelling

e Tight linkage with geometry

e High level indicating that a small amount of code enables manipulation of large number
of objects as being opposed to problem specific. This enables generic and re-usable
code with instances as compared to limited re-use of hard coded knowledge in

conventional DEA

e Knowledge models are enriched with process and product knowledge as compared to

specific domain in conventional DEA
(Cooper and LaRocca, 2007; Prasad, 2006, 2005; Rocca, 2012; Van der Velden, 2008)

There are a lot of crucial differences between CAD centered automation applications such as
CATIA Knowledgeware and Siemens NX Knowledge Fusion and pure KBE based DEA.
CAD centered automation lays emphasis on alteration of product models primarily through
geometric features based approach for pure geometry automation (GA). CAD based
automation doesn’t include function and behaviour of the product (Kopena and Regli, 2003;
Umeda and Tomiyama, 1997). Furthermore, the design intent in a parametric CAD for GA
doesn’t capture the complete design intent (Ullman, 2002). This reduces the creativity for
innovation based on ‘what-if” analysis of the design intent (Jubierre and Borrmann, 2015).
This differs from the pure KBE based DEA through a knowledge based approach (Colombo
et al., 2014; Prasad, 2006)where knowledge is managed through high level of abstraction
encapsulating engineering rules based on logic, product structure, function and behaviour.
KBESor KBE applications can deal with both geometric and non-geometric knowledge of the

product as part of the system and can incorporate design process knowledge (Prasad, 2006;
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Skarka, 2007). CAD based automation applications like CATIA Knowledgeware and
Siemens NX Knowledge Fusion do provide purely GA facilities through a platform specific
code but don’t enable KBE features such as full generative modelling, dynamic data typing,
run time caching and dependency tracking (Cooper and LaRocca, 2007). For example,
CATIA v5 Knowledgeware uses C++, visual basic and component application architecture
(CAA) language in order to provide GA facilities (Prijic et al., 2005). In the research of Lin
(Lin et al., 2013), CATIA was used as a platform to enable parameter based design space
exploration and automation by providing variable input parameters to the geometric form of
the product. In case of a change of system the platform specific code will have to be re-
written, thus limiting the abstraction and re-usability of the engineering process knowledge

along with increased maintenance (Sanya and Shehab, 2014).

With recent advancements, web based approach has gained acceptance in the KBE
community for information sharing and exchange (Liu and Xu, 2001). It also offers
advantages such as open architecture, uniformity in information modeling and O-O structure
(J Kulon et al., 2006).

2.5.3 KBE lifecycle and Methodologies

According to Stokes, KBE lifecycle consists of the following 6 stages(Stokes, 2001) —

« Identify: Identification of technical and business requirements for DEA for providing an

initial specification of a KBES
« Justify: Assessment of existing processes for implementation of KBE for DEA benefits

and risk analysis

« Capture: Knowledge acquisition in the form of input of engineering design process and
product knowledge collected from domain experts, documents such as design
guidelines and manuals for conversion to structured formal representation. It caters to

the needs of the domain experts for validation of domain knowledge as informal model
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« Formalise: Development of a framework for conversion of the structured captured
informal knowledge to a formal representation model (machine readable for system
interpretation) with neutral semantics for interoperable usage through open standards.

This ensures re-usability of the domain knowledge as neutral formal representation

* Package: The neutral formal model is used for compilation and execution as the source
code in a KBES or KBE application. This phase covers the transformation of the
neutral formal representation to the platform specific representation inside the KBES.
In order to validate the functioning of a KBES, running queries and reasoning as

execution of the source code is performed to demand data from the KBES source code

« Activation: Verification of the installation of KBES for multiple users. Documentation,
training support and infrastructure may be provided for effective deployment within the

organisation

There are various methodologies for implementing KBE. A methodology termed as
Knowledge-Oriented Methodology for the Planning and Rapid Engineering of Small-Scale
Applications (KOMPRESSA) with its diagrammatic ways of capturing knowledge in the
form of a component diagram was initiated for smaller KBE applications (Bancroft et al.,
2000; Chapman et al., 2007). In Knowledge Capture Methodology (KCM), capturing and
structuring of knowledge is performed from a designer’s point of view. It breaks down the
product knowledge into parts, assemblies, features and the relationships between the
geometric features and the components to formulate product semantics (Chapman et al.,
2007; Terpenny et al., 2000). Both KOMPRESSA and KCM were targeted for product
modelling and automation. Knowledge Nurture for Optimal Multidisciplinary Analysis and
Design (KNOMAD) as a methodology laid emphasis on activity diagrams for processes and
representation of multidisciplinary knowledge including design and manufacturing (Verhagen

etal., 2012).
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Methodology and Tools Oriented to Knowledge Based Engineering Applications (MOKA)
(Skarka, 2007) as a methodology was initiated for larger applications. It encapsulated both
product and process based modelling. Rapid Application Development (RAD) (Beynon-
Davies et al., 1999) is another methodology which directly encodes the knowledge on to an
application with the help of packaging stage whereas other methodologies such as
KOMPRESSA, KCM and MOKA build an independent knowledge book or the knowledge
model external of the application and then map the knowledge model on to the KBES or a
KBE application. This is the combination of formalise and package stage in the KBE

lifecycle.

Thus RAD provides a quicker way of achieving an end KBE application by directly
packaging the captured knowledge whereas other methodologies such as KCM,
KOMPRESSA and MOKA are slightly more time consuming as they develop anindependent
knowledge model with the help of formalise stage and then focus on translation to the end
KBE application or KBES in the packaging stage. However, the advantage of developing an
independent knowledge model is the translation of the independent knowledge model to
multiple end KBE applications through its neutral formal representation enabling re-use of

the domain knowledge both at human and system level.

Except for the fundamental difference between RAD and KCM, KOMPRESSA and MOKA
which allow building of an independent knowledge model as compared to direct population
of knowledge into the end KBE application in RAD, methods of capturing the structuring
knowledge varies slightly between all three methodologies.Careful considerations should be
adopted while implementing these methodologies such as the end KBE application should
reflect continuous changes with the independent KBE model being the master model.
Another methodology is referred as CommonKADS, which stands for Common Knowledge

Acquisition and Documentation Structuring or Common Knowledge Acquisition and Design
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Support (Schreiber et al., 2000). It defines six modules — organisation, task, agent,

knowledge, communication and design models.

All these KBE methodologiesin the form of MOKA, KNOMAD, KCM, KOMPRESSA,
CommonKADS and RAD offered major advantage in terms of abstraction and decomposition
of knowledge in different forms, as discussed, with the help of Table 2-1, before the end KBE
application development and provide more functionality to knowledge management. As
observed from Table 2-1, all the methodologies have different ways of capturing data for
knowledge modelling and aid in process improvement through diagrammatical and visual
ways.All of these methodologies were successful only in knowledge acquisition and analysis

stage for engineering design process improvement.

Table2-1: Existing KBE methodologies and area of focus

Existing KBE Methodologies Focus for Knowledge Modelling

MOKA Focus on both product and process modelling.
ICARE forms for knowledge capture and MML
for formalised knowledge

KNOMAD Activity diagrams for processes and
representation of multidisciplinary knowledge
focusing both on product and process modelling

KCM Product modelling in the form of parts,
assemblies and features

KOMPRESSA Product modelling in the form of diagrammatic
ways of capturing knowledge such as component
diagrams
RAD Product modelling and direct implementation of
knowledge on to the application
CommonKADS Focus on both product and process modelling

though UML notations and diagrams

MOKA, being one of the most comprehensive, lays emphasis on two stages of the KBE
lifecycle as shown in Figure 2-3. First it captures knowledge in an informal manner in the
form of ICARE (lllustration, Constraints, Activities, Rules and Entities) and then converts it

to a formal manner. MOKA utilised Unified Modelling Language (UML) notation and
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extended it to develop Moka Modelling Language (MML) as a means of producing a formal

knowledge model (Chapman et al., 2007; Stokes, 2001).

CommonKADS also utilises object-oriented (O-O) modelling and uses UML notations such
as class diagrams, use-case diagrams, activity diagrams and state diagrams in order to
represent domain knowledge (Schreiber et al., 2000). Thus both MOKA and CommonKADS
utilise UML based notations for knowledge representation. Even CommonKADS utilised
similar stages of developing an informal based model initially and then developing the formal

implementation.

1. Identify

= Study the organizational need
- Assess technical feasibiliny

6. Activate
*Iniroduce and Use
- Maintain

5. Package
. - Develop application
= Analvee the risks

- Collect and Structure =Develop Product Model an
Process Model

3. Capture 4. Formalize ]
d

the raw knowledge

—
B
o~

KBE
2O A 'I‘Il::tion
Model PR

Figure 2-3: MOKA methodology in KBE lifecycle (Lohith et al., 2013)
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Various tools such as PCPACK can be used which help in building inter-connected
knowledge representation models. PCPACK supports knowledge capture, analysis and
modelling of knowledge using both MOKA and CommonKADS methodology (La Rocca,

2011; Nan and Li, 2012; Schreiber et al., 2000). CommonKADS offers major advantage in
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terms of adding structure to knowledge capture and representation. However, it lacks the
accuracy and specialisation pertaining to knowledge capture and representation for

engineering design (Sanya and Shehab, 2014).

In spite of strengths in managing engineering knowledge throughout the product lifecycle
MOKA was revealed to have a few shortcomings e.g. MML did not comply with Object
Management Group (OMG) requirements (Abdullah et al., 2005), the formal knowledge
model could not be mapped to a KBES (KBE system) application to assist in process

automation (Chapman et al., 2007; Prasad, 2006).

This piece of research initially intends to bridge this gap in correct syntactical and semantic
mapping of an informal process model capturing all knowledge types and relationships of an
engineering design process to a platform independent and neutral (interoperable usage
through open standards) formal representation framework. It is very important to maintain
traceability between the informal process model with captures the engineering design
knowledge and the formal representation of the informal model (Verhagen et al., 2012). The
formal representation should be computer readable and understandable (Klein et al., 2014)
and fulfill the requirements of design engineering automation (DEA) as part of this research.
The neutral formal representation framework of the process model will enable DEA similar
to a KBES implementation with the help of suitable inference and querying mechanism as

execution of its code.

2.6 Engineering Design Process Decomposition: Classification of

Knowledge

According to ISO 10303-49, process can be defined as ‘a particular procedure for doing
something involving one or more steps or operations. The process may produce a product, a

property of a product, or an aspect of a product” (Michel, 2005). Engineering design process
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as a part of PD can be stated as a ‘process of converting design requirements into verified
solutions’ (Isaksson, 2003). In the context of this research the engineering design process for
product realisation should cover all stages of its lifecycle.All concepts required for modelling
engineering design process will be discussed in this section. The type of specific concepts of
the design process decomposition such as activity, inputs, outputs, resources, engineering
rule, rationale, product function and behaviour will govern the selection of suitable formal

representation techniques for the developed process model.
2.6.1 Engineering Design Activity

An engineering design process consists of various activities for creation and evaluation of
products by changing their state (Isaksson, 2003). Design process activities consume some
inputs and produce outputs with the help of resources and methods in order to convert
functional requirements to verified solutions(Ding et al., 2009). All design process activities
are highly interdependent and require knowledge such as inputs, outputs, resources and
methods in the form of rules from other dependent design activities in order to be completed
efficiently (Zhang et al., 2013). Each activity can be associated with an ID for system
interpretation. Inputs can be defined as any entity that are consumed or modified during an
activity and converted to outputs. Similarly, outputs can be defined as entities produced by an
activity (Ding et al., 2009).Resources can be defined as the entities that provide support for
the completion of an activity (Ding et al., 2009; Zhang et al., 2013). The methods govern the
conversion of inputs to outputs and can be represented with the help of engineering rules
based on logic and mathematics thus governing the conversion of inputs to outputs during an
activity.

2.6.2 Engineering Rules

Engineering rules containing both design and manufacturing rules are often described by

containing two important parts: product and process knowledge (Stokes, 2001). Product rules
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contain clauses or criteria for relationship between different components of a product.
Process rules contain criteria for different task sequence and selection based on requirements

or constraints.
According to La Rocca, 5 different types of product rules can be described —

e Logic rules: rules based on logical statements and also containing conditional ‘If-Then’

and ‘If-Then-Else’ expression
e Math rules: contain mathematical formulae and comparison symbols

e Geometry handling rules: parametric and geometry manipulation rules governing the

dimensions as size of the product

e Configuration selection rules: combination of logic and math rules governing the
topology of a product. This includes the positioning of the product as position co-

ordinates and orientation vector in the virtual space

e Communication rules: rules governing communication of system code with external

formats (La Rocca, 2011)
Similarly, La Rocca describes process rules in the following ways —

e Process sequence: rules governing process sequence steps and input-output

relationships

e Optimization: rules defining optimisation of process through functionality and

constraints. This includes interdependencies between tasks  (La Rocca, 2011)

As engineering rules are often based on logic, the type of logic will govern the suitable
representation technique. According to logic, engineering rules can further be classified as

one of the following types —

e Transformation — it includes simple statements that links to other statements and may

thus be a statement declaration
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e Derivation — it includes infer on facts within a statement and may thus be an
implication declaration

e Reaction — it includes both trigger and production rule in the form of antecedent and
consequent. Trigger rules have events in their antecedents and production rules have
facts in their antecedents. ‘If” part is called an antecedent and ‘Then’ part called a
consequent and they are linked by logical operators such as ‘AND’ and ‘OR’.
Production rules can include nested facts in both antecedent and consequent. In order
for the consequent to be true the antecedent need to be true. This is the reason for the
antecedent and consequent facts based statement to be named a production rule. An
example is —

Antecedent Consequent

IF (material\l:' Aluminum) THEN (Welding metho‘g = DC welding)
(Reijnders, 2012)

For this thesis with focus on DEA, the engineering rules will contain all engineering design
rules based on logic and math along with heuristic rules, production rules and process rules.
These may be geometry handling rules as well as configuration rules and process sequencing

and optimization rules (Chapman and Pinfold, 1999). They can be broadly classified as —

e Logic based Rules - rules based on engineering logic. These rules can include
production rules, geometry rules, configuration rules and process rules. The process
rules contain both process sequencing rules as well as optimization rules.

e Math based Rules - rules containing mathematical symbols and formulae. These rules
can also include of production rules, geometry rules, configuration rules as well as
process rules containing both sequencing and optimization rules.

e Production Rules - all statements in the form of ‘If’, ‘Then’ and ‘Else’ containing an

antecedent and consequent linked by an operator such as ‘AND’ and ‘OR’. These can
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be either logic based rules and math based rules. Some rules can also overlap as
demonstrating features of geometry rules, configuration rules and even production
rules. In fact, all production rules are either geometry and configuration rules but they
are expressed in ‘If’, ‘Then’, ‘Else’ representation.

e Heuristic Rules - rules not based on logic. Sometimes, engineering rules are rules of
thumb and not based on logic statements. However, they may be geometry rules,
configuration and even process rules based on rule of thumb. Heuristic rules are thus
disjoint with logic rules, which means a rule can either be a heuristic rule or a logic rule

but can’t be both.
2.6.3 Function and Behaviour: Engineering Design Process

In order to create an efficient DEA system, it should be able to capture and represent the
design intent in the form of process structure, function and behaviour and in context to the
product (Brunetti and Golob, 2000). In engineering design process, a model or a framework
should include function, behaviour, structure (F-B-S) and all design activities for a complete
process description (Gero and Kannengiesser, 2007a). Alternatively, in order to describe an
engineering design process for realization of a physical product, its function, behavior and

structure (F-B-S) need to be defined (Alvarez Cabrera et al., 2009; Tomiyama et al., 2013).

‘Function’ is defined by an effect of a product or a component (Szykman et al., 2000a) or the
purpose of the product or a component (Foufou et al., 2005; Patil et al., 2005). Thus
‘Function’ can also be described as what the object is for (Gero and Kannengiesser, 2004).
‘Behaviour’ can be described as a method of how a product or a component implements its
function (Foufou et al., 2005; Patil et al., 2005). It can also be described as what the object
does as deduced from its structure in the form of attributes (Gero and Kannengiesser, 2007b).
F-B-S as function-behaviour-structure are artifacts that offer extremely high value during the

conceptual and preliminary design phases (Erden et al., 2008). Regarding function in context
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to engineering design process, it can be defined as a requirement that a design process is
going to perform with the change in state of the product. Fulfilling functional requirement as
product’s function is one of the key aspects of a product design process (Bluntzer et al.,
2009). Similarly, process behaviour can be stated as a method or utilisation of how the design

process is going to achieve its function (Reddy et al., 2015).

If we consider either product or process as an artifact and then define function and behaviour,
we can state function as what the artifact is supposed to do or the satisfaction of artifact’s
requirements. The behaviour can be stated as a method of how the artifact performs its
function (Fenves et al., 2008). The process function can be stated equally as functional
requirement of the design process. The function or functional requirement of a process
governs the flow of energy, material, inputs and outputs of a process (Wang et al., 2002).Both
function (as functional requirements) and behaviour along with product parameters and
manufacturing knowledge have also been modelled as artefacts in context to DEA systems
for all stages of design lifecycle from conceptual, embodiment to detailed design (Bhaskara,

2010; Brunetti and Golob, 2000; Chulvi et al., 2007; Roy et al., 2001).
2.6.4 Product Knowledge for Engineering Design Process

‘Feature’ can be described as associated knowledge of a component which aids in identifying
its function (Patil et al., 2005). Feature can also be defined as ‘an information unit
representing a region of interest within a product (Brunetti and Golob, 2000). ‘Form’ can be
defined as a physical layout of a component (Szykman et al., 2000a). ‘Fit’ describes the
relationship of a component with other components and assemblies (Pinfold et al., 2008).
Form, fit and features constitute the structure of a product. ‘Form’, ‘Fit’ and ‘Features’ entail
rules and constraints governing product geometry, structure and material. A key
characterization of product’s state can be stated as the change in attributes of a physical

product (Alvarez Cabrera et al., 2009). Correlating F-B-S we can state the behaviour of the
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object is dependent upon its attributes and helps in achieving the function of the object.

Behaviour of the product and its function alter its attributes indicated by change of state.

‘Rationale’ or ‘Design Rationale’ can be described as reasons behind design decisions
(Medeiros et al., 2005). ‘Rationale’ can also be stated as the reason or explanation behind the
design and specification of an artifact (Poorkiany et al., 2016). It includes the background
knowledge which helps in reasoning and decision making for a particular design choice
(Regli et al., 2000). For a process-based system, design rationale is descriptive capturing
issues and available options illustrating design progress aiding in design process decision-
making. In this research, Design Rationale as a concept or knowledge type is captured in a

process-oriented approach.

2.7 Knowledge Modeling for Engineering Design Process

Knowledge modelling as an integral part of knowledge management is a critical activity in
development of a knowledge based system (KBS) or a framework which helps in fulfilling
DEA through KBE(Isaksson, 2003; Milton, 2007; Schreiber et al., 2000). Knowledge
modelling process should ensure that the complete engineering knowledge of a product
design process is captured, represented and processed efficiently. As discussed earlier,
knowledge acquisition will be performed with mechanical design process as the main focus
along with inclusion of both geometric and non-geometric knowledge of the product

including process function, behaviour and structure (F-B-S) (Tomiyama et al., 2002).
2.7.1 Systems Engineering (SE)

Systems engineering can be defined as a multidisciplinary approach towards system
specification, design, validation and verification(Krasner, 2015). The function of Systems
Engineering (SE) is to ‘guide the engineering of complex systems’ (Kossiakoff et al., 2011).

Thus SE deals with interrelated components, subsystem and parts, which form a complex
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system and interact with each other and external elements in order to fulfil the system
objective.A number of lifecycle models were initially developed for systems engineering
purposes in the form of design, development and testing of the system such as Waterfall,
Spiral and Vee models. Waterfall and the spiral model have been extensively used with
modifications in various software development projects whereas “Vee” models have been
used with variations in the systems engineering and development. Most of the existing SE

standards have evolved from Department of Defense (DoD-MIL-STD 499) (Estefan, 2007).
2.7.2 Model Based Systems Engineering (MBSE)

Model based systems engineering (MBSE) is a model centric approach which helps
understand the complex system behaviour, relation of requirements to functions and provides
a complete view of the system model with the help of formalised and semantically rich visual
modelling languages and tools(Krasner, 2015). According to International Council on
Systems Engineering (INCOSE), MBSE can be defined as ‘the formalized application of
modelling to support system requirements, design, analysis, verification and validation
activities, beginning in the conceptual design phase and continuing throughout development
and later lifecycle phases(INCOSE, 2007). Some of the important MBSE approaches are
Object Management Group (OMG) visual modelling languages and standards in the form of
UML and Systems Modelling Language (SysML). SysML was developed with collaboration
between OMG and INCOSE and derived a lot of features from UML version 2.0. INCOSE
object-oriented systems engineering method (OOSEM) uses a top down model based
approach based on OMG SysML standards(Estefan, 2007). Model Drive Architecture (MDA)
was an approach initiated by OMG in order to drive interoperable and re-usable architectural
frameworks for systems. Dov Dori’s Object-Process Methodology (OPM) is another crucial

formal paradigm to model based systems development and support(Dori, 2002).
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2.7.3 Utilisation of SE and MBSE for Engineering Design: Product Development

Vee Model was utilised for knowledge capture of design process for complex product

development by (Woestenenk et al., 2011). Itis illustrated with figure 2-4.

T \ Test in 4 J.r ]

' | Define System
\| Requirements

Full System /
Operation and | /
Verification |

Allocate System Verification of

Functions to

Detail Design of Verification of
Y\ Components Components |/

Figure 2-4: Vee Development for Engineering Design Process (Woestenenk et al., 2011)

As it can be observed, various steps include formulation of system function and requirements,
detailed design and then verification of both systems and detailed components. The validation
steps as testing are in synchronisation with the initial step of functional requirements analysis
and detailed design. Some of the crucial points while following the Vee development process

for engineering design (Woestenenk et al., 2011) are —

e Appropriate methods and language for capture of the complete engineering design
knowledge in terms of concepts, decomposition and relations

e Capture and representation of functional requirements and structural decomposition for
high level models along with inclusion of design activities, components and product
parameters for detailed models

e A mechanism or a method to define and populate the knowledge models indicating the

flow of information from functional requirements through to design activities and

43



product parameters which can be applied for generic use-cases and can be tracked in
context of wider engineering design domain

e An equivalent machine interpretable formal representation of high level and detailed
models for providing automation in engineering design along with a tool that can

support the updating and modifications in the developed models

Thus the knowledge capture and representation stage for development of process model for
DEA with KBE approach will adopt principles of “Vee” development model stages as an

integral part of MBSE.

2.8 Existing Models and Frameworks for Engineering Design and

Manufacturing Processes enabling DEA - KBE perspective

Many frameworks and applications exist for automation purposes in PD cycle. Most of them
focus on product modelling and generation through models and framework along with
various specific aspects of engineering design, analysis and manufacturing processes.
Interestingly, none of the methodology or framework provides capturing of a generic and re-
usable process and product domain knowledge, which can be utilised for developing a KBE
application (Verhagen et al., 2012). Some of the crucial frameworks and models that have
been developed for product development and addressed for knowledge based design and

DEA purposes are discussed here.

Table 2-2: Existing Models and Frameworks for Design Engineering Automation (DEA)

Model / Framework - DEA Description References
Design and Engineering | In addition to KBE methodologies in the form of MOKA | (Curran et al., 2010;
Engine (DEE) as discussed earlier, DEE is another model, which involves | La Rocca et al.,

multidisciplinary design optimization approach (MDO). It | 2002; La Rocca and
includes of three modules — design process optimisation | Van Tooren, 2007;
module, multi model generator (MMG) and detailed | Reddy et al., 2015)
analysis module. Thus, DEE provides improved facilities
as compared to MOKA by including detailed analysis and
MDO and laid the foundation for KNOMAD
methodology. However, it offers some limitations by not
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providing a method for knowledge capture and
formalisation of captured knowledge along with its
delivery in the mainstream processes.

Linked knowledge in
manufacturing, engineering
and design for  next
generation production

(LinkedDesign)

Linkeddesign project focussed on both KBE and GA based
DEA. They explored various methods of knowledge
acquisition and codification as formal representation of
engineering knowledge with MOKA methodology as the
basis and UML based product representation. One of the
key focuses was identification of neutral formal
representation standards with preserved semantics, which
can represent the engineering knowledge as domain
knowledge for DEA that can be re-used by both KBE
applications such as AML as well as CAD based GA
applications such as Siemens NX KF and CATIA
Knowledgeware. For knowledge codification as neutral
formal representation, various standards were identified
such as STEPstandard as an I1SO 10303 with focus on
Application Protocol (AP) 242, XML representation of
AP242 and ontology / rule languages such as Web
Ontology Language (OWL)/Semantic Web Rule Language
(SWRL) and Rule Interchange Format (RIF). A major
contribution of the Linkeddesign project was the
recommendation of RIF for neutral standard representation
and exchange of engineering rules. However, it was not
demonstrated that an engineering design process could be
represented in RIF and whether the process model is
relevant for DEA along with a requirement to further
validate RIF. OWL/SWRL was identified as a strong
possibility of formal representation or codification of
engineering knowledge with preserved semantics.

(Colombo et al.,
2014; Litzenberger
et al., 2012; Mocan
et al., 2015; Perales

Reijnders

Post MOKA, another contribution was made by Rejinders
in developing platform independent and formal
representation of engineering design knowledge for
aerospace industry for DEA with a KBE approach using a
combination of OWL, RIF and MathML using a
commercial implementation tool Allegro Graph based on
Allegro Common Lisp platform. Although product and
process knowledge was represented, the main focus of the
captured and represented knowledge was based on
engineering rules for product design. MOKA ICARE
forms were used as informal representation with the
corresponding platform independent formal representation
of rules in RIF-Production Rule Dialect (PRD) and
Content MathML. Although it offered successful
formalisation of design knowledge, the predicates of the
rules such as the antecedent and the consequent couldn’t
be queried due to integration between RIF-PRD and OWL
leading to loss of contextual relevance of rules with co-
related knowledge. It was also recognised that single rules
related to an object or a process were easily modelled, but
multiple rules were difficult to implement.

and de la Maza,
2015)
(Reijnders, 2012;

Van Tooren et al.,
2003)

Sanya and Shehab

Following the MOKA methodology, Sanya and Shehab
performed work for the aerospace industry for
development of platform independent knowledge models
using OWL/SWRL to formalise the design knowledge
with Protégé as a tool. The building of platform
independent knowledge models for DEA with KBE
approach also helps in building of dynamic, portable and
adaptable systems and supports re-usability of knowledge.

(Sanya et al., 2011;
Sanya and Shehab,
2015, 2014)
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Although the knowledge model was based on functional
requirements as the basis, the focus was on design
parameters, constraints and rules for specific aerospace
components such as compressors and turbines based on
feature and shapes such as sleeve, panel and flanges. It
also recognised that using semantic web based languages
such as OWL ontology for DEA with a KBE approach,
there was a lack of standard method based on a set of
activities which would deploy the OWL model for use in
KBE applications with a lack of widely adopted ontology
development for engineering design and DEA. It was also
recognised that there was lack of research between
ontology development and engineering design.

J Kulon;: Hot Forging
Process

A KBE model for automation of hot forging process with
focus on the product model was developed by. In order to
include relevant product knowledge, the model included
design rules, production rules, and material information.
The automation application method consisted of an
integrated relational database over the web browser with
requirements, design rules and product modelling key
concepts such as components, material and manufacturing
rules and complex interdependencies within the domain
concepts. The visualisation of the product geometry and
structure was done over the web with the help of Virtual
Reality Modeling Language (VRML). However, the
design and production rules pertain to product
functionality, structure and behaviour instead of process-
centred approach.

(J Kulon et al,
2006; J. Kulon et
al., 2006; Qin et al.,
2003)

Adaptable Methodology for
Automation Application
Development (AMAAD)

A KBE system application for aerospace design and
analysis process was developed in a commercial
environment based on MOKA and CommonKADS
methodology. The AMAAD methodology focused on a re-
usable, generic and high-level model. It laid emphasis on
object-oriented (O-O) UML based notation and Integrated
Definition for Functional Modelling (IDEFO) notation as
part of agile development with MBSE approach. It
involved knowledge acquisition and knowledge modelling
after requirements specification before proceeding to
system development and validation. The output of the
developed system could be integrated with CAD
architecture through platform independent and neutral
format. However, a major limitation was it didn’t provide
a structured method to conduct the individual and detailed
activities along with association of these activities with
complex system working and its attributes required to
achieve DEA with a KBE perspective

(Van Der Velden et
al., 2012; Van der
Velden, 2008)

2.9 Synthesis and Findings of DEA Review

MOKA methodology focused on development of neutral formal representation of the domain

knowledge in the form of ICARE forms for the development of an independent model of the

engineering design process knowledge at the system level or machine interpretable level for

DEA. It recommends XML as the basis for development of neutral model for system
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interpretation of the informal model but doesn’t provide a detailed method for developing the
neutral model (Stokes, 2001). The neutral formal model will be the basis of the software code
as the source code of a KBE application or tool. This is one of the research gaps that this
research will satisfy by providing a detailed method for development of a neutral formal

process model for DEA with MOKA methodology as the basis.

As per Wagner (Wagner et al., 2003, 2001) the problem in knowledge acquisition and
modelling in context to an expert system for automation, is the method of acquiring both
structured and non structured domain knowledge for decomposition into fragments and
representing it in the appropriate computer format for example an expert system shell. As
KBES are expert systems with geometry kernel for the engineering domain, knowledge

modelling is extremely critical for DEA in context to KBES.

KBES allow integration of rule-based design, geometry manipulation and computational
capability in the form of forward and backward chaining as inference or reasoning
mechanism for knowledge processing, which differentiates KBES from traditional CAD and
expert systems and allows KBES to combine their individual capabilities for complex
problem solving (La Rocca, 2011; Rocca, 2012). As stated earlier, the main contribution of
MOKA methodology was the capture stage through ICARE forms and formalise stage
through MML as visual representation. It tried to address automatic generation of KBES
source code from MML as proof of concept for preliminary analysis even though MML
didn’t comply with OMG requirements (Abdullah et al., 2005). As PCPACK can be used for
MOKA methodology requirements, PCPACK was used as a knowledge modelling and
representation tool for MML diagrams and produced an internal XML representation as
neutral formal representation for conversion to the source code in a KBES. However issues
were encountered for mapping of the neutral formal knowledge model to a KBES such as

lack of semantic clarity of XML, which causes multiple translators to interpret the XML
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based neutral formal knowledge model (La Rocca, 2011). Also, lack of focus on other
knowledge representation (KR) for development of formal models was a major shortcoming
of MOKA which can lead to knowledge accessibility and re-use issues (Curran et al., 2010;
Verhagen et al., 2012). Thus, the formal knowledge model from MOKA as MML was unable

to assist in DEA using KBE methodology and application (Chapman et al., 2007).

KNOMAD as a methodology tried to integrate multidisciplinary knowledge for design
optimisation and DEA (Curran et al., 2010). The various steps include — (K)nowledge
Capture, (N)ormalisation, (O)rganisation, (M)odelling, (A)nalysis, (D)elivery. For the
(M)odelling stage, it adopted the MMG approach by DEE and built upon it to provide a
structured methodology for DEA through KBE. It provided tools such as Protégé to support
ontology construction using Web Ontology Language (OWL) for both products and
processes allowing for knowledge traceability and application deployment. However, various
areas of improvement were identified such as a clear, structured and concise knowledge
modelling and analysis approach or method along with the validation of the method with

original case studies (Curran et al., 2010).

Thus, it is identified from the literature that most of the KBE methodologies including
KNOMAD and MOKA being the most comprehensive, there is a lack of process oriented
approach to capture engineering design with manufacturing knowledge for representation in a
platform independent and neutral formal manner with preserved semantics (Chapman et al.,
2007; Rocca, 2012; Verhagen et al., 2012). Most applications developed, as KBES are case
based and ad-hoc with no adherence to existing structured methodologies (Rocca, 2012;
Phillip Sainter et al., 2000). Also most of the applications developed are black box, with lack
of knowledge transparency and traceability issues for DEA (Ammar-Khodja et al., 2008; J
Kulon et al., 2006; J. Kulon et al., 2006). This includes lack of semantic clarity in the design

intent for example engineering rules and their relevance to the product and process
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knowledge. The knowledge is decoupled from original context, documentation is not
explicitly stated with their clear semantics such as co-relation of engineering rules in the form
of formulas and equations. This leads to lack of knowledge sharing, traceability and re-use as
well which is enhanced by the difficulty of knowledge sharing across different proprietary
platform specific KBES or KBE applications (Verhagen and Curran, 2010; Verhagen et al.,
2012). Formalisation is the key to enhance re-usability and sharing and address the needs of
DEA with application development. However, the key problem is an unstructured knowledge
modelling process, which leads to unstructured knowledge codification as formal

representation (Klein et al., 2014).

There is a lack of capture and representation of non geometric knowledge in most KBE
applications for re-use such as project constraint reasoning, problem solving methods and
solution strategies as part of design intent (Baxter et al., 2007). As stated by Pablo Bermell-
Garcia, ‘using current data exchange standards, it is only possible to transfer an instance of
the design and not the knowledge embodied to generate it’ (Bermell-Garcia, 2007). Thus new
knowledge bases should ensure knowledge sharing across different platforms with neutral
usage through open standards. They should be flexible and user friendly as well for effective
sharing, re-use and maintenance with semantic clarity of design intent (Verhagen et al.,

2012).

Similarly, the source code in a KBES for a particular function for product parameters doesn’t
reflect the stage of the design process such as conceptual design or detailed design phase. The
implementation of the function varies from stages of the design lifecycle such as conceptual
and detailed design. Thus, a suitable method for knowledge modelling for DEA using KBE
approach should incorporate the relevant aspects of engineering design and development
process such as mechanical design with DFM. Also, the neutral formal standard should

ideally provide visualisation support for codified domain knowledge for direct consumption
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by design engineers (Klein et al., 2015). According to Jubierre and Borrman (Jubierre and
Borrmann, 2015), it is crucial to achieve high abstraction of engineering knowledge
consisting of technical guidelines and standards for DEA using KBE approach. The
knowledge base should have high level of abstraction with a logical modelling approach for
development of a neutral formal representation layer for automation with generative

modelling capabilities.

In order to address the current limitations such as those by Linkeddesign, Sanya/Shehab,
Reijnders, DEE and others, this research aims to bridge these identified gaps by providing a
structured method for process based knowledge modelling in concurrency with MBSE
approach, its formal representation and its verification with test use-cases as corresponding
analysis. This method of schema mapping will also provide transparency and traceability
with semantic clarity in the developed process knowledge model with both geometric and
non-geometric knowledge for re-use as part of product development. This research will also
provide mapping of engineering design aspects with focus on mechanical design and DFM
for DEA and re-usable ontology development method with multiple rules and generative

modelling capability.

2.10 Summary

This chapter discusses various aspects of DEA with virtual engineering. It also discusses all
knowledge entities required to model as part of systems engineering and MBSE with an
MDA approach for DEA such as process description, engineering rules, function and
behaviour. Through a detailed analysis of existing DEA techniques various gaps were
recognised such as a detailed and structured method for development of neutral formal
representation of an engineering process model with focus on mechanical design and DFM
with both geometric and non-geometric knowledge for traceability, transparency and

semantic clarity with contextual relevance as none of the existing KBE methodologies were
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successful in achieving DEA from an independent neutral formal representation of a process
model for engineering design (Elgh and Johansson, 2014). This is further enhanced by lack of
open standard usage, documentation for knowledge modelling and knowledge re-use. This
research will bridge these gaps by providing a structured and detailed method in the form
of a re-usable process model for capturing the activities of the mechanical design process
with DFM/DFA and their corresponding neutral formal representation with preserved
semantics for DEA with generative modelling. KBE based approach for DEA will be
primarily adopted along with GA in order to develop a knowledgebase with both geometric
and non-geometric knowledge for automation with primary focus on the mechanical design
process with manufacturing knowledge. The developed process model will be generic,
expandable both as informal and formal representation to enable re-usability. This will
include design process, rules based on logic, process function and behaviour with product
knowledge as F-B-S. In order to develop this model an understanding of existing informal
and formal representation standards for knowledge modelling of mechanical design process
with activity decomposition and inter-dependencies between knowledge is required which are

discussed in the next chapter.
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3 Informal and Formal Modelling of Engineering Processes

3.1 Introduction

Chapter 2 provided an overview of design engineering automation (DEA) methods and
techniques for mechanical design process as part of product development (PD). Various
knowledge types as design decomposition features were described as integral constituents.
This chapter will initially discuss existing informal and semiformal modelling standards for
knowledge modelling of mechanical design processes with DFM for DEA along with their
comparative analysis. The later part will elaborate on the formal representation standards,
which will ensure mapping of the concepts of the informal model to the neutral formal

representation with preserved semantics.

3.2 Process Modelling for Design Engineering Automation

‘Process modelling is an activity set to be followed to create one or more models of a process
for a certain purpose, usually the representation, explanation, design, specification, analysis,
or control of a given process’ (Amigo et al., 2013, Pg 169).According to the National
Institute of Standards and Technology (NIST), a ‘process model for product realisation is
defined as a computer—interpretable representation of human and machine activities and their
interactions required for realisation of a product. This may include early concept and
configuration design activities, detailed design, prototyping, testing, tooling, fabrication,

assembly and other activities within the scope of the realisation process’ (Lyons et al., 1995).

There are many methods of capturing and representing knowledge for a DEA or a KBE
system. The approach that will be followed as part of this research aligns its concepts to
object process methodology(OPM) whose feature is that it breaks down the knowledge into
three types of entities: objects, processes, and states with objects and processes being higher

level building blocks (Dori, 2002). OPM is also recognized as an International Standards
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Organization (ISO) standard in the form of ISO/PRF PAS19450 (Dori, 2002).The OPM
methodology keeps systems as the viewpoint and enables merger of object-oriented and
process-oriented modelling. The states are indicated by links, which exist as both structural
and procedural links representing the static and dynamic behavior of objects in a system.
OPM allows for features such as inheritance, and aggregation of objects and their properties.
It offers object-process language (OPL) and object-process diagram (OPD) as a means of
formal representation of the informal representation (Dori et al., 2003; 2010). The OPL
enables java code generation and automatic generation of UML diagrams and natural text
output. Pertaining to this research, the formal representation of the entire process model

should enable code generation for fulfilling the purpose of process automation.

There are many governing factors for selecting a process modelling technique. Some of the
existing purposes are task scheduling, resource allocation, cost-quality-time trade-offs and
process improvement in terms of design-to-market lead time (Smith and Morrow, 1999). In
order for a process-based model to be interpreted by KBE systems to achieve automation of

processes, the process modelling technique should broadly satisfy the following functions—

e Inter - dependencies between tasks to enable flow of information such as inputs,
outputs, enablers, mechanisms into multiple tasks which will enable dependency

backtracking in the formal representation in the system

e Design process decomposition to the highest level of abstraction of artefacts, which
includes all features such as function, attributes of a process and product with states and
behaviour along with resources and requirements. This also includes control
mechanisms and enablers for a process for failure modes through existing rules,
constraints and logic for successful process adherence and completion. These may be in
the form of geometrical tolerances, manufacturing constraints or material selection

information for a design process
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e Object-process relationship by breakdown of the knowledge content primarily in the
form of objects and simultaneous representation of governing processes altering the

state and behaviour of the object

e Computational capability indicating that all aspects of the process model can be
mapped to a software system or formally stored in a system with well-defined syntax
and axioms which can then be queried and inferred (reasoning) to achieve DEA in

terms of process automation

The requirements as functions have been deduced with the help of the following sources
(Calkins et al., 2000; Chapman and Pinfold, 1999, 2001; Chapman et al., 2007; COLOMBO

et al., 2005; Cooper and LaRocca, 2007; Lohith et al., 2013; Prasad, 2006; Skarka, 2007)

The process modelling techniques discussed will be analysed for various functions as

described below -

e Task scheduling and sequential planning

Cost/time/quality trade-off

Inter - dependencies between tasks

Design process decomposition

Object-process relationship
e Computational capability

Thus techniques, which satisfy the stated criteria out of all described functions, will be

carried forward for formal representation.

3.3 Informal Modelling Techniques for Engineering Processes

Standards such as Design Structure Matrix (DSM), IDEFX suite, Petrinet, Signposting, Role

Activity Diagram (RAD), MBSE based UML/SysML and Business Process Modelling

54



Notation (BPMN) will be discussed and analysed for capturing engineering design process

knowledge to enable design automation in this section.

A process modelling technique based on a matrix structure for sequencing and scheduling is a
design structure matrix (DSM) (Eppinger et al., 1994). DSM lays emphasis on activity
dependencies and can focus on complicated processes with more than 100 tasks (Smith and
Morrow, 1999). It helps in assessment of risks throughout the design process along with
failure modes (Amigo et al., 2013). DSM as a technique also helps in implementing
concurrent engineering, which is a major advantage when cost is considered an important
parameter. It also helps in generating key performance indicators (KPI) to show status of an
activity (Amigo et al., 2013). However, one of the limitations of DSM is the lack of ability to
manage tasks within an iterative group. Work Transformation Matrix (WTM) is a process
modelling method which helps in decomposition of a larger task into small processes (Smith
and Eppinger, 1997). It is derived from DSM with a modification that the non-diagonal
elements in the matrix are represented by re-work quantity. However, a major shortcoming of
WTM modelling is the assumption of computation of re-work as a linear function of work
from a previous iteration, which is not true in all cases. Both the techniques including DSM
and WTM have strengths in modelling interdependencies of tasks along with process
planning and improvement but fail to capture all of the necessary design decomposition

features along with lack of focus on object-process relationship.

Modelling techniques such as Petrinet and Event Process Chain Diagram (EPC) fulfill the
purpose of measurement of productivity of a process and work flow modelling (Amigo et al.,
2013). Petrinet is based on nodes and arcs to represent information (Murata, 1989) and most
importantly consists of two kinds of nodes in the form of places and transitions. One of the
limitations of Petrinet is its inability to consider time as a process variable (Browning et al.,

2006). Petrinet uses tokens as activity inputs to determine the activity’s state in order to
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execute the activity (Knutilla et al., 1998). Petrinet fails to capture contextual information
although it can be used for modelling of interdependencies of tasks (Stacey et al., 2000). To
capture contextual information, modifications can be made to Petrinet. For example, NIST
researchers used Modified Petrinet (MPN) in an object-oriented methodology to include
additional information such as mechanisms and rules for governing failure modes along with
resources in the form of people, machines and tools in order to implement computer aided
concurrent engineering (CACE) (Lyons et al., 1995). Thus MPN can be used to indicate
inter-dependencies within a process along with design decomposition features. An Event
Process Chain diagram(EPC) helps in generating tools for benchmarking along with
documentation of design data (Amigo et al., 2013; Browning, 2009). Both EPC and Petrinet
techniques can be used for simulation of design process, which indicates the behaviour of the
process in different scenarios. EPC fails to capture design decomposition features but MPN
allows the capturing of design decomposition features along with focus on object-process

relationship.

A modelling method, initially for representing manufacturing systems, but which progressed
to the design process is Integrated Definition for Functional Modelling (IDEF0) (Colquhoun
et al., 1993; FIPS PUBS, 1993). It was derived from Structured Analysis and Design
Technique (SADT). An IDEFO model comprises of a set of activity boxes referred as ICOM
(Input, Control, Output, and Mechanism). The top level box is the highest fidelity model and
can be represented elaborately in more detail using lower fidelity models (Colquhoun et al.,
1993; Gingele et al., 2002). The ICOM activity box for IDEFO is illustrated with the help of
Figure 3-1. Based on MOKA methodology, IDEFO was used with control and resources by
developing Onto-Process for the production design domain in context to ICARE forms for
automation with a KBE perspective (Martinez-Pellitero et al., 2011). PC-PACK was used as a

knowledge acquisition tool for knowledge capture of inspection planning process. IDEFO was
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also used by (Gomez et al., 2013) along with UML notation as an information model for

conceptual assembly design and its process automation with a KBE perspective.

Design
Requirements

Control
Recommended
Detailed Design

. PERFORM
FUNCTION Preliminaty ____ |  DETAILED
Input ———————— = NAME = Output  Design Data DESIGN
T ¢ T $ MFG/A631
Design
Mechanism  Call Engineer

Figure 3-1: IDEFO higher fidelity activity box with an example (PUBs, F.I.P.S, 1993)

Although IDEFO was found to be a very detailed graphical representation of the processes
(Al-Ahmari and Ridgway, 1999) with all the control parameters, it was considered to be time
consuming. A major shortcoming of the IDEFO approach was its lack of consideration of
time as a variable. IDEF1 was introduced after IDEFO and was based on information
modelling instead of IDEFO functional modelling. It shows the relation between constraints
and is based on entity relationships (Lyons et al., 1995; Mayer, 1992). IDEF1 lays emphasis
on representing information based on a class of entities with attributes to define their
behaviour (Lingzhi et al., 1996). Thus it can be used to model real world objects as well as
information required to manage an enterprise. IDEF2 was introduced to address a major
shortcoming of earlier IDEFX versions for their lack of inclusion of time. It was supposed to
be dynamic but was not successfully implemented in commercial systems (Lyons et al.,
1995). IDEF3 shows the relation and logical flow of activities within a process(Mayer et al.,
1995). It is referred to as a process description capture method with time-based behaviour of
activities. Another advantage of IDEF3 was that it can show two views of the process, one
termed Process Flow Network (PFN) which lays emphasis on activity and the other Object

State Transition Network (OSTN) which allows an object — centered view (Knutilla et al.,
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1998; Plaia and Carrie, 1995). The IDEF3 process description method lays emphasis on the

flow of junctions, which embeds the time varying behaviour of activities.

IDEF4 is an object-oriented (O-O) design process description and broadly consists of two
models —class and method sub-models with diagrams such as protocol, inheritance and
taxonomy diagrams which can be interlinked and sufficiently capture all intricate parts of a
process (Mayer et al., 1992). The complete IDEF suite, however, adopts slightly different
methods to capture process information, as illustrated. IDEFO focusses on function
modelling, IDEF1 focusses on information modelling, IDEF2 on simulation modelling,
IDEF3 on detailed flow of junctions in a process flow, IDEF4 on O-O design and IDEF5 on
ontology-based description (Plaia and Carrie, 1995). IDEF4 will be discussed in detail in the
next section on ‘semi-formal modelling methods and languages’ to verify whether it satisfies
the requirements for design process automation. IDEF5 will be discussed under ‘formal

representation methods’.

A Role Activity Diagram (RAD) enables a graphic view of the process with interactions
between various processes. It allows an object-oriented (O-O) view of the process with
changes in behaviour of the object with activities (Aguilar-Saven and Ruth, 2004). However,
one of the limitations of RAD is its inability to decompose the high level processes to lower
levels of process with precise details. RAD can be used to model workflows for
improvement. RAD can be visualised through MS Visio (Shukla et al., 2014) but it captures
high level aspects with activities assigned to roles for a particular system but doesn’t capture

design decomposition features as stated in the requirements for design automation.

A Data Flow Diagram (DFD) shows the flow of process data and information graphically. It
enables decomposition of the process to a lower level of detail (Aguilar-Saven and Ruth,
2004) in contrast to RAD. It allows functional modelling and thus has conceptual similarities

to IDEFO. However, it fails to capture all design decomposition features.
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Business Process Modelling Notation (BPMN) is an object-oriented (O-O) modelling method
and is a recognised standard of the Object Modelling Group (OMG) (Sharma et al., 2014). It
includes swim-lanes to show the roles of actors in a system. In this way, it has similarities
with the RAD. BPMN can be used to describe activities with the flow of information similar
to RAD, Unified Modelling Language (UML) activity diagram and EPC. BPMN can be
enhanced to show activities, events, decision nodes, and activity along with actors and roles.
BPMN defines 50 constructs and attributes, which can be grouped together in four categories
— flow objects, connecting objects, swim lanes and artefacts (Muehlen and Recker, 2008).
Flow objects are the most basic constructs and consist of events, activities and gateways.
Connecting objects show interdependencies through arrows and links. Swim lanes can be
used for categorization of activities. Artefacts can be used to add contextual information to
the model. BPMN can be used to model both functional and non-functional requirements
(Heidari et al., 2013), improve business processes in terms of lead time to market for
products, and in the visualisation of processes. However, it fails to capture all of the design

decomposition features to enable design process automation.

The Signposting model is a task-based modelling method. It is based on three core elements —
tasks, states and ‘signposting parameters’, offering three views — task level, process level and
the parameter level (Clarkson and Hamilton, 2000). Depending upon the confidence of the
parameters, a relationship between tasks is constructed. Thus it enables modelling of the
interrelationships between tasks and can also be modelled as a DSM approach. Signposting is
very useful for modelling uncertainty in the design process which is a critical feature
(O’Donovan et al., 2003). It also offers inclusion of additional text information in its core
constructs which can include requirements (Stacey et al., 2000). It allows for the capture of
design decomposition features through the addition of contextual information along with

interdependencies. It is illustrated with the help of Figure 3-2. Power and rigid body are tasks
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to be performed. L, M and H are low, medium and high confidence rating of the parameters
such as blade-loads and engine power. After the total confidence of the task is performed
based on these parameters, it is used to determine whether the task will be successfully

completed. Thus task status is derived from confidence mapping of parameters.

the confidence . . Initial parameter

and parameter confidences
el £ AP £ Paiarater blade-loads = low
current availabilicy of Goifiderices rran_afer matrix - low
parameters for the task engine power - none
KEY
Power | Power
blade-loads 1 ! blade-loads .l \/ Task possible
engine power m | engine power E O Task not appropriate
Tasks relevant to blade-loads | h |m | 1 I blade-loads |x X Task not possible
Rigid-body [ Rigid-body u E?;“::‘:L“uﬁl’:;cm
t ]
blade-loads | m | 1 blade-loads ; 5 q Sy
- e evel of confidence
transfer matr | m | | g transfer matr D
blade-loads | h |m| 1 | blade-loads o \/ :a:‘dmt[ir prcs_cn:]
ut not at require
i level of confidence
onfidence Task
mapping status E Parameter not present

Figure 3-2:Using Signposting to derive task status from confidence mapping of parameters
(Clarkson and Hamilton, 2000)

3.4 Semi-formal Modelling Methods and Languages for Engineering

Processes (Light weight formalisms)

As per the context of a formal representation of an informal process model to enable DEA,
there exists a boundary between informal and formal modelling. All the informal process
modelling techniques can be used to capture process-based data in a human readable form or
natural text output form. Similarly, languages like UML and SysML can be used both to
capture data and represent it formally using tools. Alternatively, any informal method of
capturing data can be converted into XML serialisation, which then becomes a formal
representation. A formal representation is a low level machine-readable format, which may or

may not be easy to understand by humans as against a natural text output, but offers ease of
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processing by machines. XML is a data modelling language, which can be used for
representing information as tags and exchanging between different applications (Chung and
Lee, 2002). XML as a basic language consists of a prolog, elements and an optional epilog

(Antoniou and VVan Harmelen, 2004). The prolog consists of an XML declaration.

‘UML is a language for specifying, visualizing, constructing and documenting the artifacts of
software systems, as well as for business modelling and other non-software systems’
(Aguilar-Saven and Ruth, 2004).UML version 1.4.2 is considered as an international standard
as specified by the OMG in the form of ISO/IEC 19501 (ISO, 2005; Weilkiens, 2007).
Various versions of UML exist, starting from OMG recognition of version 1.3 in 2000 to
version 1.4 in 2001 to version 2.5 in June 2015 (OMG, 2016). UML version 2 is defined by

ISO 19505 (ISO, 2012).

UML is an MBSE approach and utilises object-oriented techniques and nine types of
diagrams to model and exhibit information in the form of: class, object, state-chart, activity,
sequence, collaboration, use-case, component and deployment diagrams (Aguilar-Saven and
Ruth, 2004). UML 2.0 illustrates both structural and behavioural aspects of a system.
According to Tim Weilkiens, it illustrates structural aspects through class diagram,
component diagram, object diagram, composite structure diagram, deployment diagram and
package diagram and behavioural aspects through activity diagram, use case diagram, state
machine diagram, sequence diagram, communication diagram, timing diagram and
interaction overview diagram (Weilkiens, 2007). There are three main modelling viewpoints
in UML - use-case, static and dynamic models (Kim et al., 2003). The use case models
define the generic processes that the system should handle. They provide a graphical
description and although offer a very brief description, they are similar in principle to IDEF
as a means of communication through graphical display. The static view includes class

diagrams, which enable a static view in terms of objects and relationships within objects of a
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class. The dynamic modelling view enables communication between the system objects. For
dynamic modelling UML utilises four types of diagram- state, sequence, collaboration and
activity diagrams (Kim et al., 2003). UML can be used as an informal modelling technique
and then maps to a formal representation through a final diagrammatic layer known as

implementation diagrams.

Systems modelling language (SysML) was derived from UML as part of MBSE for the
modelling of complex systems involving real life objects (Weilkiens, 2007). SysML inherits a
lot of properties from UML with the addition of two types of diagram — requirement and
parametric diagrams. It has minor variations on UML. Blocks in SysML replace UML
classes. The class diagram in UML is replaced by a block definition diagram in SysML and
the composite structure diagram in UML is replaced by an internal block diagram in SysML
(Weilkiens, 2007). A very important point about SysML is that the models can be exchanged
via a neutral format in the form of ISO AP233 (discussed later). Both UML and SysML with
multiple viewpoints can exhibit and represent design decomposition features along with

interdependencies of tasks.

IDEF4 as a derivation of IDEF features but with a focus on object-oriented technique and is
similar to UML in terms of layering and process views. Both are object-oriented modelling
techniques, which are necessary for capturing processes and representing in a neutral format
for process automation. ‘IDEF4 is an object-oriented design method for developing
component - based client server systems. It has been designed to support smooth transition
from the application domain and requirements analysis models to the design and to actual
source code generation’ (Mayer et al., 1992). IDEF4 provides three layers — system design,
application design and low-level design. Thus it decomposes design into higher level of
abstraction. Along with the three design models, IDEF4 includes a design rationale

component. In IDEF4, symbols such as O, R, L, M, A, E are used to denote objects, relations,

62



links, methods, attributes and events respectively (Mayer et al., 1992). Thus its concepts
become similar to UML by focusing on object-oriented modelling and by providing multiple
layers of the design process. However, the design rationale component in IDEF4 is an
additional feature and provides the designer with a wider view of the design data. This makes
IDEF4 suitable for capturing all of the design decomposition features required for process
automation. It also enables inter-dependencies between tasks along with illustrating changes
in the state of an object with governing processes propagating throughout the model with

object-oriented (O-O) modelling.

3.5 Comparative analysis of informal and semiformal modelling methods
and languages for knowledge modelling of an engineering process

As stated earlier, the majority of process modelling techniques for knowledge acquisition or
capturing can be visualized or edited with the help of existing tools. Some examples are — use
of SIMAN / ARENA tool for simulation of IDEFO (Al-Ahmari and Ridgway, 1999), ProCAP
for IDEF3 (Grininger, 2009), and CAM for construction and visualisation of Signposting
(Wynn et al., 2010). Thus computational capability will be excluded from the criteria in the
analysis table as any process-based method of capture can be converted into XML syntax and
stored in a system with a formal representation. The other three criteria i.e. inter -
dependencies between tasks, design process decomposition and object-process relationship
will be the most important functions in evaluating whether a process model can broadly
capture enough information which when mapped onto a formal representation can achieve

process automation. The analysis is shown in Table 3-1
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Table3-1: Analysis of informal and semiformal modelling methods and languages for

capturing engineering process knowledge to enable design process automation

Modelling
Methods &
Languages

Functions

Required for mapping to formal representation
to enable design process automation

Task
Scheduling /
Sequential

Planning Trade-off tasks

Cost /
Time / Interdepende

Quality ncies between

Design Process
Decomposition

Object-
Process
Relationship

References

DSM

(Amigo et al., 2013;
Browning, 2009;
Eppinger et al., 1994;

Smith and Morrow,
1999; Wang et al.,
2002)

WTM

(Amigo et al., 2013;
Smith and Eppinger,
1997; Smith and

Petrinet

Morrow, 1999)

(Amigo et al., 2013;
Browning et al., 2006;
Grininger and Menzel,
2003; Knutilla et al.,
1998; Lyons et al.,
1995; Wang et al.,

MPN (e.g.
Coloured
Petrinet,
Timed
Petrinet)

2002)

(Aguilar-Saven and
Ruth, 2004; Amigo et
al., 2013; Browning et
al., 2006; Knutilla et al.
1998; Lyons et al.,

1

EPC

1995)
(Amigo et al., 2013;

IDEFO,1,2,3,4,
5

Browning, 2009)

(Aguilar-Saven and
Ruth, 2004; Al-Ahmari
and Ridgway, 1999;
Amigo et al., 2013;
Browning, 2009;
Colquhoun et al., 1993;
FIPS PUBS, 1993;
Gingele et al., 2002;
Griininger and Menzel,
2003; Klein et al., 2014;
Knutilla et al., 1998;
Lyons et al., 1995;
Mayer et al., 1995,
1992; Plaia and Carrie,
1995; Wang et al.,

RAD

2002)

(Aguilar-Saven and
Ruth, 2004; Badica and
Badica, 2011; Badica et
al., 2005, 2003; Holt et
al., 1983; Shukla et al.,

DFD

2014)
(Aguilar-Saven and
Ruth, 2004; Al-Ahmari
and Ridgway, 1999;
Amigo et al., 2013;

Colquhoun et al., 1993)
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Signposting

(Amigo et al., 2013;
Baxter et al., 2007,
Browning, 2002;
Browning et al., 2006;
Clarkson and Hamilton,
2000; O’Donovan et al.,
2003; Stacey et al.,
2000; Wynn et al.,
2010)

UML, SysML

(Badica and Badica,
2011; Booch et al.,
1999; Chen and Chen,
2005; Kim et al., 2003;
Klein et al., 2014; Nan
and Li, 2012; Plateaux
et al., 2009; Pooley and
King, 1999; Sharma et
al., 2014; Vernadat,
2002; Weilkiens, 2007)

BPMN

(Amigo et al., 2013;
Badica and Badica,
2011; Heidari et al.,
2013; Scheuerlein et al.,
2012; Sharma et al.,
2014)

3.6 Formal modelling and representation techniques for

engineering

processes and DEA

In order to perform DEA from the process model, the focus of representation should be on
low level machine interpretation instead of natural language (Patil, 2005; Szykman et al.,
2000b). This clarifies that the modelling techniques should enable computational reasoning as
just opposed to modelling techniques for human aid (Hsu and Woon, 1998). There are many
existing formal representations, which can be used for representing engineering process

models.
3.6.1 Classification of Formal Representation Standards

Existing process descriptions and process ontologies not based on formal logic provide
inadequate semantics for computational support in context to achieving granular DEA at an
informal/semiformal layer (Gero and Kannengiesser, 2007a; Patil, 2005). The formal

representation standards for process models for DEA can be divided as —
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1. Semiformal/Formal and graphical representations (Non logic based) — these can be

further subdivided into two categories —

a. Semiformal/lightweight formalisms that support graphical representation —

UML/SysML, OPM.

b. Formal representations that support graphical representation and support

reasoning - frames and semantic networks

2. Logic based and ontology languages — Knowledge Interchange Format (KIF), Common
Logic (CL) that are semantically based on formal logic. Ontology based languages as
devised or encoded from formal logic also belong to this category. These include
ontologies encrypted with both Description Logic (DL) and First Order Logic (FOL)
based semantics such as Web Ontology Language (OWL) based on DL, Process
Specification Language (PSL) and IDEF5 based on FOL and rule languages such as
RuleML, RIF based on horn logic semantics. SWRL is an example of hybrid
representation standard as derived from logic-based approach. Ontology language such
as Gellish in the form of STEPIib is not based on formal logic. Although not officially
from the logic paradigm, production rules can be considered as knowledge
representation (KR) where production rule dialects have been devised for both RIF and

RuleML.

3. Schema based representations — STEP schemas modelled and represented in EXPRESS

language, RDF/RDFS with XML serialisation

4. 0-O (Object-oriented) programming languages — examples are LISP, Java and C/C++
as programming languages, which can be used to implement schemas and models for
machine interpretation such as UML/SysML models as well. They use classes and
methods to represent the behaviour of the objects. The attributes are encoded in the

class description. They are also used to embed design automation facilities for e.g.
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proprietary CAD enabled automation such as CATIA knowledgeware uses C++ and
AML as a proprietary KBE system (TechnoSoft Inc, 2003) is based on a different and
much more dynamic language in the form of LISP thus making it generative and
demand driven along with enabling dependency backtracking. A lot of other proprietary
KBE systems such as GenDL are also based on dialects of LISP originated languages.

LISP embeds multi-paradigm programming features on top of O-O programming.
3.6.2 Reasoning: DEA

Reasoning techniques for DEA systems or pertaining to knowledge based engineering
representation can be broadly classified as follows — rule based (forward chaining and
backward chaining), case based and model based (Van der Velden, 2008). There are other
reasoning techniques such as fuzzy logic and neural networks. Reasoning can be classified as
monotonic reasoning and non-monotonic reasoning. Monotonic reasoning indicates that a
conclusion once inferred from the knowledge base can’t be altered if new knowledge entered
is related to the conclusion. On the other hand, non-monotonic reasoning allows conclusion
once inferred from the knowledge base to be altered if new knowledge entered is related to
the query (lvanov et al., 2015; Olivetti, 2011; Poole and Mackworth, 2010). Thus non-
monotonic reasoning adopts closed world assumption (CWA) in the sense unless new
information is added, the knowledge base assumes the knowledge base is complete. As and
when the new information is added the generated results can be altered. For example,
production rules follow CWA. On the other hand, monotonic reasoning follows open world
assumption (OWA) in which even after new information is added, the results generated by
the reasoning engine don’t change. DL support monotonic reasoning and follow OWA. Thus

languages such as OWL based on DL support monotonic reasoning following OWA.

There is always a trade-off between reasoning and expressive power of a formal

representation standard (Yahia et al., 2012). Thus the relationship between expressiveness
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and reasoning is inverse, the more expressive the language its decidability or efficiency of
reasoning decreases. Although FOL offers more expressiveness as compared to DL, it does

so at the expense of computational efficiency in reasoning.

3.7 Description of formal representation standards

Process models can be shared across multiple domains using different representation
formalisms but this may have problems due to syntax, semantics and axioms. The objective
of the following section is to discuss and narrow down a few existing neutral formal
representation techniques of the informal/semiformal model in terms of these issues that
should help integration with multiple platforms and provide interoperability. The explanation
will be performed in accordance with the classification of formal representation standards in

section 3.6.1.
3.7.1 Object Oriented (0-0) modelling standards - UML and SysML

Both MBSE languages in the form of UML and SysML as O-O modelling languages have
been discussed in section 3.4. They can also be referred as lightweight formalisms or
semiformal representations. UML uses Object Constraint Language (OCL) in order to define
rules and constraints for consistency checking across models (Vaziri and Jackson, 2000).
UML data models follow CWA (Hennig et al., 2015). SysML is a language that can be used
for capturing and representing of process-based data for a complex system and can be viewed
as a formal representation with the help of tools such as visual paradigm. SysML models,
once created, can be exchanged via ISO AP 233 of STEP(Weilkiens, 2007). Some of the
important APs of STEP for consideration are AP233, AP213, Part49 and AP242 for formal
storage of informal process models. However, both UML / SysML can capture process and
product semantics in a lightweight formalism approach which needs to be transformed to a

formal layer, which ensures common semantics through its axioms (Chungoora et al., 2013a).
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Researchers based at NIST have used UML based lightweight neutral representations
for product knowledge such as form, function and behaviour along with design rationale for
developing Core Product Model (CPM) and product assembly features such as tolerances,
kinematics at system level for Open Assembly Model (OAM) (Fenves et al., 2008; J. H. Lee
et al., 2010; Rachuri et al., 2006; Sudarsan et al., 2005). There are other concepts related to
product structure such as part/assembly and extensible geometrical knowledge such as
features, tolerance, material and manufacturing process as well. Along with these product
structure and manufacturing concepts, function, behaviour and design rationale have been
represented for knowledge sharing using UML class based representation in CPM/OAM for
product knowledge in context to PLM systems (Jae H. Lee et al., 2010; Jae Hyun. Lee et al.,
2010; Rachuri et al., 2005; Sudarsan et al., 2005).UML and SysML based representation such
as class diagram, block diagram, parametric diagram have been used for functional and
behavioural representation of mechatronic products (Alvarez Cabrera et al.,, 2009;
Woestenenk et al., 2010). Design rationale has been discussed as the decision making reasons
for engineering design and manufacturing activities and has been represented using UML
based lightweight notation in context to CAD systems with interaction through an application
programming interface (API) (Poorkiany et al., 2016) and generic product models as part of
PD (Medeiros et al., 2005; Nomaguchi and Fujita, 2013). Design rationale was successfully
captured using Design Rationale Editor (DRed 2.0) utilising UML class diagram with object
classes and relationships based on an initial version of DRed with functional analysis in
collaboration with Rolls Royce for turbine blades in context to PLM systems (Bracewell et
al., 2009a, 2009b, 2004). DRed/DRed 2.0 as graphical representation were developed after
the limitations of a previous informal representation for design rationale in the form of Issue

Based Information System (IBIS) was realised (Eng et al., 2011).
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3.7.2 Object - Process Methodology (OPM)

As discussed earlier, OPM as a methodology enables formal representation in the form of
Object Process Diagrams (OPD) and Object Process Language (OPL) (Dori et al., 2010).
OPM models can be converted to other modelling languages and notations such as BPMN,
UML/SysML as well (Grobshtein and Dori, 2011). However, it uses RDF/ XML based
representation of its unified object-process viewpoint of a system (Dori, 2004). Following the
model based system paradigm (MBSE), Tesperanto language was developed as a next layer
to OPL as an enhancement. It is also referred as ‘Technical Esperanto’. The main purpose of
Tesperanto both as a methodology and language is to improve the quality of technical
knowledge in a document following the structure of OPM methodology (Blekhman et al.,
2015; Blekhman and Dori, 2013). One of the very important criteria here is that OPL is
suitable as a low level language for machine readability and code generation but not very
clear and concise for human interpretation. Tesperanto as an enhancement on top of OPL
makes it more human readable. Tesperanto enables both model to text generation and text to
model generation (Blekhman et al., 2015; Blekhman and Dori, 2013). Thus, in-spite of this
strength, this research would be deviating away from Tesperanto as it is more focussed on
high level representation of knowledge from a technical document whereas OPL is more

focussed on low level machine interpretation.
3.7.3 Frames and Semantic Networks

Frames are a formal method of representing an entity and its associated attributes and values
(Minsky et al., 1975). They consist of data structures in the form of slots for allocating the
attributes and values for a particular object (La Rocca, 2011; Obitko, 2007a; Prasad, 2006;
Robin, 2013). The slots can have both values as attributes as well as encode methods or rules.
They can also encode process knowledge or a production rule. Frames provide encapsulation

and inheritance of object properties through slots, so in this manner provide similarities with
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0O-O paradigm. Through inheritance they can show interdependencies between object
properties. Frames can exhibit declarative knowledge through attributes and procedural
knowledge through methods (Negnevitsky, 2005). Models can be built using frames referred
as frame based models or systems (Obitko, 2007a; Wang et al., 2006). These models use
inheritance of slot values and attributes for marking interdependencies between various
frames. An example of a frame-based model is Open Knowledge Base Connectivity (OKBC).
OKBC can use frames properties to create various instances of a class and follows the O-O
paradigm. Frames allow reasoning through two methods in the form of when-needed and
when-changed (La Rocca, 2011). For ‘when-needed’ the system executes and generates the
value of a slot when demanded by a user. For ‘when-changed’, often referred as demons, the

system executes and generates the value of a slot as soon as the user makes any change.

Semantic networks (Semantic nets) were introduced by Margaret Masterman in 1961 (Sowa,
2008a). Semantic nets, also referred as concept network, is a graphical representation which
uses vertices or nodes to illustrate concepts and edges to illustrate relations between the
concepts (Obitko, 2007b). Semantic nets are mostly used for representing propositional
information (Robin, 2013) and thus are also referred as propositional net. The vertices can
represent physical objects or concepts. Semantic nets also support automated systems for

reasoning on the knowledge represented (Sowa, 2015).
3.7.4 Ontology Languages

Various ontology languages can be devised from DL and FOL. As stated in section 3.6, PSL,
OWL and IDEF5 are ontology-based representations. An ontology-based approach helps
formalise the concepts and provides axioms as a formal means of constraining the meaning of
the concepts in the language. Ontology is defined as the taxonomy of concepts and their
definitions supported by a logical theory. Ontology defines a set of terms, entities and

objects, classes and relationships along with formal definitions and axioms to constrain the
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meaning of terms (Pouchard et al., 2000). Ontology can also be defined as ‘a requirement for
conceptualization and illustrates a set of representation primitives with which a domain of
knowledge can be modeled’. It provides machine-readable syntax for a domain knowledge
(Mizoguchi, 2003). Using ontology, declarative formalism is used to represent domain
knowledge as a set of objects. This set of objects represented is referred as universe of
discourse (UoD) (Gruber, 1995). Thus ontology enables interoperability and re-usability of

the data using common semantics of modeled information.

All ontology languages don’t offer same expressivity. The level of expressivity of an
ontology language is governed by its mathematical foundation in the form of logic (Dartigues
et al., 2007). Logic can be defined as a precise and accurate notation for expressing and
representing statements that can be judged whether true or false (Sowa, 2007).The use of
mathematical logic supports automated reasoning. Some ontology languages are based on DL
such as OWL whereas some ontology languages are based on FOL in the form of predicate
logic such as PSL, IDEF5. DL can be considered as a subset or a decidable fragment of FOL
(Obitko, 2007c). According to NIST, ontology languages can be classified as frame based,

description logic, predicate logic and hybrid (Barkmeyer et al., 2003).

Some of the other ontology-based representations not based on formal logic, are Core Plan
Representation (CPR), Workflow Process Definition Language (WPDL), and Planning
Domain Definition Language (PDDL). The ontologies for WPDL and PDDL do provide
common semantics but are unable to provide axioms as a formal means of maintaining the
semantics in the language (Gruninger, 2004).CPR (Pease, 1998) was initiated by the Defense
Advanced Research Projects Agency (DARPA)-sponsored Object Model Working Group
(OMWG). The basic concepts in CPR are action resource, actor, and objective with
additional concepts such as plan and time point. However CPR as a language does not enable

representation of all design decomposition features through its ontology.
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3.7.5 Description Logic Based Languages

Description logic (DL) is a knowledge representation (KR) formalism that evolved from
semantic networks and frames but was considered as a subset or fragment of first order
predicate logic (FOPL) (Baader et al., 2003; Wang et al., 2004). DL is primarily used for
representing formal description of concepts and relations (Obitko, 2007d). A knowledgebase
formalised by DL illustrates two components — ‘TBox’ and an ‘ABox’ (Baader et al., 2003).
TBox exhibits intensional knowledge through terminology that is the concepts and their roles.
ABox illustrates extensional knowledge also referred as assertional knowledge, which is
relevant to the individuals for a particular domain of discourse. Thus DL based
representations represent domain knowledge by first defining relevant concepts of the domain
in the form of terminology and then using the concepts to specify the properties of objects
and individuals in the domain. Pertaining to this research, the domain is the engineering

design process for DEA. Languages based on DL support automated reasoning.

3.7.5.1 Web Ontology Language (OWL)

OWL is a web ontology language based on DL for creating and sharing ontologies on the
World Wide Web and is regarded as a W3C recommendation (Bechhofer, 2009). OWL was
developed as an extension of the Resource Description Framework (RDF) and is derived
from the (DAML + OIL) ontology. OWL has three variants — OWL Lite, OWL DL and OWL
Full(Wang et al., 2006, 2004). OWL lite offers ease of implementation but offers the least of
the OWL constructs. It is based on description logic SHIF. OWL DL is based on descriptive
logic and offers more constructs and, more importantly, reasoning ability. It is based on
description logic SHOIN. OWL Full offers the most comprehensive constructs but deviates
from reasoning ability and offers less ease of computation compared to OWL DL (Obitko,
2007e). OWL-S, as a semantic markup for web services built on OWL, enables viewing of

process with inputs, outputs, parameters, precondition and results (Martin et al., 2004). Thus
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selection of a particular OWL Language is critical in order to represent design decomposition
features (Bechhofer, 2009; W3C, 2012). OWL is built upon RDF/XML and RDFS supports
interoperable ontological representation of concepts over the semantic web and enables
automated reasoning (Bechhofer, 2009; Hay, 2006; W3C, 2012). It follows OWA (Hennig et
al., 2015). It imposes cardinality upon its classes and properties. OWL adds properties such
as relations between classes for e.g. disjointness, cardinality of properties, transitivity as

compared to RDF Schema (RDFS)(Zhao and Liu, 2008a).

3.7.5.2 Usage of OWL in Engineering Design, Manufacturing and DEA

OWL ontology models for detailed product models including assembly features such as
tolerances, kinematics at system level in OAM along with function and behaviour in
CPM/OAM as abstract concepts have also been developed for usage in PLM systems
(Fiorentini et al., 2007; Sarigecili et al., 2014). OWL ontology has been demonstrated for
manufacturing domain for extensive usage with all machining processes for example
MASON and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012).
OWL ontology has been used for modelling and formal representation of design rationale for
product knowledge (Li et al., 2014) and also in context to CAD systems (Witherell et al.,
2007). Ontology based representation for function and behaviour representation for various
products such as gears, shafts and conveyors with focus on knowledge management has been
performed with querying on the ontology models (Kitamura, 2006; Kitamura and Mizoguchi,
2004). The advancement of DRed 2.0 for knowledge modelling of design rationale for
turbine blades design in the context of PLM systems utilising UML class diagrams was
formally represented using OWL/SWRL ontology for computational and system processing

of the information (Bracewell et al., 2009a).

Product semantic representation language (PSRL) is another ontology-based language, which

is based on (DAML + OIL) and enables open standard usage. It focuses on neutral
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representation of product data. Various concepts of non-geometric information such as design
rationale, function, behaviour and part dependencies form an integral part of product data
(Patil et al., 2005). PSRL based on DL with its syntax based on RDF/XML can be used for

product data modelling and computer aided process planning (Liu et al., 2010).

Work has been performed to develop semantic product models with geometric kernels using
OWL/SWRL ontology across heterogeneous CAD systems with various product features and
shapes such as surfaces, faces, edges, vertices, product parameters, datum planes and axis of
rotation (Dartigues et al., 2007; Lu et al., 2016; Noh and Suh, 2008; Qin et al., 2016; Tessier
and Wang, 2013; Zhan et al., 2010). Similarly, OWL has been used as neutral formal logic
representation language with automated reasoning in context to consistency checking and
reducing redundancies during design stage for product models with geometric representations

as per heterogeneous CAD and PLM systems (Franke et al., 2011).

The use of OWL ontology with formal data structures for engineering design knowledge
management with design process functional requirements, manufacturing processes, material
selection for representation along with inference and querying for automation has been
performed (Kitamura and Mizoguchi, 2004; Li et al., 2009; Li and Ramani, 2007; Mehrpoor
et al., 2013). The role of OWL ontology in the context of DEA with a KBE approach has
been adopted and verified (ElI Kadiri et al., 2015; Furini et al.,, 2016; Kitamura and
Mizoguchi, 2013).

3.7.6 First-Order Logic Based Languages

First order logic (FOL) is commonly used as a basis for KR enabling automated theorem
proving and usage across the semantic web (Gruninger et al., 2013). FOL extends the
expressiveness of propositional logic by adding quantifiers and variables to the existing
propositional connectives of conjunction, disjunction, negation, implication and bi-

conditional. A universal quantifier expresses that a relation holds true for all instances of a
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variable whereas an existential quantifier expresses that a relation holds true for some

specified instances of a variable (Gruninger et al., 2013). DL acts as a subset of FOL.

A graphical representation based on semantic nets and existential graphs is Conceptual
Graphs (CG’s). CG’s provides a logic formalism to illustrate classes, relations, individuals
and quantifiers (Obitko, 2007f; Sowa, 2008a). The simple version of CG’s is referred as Core
CG’s and evolved from simple existential graphs developed by Charles Sanders Peirce.
Extended CG’s provide a superset of the core CG’s (Sowa, 2008a). Although the graphical
representation of CG’s in its linear form (Conceptual Graph Display Form) evolves from
semantic nets but the CG’s express same semantics as FOL based on predicate calculus also
referred as first order predicate logic (FOPL). The instances of concepts are represented in
rectangle and relations between concepts as ellipse or circle. Some of the logical operators
used by Conceptual Graph Display Form are conjunction and existential quantifier in order to
translate the natural language to logic formalism. The formal representation of CG’s is
referred as Conceptual Graph Interchange Format (CGIF) is a part of Common Logic (CL) in
the form of 1SO 24707 (Sowa, 2011). CL referred as ISO/IEC 24707 was developed as a
framework for a family of logic based languages to allow information sharing and exchange
with standardised syntax and semantics (Gruninger et al., 2013; Sowa, 2008b). CL evolved
from both CG’s and KIF to be built into single ISO project in the form of ISO/IEC 24707

(Sowa, 2008a). CL offers three dialects —

e Common Logic Interchange Format (CLIF)
e Conceptual Graph Interchange Format (CGIF)
e XCL — XML based notation for Common Logic
(Obitko, 2007g; Sowa, 2011, 2008a, 2008b)

CGIF also exists in two forms — core CGIF and extended CGIF (Sowa, 2008a). Core CGIF

expresses full semantics of CL. Its dialect maps to Pierce’s existential graphs. Core CGIF
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uses primitives such as conjunction, negation and existential quantifier. Extended CGIF adds
universal quantifier, type labels for restricting the range of quantifiers, Boolean contexts with
type labels such as - If, Then, Either, Or, Equivalence, and Iff, and the option of importing
external text into any CGIF text (Sowa, 2008a). Thus CL can be used as a logic based
formalism for representing knowledge and allowing automated reasoning. It can be used as a

neutral representation of knowledge allowing re-usability (Gruninger et al., 2013).

KIF (Genesereth et al., 1992) as a computer-oriented language was developed by the
Interlingua Working Group of the DARPA knowledge sharing effort (Knutilla et al., 1998).
KIF as a language expresses its semantics in first order predicate logic and is syntactically
based on LISP (Hayes and Menzel, 2001; Obitko, 2007h). It has formally defined semantics
and breaks down knowledge into the form of objects with related attributes, processes and
functions. Thus it aligns its methodology with OPM (Dori, 2002) and solves a major issue of
pre-defined formal semantics. As stated earlier, OPM as ISO 19450 forms a part of ISO TC
184 / SC5 (IS0, 2015). ISO TC 184 is managed by the International Standards Organization
(ISO) and covers ‘“Standardization in the field of industrial automation and integration
concerning discrete part manufacturing and encompassing the applications of multiple
technologies, i.e. information systems, machines and equipment and telecommunications”

(Pouchard et al., 2005).

3.7.6.1 Process Specification Language (PSL)

To address the shortcoming of formulating common semantics and as a standard for the
exchange of process specification, PSL was designed to facilitate correct and complete
exchange of process information among manufacturing systems, such as scheduling, process
modeling, process planning, production planning, simulation, project management, work flow
and business process re-engineering (Gruninger and Menzel, 2003). A major purpose of PSL

was to enable interoperability of processes utilising different process models and process
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representations (Pouchard et al., 2005). PSL ontology is written in KIF format and forms 1SO
18629 as an integral part of ISO TC 184 (Pouchard et al., 2005). PSL ontology is based on
FOL(Pouchard et al., 2000). Ontologies based on FOL exhibit more expressiveness compared
to DL and can run inference on the modelled information. KIF exists as a predecessor to
CLIF (Gruninger et al., 2013). Thus PSL can be considered as a process ontology language
based on CLIF (Gruninger et al., 2013; NIST, 2008, 2007). PSL architecture consists of two
parts — PSL Core (Foundation theories) and a set of extensions which can be mapped to
EXPRESS schemas, UML and XML (Gruninger and Cutting-Decelle, 2000; Pouchard et al.,

2005).

PSL ontology is divided into the following four theories — Core theories, Duration and
ordering theories, Resource theories and Actor and agent theories (Gruninger, 2004). The
PSL core provides four kinds of elements as primitive classes — object, activity, activity
occurrence and time point. Within PSL ontology, ‘activity’ can be stated as ‘a repeatable
pattern of behaviour’ and ‘activity occurrence’ can be stated as ‘concrete instantiation of this
pattern’ (Grlninger, 2009). A crucial difference between activity occurrence and time point is
that activity occurrence have preconditions and effects in the form of postconditions whereas
time point just follow linear ordering of time and don’t have any preconditions and
postconditions. The three relations in the PSL core are — before, occurrence_of and
participates_in and the two functions are beginof and endof (NIST, 2004). To represent an
activity-based description, PSL uses an activity role declaration (ARD) along with object
declarations to describe objects being affected by the activities of the process (Gruninger and
Menzel, 2003). The extensions allow for temporal relations between activities. Thus the use
of extensions with experimentation may be used for representing design decomposition
features other than the core theory. As PSL deals with standardized syntax and semantic

sharing of modeled information, it is consistent with 1ISO 10303, ISO 13584 (PLIB) and 1SO
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15531 (MANDATE) (Gruninger and Cutting-Decelle, 2000). PSL axioms can represent
inputs, outputs and parameters at both activity and the activity occurrence level but mainly
focus on process specifications as opposed to process execution at run time (Bock and
Gruninger, 2004). An external automated theorem prover is required for execution of PSL

specifications as inference (Bock and Gruninger, 2005).

3.7.6.2 Usage of PSL in Engineering - Manufacturing and Production

PSL core through its object and activity description can represent object material and
resources as inputs and outputs for product realisation along with activity interdependency in
complex manufacturing processes (Qiao et al., 2011). PSL extensions allow for sequencing
and ordering of activities including OR, AND relations and inclusion of sub activities thus
allowing process logic. PSL extensions can also represent object features and form such as
planes, edges and surfaces in correlation to activity flow from a manufacturing point of view
for example machining activities such as milling, drilling, reaming, turning, boring and
grinding. It represents the knowledge in concise neutral formal semantics for interoperable

machine interpretation (Qiao et al., 2011).

For the aerospace industry, process ontologies such as PSL have been used and validated for
knowledge sharing and decision-making for PD but mainly for manufacturing and production
domain with knowledge sharing across product design such as those developed by (Usman,
2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et al., 2013a). Work performed
by both Usman and Chungoora focussed on machining processes and the knowledge
accessibility with engineering design. Min_precedes as a PSL axiom was extensively used to
model manufacturing process flow and sequencing by (Usman, 2012). Min_precedes is
transitive which can be accessed during inference. However, their applicability has been
demonstrated for wide usage in PLM Systems. PSL has been demonstrated for process

modelling for paint and dry manufacturing process with focus on activity inputs and outputs
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along with object description (Grininger and Menzel, 2003). PSL has also been used for
process specification for cutting process by (Deshayes et al., 2005). PSL was effectively
used as a neutral representation of process specification for exchange between heterogeneous
manufacturing software applications such as process planning, scheduling and workflow

execution (Schlenoff et al., 1999).

IDEFS5 is another ontology-based formal representation based on the basic concepts of
IDEFX series. It is also written in KIF format and is based on FOL (Benjamin et al., 1994).
The IDEFS5 ontology language comprises two languages: the IDEF5 Schematic Language and
the IDEF5 elaboration language. The schematic language is a graphical language that allows
input of information through an automated ontology capture tool. The elaboration language is
a structured text language with full expressive power of FOL which allows input of
information with detailed context (Benjamin et al., 1994). It enables storage and
representation of classes, kinds and first and second order relations as well through the
ontology. Both PSL and IDEF5 as ontology representations based on FOL initially evolved

from KIF format, which originated in LISP application.
3.7.7 Gellish

Gellish is a neutral ontology called STEPIib, although not based on formal logic. Gellish is
extensible and includes concepts from ISO 15926 and ISO 10303 (Van Renssen, 2003, 2005).
Gellish is fact oriented instead of being purely O-O and can represent relations between two
objects with preserved semantics. Some of the basic concepts in Gellish are — anything, role,
relations such as plays role & requires role, individual things, kind of things along with single
and multiple things with specialisation of classes. Gellish models can be exchanged by
different application domains using XML (Van Renssen, 2003). It can be used for
representing both product knowledge as well as design process knowledge including function

and behaviour of an artefact.
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3.7.8 Rule Languages (Logic based)

Rule Markup Language (RuleML) is a format or a language for representing and sharing of
rules on the World Wide Web. It is based upon XML, RDF and OWL (Boley et al., 2005).
RuleML also offers 2 modular sublanguages — Derivation RuleML and Production Rule (PR)
RuleML (Hirtle et al., 2006). RuleML has 3 parts as different specifications — Deliberation

RuleML, Consumer RuleML and Reaction RuleML(Boley et al., 2016a, 2016b, 2016c).

Another language in the form of Rule Interchange Format (RIF) offers a neutral
representation language for representing rules, logic and constraints. RIF offers 3 dialects —
Core, BLD (Basic Logic Dialect) and PRD (Production Rules Dialect)(Feigenbaum et al.,
2013; Kifer and Boley, 2010; Morgenstern et al., 2012). RIF core is the basic language and
offers the least constructs or expressiveness. It is also based on XML format similar to
RuleML. RIF BLD offers logic functions along with equality and built-ins as per positive
horn logic. RIF PRD adds forward chaining of rules to RIF BLD (Feigenbaum et al., 2013).
RIF offers a major advantage as it can be expressed in both XML-based syntax and more
importantly can be extended to AP242 of STEP(Lutzenberger et al., 2012). It can integrate

with any platform or a CAD/PDM platform (Colombo et al., 2014).

Semantic Web Rule Language (SWRL) combines OWL DL constructs with Unary/Binary
Datalog subset of RuleML (Horrocks et al., 2004; Kuba, 2012) . Thus it allows horn logic
rules to be expressed in addition to OWL concepts(Glimm et al., 2009; Zhao and Liu, 2008a).
SWRL includes basic functions such as comparison, boolean, strings and math such as
multiply, divide, sin, tan, pow (Golbreich, 2004). Semantic Web Services Language (SWSL)
as a language consists of two languages — SWSL-FOL as a first order logic based language
for defining formal ontology for process models and SWSL-Rules as a rule based language

(Battle et al., 2005).
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Reasoning on the rule is performed in many ways. Forward reasoning and backward
reasoning are some of them. Forward reasoning is referred as data driven or eager approach
whereas backward reasoning is referred as goal driven or lazy approach (Negnevitsky, 2005).
In forward reasoning, the system matches the statement against and existing rule and
generates all results, which match the statement. In backward reasoning, the statement is
allocated, as hypothetical goal and the rule will be generated which matches the goal
statement. Backward reasoning takes less time as compared to forward reasoning and only
provides specific solutions whereas forward reasoning generates all possible solutions and

takes more time.

Ontologies have been implemented using OWL for engineering design knowledge primarily
including product model and engineering rules using SWRL on top of OWL for DEA (Sanya
and Shehab, 2015, 2014). Similarly, engineering rules have also been formalised using RIF-
PRD and Content MathML on top of OWL for DEA by (Reijnders, 2012) and RIF for
LinkedDesign project by (Colombo et al., 2014; Klein et al., 2014). MathML is also based on
XML syntax and provides 2 versions for representation of math based rules — Presentation
and Content MathML (Ausbrooks et al., 2014). Presentation MathML provides an inbuilt
library of about 30 elements and Content MathML is more exhaustive with an inbuilt library
of 120 elements with functions for complex equations such as partial differentiation and
matrix on top of basic functions (Bos et al., 2011; W3C, 2016).

3.7.9 Schema based Languages - STEP and VRML

Another important ISO standard for product data exchange is STEP which is also regarded as
ISO 10303 (Pratt, 2001; Zha and Du, 2002). STEP is widely used in industry for representing
and exchanging CAD data in a neutral format (H. Wenzel et al., 2011). STEP not only covers
exchange of geometric information between different CAD formats but includes all product

data throughout the lifecycle (Liutzenberger et al., 2012; Tang et al., 2001). STEP uses
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EXPRESS (ISO, 2004) as a modelling language to represent objects with related attributes
and properties and adopts features from O-O modelling approach (Krima et al., 2009; Peak et
al., 2004). EXPRESS provides inheritance of objects with data types to represent complex
relationships. Although EXPRESS is machine-readable it can represent only static knowledge
and cannot be executed in its original form (Dong et al., 1997; Tang et al., 2001). The
semantics of the product data in EXPRESS schema is not explicitly specified (Krima et al.,

2009; Sarigecili et al., 2014).

STEP allows various formats for product data representation. Some examples are — 1SO
10303-21 for text format, ISO 10303-28 for XML serialization, ISO 10303-22 for API, 1SO
10303-41 for product identification and product configuration and I1SO 10303-46 for visual
representation (Weilkiens, 2007). STEP, UML, Parts library (PLIB), PSL, Manufacturing
Management Data Exchange (MANDATE) are examples of standardized exchange
specifications for sharing of product and process information in industrial data
(Chandrasegaran et al.,, 2013). STEP as ISO 10303, PSL as ISO 18629 along with

MANDATE as 1SO 15531 all comprise part of ISO TC 184/SC4.

Many conversion mechanisms have been devised from STEP to OWL/SWRL in context to
engineering design. Work has been performed to convert STEP EXPRESS schemas to
OWL/SWRL models for development of detailed neutral and interoperable product models
with geometric knowledge for visual display (Zhao and Liu, 2008a, 2008b). Similar work has
been performed to integrate STEP schemas such as Application Protocol (AP) 203 and Part
21 using EXPRESS schemas to OWL/SWRL based ontologies in order to develop
interoperable product models with geometric knowledge such as Onto-STEP and ONTO-

PDM (Barbau et al., 2012; Krima et al., 2009; Panetto et al., 2012).

Virtual Reality Modeling Language (VRML) is a neutral format for 3D rendering of

geometry and allows exchange of product’s geometric intent and knowledge (Hartman and
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Wernecke, 1996; Qin et al., 2003; Web3D, 2017). It offers ease of sharing over the web as
compared to STEP, whichdoesn’t support integration over the web for e.g. STEP AP 203.
However, VRML doesn’t successfully render complete geometric information and retain all
intricate features as compared to STEP for efficient product realisation (Cooper and LaRocca,
2007; Szykman et al., 2000a). X3D, which is XML, based for 3D models also offers ease of

sharing over the web(Web3D, 2017).1t is a successor to VRML and is more comprehensive.
3.7.10 Schema based languages - Semantic Web Base Standards

RDF offers representation of information over the World Wide Web and is regarded as a
W3C recommendation (Klyne et al., 2004; Manola et al., 2004). The syntax of RDF describes
information by breaking it into a triple form consisting of subject, object and predicate. It also
offers a formal graphical syntax in the form of an RDF Graph. The Uniform Resource
Identifier (URI) is an id, which locates the address of the information over the web. The most
critical aspect of RDF is that it uses XML-based syntax and schema (Klyne et al., 2004).RDF
as a data model for objects and relations provide a simple semantics. RDF schema (RDFS)
provides generalisation of classes and properties (Dean et al., 2004; Mcguinness and Van
Harmelen, 2004). XML can be defined as a universal metalanguage for defining markup and
allows interchange of data between various disparate applications (Antoniou and Van
Harmelen, 2004). XML provides a formal neutral machine interpretable syntax for data.
XML uses a tagging based approach similar to HTML and can be used for various purposes
like marking information in design documents, process information and product models.
However, a shortcoming of XML based representation or tagged information is that it doesn’t
provide clear semantics to the data (Antoniou and VVan Harmelen, 2004). This indicates that
the meaning of the information can’t be constrained as sematic clarity and is thus open to

interpretation.
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An example of a format for requirements for automotive products based on XML schema as
open standard is Requirements Interchange Format (ReqlF) (OMG, 2013). Similar to UML,
ReqlF is an OMG specification format and provides neutral representation for requirements
such as functional requirements between proprietary tools thus enabling open standards usage
and providing interoperability.

3.7.11 Object-Oriented (0-0) programming languages

Object-Oriented (O-O) programming languages such as LISP, Java, C/C++, Smalltalk,
Python can be considered as formal representation or knowledge representation standards (La
Rocca, 2011). O-O techniques vary from modelling methods or standards such as UML,
SysML and programming languages, which are executable and dynamic as opposed to

UML/SysML, which are static in nature.

As an O-O language, Java can be defined as ‘A simple, object-oriented, network-savvy,
interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded,
dynamic language’ (Toussaint and Cheng, 2002, Pg 335). Java is increasingly used for
developing client-server applications especially over the web. It allows for calling of
information over databases and ontology models as knowledge base enabling automation and
offers cross platform usage with its source code for e.g. through an API such as Apache Jena
Framework (Toussaint and Cheng, 2002). Work performed for DEA using OWL/SWRL
ontologies was converted for visualisation using Java by (Sanya and Shehab, 2015, 2014).
Java enables cross-platform usage as it supports network programming, as compared to other
programming languages such as C/C++ for which explicit codes need to be written to enable
its cross platform usage (Reilly, 2006). Java code also allows for interaction with neutral
format product models such as VRML which can be shared over the web (Qin et al., 2003;
Zeng et al., 2003). Java can also be used for generating code from O-O modelling methods

such as UML (France et al., 2006). Java, C++ and Python are all high level programming
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languages (La Rocca, 2011). Even C++ code can be generated from domain models
maintained for design automation applications (Bermell-Garcia, 2007). Both python and C++

codes were used to perform DEA in context to OWL ontologies by (Reijnders, 2012).

LISP is also a high level programming language and stands for LISt processing (Foderaro,
1991). LISP supports declarative approach as well along with procedural approach as
compared to basic O-O programming languages such as C, which are purely procedural in
nature. Thus along with defining LISP allows for change of its own source code thus
allowing extensions to its own syntax and create supersets (Liitzenberger et al., 2012), which
result in languages such as Common LISP. Thus Common LISP follows a multi-paradigm
approach by supporting both declarative approach and procedural programming as it evolved
primarily from O-O approach (Evenson et al., 2015). KBE applications vary from most O-O
languages in the sense that they imbibe declarative nature along with the facility of
procedural programming as opposed to purely procedural nature of basic O-O languages
(Prasad, 2006). Because of the advantages of LISP as compared to other O-O languages such
as Java, C++ in the form of being declarative in nature and allowing extensions in its own
syntax thus creating supersets of its own syntax in the form of Common LISP as a superset of
LISP, its various dialects are used for creating and building KBE automation applications

(Litzenberger et al., 2012; Phillip Sainter et al., 2000).

Some of the existing proprietary KBE applications such as Adaptive Modelling Language
(AML) from Technosoft is based on O-O techniques (TechnoSoft Inc, 2003). AML is
primarily based on LISP dialect (Preston et al., 2004; Rocca, 2012) but also uses C++ and
Fortran codes (TechnoSoft Inc, 2003). AML focuses on automation of product design
throughout product lifecycle. From AML’s perspective, capturing knowledge in the form of
objects and properties is critical. AML performs this by defining class definitions for similar

objects and properties in the methods. It also supports class-subclass relation and is dynamic
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in nature. It supports constraint mechanism in product alteration by making interdependencies
or dependency backtracking in the unified model along with relation to parameters. It also
invokes events. ICAD is based on ICAD Design Language (IDL), which being a proprietary
KBE application is based on a superset of LISP code in the form of ACL LISP
implementation allowing for declarative nature (Bermell-Garcia, 2007; Bermell-Garcia and
Fan, 2002; La Rocca et al., 2002). Similarly, General Purpose Declarative Language (GDL)
from Genworks as a proprietary KBE language is also based on ANSI standard version of
Common Lisp and uses Common Lisp Object System (CLOS) allowing for declarative

paradigm (J Kulon et al., 2006; La Rocca, 2011; Rocca, 2012).

Frameworks such as Apache Jena provide interface to the OWL/SWRL representation and
support Pellet reasoner for queries and inference results (Chan, 2013; Zhang et al., 2015).
Proprietary DEA applications such as AML, ParaPy are based on O-O programming which
also forms the basis of representation of geometry kernels such as LISP, Java, C/C++. O-O
programming offers few similarities to ontology-based representation in terms of object and
class definition with attributes, encapsulation and inheritance.

DEA in context to KBE is driven highly by engineering rules and thus KBES select
production rule formalism in conjunction with O-O paradigm as KR for achieving DEA.
Table 3-2 illustrates the available formal representation methods for representation of various

design decomposition features as discussed in section 2.6.

87



Table 3-2: Formal representation methods & techniques available for representing design
decomposition features to enable design process automation

Design Decomposition

Features

Formal Representation
Methods & Techniques

References

Process — Inputs, Outputs

and Parameters

PSL, IDEF5, OWL DL,
OWL-S,

(Bechhofer, 2009; Benjamin et al., 1994; Bock and Gruninger,

2004; Chen and Chen, 2005; Fellmann et al., 2013; Gruninger,

2004; Grininger, 2009; Gruninger and Cutting-Decelle, 2000;

Grininger and Menzel, 2003; Martin et al., 2004; Pouchard et
al., 2000, 2005; Schlenoff et al., 2000b; W3C, 2012)

Engineering Rules,
Logic, Constraints,

Rationale

RuleML, Rule Interchange
Format (RIF), SWRL with
OWL DL

(Bechhofer, 2009; Boley et al., 2005; Colombo et al., 2014;
Fellmann et al., 2013; Liitzenberger et al., 2012; Lutzenberger
etal., 2012; W3C, 2012)

Functional Requirements

Requirements Interchange
Format (ReqglF), SysML

(Colombo et al., 2014; Fellmann et al., 2013; Liitzenberger et
al., 2012; Litzenberger et al., 2012; OMG, 2013; Weilkiens,

Requirements Diagram 2007)

3.8 Analysis of Informal/Semiformal and Formal Process Modelling

Standards for DEA

From the observations of comparative analysis of informal/semiformal modelling standards
in context to knowledge capture for achieving design automation in Table 3-1, IDEF suite
with main emphasis on IDEFO/IDEF4, UML/SysML, Modified Petrinet, and signposting
satisfy the criteria as they successfully capture necessary design decomposition features on a
higher level. Petrinet is considered to be one of the methods for process modelling and
representation techniques. Although in its original form, it does not enable design
decomposition to the required level for process automation, MPN can capture design
decomposition features. However, it fails to utilise common semantics and uniformity in
axioms (Gruninger and Menzel, 2003). This highly inhibits its use in a neutral representation
for achieving automation. Also, Petrinets and MPN have their strength in modelling the
synchronisation of concurrent processes, cause and effect relationships between events and

states along with evaluation of modelled systems based on precedence of activities (Bock and

88




Gruninger, 2005; Peleg and Dori, 1999; Zhang et al., 2013). Similarly, although Signposting
as a modelling method is successfully able to represent product parameters, the confidence
mapping of parameters is not a requirement for DEA as observed from Table 3-1. Also, the
confidence mapping of parameters is upon the discretion of the engineer and is not
standardised. Thus both Petrinet/MPN and Signposting are unable to capture complex
interdependencies of a process model with emphasis on flow of information of design
decomposition features such as activity inputs, outputs, rules, function and behaviour in

context to achieving DEA.

Final selection of an informal model would be suggested after experimentation on formal
representation of the informal model, as all of the necessary design decomposition features in
the form of parameters, inputs and outputs, rationale, logic, rules, constraints, attributes, and
requirements will need to be formally represented. Existing process modelling techniques are
able to represent the design process knowledge at a high level granularity instead of low level
granularity with detailed attributes and complex interdependencies of knowledge required for
DEA (Ding et al., 2009). Integration of all the concepts of engineering design process as
design decomposition features with the complete effect of a re-usable and robust process
model on the product attributes is required before its implementation to a formal

representation framework (Chalupnik et al., 2006).

Engineering rules can be represented in IDEFO through control component as functional
modelling method and represented formally in rule languages such as RuleML, RIF and as
production rules. In the work of Skarka, using OWL, rules are represented textually, but not
as executable formal representation with link to product attributes which can return values
during reasoning and querying. The reasoner doesn’t perform reasoning on rdfs:comment in
the model (Skarka, 2007). Process flow can be successfully represented in IDEF3 diagram

and UML activity diagrams. Product model can be successfully represented through object
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diagrams in IDEF4, UML class diagram, OPM object diagram and even in PSL formal
ontology object instantiation. Resources can be represented in IDEFO as mechanisms.
Parameters can be successfully represented in signposting and even in PSL formal ontology
with extensions. PSL as a language can be used for process and activity description including
inputs, outputs and parameters from the process model with extensions along with
representing a product description. In order to enable DEA, the formal representation should
enable automated reasoning or inference as execution of its axioms. PSL is similar in
representation to a low level assembly language and needs a compiler to convert its

representation to a high level language such as C or Fortran (Schlenoff et al., 2000a).

The family of IDEFx series has been very successful at systems modelling (Ciocoiu et al.,
2001; Reeker, 1994). IDEF4 design rationale component can provide for design rules under
the design rationale component as partitions (Mayer et al., 1992) but engineering rules can’t
be explicitly stated and with contextual relevance to engineering design process. Design
rationale can be represented as an integral component in IDEF4 standard and DRed tool as
UML class diagram along with formal representation using OWL ontology. UML has been
widely adopted as O-O modelling for software systems (Siricharoen, 2007).UML/SysML
diagrams have also been very successful at modelling and representation of function,
behaviour and structural aspects of engineering systems with complex interaction along with

exchange of knowledge to be consumed with KBE applications (Plateaux et al., 2009).

The results indicate that methods and languages such as the IDEF suite and UML/SysML
informally capture most design decomposition features such as objects, processes with inputs,
outputs along with resources, attributes, requirements, rules, logic, constraints, and rationale
for design process automation. The formal representation framework aims to achieve process
automation by representing all design decomposition features dynamically in a knowledge

model and then running a query and inference as automated reasoning.
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Thus design decomposition features are individually supported through existing
informal/semiformal and formal modelling standards. However, as none of the existing
methods is successfully able to capture and represent the complete functional, behavioural
and structural (F-B-S) aspects of engineering design process knowledge, a novel process
model utilising strengths of the existing informal/semiformal standards needs to be
developed. The schema of the novel process model as developed will provide a method to
effectively utilise existing platform independent and neutral formal representation standards
for DEA. The basis of the process model will be analysis of functional requirements for
generative modelling along with the effect of the process model on product’s geometric

attributes.

3.9 Summary

This chapter discusses informal/semiformal and formal standards in order to capture and
represent all design decomposition features as F-B-S aspects of a mechanical design process
with DFM for DEA. The findings have revealed that none of the existing modelling methods
are able to capture the complete mechanical design process knowledge with complex
interdependencies with product attributes at an informal/semiformal level. Thus a hybrid
approach will be adopted to develop a highly granular and integrated novel process model
based on IDEFO/IDEF4 and UML/SysML for DEA based on the findings. The platform
independent and neutral formal representation framework of the process model enabling
DEA with generative modelling has to satisfy the requirements at an implementation level for
the axioms and semantic clarity. In order to recommend the method of schema mapping of
the proposed hybrid process model to neutral formal representation with preserved semantics
in order to fulfill the primary aim of this research, key concepts and relationships of process
model as part of the design decomposition features will be identified for development of

Meta model along with experimentation aspects with pilot use-cases. Requirements will be
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formulated for the implementation of the Meta model in neutral formal (machine or system
interpretable) representation with preserved semantics. The identification of these key
concepts and relationships for Meta model along with pilot use case investigation along with
compilation of requirements and comparative analysis of formal representation standards will

be discussed in the next chapter as part of research design.
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4 Key Concepts and Relationships of Engineering Processes for

Formalisation with Pilot Use Cases

4.1 Introduction

Chapter 3 elaborated on the existing informal and formal modelling standards, which can
capture and represent the mechanical design process with DFM knowledge for DEA. The
results of the comparative analysis for informal/semiformal modelling standards suggested
that none of the existing standards could fully capture the complete domain knowledge of
mechanical design process with DFM for DEA in context to KBE. In order to address the
research gap identified in chapter 2 and based on the findings of chapter 3, this chapter will
identify key concepts and relations of the process model from design decomposition features
for DEA with a KBE approach and formulate the requirements for the platform independent
formalisation of the Meta model based on these concepts and relationships with neutral
semantics. It will also discuss the pilot use-cases for experimentation with existing formal
standards. The comparative analysis of existing neutral formal representation standards as per
the compiled requirements will yield the implementation method of the schema of the Meta

model based on identified concepts and relationships of the process model.

4.2 A Generic Process Model for DEA with Neutral Formal Representation

Process models can be considered as abstractions of a real process with ambiguity depending
upon the level of granularity required for different purposes such as the engineering design
process for DEA (Eckert et al., 2015; Maier et al., 2017). As per the domain of engineering
design process, both process model and product model are modelled separately but also
require integration (Maier et al., 2017). Thus the process model developed for DEA as part of
this research provides high granularity and integration with the product knowledge with the

behavioural effect of the process model on the change in product’s state in terms of its
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geometric attributes. The model driven approach adopted for identifying the key concepts and
relationships of the process model with its neutral formal representation utilises 3 stages is

illustrated with the help of Figure 4-1.

Engineering
Design
Knowledge A Generic Process Model - Model Driven Approach
Leads to abstraction of complex
. ) engineering design process knowledge
Design Design
Process Rules
Design & Manufacturing
Manufacturing Methods
Product Manufacturing Rules
Parameters Rules /‘ Trade-off
esign___p between
Heuristic < = Process Design and
. Manufacturin
Design Manufacturing / ufacturing
Knowledge Methods
Design Product »
Process "tr:a[de—ofr Parameters H[?:sr:;tr:c
Functional ehween Design
Requirements Design and Proess nowledge
Manufacturing Eunctional
Requirements

Knowledge
Maodel or an
Implementation
Platform Model far

Platform Specific Independent & Design
DEA Application Neutral Engineering
Representation Automation

(DEA)

Figure 4-1: Model Driven Approach for Knowledge Modelling and its Equivalent Neutral
Formal Representation for DEA

The working of the process model in this research can be divided into 3 steps — Phase 1,
Phase 2 and Phase 3. Phase 1 refers to informal/semiformal modelling of engineering design
process with focus on mechanical design and DFM for knowledge modelling of all concepts
and relationships. This focuses on visual representation using graphical modelling standards.
The findings of chapter 3 have revealed that a hybrid approach using existing standards such
as IDEFO/IDEF4 and UML/SysML as the basis. Phase 2 refers to equivalent representation of
the informal model with platform independent and neutral formal representation as machine
or system interpretable axioms using existing standards. This will be continued in the next

sections with experimentation with pilot use-cases and requirements analysis for
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formalisation for DEA. Phase 3 refers to the automation layer with the help of querying and
inference as reasoning mechanism on the formal axioms as part of the verification for the
method of schema mapping. The method for developing and testing of the process model is

defined in Figure 4-2.

Phase 1 Phase 2 Phase 3
Informal Modelling of Formal Modelling of Design Engineering
Engineering Design . ’ Engineering Design o Automation
Processes Processes
r r l )
* Structuring * Axioms for Structured Knowledge : Inferepce (Automated Reasoning)
+ Visual and Graphical Representation * Class description and Relationships Quer_'.alng )
= Consistency Checking

Figure 4-2: Working of the process model for DEA
4.2.1 Phasel

Firstly domain knowledge of the mechanical product design process with DFM is captured
using a model driven approach as a generic process model with concepts and relations with
high abstraction. The domain knowledge describes the static information and knowledge
objects in an application domain (Schreiber et al., 2000, pg 91). Pertaining to this thesis, the
domain knowledge comprises of the mechanical design process and DFM/DFA with
activities consisting of inputs, outputs, rules and resources along with process function and

behaviour in context to the product attributes.
4.2.2 Phase 2

The process model is finalised in terms of its Meta model based on concepts and relationships
before its implementation in platform independent and neutral formal representation
standards. The domain schema contains all the concepts and relationships of mechanical

design process with DFM/DFA. A domain schema can be defined as ‘a schematic description
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of the domain-specific knowledge and information through a number of type definitions’
(Schreiber et al., 2000, pg 91). Population of the schema level model or domain schema with
instances leads to development of the knowledge base. According to Schreiber, ‘a knowledge
base contains instances of the types specified in a domain schema’ (Schreiber et al., 2000, pg
91). Thus the knowledge base will contain population of the mechanical design with
inclusion of DFM aspects as domain schema with instances from all 4 Use cases for
experimentation as neutral formal representation standards. Reasoning and querying can be

performed as execution of the underlying axioms.
4.2.3 Phase 3

This phase focuses on the accuracy of the reasoning mechanism as inference and querying
over the axioms of the knowledgebase along with the completeness of knowledgebase. The
reasoning mechanism helps in deduction of new knowledge based on existing axioms; returns
answers to the user based on multiple scenarios and provide consistency checking. These are
matched to the implementation in a DEA system such as a KBES to verify the correctness of
the reasoner in terms of values generated. The values generated will only match correctly if
the method of population of schema with instances of the process model to its neutral formal

representation is appropriate.

Thus the novel aspect of the solution as part of the research gap is to initially define a
core set of mechanical design process Meta model based on concepts and relationships with
inclusion of manufacturing knowledge as DFM based on the identified design decomposition
features in section 2.6 and findings in section 3.8. These are discussed in the next section 4.3.
The other main aspect as the primary aim of this research is the method of schema mapping
of the Meta model based on identified concepts and relationships to neutral formal
representation with semantic clarity to constrain the meaning of concepts as part of model

driven formalisation. For this purpose, the experimentation with pilot use cases for key
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concepts is performed in section 4.4 and 4.5. The compilation of the requirements for
formalisation is performed in section 4.7 and the comparative analysis for the finalisation of
the representation is performed in section 4.8 and 4.9. Another key aspect which is to test the
automation (DEA) capability of the formalised model using a series of steps for accuracy of
the reasoner and query with the supporting tool. The results of section 4.8 and 4.9 will

contribute to the testing mechanism for DEA.

4.3 Key concepts and relationships of the Process Model

Figure 4-3 illustrates all the high level, intermediate and low level concepts as F-B-S aspects
of the process model for DEA as a Meta Model developed as part of this research. Inputs and
outputs are adopted from the definition - entities consumed and modified during an activity
with engineering rules controlling the behaviour as methods with conversion of inputs to
outputs along with resources which may be a design tool or a physical resource (Ding et al.,
2009). Engineering rules have been modelled for engineering design process knowledge as
part of DEA to control the effect of design variations on product parameters (Bermell-Garcia
and Fan, 2002; Calkins et al., 2000). Product function and behaviour in context to
engineering design process have been modelled as concepts and relationships for
interoperable knowledge sharing using Core Product Model 2 (CPM2) and Open assembly
Model (OAM) (Fenves, 2001; Fenves et al., 2008; Szykman et al., 2001, 2000a, 2000b).
However, very important contributions of process adding semantics to product function and
behaviour throughout the product lifecycle as part of engineering design process have been

made by Frederic Noel (Noel, 2006) and John Gero (Gero and Kannengiesser, 2007a).
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- Engineering Design Process
for DEA - Meta Model

High Level Concepts
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Design & Manufacturing  Activities Outputs - Object Engineering Functional  Behaviour Pr;duct
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Analysis (DFM) Aftributes Resources Requirements Knowledge
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Function Structures - Engineering Rules -
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Edge, Face, Feature (Extrusion, Protrusion}, Form, , Object Material (Alloys, Ceramics, Composites, Ferrous Metal, Non Ferrous Metal,
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Punching, Casting......}, Costing, Tool Selection( Drill Bit, Reamer, Punching Tool, Tongs, Die, Mold.....}

Figure 4-3: Concepts for the required Process Model for DEA — Meta Model

The high level concepts formulated by the author are described as follows —

e Process description with activities, inputs, outputs, resources and activity id

e Process inputs & outputs as product geometric attributes

e Engineering rules based on math and logic

e Process functional requirement / function

e Process behaviour

Thus the following set of research questions arise -

I.  How can the mechanical product design process with inclusion of manufacturing
knowledge (DFM/DFA) based on various entities such as activities, rules, logic,
function and behaviour for product realisation as per author’s Meta model, be
captured in a generic and re-usable process model as a model driven approach with

structured knowledge model for automation in a virtual engineering environment?
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Il.  How can the developed process model in line with author’s Meta model be then
formally represented for machine interpretation in platform independent and neutral
representation standards with semantic clarity (clear meaning of concepts) for Design
Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE

approach through open standards?
A 3 question also arises as a consequence of the 2" question

I1l.  Can the formalised process model enable automation with generative modelling from
the functional requirements generated at the initiation of the design process as the

design intent with queries and reasoning on developed generic functions?

As observed from the findings in section 3.8, PSL ontology can represent activity with inputs,
outputs and object along with resources from the identified core concepts. Similarly, RuleML
and RIF can both represent math and logic rules. OWL ontology can represent concepts and
binary relationships. All of them have been extensively used in the engineering domain. The
next section will discuss the experimentation of the high level concepts of the process model
with languages such as PSL, RuleML and OWL to demonstrate the effectiveness of these

formal representation languages for DEA in context to KBE.

4.4 Pilot Use Case 1 - Precision Forging of Aero Fan/Compressor Blades as

Design for Manufacturing (DFM)
4.4.1 Preliminary Knowledge Analysis

An informal process has been devised for DFM of aero fan blades by the author as illustrated
in Fig 4-2. The process is precision forging of compressor blades as method of
manufacturing. The activities can be broken down mainly as — ‘Extrusion’, ‘Heading’ and
‘Stamping’. All the detailed knowledge cannot be shown here due to copyright issues as per

the intellectual property rights of the industrial partner.
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Figure 4-4: Use Case 1 - Example of a precision forging process of a compressor blade

As observed from Figure 4-4, the process map illustrates inputs, functional requirement,
behaviour and rules along with sub-processes of major activities in the form of extrusion,
heading and stamping. The inputs required for extrusion are material data — billet & dies,
geometries — billet (without glass coating), tongs, dies (Nominal) & punch, temperature to
which the workpiece is heated up in the furnace prior to extrusion, furnace transfer duration,
duration for which the workpiece rests on the die, die temperature, press characterisation

and punch stopping position.

4.4.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML

The formal representation framework is based on the discussion for representing process
information along with other design decomposition features such as rules, logic and

requirements along with flow of information in the form of inputs and outputs.
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4.4.2.1 Activities with Inputs & Outputs and Objects: Process Specification

Language (PSL)

The PSL syntax illustrating the flow of information along with extensions to illustrate inputs

and outputs is shown as follows. The inputs and sub-activities are only shown for the

extrusion process in the PSL syntax using the core theories and extensions —

(define-parameter

‘variable ?cb

:constraints (compressor blade ?cb))

(define-activity-role

fid sl

‘name Extrusion

‘successors 2

-preconditions (not extruded ?cb (beginof ?occ))

:postconditions (extruded stem of ?cb(endof ?occ)))

(define-activity-role)

1id s2

‘name Heading

‘successors 3

:preconditions (extruded stem of ?cb(beginof ?occ))
x:postconditions (headed shape of ?cb endof ?occ)))

(define-activity-role)

'id s3

‘name Stamping

:successors 4

:preconditions (headed shape of ?cb (beginof ?occ))

:postconditions (stamped ?cb (endof ?occ)))

(forall (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?p2)

(implies (= ?s1 extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?7p2))

(and (activity_occurrence ?s1

(Material data — Billet & Dies ?m)

(Geometries — Billet (without glass coating), Tongs, Dies(Nominal) & Punch ?g)

(temperature to which the workpiece is heated up in the furnace prior to extrusion ?t1)

(Furnace Transfer Duration ?t2)

(Duration for which the workpiece rests on the die ?t3)

(Die Temperature ?t4)

(Press Characterisation ?p1)

(Punch stopping position ?p2))))

(forall (?cb ?s1)
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(implies (or (occurrence-input ?cb ?s1)
(occurrence-output ?cb ?s1)

(and (object ?cb)

(not (state ?cb))

(activity_occurrence ?s1))))

(forall (?cb ?s1)

(iff (participant ?cb ?s1)

(exists (?t)

(participates_in ?ch ?s1 ?t)))

(forall (?cb ?s1)

(implies (or (occurrence-input ?cb ?s1)
(occurrence-output ?cb ?s1))
(participant ?cb ?s1)))

(exists (?s1 ?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?p2)

(and (occurrence_of ?s1 Extrusion(?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?p2)
(occurrence-input ?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?p2)
(occurrence-output ?m ?g ?t1 ?t2 ?t3 ?t4 ?pl ?p2)))

(forall (?cb ?s1 ?f)

(implies (or (input-state ?cb ?s1 ?f)
(output-state ?cb ?s1 ?f)

(and (object ?cb)

(not (state ?x)
(activity_occurrence ?s1)

(state ?f))))

(forall (?cb ?s1 ?f)

(implies (input-state ?cb ?s1 ?f)
(and (occurrence-input ?cb ?s1)
(prior ?f ?s1)

(exists_at ?cb (begin_of ?s1)))))
(forall (?cb ?s1 ?f)

(implies (output-state ?cb ?s1 ?f)
(and (occurrence-output ?cb ?s1)
(achieved ?f ?s1)

(exists_at ?cb (end_of ?s1))))

subactivity(Furnace Transfer, Extrusion)

subactivity(Dwell on Die, Extrusion)
subactivity(Extrusion, Extrusion)
subactivity(Air Cooling, Extrusion)
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4.4.2.2 Engineering Rules: RuleML

The rule that governs the extrusion process as ExtrusionRulel is - A short extruded stem left
behind after stamping would cause problems in handling the part while a long stem would
result in excessive material use & high costs.

ExtrusionRulel is represented in RuleML(Boley et al., 2005) as follows -

<Implies>

<head>

<Atom>

<Rel>stamping</Rel>
<Ind>short extruded stem</Ind>
<Var>problems in handling</Var>
</Atom>

</head>

<body>

<And>

<Atom>

<Rel>stamping</Rel>
<Ind>long stem</Ind>
<Var>excessive material use</Var>
</Atom>

<Atom>
<Rel>stamping</Rel>>
<Ind>long stem</Ind>
<Var>high costs</Var>
</Atom>

</And>

</body>

</Implies>

4.4.2.3 Functional Requirements: SysML Requirement Diagram

The functional requirement of the overall precision forging process is — ‘achieve an accuracy
of +/-2mm in shape prediction, as shape prediction accounts for a bulk of the manufacture
objectives’. The functional requirement for extrusion is - ‘the objective of extrusion modelling
is to ensure that the extruded stem is long enough for the part to be handled in subsequent

operations. The base of the extruded part also needs to have enough material for subsequent

103



heading, which can be estimated using its length’.The functional requirement of each activity
is captured and represented in SysML requirement diagram as shown below. The underlying
schema of the requirement as illustrated in the Figure 4-5 is the text of the requirement,
identifier, source, kind, method, risk and status. The model can be exchanged via AP233 as

well as discussed in the earlier section.

Package
<<requirement>> <<requirement>>
Overall Process Requirement Extrusion
Text = "achieve an accuracy of +/-2mm in shape prediction, as shape predictio... Text = "The objective of extrusion modelling is to ensure that the e...
ID="01" ID="02"
source = "‘model of the manufacturing process® b ______ 2 ~>| source = "model of manufacturing process”
kind = *Functional® kind = *Performance™
verifyMethod = "Inspection™ verifyMethod = "Demonstration”
risk = "High® risk = "Medium®
status = "Mandatory™ : A status = "Mandatory”
| \
| \\
| \
| A
| A
i
\i/ A
<<requirement>> <<requirement>>
Heading Stamping
Text = "The objective of heading modelling is to ensure that the headi.. Text = "The objective of stamping modelling is to ensure that there is enough en.,
ID ="03" ID ="04"
source = "model of the manufacturing process™ source = ‘model of the manufacturing process®
kind = *Performance™ kind = *Performance™
verifyMethod = "Demonstration” verifyMethod = "Demonstration®
risk = "Medium® risk = "Medium®
status = "Mandatory” status = "Mandatory™

Figure 4-5: Use Case 1 - SysML Requirement Diagram for capturing functional and
performance based requirements of the precision forging manufacturing method

4.5 Pilot Use Case 2 - Conceptual Design of Aero Fan Blades
4.5.1 Preliminary Knowledge Analysis

The case study discusses design aspects of fan blades (Amoo, 2013). An informal process
capturing design aspects of fan blades has been derived and compiled by the author in a
process map illustrating inputs, enablers, parameters, requirements, rules, logic, behavior, and
attributes along with the object primarily defined as a blade (Amoo, 2013). The blade can be
a fan blade, compressor blade or a turbine blade, which makes the process model generic for

reusability. The process map captures all aspects of a process which IDEF4 captures but does
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not demonstrate the IDEF4 syntax in the form of a static, dynamic, and behavioural models in

the present shape. The activities or events are broken down into three basic steps:blade

geometryoptimisation, dovetail attachment and material selection as shown in Fig. 4-6 along

with other design decomposition features. Fig. 4-7 illustrates the object box for the blade.

Rules, Rationale and Attributes Rule
Rationale and Attributes 1.docx

Enablers Resources 1.docx

Parameters & Inputs

Y

Blade geometry optimisation

g’

Requirements Requirements 1.docx

Parameters and Inputs 1.docx

Rules, Rationale and Attributes
Rule, Rationale and Attributes

Behaviour & Functionality
Behaviour & Functionality 1.docx

Requirements Reguirements 2.docx

Dovetail attachment

2.docx

Rules, Rationale and
Attributes Rule, Rationale and

/N

Behaviour Behaviour 2.docx

Attributes 3.docx

Behaviour Behaviour
3.docx

Material selection

Parameters & Materials -

Parameters & Materials 3.docx

Figure 4-6: Use Case 2 - An informal process capturing design aspects of a fan blade

Blade

Object {0} fan blade
Attributes {A} leading edge

{A} trailing edge
Methods {M} BEM Theory usage
Event {E} geometry optimization

{E} dovetail attachment

Relation {R} compressor blade
Link {L} design features

Figure 4-7: Use Case 2 - The object box as per IDEF4 methodology
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4.5.2 Mapping of Informal Process Model Concepts to Formal Representation

Standards: PSL, RuleML, SysML

The formal representation framework is based on the discussion for representing process
information along with other design decomposition features such as rules, logic and

requirements along with flow of information in the form of inputs and outputs.

4.5.2.1 Activities and Objects: Process Specification Language (PSL)
PSL activity role declaration (ARD) and object declaration syntax is explained as follows:

(define-activity-role

:id <number>*

:name <string>

:successors <number>*
:preconditions <PSL sentence>*
:postconditions <PSL sentence>%*)
(define-object

name <KIF constant>
:constraints <PSL sentence>*)
(define-parameter

:variable <KIF variable>
:constraints <PSL sentence>*) (Griininger and Menzel, 2003)

The object declaration can be a constant as shown in the first object declaration or a variable
as shown in the next object declaration. The PSL syntax illustrating the flow of information
along with extensions to illustrate parameters along with inputs and outputs is shown as

follows, but only for blade geometry optimisation.

(define-parameter

:variable ?fb

:constraints (fan blade ?fb))

(define-activity-role

fid sl

:name Blade geometry optimisation

:successors 2

:preconditions (existing design of ?fb(beginof ?0cc))

:postconditions (preliminary optimal geometric design features of ?fb(endof ?occ)))
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(define-activity-role)
id s2
:name Dovetail attachment
‘successors 3
:preconditions (preliminary optimal geometric design features of ?fb(beginof ?occ))
:postconditions (attached dovetail design features to the design of ?fb endof ?occ)))
(define-activity-role)
'id s3
‘name Material selection
:successors 4
:preconditions (attached dovetail design features to the design of ?fb (beginof ?occ))
:postconditions (material allocated to the preliminary design of ?fb (endof ?occ)))

4.5.2.2 Activity Inputs and Outputs: PSL
The parameters and inputs for blade geometry optimisation are broken down informally as:

Parameters: incremental lift created by each blade, ideal power and proper airfoil section,
twist, chord, and pitch angle for optimal thrust distribution. Inputs: aerodynamic forces
acting on a local airfoil and global changes in momentum along with rate of air intake
(Amoo, 2013).

The formal syntax in PSL incorporating extensions is as follows:

(forall (?s1 ?I ?p ?t ?fm ?r)

(implies (= ?s1 Blade geometry optimization(?l ?p ?t ?fm ?r))

(and (activity_occurrence ?s1

(Incremental Lift created by each blade ?I)

(Ideal power ?p)

(Proper airfoil section, twist, chord, and pitch angle for optimal thrust distribution ?t)
(Aerodynamic forces acting on a local airfoil and global changes in momentum ?fm)
(Rate of air intake ?r))))

(forall (?fb ?s1)

(implies (or (occurrence-input ?fb ?s1)

(occurrence-output ?fb ?s1)

(and (object ?fb)

(not (state ?fb))

(activity_occurrence ?s1)))))

(forall (?fb ?s1)

(iff (participant ?fb ?s1)

(exists (?t)
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(participates_in ?fb ?s1 ?t))))
(forall (?fb ?s1)

(implies (or (occurrence-input ?fb ?s1)
(occurrence-output ?fb ?s1))
(participant ?fb ?s1)))

(exists (?s1 ?I ?p ?t ?fm ?r)

(and (occurrence_of ?s1 Blade geometry optimisation(?l ?p ?t ?fm ?r)
(occurrence-input ?fm ?r ?s1)
(occurrence-output ?fm ?r ?s1)))
(forall (?fb ?s1 ?f)

(implies (or (input-state ?fb ?s1 ?f)
(output-state ?fb ?s1 ?f)

(and (object ?fb)

(not (state ?fb)
(activity_occurrence ?s1)

(state ?f))))))

(forall (?fb ?s1 ?f)

(implies (input-state ?fb ?s1 ?f)
(and (occurrence-input ?fb ?s1)
(prior ?f ?s1)

(exists_at ?fb (begin_of ?s1)))))
(forall (?fb ?s1 ?f)

(implies (output-state ?fb ?s1 ?f)
(and (occurrence-output ?fb ?s1)
(achieved ?f ?s1)

(exists_at ?fb (end_of ?s1)))))

4.5.2.3 Engineering Rules: RuleML
A few examples of the design rules to be followed during the blade geometry optimisation

process are represented in RuleML (Boley et al., 2005) as follows:

BladeGeometryOptimisationRulel:a 30% hollowing in a hollow fan blade results in about a
13%-16% decrease in torsional rigidity compared to a solid blade design (Amoo, 2013).

rule ml declaration (implication)

<Implies>

<head>

<Atom>
<Rel>hollowing</Rel>
<Ind>30%</Ind>
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<Var>hollow fan blade</Var>
<Rel>compared to a solid blade design</Rel>
</Atom>

</head>

<body>

<Atom>
<Rel>decrease</Rel>
<Ind>13-16%</Ind>
<Var>torsional rigidity</Var>
</Atom>

</body>

</Implies>

BladeGeometryOptimisationRule2: The rate of air intake varies and is dictated by factors
such as airfoil geometry, angle of attack, air density, and the speed at which the airfoil moves
through the air (Amoo, 2013).

rule ml declaration (statement)

<Atom>

<Var>rate of air intake</Var>

<Rel>dictated by factors such as</Rel>

<Var>airfoil geometry</Var>

<Var>angle of attack</Var>

<Var>air density</Var>

<Var>speed at which the airfoil moves through the air</Var>
</Atom>

4.5.2.4 Functional Requirements: SysML Requirement Diagram

The functional requirement as derived from the process for blade geometry optimisation is
that— ‘the fan blades spin to accelerate a mass of air into the engine to generate thrust that
propels the aircraft forward. Approximately 80% of the thrust produced by a modern jet
engine is delivered by the fan’. ‘Fan blades also function to reduce total engine damage from
the ingestion of various foreign objects such as birds by radially deflecting outward such
objects rather than passing them through to the core parts of the engine’ (Amoo, 2013). The
functional requirements of the process are captured and represented in a SysML requirement

diagram as shown in Fig. 4-8. The underlying schema of the requirement as illustrated in the
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figure is the textual requirement, identifier, source, kind, method, risk, and status. The model

can be exchanged via AP233 of STEP.

Package
<<requirement>> <<requirement>>
Blade Geometry Optimization - 1 Blade Geometry Optimization -2
Text = *The fan blades spin to accelerate a mass of air into the engine t... Text = "Fan blades also function to reduce total engine damage from ...
ID = "REQ001* ID = "REQ002"
source = "Fan Blade Prelim Design® source = "Fan Blade Prelim Design®
kind = *Functiona® |- C “»{ kind = *Functional®
verifyMethod = "Analysis” ~ | verifyMethod = "Analysis™
risk = "High® risk = "High®
status = "Mandatory® status = "Mandatory”

<<requirement>>
Dovetail Attachment - 1

Text = "The dovetail attachment of fan blades are used to secure the blades to the ...
ID = "REQD03"

source = "Fan Blade Prelim Design™

kind = "Functional®

verifyMethod = "Analysis®

risk = "High*

status = *"Mandatory®

Figure 4-8: Use Case 2 - SysML requirement diagram for representing functional
requirements of the design aspects of the fan blades process

4.5.3 Mapping of Informal Process Model Concepts to Formal Representation

Standards: OWL

As part of this research, for the initial process model affecting the product at part level, text
based instances were created for all classes using Use-case 1, 2 & 3 by the author. Initial
naming convention for all instances follows the pattern -
ProcessModel:ActivityNameClassNameNo. For example, the function of the fan blade
exhibited during the activity BladeGeometryOptimisation — ‘The fan blades spin to accelerate
a mass of air into the engine to generate thrust that propels the aircraft forward.
Approximately 80% of the thrust produced by a modern jet engine is delivered by the fan’ is

named as ProcessModel:BladeGeometryOptimisationFunctionalRequirementl.

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name

and no. is 1. The other function of the fan blade exhibited during the activity
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BladeGeometryOptimisation — ‘Fan blades also function to reduce total engine damage from
the ingestion of various foreign objects such as birds by radially deflecting outward such
objects rather than passing them through to the core parts of the engine’ is named as
ProcessModel:BladeGeometryOptimisationFunctionalRequirement?2.

BladeGeometryOptimisation is the activity name; FunctionalRequirement is the class name
and no. is 2.All instances will satisfy the class description and properties. SPARQL query is a
method of querying the RDF graph (Composer, 2011). In Topbraid, in the SPARQL tab
queries are run over the asserted triples in the ontology. In order to run the query over both
the asserted and the inferred triples, inference needs to be executed on the model. For this
SPIN rules through OWL 2 RL need to be activated. Only then, the inference window
produces the inferred triples from the ontology model. Performing query in the SPARQL tab
will now perform query over both the asserted triples and inferred triples in the standard

edition of Topbraid. The syntax of SPARQL query is illustrated as follows —

SELECT *
WHERE {
?subject rdfs:subClassOf ?object .

SELECT * selects the complete ontology model, subject and object correspond to classes and
individuals, rdfs:subClassOf is the predicate. Using the properties created in the model and
putting them as predicate between classes and instances of the model, objects and subjects
can be retrieved in the SPARQL query tab. Thus although concepts like rationale, function
and behaviour of the process have presently been implemented as literals (datatype
properties) in context to the design process, running a SPARQL query through the property

returns the function and name of rules associated with the activity. For example,

SELECT *
WHERE {
ProcessModel:BladeGeometryOptimisation
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ProcessModel:exhibitsFunctionalRequirement ?object . }

Running this query yields the results as
ProcessModel:BladeGeometryOptimisationFunctionalRequirementl and
ProcessModel:BladeGeometryOptimisationFunctionalRequirement2 as the objects. Clicking
on these specified instances yields other linked properties such as
ProcessModel:hasmethodasBehaviour and the stated functional requirement as a literal with
the help of datatype property in the form of ProcessModel:isdescribedby. The domain of the
property ProcessModel:isdescribedby is defined as FunctionalRequirement class and the

range as a string. The illustration for this query is shown in the Figure 4-9.
Another example of SPARQL query -

SELECT *
WHERE {
ProcessModel:BladeGeometryOptimisation ProcessModel:followsRule ?object .

ProcessModel:BladeGeometryOptimisation is the subject in  the  query,
ProcessModel:followsRule is the property or the predicate in the query and object needs to be
returned. Running the above query yields the results as
ProcessModel:BladeGeometryOptimisationRulel and
ProcessModel:BladeGeometryOptimisationRule2 as objects through the property

ProcessModel:followsRule linking the domain and the range.
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TopBraid - Downloads/Formal Process Models/ProcessModel_Use Case _Secondary_Base.ttl - TopBraid Composer FE - [Users/vibhor/ TBCFreeWorkspace
metryOptimisal iy Quick Access
%® ¥ = O [al ProcessModel_... [a] ProcessModel_... [a] ProcessModel_... [al ENS0_V2.6.ttl [a] ProcessModel_... 52| = B | Tz Properties 12
Resource Form =[Elm~ I-FlocassModeI:afFecltedbv »
- [ ProcessModel:consistsofActivity
ProcessModel:BladeGeometryOptimisationFunctionalRequirementl M ProcessModel:consistsofProduct
e taT o [ ProcessModel:convertedtoOutputs
M ProcessModel:exhibitsFunctionalRequirement
Other Properties i ProcessModel:existatPostcondition
ProcessModel:consistsofActivity = » [ ProcessModel:existatPrecondition
[ ProcessModel:followsRule
Model: ©
ProcessModel:consistsofProduct M ProcessModel-fulfillsFunction
ProcessModel:hasmethodasBehaviour = [ ProcessModel:governedbylLogic
# ProcessModel:BladeGeometryOptimisationBehaviourl = [ ProcessModel:governedbyRationale
# ProcessModel:BladeGeometryOptimisationBehaviour2 - P ProcessModel:hasCondition
ProcessModelisdescribedby = [ ProcessModel:hasmethodasBehaviour
= — . - » [ ProcessModel:hasState
e fan blades spin to accelerate a mass of air into the engine to generate thrust that propels the aircraft forward. .
[ The fan blad, t lerat f to th [¢ te thrust that Is th ft f d = M ProcessModel-hasSuccessors
Approximately 80% of the thrust produced by a modern jet engine is delivered by the fan o =
b ProcessModel:isatCondition
rdfitype ¥ (M ProcessModel:producesQOutputs
ProcessModel:FunctionalRequirement - » [ ProcessModel:requiresParameters
Incoming References I-FlocassModeI:subsemfParamete[’sl
; R [ ProcessModel:transformedbyActivity
<+ ProcessModel:exhibitsFunctionalRequirement < .
¥ ProcessModel:BladeGeometryOptimisation = 1 ProcessModel:transformsProduct
W ProcessModel:forActivity
< ProcessModel:fulfillsFunction ~ B ProcessModel:forfulfillingFunction
# ProcessModel:FanBlade = B ProcessModel:hasID
B ProcessModel:isdescribedas
M ProcessModel:isdescribedby
B ProcessModel:isstatedas
owl:versioninfo
rdfs:comment
rdfs:label
F rdfsiseeAlso
¥ 4" | Form|Source Code
28 v= 8 @ Imports | @ Instances | B Domain | @ Relevant Properties Q'\Elrcr Log SPARQL B2 | 4 Text Search [ &? ‘ s
- [object]
m ———
Query o) # ProcessModel:BladeGeometryOptimisationFunctionalRequirementl
SELECT * 4 ProcessModel:BladeGeometryOptimisationFunctionalRequirement2
WHERE { . Query Tab
ProcessModel:BladeGeometryOptimisation P
ProcessModel:exhibitsFuncticnalRequirement ?object ReSUIT Genera‘ted
1

Figure 4-9: SPARQL Query Illustration: Activity and Functional Requirement

As illustrated, the limitation of SPARQL query is that it only infers the name of the rules as

text. To formally represent rules, they need to be embedded in the model with rule language

such as RuleML, RIF or SWRL formalism on top of OWL2 as shown in section 4.4.1.2.3.

For this reason along with the requirement of the process model to affect product attributes at

the highest level of granularity for DEA, use case 4 and use case 5 have been used to refine

and validate the process model. Use cases 4 and 5 will be discussed in Chapter 5 in detail.

Use case 4 involves making a hole in the block with drilling as the manufacturing process.

Use case 5 includes design of bookshelf implemented in AML as a KBE tool and Siemens

NX, CATIA Knowledgeware as parametric CAD systems from MOKA ICARE forms.
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4.6 Findings and Analysis - Pilot Use Case Experimentation

With the help of Use Case 1 & 2, it has been illustrated that PSL enables process
representation with parameters, inputs, and outputs using core theory and extensions in the
ontology(Bock and Gruninger, 2004). It needs more experimentation to illustrate
representation of other design decomposition features such as constraints and attributes.
RuleML (Boley et al., 2005) can be implemented to exhibit for textual rules. Similarly
SysML can exhibit requirements. The formal representation framework will need integration
for simultaneous application. PSL can be directly mapped to UML and hence to the SysML
requirement diagram. RuleML and PSL can be integrated and shared via XML schemas.
Similarly, all formats and languages to be experimented for representing other design

decomposition features will need integration.

4.7 Requirements for a process model for implementation in neutral

formal representation enabling design engineering automation (DEA)

The author has compiled the requirements for a generic process model enabling DEA through
neutral formal representation. The requirements are an amalgamation of 2 sets -1)
requirements for a process model to capture mechanical design domain concepts and
relationships in a unified and integrated model and 2) requirements of the knowledge

representation (KR) or knowledgebase (formal representation of process model) for DEA.

Some of the requirements for KBE methodologies enabling automation can be classified as
flexibility, extensibility, scalability and integration (Colledani et al., 2008). This means that
the process model must be generic and widely applicable to various product design systems,
must be extensible to add both product and process knowledge, and provide all relationships
as interdependencies. Thus some of the key characteristics, which can be deduced as

requirements for process model for mapping to formal representation model, are
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encapsulation of concepts and relationships with high level of knowledge abstraction for re-
use. Even as per KNOMAD methodology enabling DEA, the knowledge model needs to
follows these steps although the implementation can vary. These steps as summarised by

Pinto and Martins (Pinto and Martins, 2004) can be stated as
I.  Specification — identification of scope of knowledge model
Il.  Conceptualisation — identification of domain concepts and relationships

I1l.  Formalisation — organising domain concepts in class hierarchies and completion of

axioms to formally model relationships

IV. Implementation — codification of class hierarchies and axioms in a suitable formal

knowledge representation language
V. Maintenance - updating and maintenance of the implemented knowledge model

These steps are critical even though the representations may vary. Some representations have
been implemented as ontologies by Noy & McGuiness as seven-step method (Noy and
McGuinness, 2001), METHONTOLOGY (Fernandez-Lopez et al., 1997) and six-stage

methodology (Ahmed et al., 2007).

4.7.1 Requirements for an unified / integrated process model ready for

implementation as formal representation to enable DEA in context of KBE

Thus, some of the key requirements have been deduced by the author for the process model

ready for implementation as formal representation to enable DEA in context of KBE.

I.  Modelling of the Meta model based on domain concepts and relationships of the
process model - This includes design process activities, activity inputs & outputs as
product geometric attributes, resources, engineering rules based on logic as well as
mathematics in relation to the design process as well as product geometric attributes for

change of product’s state. This also includes interdependencies between sub-functions
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corresponding to activities, products and the design process functional requirements
and process behaviour. It should also be able to represent an interface between the
process model and aspects of product model such as assembly & part structures,

feature, form and fit

Il.  The modularity of engineering design intent with concise classification of concepts
and relationships and the ability to instantiate - This will enable high re-usability of

the developed process model as high abstraction

1. Suitable axioms for constraining the domain concepts and relationships in a
suitable formal representation language for execution in the form of reasoning and
querying - It should be ensured that there is optimal syntactic and semantic mapping
of the informal/semiformal model to formal model. This was stated as computational

capability in section 3.2

The requirements have been jointly formulated and compiled as per these sources (Colledani
et al., 2008; Danjou et al., 2008; Frank et al., 2014; Klein et al., 2015, 2014; J Kulon et al.,
2006; J. Kulon et al., 2006; Lutzenberger et al., 2012; Nomaguchi et al., 2002; Pinto and

Martins, 2004; Rezayat, 2000; Rios et al., 2005; Tomiyama et al., 2002).

Thus the next steps are to formulate requirements for axiom selection and formal

representation enabling DEA.

4.7.2 Requirements for a knowledge representation system (knowledge base)

enabling DEA

A knowledge representation system (KRS) generally consists of a knowledge representation
(KR) formalism with well-defined syntax and additionally if possible, semantics preserved,
as symbolically encoded knowledge (Shehab and Abdalla, 2002, 2006). The symbolically
encoded knowledge is crucial in making the knowledge representation layer machine

readable or computer readable (Patil, 2005). The symbolically encoded knowledge of the
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engineering design process model domain concepts and relationships refers to formal

representation in the context of this thesis. It also contains an inference engine, which means

reasoning mechanism closely built in with the representation layer or language for deducing

queries and consistency checking ensuring the representation is dynamic in nature as opposed

to just a static representation (Davis et al., 1993; Johansson, 2011; Tomiyama et al., 2002). It

may also contain a front-end environment for visualisation and possibly knowledge editing

and debugging (Bullinaria, 2005; Clark, 1996; La Rocca, 2011). The front-end environment

for visualisation is out of scope for this research.

The compiled requirements by the author for KRS enabling DEA in context of KBE can be

classified as follows -

Expressiveness — it means the expressive capability of the language to exhibit domain
knowledge of all classifications. In this case, it means representation of engineering
design knowledge as a unified process model with class-subclass relationship,

properties, logical rules, mathematical rules and functional knowledge

Inference adequacy and efficiency as execution of its code — the formal
representation system or KRS should be able to perform inference as reasoning and
queries as execution of its code with minimum degree of incompleteness. The system
should enable maximum time and memory efficiency while performing the inference
or execution of its code so that it returns the answer to the user in reasonable amount
of time along with correctness of the answer. This is the layer that adds dynamic

nature to the static representation

Explanation for inference — ideally, along with an inference, a system representation

should also be able to tell the reason for selecting an answer through inference

Semantic clarity — additionally if possible, the language should offer well defined

semantics or meaning of terms through its axioms
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VI.

VIL.

VIII.

Acquisition efficiency - the efficiency and naturalness of input of domain knowledge
by the knowledge engineer. This indicates syntactic friendliness of the representation
or knowledge base along with graphical display and convenience. It supports

structured and modular knowledgebase

Feedback during knowledge input - the system should not be static. It should be
dynamic and warn of inconsistencies if the axioms entered are incorrect. This is

tangible to consistency checking paradigm

Extensibility and scalability - the system should offer ease of adding new information
to the existing knowledge base. As the size of the knowledge base increases, the
system performance should still function within a reasonable time and performance

shouldn’t degrade quickly

System Interface to external applications — the system should atleast provide
mechanism to link to other database or application (DEA application including KBE
application in this case). The linkage to an external system won’t be addresses as part

of this thesis

Robustness, portability and ease of integration — the system should offer least bugs
as possible or no bugs at all in an ideal situation. The system should not be too
difficult while transferring its representation to other platforms. In this case, the

neutral representation should enable open standard usage.

The requirements have been jointly formulated and compiled as per these sources (Bullinaria,

2005; Clark, 1996; Colledani et al., 2008; Davis et al., 1993; Frank et al., 2014; Johansson,

2015, 2011, 2008; La Rocca, 2011; Rios et al., 2005; Rocca, 2012; TechnoSoft Inc, 2003;

Tomiyama et al., 2002; Tomiyama and Hew, 2000; Tor et al., 2008; Van Der Velden et al.,

2012; Van der Velden, 2008)
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4.7.3 Compiled requirements for a process model for implementation in neutral

formal representation enabling DEA in context of KBE

Combining both the sets of requirements in a concise manner yields the requirements for a

process model to enable DEA through neutral formal representation in context of KBE -

Expressive capability of language to exhibit domain knowledge for the mechanical
design process in the form of Meta model based on domain concepts and
relationships of process model- This should include all entities such as design process
activities with inputs & outputs as product’s geometric attributes, resources,
engineering rules based on logic and math, function, behaviour and interface with
product model as identified in section 4.3 in a unified and integrated approach. It
should support the class-subclass relationship between the concepts and represent all
relationships. Product parameters as object inputs are crucial in product design
process and thus form a critical part of the design process knowledge at the detailed

design stage.

Inference (reasoning) and querying with optimum adequacy and efficiency as
execution of its code — the system should allow for deduction of new information
from static domain knowledge through inference making the system dynamic in
nature. It should perform reasoning or execution of its code with optimum
performance between time and memory efficiency and degree of completeness. If

possible, the representation should support consistency checking.

Semantic clarity — additionally if possible, the axioms of the language should

constrain the interpretation of domain concepts and relationships

Modularity in the knowledge representation system (KRS) with precise axioms for
domain concepts and relationships - This will ensure structuring of the

knowledgebase along with the ability to instantiate enabling high re-usability
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V. Extensibility and scalability - optimum system performance in accordance with
addition of new domain knowledge in the form of concepts, relations and instances of

the engineering design process

VI.  Neutral representation - adopted from robustness and portability. Pertaining to this

research, the formal representation should enable open standard usage.

4.8 Basic Comparison of Formal Representation Standards

A brief comparison of formal representation standards is explained before detailed
comparison for implementation of all aspects of the process model in neutral formal

representation.
4.8.1 STEP vs. Ontology Based Approach

STEP based on EXPRESS (ISO 10303-11) (ISO, 2004)provides a schema for product data
model throughout its lifecycle (Zhao and Liu, 2008a). However, it differs from ontology-
based approach in various ways. All ontological languages formalised over various logic
which may be OWL based on DL or PSL based on FOL support automated reasoning (Hay,
2006; NIST, 2008; W3C, 2012). They can deduce new knowledge from the existing
knowledgebase with the help of an inference engine, making the representation dynamic in
nature. STEP based on EXPRESS schema is static in nature as it can’t execute (Dong et al.,
1997; Tang et al., 2001) and doesn’t possess reasoning capability (Qin et al., 2017). However,
the procedural knowledge contained inside class descriptions of EXPRESS can be extended
and merged with external systems and even programming languages such as Java/C++ to
enable execution of the statements (Zha and Du, 2002; Zhao and Liu, 2008a). The execution
of the procedural knowledge inside the EXPRESS schema with the help of externally

integrated systems will make the representation dynamic in nature.
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4.8.2 UML/SysML vs. OPM

UML and SysML allow visual representation of an engineering system through multiple
diagrams whereas OPM allows visual representation of an engineering system through an
integrated approach in the form of OPD and OPL which is an added advantage (Reinhartz-
Berger and Dori, 2004). Thus OPM is more favourable for modelling engineering systems at
a higher level such as the conceptual or class and schema level as it doesn’t model the
individual activities of a process. Although, OPM goes to various levels of abstraction to
represent the complete F-B-S of a system, it provides very less relation between the
individual activities of a process and its implementation as formal representation (Subahi,
2015). If the abstraction of knowledge is required at product attribute level, UML class
diagram or SysML Block diagram (Graves, 2009) are more comprehensive in expressing
product model with all its geometric attributes. OPCAT as a tool for OPM allows direct
export of XML information from the OPD and OPL, which form a machine-readable formal
representation. However, a shortcoming of XML based representation is that it only covers
the syntax level and doesn’t impose any constraints on the semantics, hence is open to
interpretation, and also doesn’t provide support for reasoning (Antoniou and Van Harmelen,
2004; Ray and Jones, 2006; Yahia et al., 2012). In order to overcome this shortcoming and
address DEA, formal representation framework beneath the graphical representation will

need to preserve semantic clarity and allow reasoning or inference capability.
4.8.3 Ontology vs. Systems modelling approach as UML/SysML and OPM

Ontology is different from object oriented (O-O) modelling such as UML and object process
methodology (OPM) in various ways. One of the most crucial differences is ontology
modelling is based on logic (Siricharoen, 2007) and allows for automated reasoning or
inference resulting in generation of new knowledge which are not supported by either

languages such as UML/SysML and OPM. According to (Graves, 2009; Graves and
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Horrocks, 2008), current systems modelling approaches such as OPM, UML/SysML are
unable to provide formal semantics to the knowledge expressed and represented. UML is
good for graphical display of the ontology but without the logic layer (Zhu et al., 2009). This
is the reason UML can be considered as semiformal representation or light weight formalism
(Chungoora et al., 2013a). Another difference is the built in of properties in ontologies which
are marked at the same level as classes which means object properties can be defined
between classes. O-O modelling limits the relationship between classes to superclass-subclass
relationship (Siricharoen, 2007). Ontology modelling also adds relationships to properties in
the form of symmetric, inverse and transitive, which can be accessed in the reasoning as
against O-O modelling which doesn’t support these features. Ontology modelling supports
multiple inheritance exhibiting complex relationships whereas O-O modelling such as
UML/SysML only allow for single inheritance. Ontology modelling also provides restrictions
for class definition in the form of allvaluesfrom, somevaluesfrom (Zhu et al., 2009). Thus in
spite of various differences in the underlying philosophy of UML/SysML and OPM with
OPM focussing on object and process as kinds instead of UML/SysML on objects/blocks,

both don’t support logic for ontology and relations.

As OWL ontology provides formal semantics to the knowledge represented, it can act as
semantic integration standard (Graves and Horrocks, 2008). Ontologies are thus good for
defining metadata and providing semantic clarity and can be used as a basis of knowledge
representation (KR) or defining metadata for building software and system engineering
applications. Pertaining to this research, ontology encoded in OWL2 can be used as a
backbone (semantic metadata) for DEA applications. As compared to O-O modelling
techniques such as UML/SysML and even OPM for modelling systems, ontology modelling

provides better support for exchange of knowledge across heterogeneous multiple platforms
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by offering additional semantic clarity through reasoning mechanisms (Zhu et al., 2009).

Figure 4-10 illustrates the classification of formal logic for knowledge representation.

First-Order
Logic

Logic
Programs

(Nonmonotonicity)

(Procedural
Attachments)

Figure 4-10: Formal Logic for Knowledge Representation (Grosof et al., 2010)

4.9 Comparative Analysis of Formal Representation Standards

The comparative analysis of the above mentioned formal representation standards as per the

requirements for a process model enabling DEA, performed as part of this research is shown

in Table 4-1.
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Table4-1: Comparative Analysis of Formal Representation Standards

Requirements for a generic process model for DEA in context of KBE

Classification Expressive Inference Modularity
of formal capability to automated . . - Neutral
representation | represent all (reasoning), Sig?ir:tlc _with | Extensibility Representation References
standards and | conceptsand | querying as Yy | instantiatio and (Open
languages relationships | execution nfor high Scalability standards)
of iits code re-usability
Semi-formal Can represent | Don’t Yes Yes Yes Auvailable open (Blekhman and
and graphical | most of the support source tools Dori, 2013;
(non-logic concepts and inference. such as visual Dori, 2004,
based) relationships However, paradigm, 2002; Foufou et
without including the models OPCAT provide | al., 2005;
reasoning e.g. | product and can be neutral Graves, 2009;
UML/SysML, | process executed representation Grobshtein and
OPM knowledge with the Dori, 2011;
with inputs, help of Hart, 2015;
outputs and programmin Mordecai et al.,
resources g languages 2016;
efficiently but | such as Siricharoen,
not complete Java/C++ 2007;
domain Vanderperren et
knowledge as al., 2008;
a unified and Weilkiens,
granular 2007)
process model
Formal and Represent Support Not Yes, but Yes Only open (Davis et al.,
graphical some concepts | inference explicit lack of source tools 1993; La Rocca,
(non-logic and contextual may provide 2011; Minsky et
based) with relationships relevance neutral al., 1975;
reasoning e.g. | but not all representation Obitko, 2007a,
frames, concepts and 2007b; Prasad,
semantic relationships 2006; Robin,
networks as complete 2013; Sowa,
domain 2015, 2008a;
knowledge of Wang et al.,
the process 2006)
model
Schema based | Represent Don’t Not Yes, but Yes EXPRESS (Barbau et al.,
representation | some concepts | support explicit lack of schemas are 2012;
in the form of | and inference. contextual available as Chandrasegaran
STEP relationships However, relevance neutral etal., 2013;
(EXPRESS such as the representation Dong et al.,
Schema) product model | EXPRESS 1997; Krima et
with schema can al., 2009; Lu et
extremely be al., 2016;
high integrated Litzenberger et
efficiency but | with al., 2012; Peak
not all external etal., 2004;
concepts and systems and Pratt, 2001; Qin
relationships programmin etal., 2017;
as complete g languages Sarigecili et al.,
domain such as 2014; Tang et
knowledge of | Java/C++ al., 2001; Zhao
the process for and Liu, 2008b)
model execution of
statements
as inference
Schema based | Represent Support Yes Yes, but Yes Open source (Beckett and
representation | some concepts | inference lack of tools such as McBride, 2004;
in the form of | and and query in contextual Protége, Bruijn and
RDF/RDFS relationships the form of relevance Topbraid Welty, 2013;
but not SPARQL provide neutral Dean et al.,
complete representation 2004; Hay,
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domain
knowledge of
the process
model

2006; Klyne et
al., 2004;
Manola et al.,
2004;
Mcguinness and
Van Harmelen,
2004)

Formal logic Represent Support Yes Yes Yes Only open (Genesereth et
based most concepts | inference source tools al., 1992;
languages in and with logic supporting logic | Gruninger et al.,
the form of relationships based paradigm may 2013; Hayes
KIF, CG’s, but not theorem provide neutral and Menzel,
CLIF complete provers representation 2001; Knutilla
domain etal., 1998;
knowledge of Obitko, 2007f,
a unified and 2007g, 2007h;
granular Schlenoff et al.,
process model 2000a; Sowa,
2008b, 2011,
2008a)
Ontology Individual Support Yes Yes Yes Open source (Bechhofer,
languages language such | inference or tools supporting | 2009; Bock and
based on as OWL2 and | execution logic paradigm Gruninger,
formal logic Gellish can and provide neutral | 2005, 2004;
such as OWL, | represent most | querying representation Chungoora et
process of the with logic fore.g. Protégé | al., 2013a;
ontology as concepts but based /Topbraid for Grininger,
PSL and non- | notrules, PSL | reasoners OowL2 2009; Grininger
formal logic can represent | for OWL2 and Mengzel,
based such as | process and PSL 2003; Hay,
Gellish specification 2006; Hennig et
with inputs, al., 2016;
outputs, Mcguinness and
parameters Van Harmelen,
but not 2004; NIST,
complete 2008; Obitko,
domain 2007¢; Pereira
knowledge as etal., 2011;
a unified and Pouchard et al.,
granular 2000, 2005;
process model Siricharoen,
2007; Van
Renssen, 2003,
2005, Wang et
al., 2006, 2004)
Rule Rule Support Yes Yes Yes Open source (Boley et al.,
languages languages can | inference tools supporting | 2016a, 2016b,
based on represent and logic paradigm 2005; Davis et
formal logic logical rules querying provide neutral al., 1993;
such as and basic with logic representation Feigenbaum et
RuleML, RIF | mathematical | based al., 2013; Hirtle
and rules but need | reasoners et al., 2006;
production to be linked to Kifer and
rules other logic Boley, 2010; La
based Rocca, 2011;
representation Morgenstern et
s for complete al., 2012;
domain Pugliese and
knowledge as Colombo, 2014)
a unified and
granular
process model
Object Can represent | Support Yes, but Yes Yes Original scripts | (Bermell-
Oriented and all concepts dynamic proper available as Garcia, 2007;
multi- and inference or | and languages, not Bermell-Garcia
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paradigm relationships execution efficient as neutral and Fan, 2002;
dynamic of the domain | by adding execution representation Cooper and
programming | knowledge as | new code, required standards. LaRocca, 2007;
language in a unified and object for Automation Evenson et al.,
the form of granular definitions precise applications 2015; Foderaro,
LISP and process model | at runtime. semantics developed are 1991;
LISP dialects Support not available as | Kaufmann and
such as querying neutral Moore, 1997,
Common Lisp through representation La Rocca, 2011;
(KBE systems methods La Rocca and
are based on Van Tooren,
proprietary 2010; Lassila,
LISP dialects) 1990;
Liitzenberger et
al., 2012;
Preston et al.,
2004; Rocca,
2012; P Sainter
et al., 2000)
Object Can represent | Support Not Yes Yes Java scripts are (Barkmeyer et
Oriented all concepts inference or | explicit available as al., 2003;
programming and execution cross-platform Bermell-Garcia,
based relationships | but not as language, notas | 2007; Goldberg
languages in of the domain | dynamic as neutral and Robson,
the form of knowledge as | LISP, as representation 1983; La
Java, C/C++, aunifiedand | they don’t standards; for Rocca, 2011;
Smalltalk, granular add new C/C++ explicit La Rocca and
Ruby, Python, | process code, object codes need to be | van Tooren,
Fortran model definitions specified to 2007; Reilly,
at runtime. enable cross- 2006; Schlenoff
Support platform usage et al., 2000g;
querying but still not as TechnoSoft Inc,
through neutral 2003; Toussaint
methods representation and Cheng,
standard. 2002; Zeng et
Automation al., 2003; Zhao
applications and Liu, 2008a)

developed are
not available as
neutral
representation

4.9.1 Results and Discussion

As per the results of the Table 4-1, logic based languages seem to be the appropriate

standards. O-O languages specially LISP oriented and combined with other O-O languages

satisfy every criterion for DEA but not in open standards. In the context of this thesis, open

standards enable neutral representation with semantics preserved (Peak et al., 2004; Usman et

al., 2011).

As an open standard logic based language, CLIF, as ISO 24707 is extremely powerful

knowledge representation paradigm with automated theorem prover. However several errors
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were identified in 1% edition of CLIF as ISO 24707 (Gruninger et al., 2013) where the authors
recommend the development of 2" edition of CLIF as ISO 24707. The 2" edition of CLIF
(IS0, 2017) is under development in the present stage as compared to the 1% edition (I1SO,
2007) published in 2007.Thus pertaining to open standard logic based language framework,

integration of multiple languages is required from the observations in Table 4-1.

OWL is an extremely powerful semantic mediator for integration of concepts of the domain
knowledge with contextual reference to be represented formally (Danjou et al., 2008; Graves
and Horrocks, 2008). The formal DL logic as basis of OWL provides open standard usage
enabling interoperability as compared to bespoke platform specific automation (Alexandrou

etal., 2013).

Similar to OWL, the limitation of Gellish in context to the needs of DEA is representation
and codification of engineering rules as multiple ary predicates. For inclusion of engineering
rules, executable languages such as RuleML and RIF have been experimented with use-case

examples.

PSL is the most comprehensive language for representing manufacturing knowledge with
preserved semantics (Cochrane et al., 2009; Zhan et al., 2010). The execution of PSL can be
achieved by either implementing them as methods in an O-O language such as Java/C++
(Cochrane et al., 2009) or with a theorem prover as inference or reasoning (Bock, 2006; Bock
and Gruninger, 2005; Das et al., 2007). As experimented with Use Case 1, 2 and 3, PSL is
very capable to represent process specifications with activity inputs, outputs as parameters
(Bock and Gruninger, 2004). It is limited in representing product’s geometric attributes with
duration along with the actual state of the object in activity occurrence. However, it has been
illustrated that along with binary change of state, change of product’s geometric attributes as
input and output states in activity occurrences can be achieved in PSL. However, it was

identified to incorporate additional non-PSL based axioms in order to fully represent
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relationship of product geometric attributes with specific integer and float values as units in
context to DFM for design systems (Cochrane et al., 2009).It was also identified that a more
detailed knowledge based system validation methodology is still required for development of
design support systems with inclusion of manufacturing knowledge as DFM (Cochrane et al.,
2009). The inclusion of change of product’s geometric attributes as states linked to all design
activities including the boolean operations on solid product profiles is extremely crucial for

representing a process model for DEA specifically at detailed design stages.

In order to address the needs of DEA, formal representation of process function and
behaviour are also very crucial as they form an integral part of the engineering design process
specially the early stages such as preliminary and conceptual design. It was found out that the
inclusion of engineering process function, behaviour and rationale in context to product
model attributes has not been integrated in PSL with extensions (Zhan et al., 2010).PSL is
still limited to define objects and concepts needed for finer details for DEA (Niles and Pease,
2001; Schlenoff et al., 2000b). Although it can represent some aspects object model
knowledge such as form and features in terms of activity flow, it is restricted in
representation of inputs and outputs of the process in terms of detailed object model

knowledge such as form, fit and features (Young et al., 2007).

An important factor for DEA is the consideration of the equivalent representation of both
virtual process for design and the corresponding physical process of manufacturing. The
representation of the semantics of virtual process is very crucial for representing the design
process for example; representation of removal of material in the form of hole is an boolean
subtraction activity (extrusion or pocket) as virtual process and different forms of
manufacturing methods such as drilling, reaming, boring as physical process. Similarly,
representation of addition of material is a boolean addition activity (protrusion) as virtual

process and different forms of manufacturing methods such as welding, joining or advanced
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methods such as additive manufacturing as physical process. PSL has high representation
capability of a physical process of design in terms of neutral formal representation of
extremely complex manufacturing process with preserved semantics through neutral
standards (Qiao et al., 2011). However, in its present state, PSL does not fully allow the

representation of the equivalent virtual process with preserved semantics through its axioms.

4.9.2 Comparison of Neutral Formal Representation Standards for Mapping of

Key Concepts and Relationships

Table 4-2, compiled as part of this research, will yield the complete framework of individual
neutral representation standards that will represent the syntactic and semantic mapping of the
identified key concepts and relationships as F-B-S aspects of an informal/semiformal process
model as a formal model that intends to achieve DEA by performing execution of its code as

inference and querying on axioms, similar to a DEA system or a KBES (KBE system).
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Table4-2: Mapping of Identified Concepts and Relationships to Neutral Formal
Representation Standards

representation

Concepts and relationships for automation in context to DEA system functionality as executable

Process
Neutral description
formal with Process
representation activities, Inputs & Engineering | Engineering Process References
standards and inputs, outputs as rules based rules based functional Process
product - requirement / behaviour
languages outputs, ; on math on logic !
geometric function
resources .
e attributes
and activity
id

PSL Can represent | Can represent | Can represent | Can represent | No, cannot Can represent | (Bock, 2006;
activity activity manufacturing | manufacturing | represent behaviour of Bock and
inputs, occurrence flow and flow and design process | manufacturing | Gruninger,
outputs and inputs and sequencing sequencing function with | process 2005, 2004;
resources as outputs as operations as operations as respect to models. Chungoora
parameters as | product’s process rules. | process rules. | product However, and Young,
well as geometric However, However, cannot 2011;
activity id attributes to cannot cannot represent Cochrane et

some extent. comprehensiv | comprehensiv complete al., 2009; Das
Need ely represent ely represent design process | etal., 2007;
extensions for | rules with rules with behaviour Usman et al.,
full process and process and with respect to | 2013; Young
representation | product product product etal., 2007;
and validation | knowledge knowledge attributes Zhan et al.,

with variable | with variable 2010)

geometric geometric

attributes and | attributes and

nesting of nesting of

math logic

conditions conditions

OowL Can represent | Can represent | No, cannot No, cannot Can represent | Can represent | (Golbreich et
activity with activity inputs | represent represent design process | design process | al., 2012;
inputs, and outputs as | engineering engineering function with | behaviour Graves and
outputs, product’s rules such as rules such as respect to with respect to | Horrocks,
resources and | geometric design and design and product if product if 2008;
activity id ifa | attributes if a manufacturing | manufacturing | structured structured Horridge and
structured structured rules based on | rules based on | methodology | methodology Patel-
methodology | methodology math logic is provided is provided Schneider,
is provided is provided 2012;

Mcguinness
and Van
Harmelen,
2004; Motik
etal., 2012;
Siricharoen,
2007; W3C,
2012; Wang
et al., 2006,
2004)

Rule ML No, cannot No, cannot Yes, can Yes, can No, cannot No, cannot (Ball et al.,
represent represent represent represent represent represent 2005; Boley
taxonomic activity engineering engineering process process et al., 2016a,
relations with | inputs, rules such as rules such as function with | behaviour 2016b, 2016c,
activity outputs with design and design and respect to with respect to | 2005;
inputs, product’s manufacturing | manufacturing | product product Golbreich,
outputs, geometric rules with rules with 2004; Hirtle et
resources and | attributes basic math horn logic al., 2006)
activity id built-ins

RIF No, cannot No, cannot Yes, can Yes, can No, cannot No, cannot (Boley and
represent represent represent represent represent represent Kifer, 2013;
taxonomic activity engineering engineering process process Feigenbaum
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relations with inputs, rules such as rules such as function with behaviour etal., 2013;
activity outputs with design and design and respect to with respect to | Kifer and
inputs, product’s manufacturing | manufacturing | product product Boley, 2010;
outputs, geometric rules with rules with Morgenstern
resources and | attributes basic math horn logic etal., 2012)
activity id built-ins
OWL /SWRL | Canrepresent | Canrepresent | Yes, can Yes, can Can represent | Canrepresent | (Glimmetal.,
(OWL DL+ activity with activity inputs | represent represent design process | design process | 2009;
Unary /Binary | inputs, and outputs as | engineering engineering function with | behaviour Golbreich and
Datalog outputs, product’s rules such as rules such as respect to with respect to | Imai, 2004;
RuleML) resources and | geometric design and design and product if product if Horrocks et
activity id ifa | attributes if a manufacturing | manufacturing | structured structured al., 2004;
structured structured rules with rules with methodology | methodology Kuba, 2012;
methodology | methodology | basic math horn logic is provided is provided Noh and Suh,
is provided is provided built-ins 2008; Qin et
al., 2016;
Sarigecili et
al., 2014;
Tessier and
Wang, 2013)
Gellish Can represent | Can represent | No, cannot No, cannot Can represent | Can represent | (Braaksma et
activity with activity inputs | represent represent design process | design process | al., 2011;
inputs, and outputs as | engineering engineering function with | behaviour Frisch, 2007;
outputs, product’s rules such as rules such as respect to with respect to | Hennig et al.,
resources and | geometric design and design and product if product if 2016, 2015;
activity id ifa | attributesifa | manufacturing | manufacturing | structured structured Pereira et al.,
structured structured rules based on | rules based on | methodology | methodology | 2011; Van
methodology | methodology | math logic is provided is provided Renssen,
is provided is provided 2003, 2005)

4.10 Analysis of Findings

Thus, from the results of Table 4-2, OWL/SWRL is a good candidate for representing all

identified key concepts and relationships as unary and binary predicates in the form of classes

and properties of PM-DEA for achieving DEA. Due to the limitation of ontologies based on

OWL2 in representing engineering rules, another formal standard needs to be incorporated to

represent engineering rules with n-ary relationships, which can be based on logic as well as

maths. Similar to OWL, the limitation of Gellish in context to the needs of DEA is

representation and codification of engineering rules as multiple ary predicates.

Engineering rules can be represented either in RuleML or RIF. Both RuleML and RIF are

based on horn logic semantics and have various versions. For example, some aspects of

Datalog RuleML can be mapped to RIF Core Dialect, Derivation RuleML to RIF Basic Logic

Dialect (RIF BLD) and production rule sublanguage of reaction RuleML to RIF Production
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Rule Dialect (RIF PRD) (Feigenbaum et al., 2013). Both RuleML and RIF have data types
and built-ins in the form of logical operators for comparison such as greater than, less than
and basic mathematical built-ins such as multiply, divide along with logical operators for
strings and boolean value operations (Horrocks et al., 2004; Polleres et al., 2013). Datalog
RuleML as integrated with OWL becomes SWRL (OWL DL & Unary/Binary Datalog
RuleML). Thus SWRL is a purposeful extension to OWL and covers most of the features of
RIF BLD. Although RIF was although originally designed for exchange of knowledge
between rule languages such as RuleML and SWRL, it can also be considered as a rule
language. However, there are a few differences between RIF and SWRL. As compared to
SWRL, RIF BLD offers a few advantages such as provision of multiple-ary predicates as
properties as compared to unary/binary predicates as properties in SWRL. Also, RIF BLD
has more built in functions as compared to SWRL (Feigenbaum et al., 2013). However, this
problem can be avoided by incorporating additional predicates as properties in SWRL. The
major advantage of SWRL is ease of integration with OWL2 formalism along with the
reasoners which support both DL reasoning and Horn Logic reasoning with separate
reasoners such as Pellet, Racer for DL reasoning and Jess, Drools for Horn Logic reasoning,
within a single integrated development environment (IDE) such as Protégé (Golbreich and
Imai, 2004). Protégé editor also provides both Sematic Query-Enhanced Web Rule Language
(SQWRL) and SPARQL Protocol and RDF Query Language (SPARQL) for querying SWRL
rules and OWL knowledgebase with RDF/XML representation respectively.As OWL/SWRL
is one of the candidates for investigation for formal representation of knowledge in context to
DEA systems (Liitzenberger et al.,, 2012) and in spite of a few limitations such as

unary/binary predicates, SWRL provides ease of integration with OWL.

OWL/SWRL or OWL/RIF as a combined representation come close to the expressivity of

PSL as a single language, although the method of using OWL/SWRL should be precise. Thus
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although PSL is more expressive than OWL/SWRL, due to the limitations of PSL for
knowledge representation of design systems and in compliance with the research design
requirement of availability of supporting tool for experimental verification of formal axioms,
OWL/SWRL formalism has been selected within protégé environment with Pellet for DL
reasoning and Drools for Horn Logic reasoning. However, a careful consideration for
implementation of SWRL on top of OWL is that the variables, relations and individuals in
Datalog RuleML as SWRL should consist of OWL ontology elements in the form of classes,
properties and instances. Thus, modelling of the OWL ontology needs to be accurate in order

for SWRL rules to include ontology elements and reasoning to provide accurate results.

4.11 Summary

This chapter has identified the Meta model based on key concepts and relationships as F-B-S
aspects of the process model for DEA as part of the novel aspect of this research. The
experimentation of these concepts was performed using existing platform independent and
neutral formal representation standards such as PSL, RuleML, OWL and SysML.
Requirements were compiled for the formalised representation to enable DEA for all the
specified concepts and relationships. The results of the comparative analysis along with the
research design for a supporting tool to test the axioms for a KR language revealed
OWL/SWRL to be a suitable candidate. Both these tasks will address the other primary novel
aspect of this research by providing a method for ontology development of identified
concepts and relationships in OWL/SWRL as neutral formal representation with inference
and reasoning and semantic clarity. The next chapter will address these aspects by utilising
the high level, intermediate and low level concepts as the Meta model for development of a
generic process model for DEA. The model schema will provide the method for populating

OWL/SWRL as a suitable ontology for DEA with neutral formal semantics.
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5 Development and Implementation of Process Model for Design

Engineering Automation: Ontology Based Approach

5.1 Introduction

Chapter 4 identified the key concepts and relationships as Meta model with F-B-S aspects for
development of a generic process model for DEA for mechanical design with DFM. It also
discussed experimentation of the Meta model aspects with neutral formal representation
standards and their comparative analysis as per compiled requirements. This chapter will
initially discuss the development of a generic process model, which is named in the thesis as
“Generative Process Model for Design Engineering Automation (GPM-DEA)” based on the
high level; intermediate and low level concepts as the Author’s Meta model. The second half
will elaborate on the method of the schema mapping of GPM-DEA knowledge model for
mechanical design process with DFM to OWL/SWRL ontology. The ontology development
methodology is in line with the approach discussed in research design in section 1.4.2. It is
claimed that the ontology representation will achieve the requirements of DEA for
mechanical design with DFM process with generative modelling capability as per KBE
perspective based on functional requirements, and with the effect of unified/integrated
process model on product’s geometric attributes. For this purpose, Use case 3 and 4 will be
discussed for system development and experimental verification of the claim in the next
chapters. This will be performed with the assistance of inference results on neutral formal
representation as the use of ontologies, with the help of reasoning and query mechanism on

author developed set of predefined generic functions with semantic clarity.

5.2 Initial Process Model for Design Engineering Automation

An initial process model was developed by the author, with the literature review findings on

knowledge entities of mechanical design process with DFM for formulation of key concepts
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and relationships as Meta model, strengths and weaknesses of existing informal/semiformal
and formal modelling standards for their knowledge modelling and experimentation of the
Author’s Meta model concepts and relationships with neutral formal representation standards

based on pilot use-cases. This is illustrated with the help of Figure 5-1.

Conceplual Design Process
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Figure 5-1: Initial Process Model for DEA as Informal / Semiformal Representation

As it is observed, that although existing modelling standards such as IDEFO, IDEF4, UML,
SysML can capture most high level identified concepts and relationships of the author’s
metamodel of the process model informally but to capture all the aspects requires merging of
existing standards utilising a hybrid approach and modifications for amendments. Thus the
initial version of an instance of the process model consists of these concepts (Meta model) —

design process, activity, product, rule, logic, inputs, outputs, resources, functional
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requirements-function, behaviour, state and condition. However, in compliance with the

requirements formulated from a process model for implementation in neutral formal

representation for DEA in context to KBE in section 4.7.1, condition and state classes are not

required as the design process can take multiple routes within a process and just needs to

reflect its output in terms of product’s geometric attributes. These geometric attributes can be

used across different bespoke DEA systems in the form of parametric CAD systems such as

Siemens NX Fusion, CATIA Knowledgeware enabling GA, CAM systems and KBESs such as

AML and ParaPy. In order to further refine the process model and its ontology system

development, Use case 4 and 5 will be instantiated in order to refine the process model and

verify the effect of GPM —DEA on the product’s attributes. A revised version is illustrated in

Figure 5-2.
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Figure 5-2: Revised Process Model for DEA as Informal / Semiformal Representation
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However, as per the combination of critical analysis of literature review and experimentation
with pilot use-cases, the process model based on the F-B-S aspects of the Meta model was
revised with alterations in order to fully address the needs of DEA system. The formulation

of final version of the process model developed by this research is illustrated as follows.

5.3 Development of final version of GPM-DEA - Relationships of
MetaModel

The purpose of the product design process is to satisfy a set of functional requirements (Chen

et al., 2008). IDEFO with its syntax is used to describe the structural (S) effect of a process

with functional modelling approach (Chang et al., 2008). This is due to the fact that IDEFO

enables functional modelling.

As developed and refined by author, the one to many relationships for the activity as the

primary concept of the process model with F-B-S aspects for DEA is described as follows —

1. Activity satisfies a function which is a sub-function of the design process functional

requirements (SysML Requirement Diagram)

2. Activity requires inputs for conversion to outputs which are described in terms of

product specific _attributes or parameters (UML Class Diagram) as well as

independent re-usable objects

3. Activity is controlled by engineering rule, which may be a design or a manufacturing
rule, which control its completion. There are various types of rules such as process,
logic, heuristic, geometry, math, production and configuration rule. These also

include the trade-offs between design and manufacturing constraints

4. Activity requires resources which may physical elements such as fixture, jig for

manufacturing process and virtual elements such as CAx tool for the design process
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5. Activity is described by an integer id, Activity has sub-activity

6. Activity is followed by (successor) an activity

Detailed analysis by author has revealed the following key observations of existing modelling

standards which satisfy few aspects of the Metamodel developed by author to target DEA

with focus on mechanical design with DFM process —

Strength of IDEFQ is capturing of all points except 1, which shows the simultaneous
function as a sub-function of the design process functional requirements and 6, which
allows for process logic. Thus, these 2 relationships are added to IDEFO for activity
completion in context to the needs of activity knowledge capture for DEA, which is
elaborated in section 5.3.

Strength of MBSE language diagrams such as UML class diagram or SysML block

definition diagram is they are able to capture static aspects of product attributes.

Similarly, SysML requirement diagram is able to capture functions of a process in

context to the product for DEA (Finance, 2010). Thus UML class diagram is used to
represent the object attributes and the SysML requirement diagram for functional
requirements. It is important to notice that although UML and SysML activity
diagram are also successful in capturing activities with inputs and outputs (Weilkiens,
2007), thus fulfilling points 2 and 5 of activity relationships but are not able to fulfill
points 3 and 4 as they can’t incorporate resources and rule in the same diagram. This
is the reason for selecting IDEFO for activities and UML class diagram and SysML
requirement diagram for product model and functional requirements respectively in
context to the needs of DEA.

Strength of UML class diagram is it can represent engineering rules as methods to

convert activity inputs to activity outputs in terms of product attributes. This

eliminates the need to use the SysML parametric diagram separately for
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representation of rules. Both IDEF0 and UML have been used as knowledge objects
for modelling of conceptual design of aerospace assembly processes (Mas et al.,

2013).

The author has added UML condition link on top of IDEFO to successfully model process

rules for controlling the sequence of individual IDEFO activities as a red link. Similarly, blue
link is added to represent the sub-activities of individual activities. The author has also added
the behaviour concept separately as a knowledge object to the activity, object and function
thus completing the function-behaviour and structural (F-B-S) aspects of the process model

for DEA. The author has also added a relationship (as an arrow) between IDEF0 ICOM

activity box and its functional mapping to SysML requirement diagram in green borderline

as individual sub-functions with a pink link. An instance of this is illustrated in Figure 5-3.
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5.4 Functioning of GPM-DEA - Coherent Process Knowledge Model

This research has developed a generative process model for design engineering automation
(GPM-DEA), which is dynamic in nature through its ontological neutral formal

representation. It is explained in detail in this section.
5.4.1 Workability

The working of GPM-DEA as developed in this research is shown in Figure 5-4. The
functional requirement of the design process is broken down into sub functions, which are

represented using SysML requirement diagram. SysML requirement diagram is used for

illustrating functional requirements of engineering design process in context to the product as
the primary object (Weilkiens, 2007). In order to generate activities and objects as generative
modelling capabilities developed in this research, the sub functions are matched to activities
and objects, which fulfill the same functions. However, this can only be achieved during

representation of GPM-DEA in formal standards.

The product in initial state is assessed and then its geometric attributes are marked as activity
inputs and outputs. Activity description is captured using an IDEFO notation. IDEFO has
inputs, controls, outputs, and mechanisms (ICOM) as described in context to engineering
design processes (Pugliese and Colombo, 2014). Controls can be entities or laws guiding the
process, which in this case become the engineering rules based on logic and maths.
Mechanisms are synonymous to resources, which are used but not consumed or transformed

directly during an activity.

Thus in the developed process model, IDEFO illustrates design process activities with inputs,
outputs, rules as controls and resources as mechanisms. There are various subclasses of rules
- process rules, logic rules, heuristic rules, math rules, geometry rules, production rules and

configuration rules.
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Figure 5-4: Working of Generative Process Model for Design Engineering Automation
(GPM-DEA) — Developed by Author

As IDEFO corresponds to functional modelling, all design activities satisfy a function. GPM-
DEA, based on IDEFO for activities, is based on dependency modelling for analytical
purposes in the form of DEA (Wynn and Clarkson, 2017). Process rules for sequencing and

optimisation are represented with UML condition links.

Process adding semantics to product function and behaviour has been imperative in
incorporating both function (functional requirement) and behaviour in respect to process
modelling approach of this research. Similarly, a crucial point is to capture the relationship of

the process function and behaviour in context to the change of state of product through its
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attributes as one of the key artefacts especially during the conceptual and preliminary design
phase. Thus, in GPM-DEA process has function & behaviour and structure in terms of an

ICOM box with all aspects in relation to product geometric attributes.

As stated earlier in the thesis, the process model developed by the author also adopts basic
principles of OPM as ISO/PRF PAS 19450 with the change of state of the product from
initial state to final state in context to process execution. However, it was mentioned in
section 4.8.2 that although, OPM goes to various levels of abstraction to represent the
complete F-B-S of a system, it doesn’t fully model the individual activities of a process
model and provides very less relation between the activities and its implementation as formal
representation. This is the reason that OPM notation has not been utilised for
informal/semiformal representation for the activity and related concepts of the process model

developed by the author.

The change of state of product from initial state to final state upon acted upon by a process is
reflected by change in its attributes as also adopted from IDEF3 and IDEF4 methodology. In
order to reflect the effect of process model on product geometric attributes in this work, UML

class diagram is used for product model with attributes and engineering rules as methods.

Interface of the process model with product model is illustrated in Figure 5-4 where, UML
class diagram can represent parts and assembly relations with composition links and also

parent child relations for the product.

Thus GPM-DEA is built upon existing standards such as IDEF0, UML and SysML and

incorporates additional constructs such as sequencing and flow of activities based on
process rules, automatic generation of activities and objects based on function matching for
complete Function-Behaviour-Structure (FBS) representation in order to address the needs of
DEA. As GPM-DEA model has various sub-levels, an instance of GPM-DEA is illustrated in

Figure 5-3 at its highest level of abstraction.
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5.4.2 Pilot Use Cases - Function Structure Matching: Basis of Generating

Activities and Objects of GPM-DEA

The instance of GPM-DEA as shown in Figure 5-4 is a graphical representation
corresponding to the knowledgebase consisting of all concepts for FBS representation of the
engineering design process. Figure 5-5 shows the knowledgebase compiled in this work,
where various design processes exist with their functional requirement, which is broken down

into sub functions.

Engineering Design Process Functional

ineering Design Process Sub-Functions
Eng 8 &n Requirement
7]
<Achieve an accuracy of +/-1mm in shape prediction>, as
Precision Forgingl shape prediction accounts for a bulk of the manufacture  Achieve an aceuracy of +/-1mm + shape prediction
objectives.

The fan blades <spin to accelerate a mass of air> into the
engine to <generate thrust> that propels the aircraft
forward. Fan blades alse function to <reduce total engine
damage> from the <ingestion of various foreign objects>
such as birds by radially deflecting outward such objects
rather than passing them through to the core parts of the
engine. The <dovetail attachment> of fan blades are used
to <secure the blades to the hub or disk>. It is important
to allocate material with high damage tolerance, ductility,
high cycle fatigue (HCF) strength and yield strength

Figure 5-3: Example of Engineering Design Process with corresponding Functional
Requirement and Sub-Functions: Knowledgebase

Generate thrust + reduce total engine damage from the
ingestion of various foreign objects such as birds + secure the
blades to the hub or disk + allocate material with high damage
tolerance, ductility, high cycle fatigue (HCF) strength and yield
strength

Conceptual Designl Fan Blades

An example of both design processes and activities from Use Case 1 & 3, which includes
physical, informatical and virtual activities with their corresponding sub-functions as

functional requirements, is illustrated with Figure 5-5 and Figure 5-6 respectively.
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Engineering Design Process

Activity (Physical/Informatical)i " “ncional Requirement —{Sub-Functions]

Extruded stem long enough for the part to be handled in
subsequent operations + base of the extruded part needs to
have enough material for subsequent heading + shape
prediction

Enough energy in the top die to achieve the movement
required to reduce the gap between the dies to the sum of the
gap between the flash lines and the minimum running
thickness + shape prediction

The heading cavity is filled out as much as possible even if the
cavity does not get filled in its entirety + shape prediction

Fan blades spin to accelerate a mass of air into the engine +
generate thrust + 80% of the thrust delivered by fan + reduce
Blade Geometry Optimisation total engine damage from the ingestion of various foreign
objects such as birds

Extrusion

Stamping

Heading

Dovetail Attachment Secure the blades to the hub or disk
Allocate material with high damage tolerance, ductility, high

Material Selecti
aterial >efection cycle fatigue (HCF) strength and yield strength

Figure 5-4: Example of Engineering Design Process Activities with corresponding Functional
Requirement as Sub-Functions: Knowledgebase

Thus, from Figure 5-5, the engineering design process — Conceptual Designl Fan blades has
4 sub-functions — ‘generate thrust’, ‘reduce total engine damage from the ingestion of
various foreign objects such as birds’, ‘secure the blades to the hub or disk’ and ‘allocate
material with high damage tolerance, ductility, high cycle fatigue (HCF) strength and yield
strength’. From Figure 5-6, activity ‘Blade Geometry Optimisation’ satisfies the 2 of these
sub-functions - ‘generate thrust’, ‘reduce total engine damage from the ingestion of various
foreign objects such as birds’. Similarly, the activity ‘Dovetail Attachment’ satisfies the
function — ‘secure the blades to the hub or disk’ and the activity ‘Material Selection’ satisfies
— ‘allocate material with high damage tolerance, ductility, high cycle fatigue (HCF) strength
and yield strength’. Thus, the design process - conceptual designl fan blades should consist
of these 3 activities - ‘Blade Geometry Optimisation’, ‘Dovetail Attachment’ and ‘Material

Selection’.
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Similarly, ‘Precision forgingl’ as a DFM process satisfies 2 sub-functions — ‘Achieve an
accuracy of +/-2mm’ and ‘shape prediction’. All the existing activities in the knowledgebase,
which fulfill a subset of these functions are - ‘Extrusion’, ‘Heading’ and ‘Stamping’. Thus
‘Precision forgingl’ should consist of these 3 activities as ‘Extrusion’, ‘Heading’ and
‘Stamping’. All the activities with their inputs, outputs, controls as rules and mechanisms as
resources along with participating objects as inputs is shown in Figure 5-7. Their

corresponding graphical representation is an ICOM box of IDEFO standard in GPM-DEA.

ineering Design P Act]
e

Material data — Billet & Dies,

temperature to which the workpiece is

heated up in the furnace prior to

extrusion, Furnace Transfer Duration,

Duration for which the workpiece rests Extruded part Extrusion Rulel
on the die, Die Temperature, Press

Characterisation, Punch stopping

position

Billet (without
glass coating),
Tongs, Dies
(Nominal)

Product - Fan Blade or Compressor Blade or

Extrusion Turbine Blade, Object - Punch

Material data — dies, Air Transfer

duration, Duration for which workpiece
Product - Fan Blade or Compressor Blade or  rests on die, Die temperature, Press Headed part Tongs,
Turbine Blade, Object - Punch characterisation, Punch stopping Dies(nominal)

position

Heading

Material data —dies, Temperature to

which workpiece is heated up in the

furnace prior to stamping, Furnace

transfer duration, Duration for which

workpiece rests on die, Die Stamped part
temperature, Press characterisation,

Gap between flash lines & running

thickness

Product - Fan Blade or Compressor Blade or
Turbine Blade

Tongs &

Stamping dies(nominal)

Aerodynamic forces acting on a local
airfoil and global changes in B
Incremental Lift created
Product - Fan Blade, C Blade, r Rate of air intake, Proper each blade, Ideal power = BladeGeometryOptimisationRulel,
Turbine Blade airfoil section, twist, chord, and pitch : P BladeGeometryOptimisationRule2
angle for optimal thrust distribution

Blade Geometry Optimisation BEM Theory

Proper airfoil section, twist, chord, and Incremental Lift created by
pitch angle for optimal thrust each blade, Ideal power
distribution

Product - Fan Blade, Compressor Blade,
Turbine Blade

DovetailAttachmentRulel,
DovetailAttachmentRule2

Dovetail Attachment

Product - Fan Blade, Compressor Blade,

Material Selection
Turbine Blade

Cost, weight, aerodynamic efficiency ~ Material Alloted

Figure 5-5: Example of Engineering Design Process Activities with Inputs, Outputs, Rules
and Resources with Objects: Knowledgebase

A snapshot of the rule description controlling the activities is shown in Figure 5-8.

Engineering Rule Description ___ ElTypeofRule &
The rate of air intake varies and is dictated by
factors such as airfoil geometry, angle of
attack, air density and the speed at which the
airfoil moves through the air

A 30% hollowing in a hollow fan blade results
BladeGeometryOptimisationRule2 in about a 13-16% decrease in torsional Configuration Rule
rigidity compared to a solid blade design

A short extruded stem left behind after
stamping would cause problems in handling
the part while a long stem would result in
excessive material use & high costs.

Figure 5-6: Example of Engineering Rules controlling the Design Process Activities:
Knowledgebase

BladeGeometryOptimisationRulel

Configuration Rule

Extrusion Rulel Configuration Rule
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5.4.3 Types of Engineering Design Process with Variable Concepts: Function and

Objects

All the sub-classes of the design process cannot be illustrated here in the Figure, as we need
to go to sublevels. For example, the design process for this thesis has to cover conceptual /
preliminary design, embodiment / configuration design, detailed design and other crucial
aspects such as DFM, DFA as part of embodiment design. The detailed hierarchy of
engineering design process, which can be implemented in DEA systems, needs to cover all
aspects of the design process with high level, intermediate and low level concepts identified
in this thesis such as design for assembly (DFA), design for manufacturing (DFM), fluid flow
analysis, structural analysis, thermal analysis, stress analysis, detailed design process aspects
such as form, features and fit with 3D modelling, computer aided engineering (CAE) analysis
process such as computational fluid dynamic (CFD) analysis, finite element analysis (FEA)
analysis, pre-processing, post-processing, computer aided manufacturing (CAM) process
such as casting, joining, machining and so on. In order for function matching to work, which
will be illustrated later, sub functions are classified in this work as — geometric 3d shaping /
sizing, manufacturing feasibility such as attach / connect & positioning, output electrical
magnetic performance such as capacitance, electric field, voltage, energy, power, work,
output mechanical performance such as acceleration, fatigue, force, hardness, momentum,
stiffness, strain, strength, torque, velocity and output thermodynamic performance such as
compression, expansion, flow, foreign object damage, heat, pressure and vibration. The

complete list of both design process and function subclasses are illustrated later.

Pertaining to this research, as the process model has the effect on object attributes used across
DEA systems applications, the object model including the product knowledge needs to cover
basic aspects such as feature, form, fit and material. There is an interface between the process

model and product model as observed from Figure 5-3. The product model can be expanded
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to include detailed product knowledge. As part of this research, the following aspects are
included which can be further extended as integration to the product model. Features include
depression / extrusion features such as hole, notch, pocket, slot and protrusion features such
as block, shaft. Fit includes part and assembly relationships. Form is broken down as edge,
face, surface and volume. Edge is further broken down as chamfer, fillet and line. Similarly,
face is broken down as circle, ellipse, hyperbola, parabola and polygon with variable sides.
Surface is broken down as Bézier and Non-uniform rational basis spline (NURBS). Volume
is broken down as box, cone, cylinder, ellipsoid, hyperboloid, paraboloid, polygon volume
and sphere. Material is further classified as alloys, ceramics, composites, ferrous metal, non-
ferrous metal and polymer. Alloys are classified as brass, bronze, duralumin, inconel,
nimonic and manganin. Ceramics are broken down as boron carbide, boron oxide, silicon
carbide and silicon nitride. Composites are broken down as glass fiber, carbon fiber and so
on, ferrous metal as carbon steel, cast iron, mild steel and so on, non-ferrous metal as
aluminium, copper, lead, nickel, tin, titanium, zinc and so on. Similarly, polymers are further

classified as neoprene, plastic, polyethylene, polypropylene and so on.

Product has been divided into two main classes — product_initial and product_final. The
product_initial indicates the state of the product at the beginning of the design process;

product_final indicates the state of the product at the end of the design process.

5.5 Synthesis of GPM-DEA

In order to address the needs of DEA, integration of various engineering design concepts and
relationships with focus on mechanical product design process with DFM knowledge has
been achieved by developing GPM-DEA in this research. GPM-DEA provides a coherent
method to build structured knowledge model and enables automation with generative
modelling by automatic generation of activities and objects by matching the functions as

functional requirements of the design process with corresponding functions of activities and
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objects. GPM-DEA includes all concepts of the Author’s Meta model in context to process
modelling for DEA with focus on mechanical design with DFM knowledge, and preserved
semantics based on knowledge entities such as activity, function, behaviour, object and its
attributes as structure being affected by rules and logic in a coherent and structured manner. It
provides categorisation for sub-functions and object knowledge model with geometric
attributes along with integration facilities to the product model. This allows for an
unified/integrated and highly granular process model ready for implementation in a neutral
(open standards) formal representation framework for DEA ensuring correct syntactic and

semantic mapping of the informal/semiformal model to the formal model.
5.5.1 GPM-DEA - Hybrid Representation of Existing Modelling Standards

Thus, in order to develop a coherent and structured process based knowledge model, the
author has exploited the strengths of the existing modelling standards and added the
constructs on top of the integration. The working of the developed process model, GPM-DEA

as informal/semiformal representation for visual display by the author can be summed up as —

1. IDEFO ICOM box for activity description with inputs and outputs in terms of

product attributes along with links to rules as controls and resources

2. UML class diagram for product knowledge with engineering rules as methods

3. SysML requirement diagram for functional requirements

4. UML condition link for process rules and flow

5. Bi-directional relations between function, process links, objects, activity description

behaviour for complete F-B-S of a process model

Thus the author has combined the strengths of IDEF0, UML and SysML and added

constructs on top to develop a hybrid representation of GPM-DEA. Some of the few critical

aspects of a process model for DEA using a KBE approach is generative _modelling

capabilities which means that the individual activities should not be static and must be
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generated from the initial specification or the design intent in the form of functional
requirement classification. In context of this research, as the design process satisfies a
functional requirement, all the activities, which fulfill functions, as part of the design process
should be automatically generated. Thus in compliance with function structure, the functional
requirements of the design process as captured in SysML requirement diagram are broken
down into sub-functions. All the activities, which match the individual sub-function

instances, should be automatically generated for DEA.
5.5.2 GPM-DEA - Generative Modelling Aspects

The following are the crucial aspects of generative modelling of GPM-DEA, which have
been embedded by the author in formal OWL ontology representation with the help of

predefined set of generic functions in context to DEA with a KBE approach -

1. Generation of activities based on sub-functions as functional requirements

2. Generation of objects based on sub-functions as functional requirements

3. Generation of engineering rules for activities based on logic as the basis of rules

4. Assessment of initial product to generate the initial activity of the process model

5. Virtual and physical activity functional equivalence

These will be elaborated in the next section 5.6 which explains OWL ontology development
based on the schema of GPM-DEA. GPM-DEA has been developed with assistance of pilot
use cases and the requirements formulated for DEA. It has been further refined with the usage
of test use-cases, discussed in the next chapter for refinement of Meta model concepts and
relationships to incorporate product’s geometric attributes and further system development.
The results of comparative analysis of available formal standards as per the formulated

requirements for a KRS to enable DEA as discussed and analysed in section 4.9, has
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recommended OWL/SWRL as a suitable ontological neutral formal representation

framework of GPM-DEA with semantic clarity.

5.6 Implementation of GPM-DEA in OWL/SWRL Ontology and Rule

Representation: Neutral Formal Representation

This research thesis has developed an ontology for the mechanical design process with design
for manufacturing (DFM)/ design for assembly (DFA) based on the schema of the structured
GPM-DEA knowledge model. The ontology has been developed using Topbraid Composer
FE (Composer, 2011) and Protégé (Horridge et al., 2011) with formal representation standard
as OWL2 (Golbreich et al., 2012; Hitzler et al., 2012; Horridge and Patel-Schneider, 2012;
Motik et al., 2012) as the basis for axioms. OWL2 is based on formal logic SROIQ (Kr&tzsch
et al., 2012). The main focus of this work is to develop ontology of the mechanical product
design process for DEA with the effect of the process model on the change of state of the

product in terms of its geometric attributes.

As explained in the earlier sections, engineering rules form a very integral and crucial part of
an engineering design process for DEA and have been extensively formalised. However, a
limitation of binding engineering rules to a process based approach has been a major
limitation as engineering rules have been purely associated with product geometry and
features in DEA systems. It was also observed that function, behaviour have been
individually modelled in context in product modelling and implemented in ontology encoded

in OWL.

The ontology model as OWL/SWRL developed as part of this research constrains the
interpretation of the knowledge base through its axioms and allows for subsumption relation

validation (class-subclass relationship) and reasoning.
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5.6.1 Ontology Development in OWL: Classes, Properties and Restrictions

For OWL/SWRL as ontology implementation of GPM-DEA, the master class under Thing as
described in OWL2 is the design process with subclasses as activity and product as one of the
underlying main classes. Under the Design Process with activity and product being the main
classes of focus, all the other concepts including rule, logic, resources, function or functional
requirements and behaviour have been assigned as classes in the developed GPM-DEA.
Design process function and behaviour are very crucial to GPM-DEA with function class
allowing for generative modelling capabilities using SWRL. Subclasses have been clearly
assigned to master classes for example; product_initial and product_final as initial and final
state respectively are subclasses of the product class.Similarly, the rule class has different
types of engineering design rules classified as production rules in the form of ‘If-Then’ and
‘If-Then-Else’ construct, process rules, logic rules, math rules, geometry rules, configuration
rules and heuristic rules as its subclasses. Many rules can be classified under multiple
subclasses as various classes share common characteristics. However, the heuristic rules are
disjoint with logic rules as a member of one class cannot be a member of the other class.

Figure 5-9 illustrates the OWL implementation of GPM-DEA with classes and properties.

The activity description concepts have been adopted from (Ding et al., 2009; Zhang et al.,
2013) including inputs, outputs, resources, activity id and description along with methods as
transformation of inputs to outputs. The methods become synonymous to engineering rules
and logic in the engineering design process. They have been implemented with the help of all
use cases examples. Inputs, outputs of activity and other specified relationships as arrows
between classes in GPM-DEA have been clearly assigned as properties in OWL2 formalism.
Properties have been created between concepts as classes and classified as either object or

datatype properties.
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OWL2 allows object properties between individuals of classes and datatype properties
between individuals and values such as string, integer, and float. Properties link individuals
from domain to range. Thus relationships such as design process satisfies functional
requirement (ProcessModel:satisfiesFunctionalRequirement), activity controlled by rule
(ProcessModel:controlledbyRule), activity requires resources
(ProcessModel:requiresResources) have been implemented as object properties. The
rdfs:domain of the property becomes the initial class and the rdfs:range of the property
becomes the second class.For example, (ProcessModel:satisfiesFunctionalRequirement)
property has been created for which rdfs:domain is the Design_Process class and the
rdfs:range becomes the FunctionalRequirement class.Similarly,
(ProcessModel:controlledbyRule) property has rdfs:domain as Activity class and rdfs:range
as Rule class. This has been illustrated with the help of query in earlier versions of GPM-
DEA with Use Case 3 in Section 4.5.3 in Chapter 4. To model the sequencing and
optimisation of activities an object property called (ProcessModel:has_Sucessors) has been

created with both rdfs:domain and rdfs:range set as Activity class.

Datatype properties have been created such as to model activity has inputs and outputs in
terms of object attributes(ProcessModel:has_Inputs), (ProcessModel:has_Outputs); activity
has id (ProcessModel:has_ID). Both (ProcessModel:has_Inputs) and
(ProcessModel:has_Outputs) have domain as Activity class and range as xsd:float. For
example (ProcessModel:has_Object_Size) has been created as a sub property of
(ProcessModel:has_Attributes) in GPM-DEA.(ProcessModel:has_Attributes) has domain as
Product and Object class and range as xsd:float. (ProcessModel:has_Object_Size) can be
marked as a sub property of (ProcessModel:has_Inputs)under which dimensions of objects
can be assigned values as sub properties of activity inputs. Similarly,

(ProcessModel:has_Object_Position_Coordinates) has been created as a sub property of
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(ProcessModel:has_Attributes) to allocate positioning of the parts and assemblies with all 3
co-ordinates as X, Y and Z. (ProcessModel:has_Object_Position_Coordinates) can also be
marked as a sub property of (ProcessModel:has_Inputs) under which position coordinates of
objects can be assigned values as sub properties of activity inputs.Similarly, the datatype
property (ProcessModel:has_Object_Orientation_Angle) created as a sub property of
(ProcessModel:has_Attributes) allows allocation of orientation angle of all parts and
assemblies with respect to X, Y and Z co-ordinates.
(ProcessModel:has_Object_Orientation_Angle) can also be marked as a sub property of
(ProcessModel:has_Inputs) under which orientation angle of objectscan be assigned values as
sub properties of activity inputs.The datatype property (ProcessModel:has_ID) with domain

as Activity class and range as xsd:integer means each activity has an integer id.

OWL2 supports the following types of properties — asymmetric property, Ssymmetric
property, functional property, inverse functional property, reflexive property, irreflexive
property and transitive property. Functional property can be both datatype and object
property whereas inverse functional can only be an object property. Functional property
means that the individual from a class can only be associated with one value. Thus
(ProcessModel:has_ID) property created in the model is a functional property as it can only
be associated with one integer as a datatype property. An inverse functional property means
that the inverse of a property is functional and can only be associated with one value but is

always an object property.

All the other properties are classified under object properties as well.Reflexive property
allows an individual from a class to relate to itself using the property. Any property, which
doesn’t allow individual from a class to relate to itself, becomes an irreflexive property.
Symmetric property means that if the property relates individuals from class A to class B then

the individuals from class B are related to the individuals from class A with the same
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property. Property, which doesn’t relate back individuals from different classes with the same
property, is referred as asymmetric property. Transitive property indicates that if a property
relates individuals from class A to class B and also individuals from class B to class C then
the property holds true for individuals from class A to class C. All individuals created as

instances of these classes will follow these properties as relationships.

Restrictions are axioms that constrain class descriptions in OWL. Following restrictions are
supported by OWL2 — quantifier restrictions in the form of existential and universal
restriction, cardinality restrictions in the form of minimum, maximum and exact cardinality

and hasValue restriction. Existential restriction or existential quantifier is referred as

someValuesFrom (some) and may also be denoted as 3. Universal restriction is referred as

allvValuesFrom (only) and may also be denoted as V.Existential restriction means that the

individuals from a class must hold the property with atleast one individual from the filler

class or datatype.

For example, in GPM-DEA ontology model developed by this work, activity class has been
created with an existential restriction in the form of (ProcessModel:has_Successors some
ProcessModel: Activity), (ProcessModel:has_Inputs some xsd:float). These axiom in the form
of existential restriction (some) means that all individuals from Activity class will need to
hold (ProcessModel:has_Successors) object property with rdfs:domain set as Activity and
rdfs:range set as Activity with atleast one individual from the filler class Activity. In natural
language, it indicates that all instances of activity will need successor activities in order to
describe them for a DEA system. Similarly, the existential restriction in the form of
(ProcessModel:has_Inputs some xsd:float) constrains that all individuals of the Activity class
must hold (ProcessModel:has_Inputs) datatype property with rdfs:domain set as Activity and

rdfs:range set as xsd:float with atleast one individual from the filler datatype float.In natural
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language, it indicates that all instances of activity will need inputs as object attribute float
values in order to describe them for a DEA system.Similarly, an existential restriction has
been created on the Activity class with another datatype property in the form of
(ProcessModel:has_ID). The restriction is stated as (ProcessModel:has_ID some xsd:integer)
which indicates that all instances of Activity class will hold (ProcessModel:has_ID) property
with the filler as an integer datatype. In natural language it indicates that all activities will
hold an ID in order to describe them for a DEA system.The existential restrictions on activity

class along with subclasses of Rule are shown in the Figure 5-10.
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Figure 5-8: Axioms for Restrictions on Activity Class

SPARQL query will generate the classes and relationships based on the defined process

model as GPM-DEA.
5.6.2 Function Structures, Design Process and Objects: Class Specification

The engineering design process covers a wide lifecycle from conceptual design to the
detailed design stage as discussed in literature review in Chapter 2 and development of GPM-

DEA. As elaborated in section 5.3.3, the various types of engineering design process with
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their stages in class hierarchy in OWL representation are illustrated with the help of Figure 5-

11.
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Figure 5-9

ProcessModel:Embodiment_Design

: Types of Design Processes: Class Hierarchy

Similarly, for function structure, the highest level of class-subclass relationship of functional

requirements for engineering
this thesis for representation

13.

design process, activities and objects has been broken down in

in OWL2. It is represented with the help of Figure 5-12 and 5-

Similarly, the object knowledge is represented as an interface to the process model with

limited aspects, which can be extended further. The complete object model is illustrated with

the help of Figure 5-14 and Figure 5-15.
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Figure 5-11: Function Structure Classification: Class Hierarchy Continued
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Figure 5-12: Object Model Classification: Class Hierarchy

‘@00 TopBraid - Downloads/Formal Process Models

i & @y KA I 15 % G+ @ ProcessModel:Object

fs Classes SX]

Tlxg® v= 0

@ ProcessModel:Kevlar
@ ProcessModel:Reinforced_Plastic
v @ ProcessModel:Ferrous_Metal
@ ProcessModel:Carbon_Steel
@ ProcessModel:Cast_lron
@ ProcessModel:Mild_Steal
@ ProcessModel:Stainless_Steel
@ ProcessModel:‘Wrought_lron
¥ ProcessModel:Non_Ferrous_Metal
@ ProcessModel:Aluminium
@ ProcessModel:Copper
@ ProcessModel:Lead
@ ProcessModel:Nickel
@ ProcessModel:Tin
@ ProcessModel:Titanium
@ ProcessModel:Zinc
¥ ProcessModel:Polymer
@ ProcessModel:Neoprene
@ ProcessModel:Plastic
@ ProcessModel:Polyethylene
@ ProcessModel:Polypropylene
@ ProcessModel:Polystyrene
@ ProcessModel:Polyvinyl_Chloride
@ ProcessModel:‘Wood
v @ ProcessModel:Product
@ ProcessModel:Product_Final
@ ProcessModel:Product_Initial

Figure 5-13: Object Model Classification

: Class Hierarchy Continued

As explained earlier in section 5.3.3, in the present state of this work, the object knowledge

consists of high-level classes such as features, form, fit and material selection with further

sub classification as shown in Figure 5-14 and Figure 5-15.
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5.6.3 Generative Modelling: Function Structure Matching using SWRL - Based on

Function Structures, Design Process and Objects

In order to satisfy the generative modelling capability of DEA as summarised in section

5.5.2, following functions have been added as part of this research using SWRL for

formalisation.

1. Generation of activities based on sub-functions as functional requirements

2. Generation of objects based on sub-functions as functional requirements

3. Generation of engineering rules for activities based on logic as the basis of rules

4. Assessment of initial product to generate the initial activity of the process model

5. Virtual and physical activity functional equivalence

The following functions represented in SWRL on top of OWL, fulfil these 5 predefined set of
generic functions to generate query and reasoning results on various instances for DEA for

mechanical design with DFM process with semantic clarity and generative modelling.

4. Assessment of initial product to generate the initial activity of the process model

Functionl: Generating 1% Activity (Physical): SWRL

Design_Process(?dp) ~ consumes_Product_Initial(?dp, ?pi) ~ Physical-Activity(?pa) *
has Function(?pa, ?f) "  Assess Product_Initial(?f) ~  Assesses(?f,  ?pi)
>Starts_with_Activity(?dp, ?pa)

Function2: Generating 1% Activity (Informatical): SWRL

>

Design_Process(?dp) ™ consumes_Product_Initial(?dp, ?pi) ~ Informatical-Activity(?ia)
has_Function(?ia, ?f) ~  Assess_Product_Initial(?f) ~  Assesses(?f,  ?pi)
>Starts_with_Activity(?dp, ?ia)

Function3: Generating 1% Activity (Virtual): SWRL
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Design_Process(?dp) ~ consumes_Product_Initial(?dp, ?pi) ~ Virtual-Activity(?va) »
has_Function(?va, ?f) ~  Assess_Product_Initial(?f) ~  Assesses(?f, ?pi) -
>Starts_with_Activity(?dp, ?va)

1. Generation of activities based on sub-functions as functional requirements

Function 4: Generating other Physical Activities: SWRL

Design_Process(?dp) " satisfies_Functional _Requirement(?dp, ?f) ~ Physical-Activity(?pa) *
has_Function(?pa, ?f) -> consists_of_Activity(?dp, ?pa)

Function 5: Generating other Informatical Activities: SWRL

Design_Process(?dp) " satisfies_Functional _Requirement(?dp, ?f) ~ Informatical-
Activity(?ia) ~ has_Function(?ia, ?f) -> consists_of_Activity(?dp, ?ia

Function 6: Generating other Virtual Activities: SWRL

Design_Process(?dp) " satisfies_Functional _Requirement(?dp, ?f) ~ Virtual-Activity(?va) "
has_Function(?va, ?f) -> consists_of_Activity(?dp, ?va)

5. Virtual and physical activity functional equivalence

Function 7: Physical and Virtual Activities Equivalent Function: SWRL

Physical-Activity(?pa) ~ has_Function(?pa, ?f)  Virtual-Activity(?va) ~ equivalent_to(?pa,
?va) -> has_Function(?va, ?f)

2. Generation of objects based on sub-functions as functional requirements

Function 8: Generating Objects: SWRL

Design_Process(?dp) ~ satisfies_Functional_Requirement(?dp, ?f) ~ Object(?0) *
fulfills_Function(?o, ?f) -> consists_of_Object(?dp, ?0)

Function 9: Generating Object Features: SWRL
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>

Design_Process(?dp) ~ satisfies_Functional _Requirement(?dp, ?f) ~ Feature(?fe)
fulfills_Function(?fe, ?f) ~ Product_Initial(?pi) ~ consumes_Product_Initial(?dp, ?pi)
Product_Final(?pf) -> has_Feature(?pf, ?fe) ~ produces_Product_Final(?dp, ?pf)

>

Function 10: Generating Object Form: SWRL

>

Design_Process(?dp) " satisfies_Functional _Requirement(?dp, ?f) ~ Form(?fo)
fulfills_Function(?fo, ?f) ~ Product_Initial(?pi) ~ consumes_Product_Initial(?dp, ?pi)
Product_Final(?pf) -> has_Form(?pf, ?fo) ~ produces_Product_Final(?dp, ?pf)

>

Function 11: Generating Object Fit: SWRL

>

Design_Process(?dp) ~  satisfies_Functional_Requirement(?dp, ?f) ~  Fit(?fi)
fulfills_Function(?fi, ?f) ~ Product_Initial(?pi) ~ consumes_Product_lInitial(?dp, ?pi)
Product_Final(?pf) -> has_Fit(?pf, ?fi) ~ produces_Product_Final(?dp, ?pf)

>

3. Generation of engineering rules for activities based on logic as the basis of rules

Function 12: Generating Rules controlling Physical Activities: SWRL

Physical-Activity(?pa) ~ affectedbyLogic(?pa, ?I)  Rule(?r) ~ governedbyLogic(?r, ?I) ->
controlled_by Rule(?pa, ?r)

Function 13: Generating Rules controlling Informatical Activities: SWRL

Informatical-Activity(?ia) ” affectedbyLogic(?ia, ?1)  Rule(?r) ~ governedbyLogic(?r, ?I) ->
controlled_by Rule(?ia, ?r)

Function 14: Generating Rules controlling Virtual Activities: SWRL

Virtual-Activity(?va) ~ affectedbylLogic(?va, ?I) » Rule(?r) » governedbyLogic(?r, ?I) ->
controlled_by Rule(?va, ?r)

Function 15: Physical and Virtual Activities Logic Equivalence: SWRL
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Physical-Activity(?pa) ~  affectedbyLogic(?pa, ?I) ~  Virtual-Activity(?va) *
equivalent_to(?pa, ?va) -> affectedbyLogic(?va, ?1)

5.7 Summary

This chapter discusses the development of Generative Process Model for Design

Engineering Automation (GPM-DEA) as a hybrid approach of IDEF0O, UML, SysML

individual diagrams and addition of constructs as in informal/semiformal process model for

DEA. The complete working of the model incorporates generative modelling to generate the

activities, objects based on functional requirements and engineering rules based on logic

for a KBE perspective. This leads to the formalisation of GPM-DEA in OWL/SWRL

ontology based on formal logic based on the method as schema mapping thus providing a
method to use ontologies as neutral formal representation for DEA for mechanical design and
DFM/DFA with preserved semantics. The usage of OWL/SWRL syntax and semantics
constrains the meaning of its concepts and relationships through the axioms. GPM-DEA
provides mechanical product design ontology with inclusion of manufacturing knowledge for
DEA with a KBE approach through open standards based on the Meta model developed by
the author. It can be further extended to incorporate other phases of PD such as operations
and maintenance and wider aspects of DEA such as thermal design, structural design. The
next chapter will discuss the test use-cases to further enhance the ontology system

development for experimental verification in chapter 7.
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6 Development of Knowledge Representation System with Test

UseCases

6.1 Introduction

This chapter elaborates on the system development and test use-cases in the form of creating
a hole in a block with the drilling process and bookshelf design process collated from
literature. The use cases have been devised to provide a proof of concept working of GPM-
DEA and its formal ontology implementation in OWL/SWRL as described in the previous
chapters. They have been formulated around the research hypothesis as described in chapter 1
to target the DEA needs with a KBE approach. Both the use-cases have been implemented in
a proprietary DEA system such as AML, ParaPy and GA based CATIA Knowledgeware and
Siemens NX KF. The instantiation of GPM-DEA with its implementation in OWL/SWRL

ontology for both these use-cases will be discussed in this chapter.

6.2 Overview of Use Case 3 & 4

In this thesis, concepts from Pilot Use Case 1 and 2 as Meta model partially led to the
development of GPM-DEA and its system development in OWL/SWRL ontology for
platform independent and neutral formal representation to enable DEA with semantic clarity
for mechanical design with DFM/DFA. The automation capability includes a set of geometric
and non-geometric knowledge as F-B-S aspects of mechanical design process with
DFM/DFA for automation. GPM-DEA as a coherent and structured process based knowledge
model provides a schema or a method as a Meta model for ontology development as neutral

formal representation for DEA.

The test use-cases compiled and analysed in this work are targeted to refine the
implementation of GPM-DEA in OWL/SWRL ontology for incorporation of product’s

geometric attributes with numeric values. The working of GPM-DEA with functional
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requirements as the basis for generative modelling has been discussed in section 5.5.2 and its
method of implementation in ontologies in section 5.6.3. The automation capability varies
from sub-function structures at conceptual design stage to generation of activities, objects and
engineering rules to show the effect of the process model on the product’s geometric

attributes at the detailed design stage.

As the pilot use cases with experimentation for formalisation as discussed in section 4.4 and
4.5 catered primarily to the conceptual and configuration / embodiment design stage with
DFM, the test use-cases in the next section have been developed to target the detailed design
stage with inclusion of DFM as manufacturing knowledge with datatype float numeric values
for product’s attributes. Both the test use-cases have been devised and implemented in
OWL/SWRL ontology with the method of schema mapping as developed in section 5.5 in
this work. The allocation of use-case is illustrated in Figure 6-1.

DEA with a KBE
approach

[
lUzse Case 1 (Pilot) -

Precision Forging1

Use Case 3 (Test) h
- Drilling Process1 Use Case 4 (Tesl)

\%/ - Bookshelf Design

Uze Caze 2 (Pilot) -
Conceptual Designi
Fan Elades

ion Forging Mechanical i & Hole i =
sor Design and Materia - cJ - DFM o
DF at Allocation of Aer e
pual & r Detailed Desig

Fan Bla

Conceptual Design

1\“/\;/
| | |

GPM-DEA Model Development using Meta model and  System Development and Experimental Verification
Investigation with Formal Representation Standards using OWL/SWRL Ontology

Figure 6-1: Use Case Allocation — Created by Author
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Use Case 3, as compiled by the author focusses on creating a hole in a block with drilling
process such that the block can be described with numeric values of geometric features. It
will be used for system development on OWL/SWRL ontology as per the devised GPM-DEA
schema or Meta model and is implemented in ParaPy as a KBE based DEA tool. Similarly,
Use Case 4 is based on a bookshelf design process with numeric values to geometric features.
This will be instantiated in GPM-DEA for formalisation in OWL/SWRL ontology. This has
also been implemented in AML, CATIA knowledgeware and Siemens NX KF. Both the use
— cases have been implemented in ontology as per the ontology development methodology
discussed in research design in section 1.4.2. Use case 3 has been devised with motivation
from (Hunter et al., 2005; Monfared, 2000) and the understanding of the research scope. Use
Case 4 has been devised and adopted from (Liitzenberger et al., 2012) from the LinkedDesign
project whose focus is on KBE based automation with platform independent and neutral
formal representation of engineering design knowledge. Knowledge has been added to the
Use Case 4 by the author in terms of functions for individual activities and logic description
for rules such that the generative modelling capability developed as part of this research can

be illustrated.

6.3 Test Use Case 3: Creating a Hole in a Block with Drilling Process

The aim of this use case is to refine the system development as OWL/SWRL using the GPM-
DEA schema as Meta Model and at the instance level with incorporation of product
geometric accessible attributes as block dimensions in this work. The DEA process initiates
from the sub-function structures and function mapping of activities and objects to that of the
engineering design process through to the generation of rules to control the drilling process
with its effect on block attributes. The following questions arise which will be verified in the

next chapter —
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1. Can the instances of drilling process in a block for creating a hole be automatically
generated based on function structures of individual activities such as drilling,
reaming along with objects such as drill bit and engineering rules for controlling the
effect on geometric attributes of the block?

2. Can the implementation (ontology and rule representation) of the generated activities,
objects and rules generate appropriate and accurate numeric values to block

attributes thus successfully enabling DEA with a KBE approach?

The instantiation of GPM-DEA as informal/semiformal knowledge capture with Use case 3
with its formalisation in OWL/SWRL ontology as system development for formal

representation is discussed in this section.
6.3.1 Function Structure Matching

As observed from Figure 6-2, the drilling processl has 2 sub-functions — ‘Cut hole of circular
cross section” and ‘Precision of hole dimensions’. It can be observed from Figure 6-3, all
activities such as drill hole, ream hole, bore hole and punch hole satisfy function — ‘Cut hole
of circular cross section’. Similarly, the activity ‘Set requirements of hole’ satisfies the
function — ‘Precision of hole dimensions’. Thus drilling processl can have all of these
activities in the form of drill hole, ream hole, bore hole and punch hole along with ‘Set

requirements of hole’.

Engineering Design Process Functional
‘

<Drilling> is a <cutting process> that uses a <drill bit>to

<cut a hole of circular crosssection> in <solid materials>.  Cut_hole_of_circular_cross_section +

The <hole> can be of various dimensions depending upon Precision_of_hole_dimensions

the drill bit dimensions

<Achieve an accuracy of +/-1mm in shape prediction>, as

Precision Forgingl shape prediction accounts for a bulk of the manufacture  Achieve an accuracy of +/-1mm + shape prediction
objectives.

The fan blades <spin to accelerate a mass of air> into the
engine to <generate thrust> that propels the aircraft
forward. Fan blades also function to <reduce total engine
damage> from the <ingestion of various foreign objects>
such as birds by radially deflecting outward such objects
rather than passing them through to the core parts of the
engine. The <dovetail attachment> of fan blades are used
to <secure the blades to the hub or disk>. It is important
to allocate material with high damage tolerance, ductility,
high cycle fatigue (HCF) strength and yield strength

Figure 6-2: Drilling Process Functional Requirements & Sub Functions: Knowledgebase

Drilling Process1

Generate thrust + reduce total engine damage from the
ingestion of various foreign objects such as birds + secure the
blades to the hub or disk + allocate material with high damage
tolerance, ductility, high cycle fatigue (HCF) strength and yield
strength

Conceptual Designl Fan Blades
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Engineering Design Process
Activity
|~

Create block (workpiece) Protrude block (workpiece)

Drill hole Create hole + Subtract hole
Ream hole Create hole + Subtract hole
Bore hole Create hole + Subtract hole
Selection and positioning of

reamer

Set requirements of hole
Selection and positioning of drill
bit

Punch hole Create hole + Subtract hole

Extrusion

Stamping

Heading

Blade Geometry Optimisation

Dovetail Attachment

Material Selection

Equivalent Virtual Activities

Functional Requirement --[Sub-Functions]

Manufacture block

Cut hole of circular cross section

Cut hole of circular cross section + enlarge hole + high surface
finish

Cut hole of circular cross section + enlarge hole

Precision_of_hele_dimensions

Cut hole of circular cross section + shear force

Extruded stem long enough for the part to be handled in
subsequent operations + base of the extruded part needs to
have enough material for subsequent heading + shape
prediction

Enough energy in the top die to achieve the movement
required to reduce the gap between the dies to the sum of the
gap between the flash lines and the minimum running
thickness + shape prediction

The heading cavity is filled out as much as possible even if the
cavity does not get filled in its entirety + shape prediction

Fan blades spin to accelerate a mass of air into the engine +
generate thrust + 80% of the thrust delivered by fan + reduce
total engine damage from the ingestion of various foreign
objects such as birds

Secure the blades to the hub or disk
Allocate material with high damage tolerance, ductility, high
cycle fatigue (HCF) strength and yield strength

Figure 6-3: Activities with Functions & Sub Functions: Knowledgebase

All the activities with their inputs, outputs, controls as rules and mechanisms as resources

along with participating objects as inputs is shown in Figure 6-4. Their corresponding

graphical representation is an ICOM box of IDEFO standard in GPM-DEA as illustrated in

next section 6.3.2. A snapshot of the rules controlling the activities is shown in Figure 6-5.

Engineering Design Process
jacthaty Objects - Product as primary object Activity Inputs Activity Outputs
(Physical/Informatical/
[~
Create block (workpiece) Product - Block Width (W), Height (H], Material (M) E:'F‘“j'alsn’;g"“ toW.H, M,
- . . Value assigned to W, H, M,
e T i) Product - Block Width (W), Height (H), Material (M) Depth (D)
. . P Drill Bit Position Coordinates (A,B,C), Drill bit axis (C1), Drill bit
_ Any Instance of Product, Object - Drill it dia r (D), Drill Flute length (F) Hole created
Drill hole
Any instance of Product Hole position coordinates (X,Y,Z), Hole axis (C2), Hole Diameter Value assigned to X,Y,Z, C2,
Create hole u {HD1), Hole depth (HD2) HD1, HD2
. . Reamer Paosition Coordinates (A,B,C), Reamer axis (C1),
Ream hole Any instance of Preduct, Object - Reamer Reamer diameter (D), Reamer Flute length (F) Hole created
Boring mill Position Coordinates (A,B,C), Baring mill axis {C1),
Bore hole Any instance of Preduct, Object - Boring mill machine Boring mill tool diameter (DD), Boring mill tool cutting length  Hole created
(F)
Punching tocl Position Coordinates (A,8,C), Punching tool axis
Punch hole Any instance of Product, Object - Punch (C1), Punching tool diameter (DD), Punching teol cutting Hole created

length (F)

Controls: Engineering Rules

Dimension Rule, Depth Rule, Volume
Rule, Material Rule

Dimension Rule, Depth Rule, Volume
Rule, Material Rule

Hole Diameter Rule, Hole Depth Rule,
Drill Location Rule, Drill Diameter
Rule, Drill Length Rule

Hole Diameter Rule, Hole Depth Rule,
Hole Volume Rule

Hole Diameter Rule, Hole Depth Rule,
Reamer Location Rule, Reamer
Diameter Rule, Reamer Length Rule
Hole Diameter Rule, Hole Depth Rule,
Boring mill tool Location Rule, Boring
mill tool Diameter Rule, Baring mill
toel Length Rule

Hole Diameter Rule, Hole Depth Rule,
Punching tool Location Rule,Punching
tool Diameter Rule,Punching teol
Length Rule

Fixture
Fixture

Fixture, Cutting
fluid

Design Tool

Fixture, Cutting
fluid

Fixture, Cutting
fluid

Fixture, Cutting
fluid

Figure 6-4: Activities with Inputs, Outputs, Rules and Resources with Objects for Drilling

Process: Knowledgebase
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ogic as basis of Rule &

Minimum dimensions of the block is 50 mm, W>=50mm, Analyse block for hole to be

Dimension Rule Logic Rule, Math Rule, Geometry Rule

H>=50 mm, D>=50mm) drilled
Volume Rule V1=W*H*D Logic Rule, Math Rule, Geometry Rule Volume of solid material
Material Rule If W=100 Then M = Metallic_Aluminium}) Heuristic Rule, Math Rule, Geometry Rule
Depth Rule D=W*1.5 Heuristic Rule, Math Rule, Geometry Rule
Hole depth should be less th | to depth of block,
Hole Depth Rule H;:{_ij shoulcbe less than or equalta depth of block, Logic Rule, Math Rule, Geometry Rule Hole Depth Analysis
Hole Diameter Rule HD1*1.25<W, HD1*1.25<H Logic Rule, Math Rule, Geometry Rule Hole Diamater Analysis
Hole Volume Rule Volume of Hole (VH) = [(3.14*HD1*HD1)/4]*HD2)] Logic Rule, Math Rule, Geometry Rule Volume of solid material
Volume2 Rule Final Volume (V2) = V1-HV)
Drill bit position coordinates (A,B,C) should coincide with
Drill Location Rule hele position coordinates on the face (X,Y,Z), drill bit axis  Logic Rule, Configuration Rule Drill bit equivalence
{Axis C1) should coincide with hole aixs (Axis C2)
Drill bit diameter (DD} should b ivalent to hol
Drill Diameter Rule di:melterlir:rtllelfr[)f[:::l;lou € equivalent to hole Logic Rule, Configuration Rule Drill bit equivalence
Flute length (F) of drill bit should b ter th I
Drill Length Rule Mt ) I ) el EA L G e Logic Rule, Configuration Rule Drill bit equivalence

to hole depth (HD2), F>=HD2)
If <Tolerance of the hole is less than 0.2 mm for high

h g Process Rule
accuracy>perform reaming else drilling

Process Rulel

Figure 6-5: Engineering Rules controlling the Design Process Activities for Drilling Process:
Knowledgebase

6.3.2 Informal / Semiformal Representation: GPM-DEA

The author has devised and instantiated an instance of drilling process in GPM-DEA as
informal / semiformal representation as shown in Figure 6-6. Both physical and virtual
activities are modelled as equivalent activities. For example physical activity ‘Assess block
(workpiece)’ is equivalent to the virtual activity ‘Assess Protruded block (workpiece)’.
Similarly, ‘Drill hole’ as a physical activity is equivalent to virtual activities — ‘Create hole’
and ‘Subtract hole’. As all activities are represented using IDEFO notation for functional
modelling, equivalent activities correspond to same function. The SWRL Function 4
developed in this work, discussed in section 5.5.3, executes the equivalency as neutral formal

representation.

All activities are represented with inputs, controls as rules, outputs and mechanisms as
resources (ICOM). The process rule for selection between drilling and reaming process based
on tolerance of hole is represented with UML condition link. Thus process-sequencing
options are represented with red links with UML condition link for multiple ‘what-if’
scenarios. Sub-activity in the form of selection and positioning of drill bit as represented
using blue link. The product model representing the initial and the final state as block and

block with hole respectively is represented using UML class diagram with attributes and
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engineering rules as methods affecting the attributes. UML class diagram has been used for
representing all participating objects in the form of drill bit. SysML requirement diagram is
used for representing the functional requirements of the drilling process as sub functions in

context to the block and the drill bit as objects.

Figure 6-7 shows a snapshot of function matching of individual activities as function
structures of drilling process functional requirements with links to rules in ICOM box. Figure
6-8 shows a snapshot of product as block in initial state and final state as block with hole with
UML class diagram along with function matching of these objects. As it can be observed,
various engineering rules such as ‘dimension, depth, material, hole depth and hole diameter
rule’ are informally represented as methods inside UML class diagram along with attributes

by the author. It also shows the interface of the process model to the product model.
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SysML Requirement

1 | L fp——— i
ooy wsag —0
I e | ua ———vd
T 10118 FaRAR5—| |upjo 1) pe
1 e B0} e K30E w PUBLORIBIRS  Lyirc) imaum
e — ma Heanewiop))  fe— 7
7 < o paufissm e | ajey seaang (enuinl
B [ | A
H
+ : L o =
Le=m 7 ey e
I L Y L L R - e L ) -
’ e HA'L'Z0H ‘LM o
I oeuswss oy jo uompat s - s Ss0m BN [0 By N, - ! e iz /
\ ! El I I S o prubiRe Ay, 8|0y alEa (([ENMIA) |
oes - : - 5.1 LT A —
JAD TN 0N IO -TRE i |
H n_m % | * - * ki | Seanll ) * 1 ._n.__n_mux___ ) |
.~ | e any apmy h
| . ' or ER A ] UNOA AN | R TN g
E:w_u_:u._@ L uCEM| LA Seeadl ~~a 1
I bin SUDISUSWIP SNCUEA 0 50 UZD <8j0U> BU ) <siEuEEl pros= ul R N e ainid g
X sigfeq] | |1 o @0y R ing o g ups 2 seen tey) <ssz00d Bupng & & <Bupge: vl L [l B AR f——
el ] h—sy g o
¥ I | - S&@andg Buyug ! el | ] LI ¥20{ Goed PRt R I _ _
1 1 1 e | BIoH 1140 s{Eaishyg) . __f —1 _
| u/l - Nere s o | ohg | o |
salEEs .w B s | aaumg| idag
! iy () o yo Supnz<sonidyoms ay suEde T e e I e AmeLg
|2POJ 1aNpold % |9pOJ §5300.d el g 1 i C bkt 1% Ay ayny \
] <UCHEIC) |0 pRRCE> 5 PRIEIS SN Jad SUCan|ona . lwmpae)
usamiaq saepau| i lour <za@|dyIon> 54 5uEle passaxd 51 <yq JUE> By L, = 9L SETo u____hﬁ:.v__u
| el =
15T L LOH W52 1 LOM)
I N SR BN L LOH SRR, [A— sy be<suniag oy
ss2Ig BN + ) ToO0Z<M TOLA A Wt 005 Wnauiums T qwsog o joswewainbal |
1 (0=220H "$30)q ja yidap ayng awnop i | 9 BINCUS M ‘001 Lew sneat s e . — 185 :{jeageuuoju))
wrwanyy AR 4 | 0 #nba o uey; §5a) 3q pRays yidap POy 58unay i} aing paads (1M i 14 FREE + 5500014
I | 1wl oy wpag ajay v zo smam, + [ e —— B |
[EEIEN A - DOLEM 1) B FLIAURY L ) SRERA + [2aH=<4 ‘(zon] widap UiLieay ™
] sl ony Nu:__.___p;..—x._.,__m m_.ﬁb__w___.__”%..— aj0y o} enka 4o uRwy syl g RINCYS 1A (WA B nE oarmoe yfy oy e g
| A EA T 5" LM=0) BIng idag . 0 sERn + ! N ———
ZOHLEAVOHH LT [ —
1 05 5| 43015 A4} jO SUSIFUALIR W) sl
N USSR R R ¥
T — | IN UDISUBLIIE 54 14 1 SR |
| pry EEag
mEe =] : — e - (L] Sy LERRRLG AjH + /
o +
HO0IE E + ! el - (74" e : gy
T ey .m:ﬁw.k=_§ poag s * (anaichyc)
L B @ ' Yo gL
I " ssassy (o)
o Ta %
n " amanng P
- — N nisuaL aumxly
1 any F
o - — LEE aungy
3 0 i) 319K i ¥3ci L) o ole g| sy ! e | | W
1 H (4] 1anpaad BUY 0 - POIE RuERL | |
() 1anpaud g o e g (aamidysnm) yao|
] el ey ssbueys - s5a58Y (|ENEiug
. +
1 m I - inding, / X #ry iy
aiag ansuay
s
1 @© g g B G v = an _
- BTN
l
1 o =
o
i n.|a 15599014 =
(@] Buijug =
o ©
75 c
< S

172

Figure 6-6: An Instance of Drilling Process in GPM-DEA: Informal / Semiformal
Representation
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6.3.3 Formal Representation: OWL/SWRL

The instantiated GPM-DEA model for drilling process has been then represented in
OWL/SWRL ontology as neutral formal representation by the author. The activities of the
drilling process in GPM-DEA corresponding to the graphical representation in Figure 6-6and
6-7 as IDEFO ICOM box are represented formally in OWL2 with associated id, inputs,
outputs, resources and linkage to engineering rules using classes and properties. All the
activities interlinked with product structure with attributes, function as sub-functions and
behaviour corresponding to UML class diagram and SysML requirement diagram are also

represented using OWL2 using classes and properties as illustrated in Figure 6-9.

800 TopBraid - Downloads/Formal Process Models /ProcessModel Drilling_Base 3(2).ttl - TopBraid Composer FE - /Users/vibhor/ TBCFreeWorkspace o
e % O K & B 77 % ¢ v #[Drill_hole B a Quick Access J 55 | B Resource [op Topmrasd
T Classes 3 W% @™ ¥ = O[5 ProcessModel_Base... [s) ProcessModel_Drilli... & | [s] ProcessModel_Use ... (2] EN50_V2.6.ttl [¢] ProcessModel_Boo... =8 Properties &3 migm v= 0
¥ Activity (12) o 8 has_Part
Resource Form B
Informatical-Activity (3) = M has_Successors
Physical-Activity (6) [Name: [Drill_hole | 1 has_Surface
Virtual-Activity (3) L = i . 1 hasSub-Activity
> @ Behavonr Annotations ¥ Activity - Drill Hole = llustratesBehaviour
¥ @ Engineering_Design_Process (12) L) & i produces_Product_Final
» ® Computational_Fluid_Dynamics_CFD Drill hole = M requires_Resources
Design_for_Cost ~ Other Properties /’ 1 satisfies_Functional Requirement
¥ ® Design_for_Manufacturing_Assembly i 3
‘Additive_Manufacturing controlled_by_Rule ~ Object Properties B uiliseshebavions
q 2 AT e "W ToDesgnProces
» ® Casting * Dr!\LD\amezeLRule for Drlllmg W forDesignProcess
» ® Forming @ Drill_Length_Rule B4 = forfulfillingFunction
» @ Joining @ Drill_Location_Rule o M has_Attributes i )
» ® Machining (3)  Drill_Speed_Rule - > has_Object Orientation Angle
» ® Moulding @ Hole_Depth_Rule - ::::z_g:ng_:ﬁmn_c.mrd.nazes
Design_for_Recycling @ Hole_Diameter_Rule 7 Surtsce
» ® Finite_Element_Analysis_FEA . has_Surface_Area
¥ ® Mechanical Design (6) 3 equivalent to 8 has_Surface.Finish
> ® Feature (1) Class Hierarchy # Create_hole = ' has_Temperature_Limit
» @Fit (1 as per GPM-DEA # Subtract_hole < B has_Tolerance
>@Fm @) - hassub-Activity ¥ :::?:g‘u“"’“: vod
L) for Drilling Process @ Selection_and_positioning_of_drill_bit v SLEES
» ® Multi_Body_Dynamics_MBD = has_ID
» ® Stages s G  has_lnputs
¥ © Function--FunctionalRequirement (8) ® Cut_hole_of_circular_cross_section 4 8 has_Object_Depth
v @ Geometric_3D_Analysis has D < ::as,ngecr,z\EMflev
» ® Analysis_Stage - - as_Object_Height
» ® Apply_Boundary_Conditions — Assertions for = has_Object Width
» ® Meshing e H 3 ' has_Object_X_Coordinate
7 ® Geometric_3D_Modelling (4) has_Object Depth < gbj_egt Al\tmbmes as -:as_g:jec(_;_goor:ina(e
Create_Point_Cloud - ctivity Inputs 3 8 has_Object_Z_Coordinate
b ® Create_Solid_as_Added_Volume_Boolean (2) has_Object Diameter b Ul Patgt\_/l?e Properties = has_Outputs
» © Create_Surface_Volume_Boolean has_Object Height ~ / or Drilling  has_Object_Depth
» ® Remove_Solid_as_Subtracted_Volume_Boolean (2) . . has_Volume
- - = - has_Object Width <
¥ ® Manufacturing_Feasibility (3) — _ W sdescribedas
o~ |4” || Form | Source Code MEZ
. Navigator 52 | g% Basket \ = @\I & ¥ = O/ @ Imports @ Instances 3| MM Domain = Relevant Properties @] Error Log | #- SPARQL| 4" Text Search ¢ & v= 0O
5] ProcessModel_Base 4.ttl [Resource] rditype raffslabel rdfs:comment
[s] ProcessModel_Base.ttl ® Assess_Protruded_block Virtual-Activity Assess protruded block
s ProcessModel_Bookshelf_Base 4 Rules.ttl # Assess_block_workpiece Physical-Activity Assess block (workpiece)
[s] ProcessModel_Bookshelf_Base 4.t 4 Bore_hole Physical -Activity Bore hole
[s] ProcessModel_Drilling_Base 2.ttl # Create_fan_blade Physical-Activity Create fan blade
[s] ProcessModel _Drilling_Base 3(1).tt! ® Create_hole Virtual-Activity Create hole
(5] ProcessModel _Drilling_Base 3(2) FuncModel ttl > Drill_hole Physical-Activity Drill hole
) ProcessModel_Drilling_Base 3(2) GenModel.tt! # Punch_hole Physical-Activity Punch hole
s ProcessModel_Drilling_Base 3(2) Rules 2.ttl 4+ Ream_hole Physical-Activity Ream hole
s ProcessModel_Drilling_Base 3(2) Rules 3.ttl # Selection_and_positioning_of_drill_bit Informatical-Activity, Sub-Activity Selection and positioning of drill bit Instances of
I ProcessModel_Drilling_Base 3(2) Rules 4.ttl # Selection_and_positioning_of_reamer Informatical-Activity, Sub-Activity Selection and positioning of reamer
s ProcessModel_Drilling_Base 3(2) Rules Process.tt! # Set_requirements_of_hole Informatical-Activity Set the requirements of the hole in the block Class Activity
s ProcessModel_Drilling_Base 3(2) Rules.tt! # Subtract_hole Virtual-Activity Subtract hole as solid volume

% ProcessModel_Drilling_Base 3(2).ttl
[s] ProcessModel_Use Case _Secondary_Base.ttl

Figure 6-9: Drilling Process in OWL: TopBraid Composer FE

As observed from Figure 6-9, only OWL2 representation is utilised in Topbraid. All the
classes with class-subclass relationship can be observed on the left. All the properties for
inputs, outputs and other relationships marked as arrows in Fig 6-6and 6-7 are represented on

the right under the properties tab in Figure 6-9. Instances have been produced on the bottom
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and all the relationships between instances can be observed in the resource form in the centre
tab. As also observed from Figure 6-9, the drill hole instance of activity tab illustrates its ID
as 3, is controlled by rules such as Drill Diameter Rule, Drill_Length Rule and
Hole_Diameter_Rule. The equivalent activities and functions are also asserted using

specified property in the form of ‘has Function’.

For the product attributes in UML class diagram as activity inputs and outputs as IDEFO
ICOM, in context to GPM-DEA, datatype properties have been created and instantiated in
this work. As explained in section 55.1, (ProcessModel:has_Inputs) and
(ProcessModel:has_Outputs) are the datatype properties created in GPM-DEA to assert
activity inputs and outputs in terms of object attributes. All sub-properties of
(ProcessModel:has_Attributes) such as (ProcessModel:has_Object_Size),
(ProcessModel:has_Object_Position_Coordinates) and
(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted
as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As
observed from Figure 6-9, following properties as sub  properties of
(ProcessModel:has_Attributes) have been classified as sub  properties of

(ProcessModel:has_Inputs) as activity inputs —

I.  ProcessModel:has_Object_Depth
Il.  ProcessModel:has_Object_Diameter
I1l.  ProcessModel:has_Object Height
IV.  ProcessModel:has_Object Width
V. ProcessModel:has_Object X Coordinate
VI.  ProcessModel:has_Object_Y_Coordinate

VII.  ProcessModel:has_Object Z Coordinate
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Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs —

I.  ProcessModel:has_Object_Depth

1.  ProcessModel:has_Volume

It can be observed that the same property (ProcessModel:has Object Depth) has been
classified under both (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) thus
making the model flexible. UML class diagram attributes can thus be neutrally represented
using OWL2 datatype properties. As illustrated in Figure 6-9, all the properties can be

observed on the right tab.

However, as explained earlier, due to the limitations of OWL in representing n-ary
relationships, generative modelling capabilities of GPM-DEA based on the functional
requirements as sub function structures along withthe methods in UML class diagram as
engineering rules based on logic and math the can’t be represented using OWL2. These have

been formally represented using SWRL in this research.

In GPM-DEA, it has been illustrated that IDEFO activities have function. Similarly, an object
fulfills a function, and the design process satisfies functional requirement in the form of
product function. As per the class-subclass relationship of function structures discussed in
section 6.3.1, the sub function - ‘Cut hole of circular cross section’ is an instance of class
‘Remove_Solid_as_Subtracted_Volume_Boolean’ as a subclass of
‘Geometric_3D_Modelling’. It further  becomes an  instance  of  class
‘Subtract_Cylinder_Volume’ at the lowest level. The sub function - ‘Precision of hole
dimensions’ is an instance of class ‘Precision_Accuracy’ as a subclass of ‘Quality_Control’,
which further is a subclass of ‘Manufacturing_Feasibility’. Various instances of functions are

shown with the help of Figure 6-10.
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Other functions such as

‘Enlarge hole’ and ‘High surface finish’ have been allocated as

instances of function-sub function class hierarchy as shown in Figure 6-10.

The SWRL functions for generative modelling capabilities of GPM-DEA using function

structure matching in this research have been illustrated in section 5.5.3.Protégé offers a built

in plugin for SWRL.
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Figure 6-10: Instances of Functions — Drilling: Topbraid

The implementation of the SWRL generative modelling functions for drilling is illustrated

with the help of Figure 6-11. The URI in the form of ProcessModel:

was removed

automatically while importing the turtle (.ttl) file from Topbraid to Protége.
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The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2 RL-based reasoner to perform reasoning.
See the 'OWL 2 RL' sub-tab for more information on this reasoner.

OWL+SWRL->Drools Run Drools Drools->0WL

To use the reasaner click Reasoner > Stat reasoner (¥ Snow Inferencss

Figure 6-11: SWRL Functions - Generative Modelling in Drilling: Protégé

It is important to note that Function 10 has been specifically added and tailored to the drilling
process to reflect the change in state of block through extrusion as subtracted volume with a
constraint on created ontology that if the volume subtracted is a cylinder than the face of the
block should be circular. Figure 6-11 illustrates the representation or codification of
functions, which allow GPM-DEA to generate activities and objects based on the sub

functions of each activity and the object along with rules based on logic.

The verification of the generative modelling capability of GPM-DEA through drilling use-
case will be discussed in next chapter by testing the reasoning capability of the drools
reasoner on SWRL axioms and SQWRL query language. For the instantiated drilling use case
example in GPM-DEA, the initial product is the block and the final product is block with
hole as feature after the drilling process has been performed. Multiple holes can be created as
instances of Hole class as a subclass of Depression_Extrusion feature. SPARQL query for

activity to function mapping for ‘Drill _hole’ and ‘Ream hole’ activities is illustrated with

Figure 6-12 and 6-13.
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Figure 6-12: SPARQL Query Result: Activity to Function Mapping — Drill hole
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Figure 6-13: SPARQL Query result: Activity to Function Mapping — Ream hole
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The function — ‘Cut hole of circular cross section’” is a function of type
‘Subtract Cylinder Volume’,  ‘Enlarge hole belongs to  Function of type
‘Manufacturing Feasibility’ and ‘High surface finish® is a function of type
‘Precision_Accuracy’. All the function structures of GPM-DEA have been elaborated in

Figure 5-12 and 5-13 in section 5.5.2.

Similarly, SPARQL query for object to function mapping for physical objects — ‘Drill Bit’ and
‘Reamer’ is shown with Figure 6-14 and rule to logic description mapping with Figure 6-15.
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Figure 6-14: SPARQL Query Result — Object to Function Mapping — Drill bit and Reamer
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Figure 6-15: SPARQL Query Result — Rule to Logic Mapping — Drilling Process
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The engineering rules represented informally in GPM-DEA as methods in UML have also
been codified using SWRL as neutral formal representation in this research. From the
knowledgebase, shown in Figure 6-5, consisting of engineering rules for the drilling use case,

all the rules in SWRL axioms are illustrated as follows —

1. SWRL Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm,
H>=50 mm, D>=50mm)

SWRL Representation - Product(?p) A haswWidth(?p, W) A
swrlb:greaterThanOrEqual(?w,  "50.0"™xsd:float) ~ hasHeight(?p, ?h) 7
swrlb:greaterThanOrEqual(?h,  "50.0""xsd:float) "  hasDepth(?p, 2d) ~
swrlb:greaterThanOrEqual(?d, "50.0""xsd:float) -> sqwrl:select("Block adheres to
dimensions")

2. SWRL Depth Rule - D=W*1.5

SWRL Representation - Product(?p) * hasWidth(?p, ?w) ” swrlb:multiply(?x, ?w,
"1.5"Mxsd:float) -> hasDepth(?p, ?x)

3. SWRL Material Rule - If W>100 Then M = Metallic_Aluminium)

SWRL  Representation -  Product(Block) " hasWidth(Block, ?w) ~
swrlb:greaterThan(?w, "100.0"Mxsd:float) -> hasMaterial(Block,
Metallic_Aluminium)

4. SWRL Volume Rule - V1=W*H*D

SWRL Representation - Product(?p) ~ hasWidth(?p, ?w) ~ hasHeight(?p, ?h)
hasDepth(?p, 2d) ~ swrlb:multiply(?v, ?w, ?h, 2d) -> hasVolume(?p, ?Vv)

5. SWRL Hole Depth Rule - Hole depth should be less than or equal to depth of block,
HD2<=D

SWRL Representation - Product(?p) ” hasDepth(?p, ?d) ~ Hole(?h) ~ hasDepth(?h,
?2d2) ~ swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select(("Hole adheres to
dimensions'")

Else
Product(?p) ™ hasDepth(?p, ?y) ~ Hole(?h) ~ hasDepth(?h, ?z) ~swrlb:greaterThan(?z,
?y) -> sqwrl:select("Hole can't be created™)
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6. SWRL Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H

SWRL Representation - Product(?p) ~ hasWidth(?p, ?a) ™ hasHeight(?p, ?b) ~
Hole(?h) ~ hasDiameter(?h, ?c) “swrlb:multiply(?d, ?c, "1.25""xsd:float) *
swrlb:lessThan(?d, ?a) " swrlb:lessThan(?d, ?b) ->sgqwrl:select("Hole adheres to
dimensions")

Else
Product(?p) ~ hasWidth(?p, ?e) » Hole(?h) ~ hasDiameter(?h, 7g) ~ swrlb:multiply(?i,
?g, "1.25"Mxsd:float) * swrlb:greaterThanOrEqual(?i, ?e) -> sqwrl:select("Hole can't
be created")

Else
Product(?p) ~ hasHeight(?p, ?f) ~ Hole(?h) ~ hasDiameter(?h, ?g) ~ swrlb:multiply(?i,
?g, "1.25"xsd:float) ~ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't
be created")

. SWRL Hole Volume Rule - Volume of Hole (VH) = [(3.14*HD1*HD1)/4]*HD2)]

SWRL Representation - Hole(?h) ~ hasDiameter(?h, ?hd1) " hasDepth(?h, ?hd2) ~
swrlb:multiply(?x, "3.14""xsd:float, ?hdl, ?hdl, ?hd2) ~ swrlb:divide(?vh, ?Xx,
"4.0"Mxsd:float) -> hasVolume(?h, ?vh)

. SWRL Volume2 Rule - Final Volume (V2) = V1-HV)

SWRL Representation - Product_Initial(?p) ~ hasVolume(?p, ?v1) ~ Product_Final(?p2) "
hasFeature(?p2, ?i) ~ Depression(?i) ~ hasVolume(?i, ?v2) ~ swrlb:subtract(?j, ?v1, ?v2) ->
hasVolume(?p2, 7))

. SWRL Process Rulel - If <Tolerance of the hole is less than 0.2 mm for high
accuracy>perform reaming else drilling

SWRL Representation - Activity(Set_requirements_of hole) ~ Hole(?h) ~
has_Tolerance(?h, 1) A swrlb:lessThan(?t, "'0.2""Mxsd:float) ->
has_Successors(Set_requirements_of hole, ReamingProcess)

Else

Activity(Set_requirements_of hole) ~ Hole(?h) ~ has_Tolerance(?h, ?t) *
swrlb:greaterThan(?t, "0.2""xsd:float) -> has_Successors(Set_requirements_of hole,
Drill_hole)
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Figure 6-16, Figure 6-17 and Figure 6-18 illustrate the SWRL representation of engineering

rules for the drilling use case in Protégé IDE.
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Figure 6-16: Engineering Rules — Drilling Process: Protégé
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Figure 6-17: Engineering Rules 2 — Drilling Process: Protégé
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Figure 6-18: Engineering Rules 3 — Drilling Process: Protégé

6.4 Test Use Case 4: Designing a bookshelf (KBE and Neutral Formal
Representation with MOKA methodology): Adapted from

LinkedDesign

Pertaining to this research, the aim of this use case is to further refine and verify the system
development as OWL/SWRL using the GPM-DEA schema as Meta Model and at the
instance level with incorporation of product geometric accessible attributes as bookshelf
dimensions and illustrate wider applicability. The DEA process initiates from the sub-
function structures and function mapping of activities and objects to that of the engineering
design process through to the generation of rules to control the bookshelf design process with
its effect on bookshelf attributes. The following questions arise which will be verified in the

next chapter —

1. Can the instances of bookshelf design process be automatically generated based on
function structures of individual activities along with objects and engineering rules

for controlling the effect on geometric attributes of the bookshelf?
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2. Can the implementation (ontology and rule representation) of the generated activities,
objects and rules generate appropriate and accurate numeric values to bookshelf

attributes thus successfully enabling DEA with a KBE approach?

The instantiation of GPM-DEA with Use case 4 with its formalisation in OWL/SWRL as

system development is discussed in this section.
6.4.1 Function Structure Matching

As observed from Figure 6-19, the bookshelf design process has 3 sub-functions —
‘Detailed_design_3D_model_bookshelf’, ‘Variable input_output parameters’ and
‘Virtual_positioning’. It can be observed from Figure 6-20, activity ‘Input bookshelf
parameters’ satisfies function — ‘Detailed_design_3D_model_bookshelf’. Similarly, activities
such as ‘Compute parameters NDW, NSH’ and ‘Compute parameters SHL, WAL,
SHS’satisfy function — “Variable_input_output_parameters’. Similarly, the activity
‘Positioning of the bookshelf’ satisfies the function — ‘Virtual_positioning’. Thus from the
activity knowledgebase, bookshelf design processshould have all of the above mentioned four

activities.

Engineering Design Process Functional
‘

<Drilling> is a <cutting process> that uses a <drill bit> to

<cut a hole of circular crosssection> in <solid materials>.  Cut_hole_of circular_cross_section +

The <hole> can be of various dimensions depending upon  Precision_of_hole_dimensions

the drill bit dimensions

<Achieve an accuracy of +/-1mm in shape prediction>, as

Precision Forgingl shape prediction accounts for a bulk of the manufacture  Achieve an accuracy of +/-1mm + shape prediction
objectives.

The fan blades <spin to accelerate a mass of air> into the
engine to <generate thrust> that propels the aircraft
forward. Fan blades also function to <reduce total engine
damage> from the <ingestion of various foreign objects>
such as birds by radially deflecting outward such objects
rather than passing them through to the core parts of the
engine. The <dovetail attachment> of fan blades are used
to <secure the blades to the hub or disk>. It is important
to allocate material with high damage tolerance, ductility,
high cycle fatigue (HCF) strength and yield strength
Detailed design 3D model of bookshelf based on multiple

Drilling Processl

Generate thrust + reduce total engine damage from the
ingestion of various foreign objects such as birds + secure the
blades to the hub or disk + allocate material with high damage
tolerance, ductility, high cycle fatigue (HCF) strength and yield
strength

Conceptual Designl Fan Blades

scenarios of variable input and output parameters as Detailed_design_3D_model_bookshelf +
Bookshelf Design Process virtual representation Variable_input_output parameters + Virtual_positioning
Figure 6-19: Bookshelf Design Process Functional Requirements & Sub Functions:
Knowledgebase
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Engineering Design Process

Activity Equivalent Virtual Activities Functional Requirement --[Sub-Functions)
|~

Create block (workpiece) Protrude block (workpiece) Manufacture block

Drill hole Create hole + Subtract hole Cut hole of circular cross section

R T :::s:ule of circular cross section + enlarge hole + high surface

Bore hole Create hole + Subtract hole Cut hole of circular cross section + enlarge hole

Selection and positioning of

reamer

Set requirements of hole Precision_of_hole_dimensions

Selection and positioning of drill

bit

Punch hole Create hole + Subtract hole Cut hole of circular cross section + shear force

Extruded stem long enough for the part to be handled in
subsequent operations + base of the extruded part needs to
have enough material for subsequent heading + shape
prediction
Enough energy in the top die to achieve the movement
required to reduce the gap between the dies to the sum of the
gap between the flash lines and the minimum running
thickness + shape prediction
The heading cavity is filled out as much as possible even if the
cavity does not get filled in its entirety + shape prediction
Fan blades spin to accelerate a mass of air into the engine +
generate thrust + 80% of the thrust delivered by fan + reduce
Blade Geometry Optimisation total engine damage from the ingestion of various foreign
objects such as birds

Extrusion

Stamping

Heading

Dowetail Attachment Secure the blades to the hub or disk
Allocate material with high damage tolerance, ductility, high

Material Selecti
aterial >election cycle fatigue (HCF) strength and yield strength

Input bookshelf parameters Input bookshelf parameters Detailed_design_3D_model_bookshelf
Compute parameters NDW, NSH Compute parameters NDW, NSH Variable input and output parameters
Compute parameters SHL, WAL, . .

s Compute parameters SHL, WAL, SHS Variable input and output parameters.
Positioning of the bookshelf Positioning of the bookshelf Virtual_positioning

Figure 6-20: Activities with Functions & Sub Functions: Knowledgebase

All the activities with their inputs, outputs, controls as rules and mechanisms as resources
along with participating objects as inputs is shown in Figure 6-21. Their corresponding
graphical representation is an ICOM box of IDEFO standard in GPM-DEA as illustrated in
next section 6.4.2. A snapshot of the rules controlling the activities is shown in Figure 6-22.

Engineering Design Process
Activity
Objects - Product as primary object Activity Inputs Activity Outputs Controls: Engineering Rules
7]
Width (W), Height (H), Depth (T), Horizontal length of 1 shelf
(HS), Vertical length of 1 shelf (VS), Thickness of bottom shelf
(a3 P Rrodich (TB], Thickness of dividing walls (TD), Thickness of side walls
(TS}, Thickness of top shelf (TT), Thickness of inner shelf (TSH)

(Physical/Informatical/

Value assigned to
W, H,T, HS, Vs, T8, Design tool
D, TS, TT, TSH

Value assigned to No. of

Compute parameters NDW, NSH Product - Bookshelf Value assigned to W, H, HS, VS dividing walls (NDW), No. of Dividing Walls Rule , Shelves Rule Design tool
shelves NSH)
Value assigned to Shelf

Length (SHL), Length of side

Compute parameters SHL, WAL, Value assigned to W, H, TD, TS, TB, TT, TSH, Value assigned to Shelf Length Rule, Side & Dividing

SHS Qticib R el NDW, NSH SRR, e e e i)
Vertical space between
shelves (SHS)
Dividing Wall Pesition Rule, Multiple
. Dividing Walls Position Rule, Shelf
. . Value assigned to X1-X7,Y1- . L
Positioning of the bookshelf Product - Bookshelf R L 5 T i e e LAy Y7, 21-27 as Bookshelf P"“‘“." L M“"!F‘e il Polsmon Design tool
SHS Position Coordirates Rule, Side Wall Position Rule, Side
Wall Right Position Rule, Topshelf
Position Rule

Figure 6-21: Activities with Inputs, Outputs, Rules and Resources with Objects for Bookshelf
Design Process: Knowledgebase
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| Controls: Engineering Rul¢S Engineering Rule Description __________ EdTypeofRule &
NDW is based on HS and W, If (W<0.5*HS, "ERROR") elseif
(W<=HS, NDW=0) else (NDW=Int(W/H5)-1)

[NSH is based on H and VS, If (V5>H, "ERROR") elseif
(2*V5>H, NSH=0) else (NSH=Int{(H/VS)-1))

Shelf Length Rule (SHL=(W-{2*TS + TD*NDW))/(NDW+1)) Geometry Rule, Math Rule

(WAL=H-(TB +TT})

Dividing Walls Rule Geometry Rule, Math Rule, Production Rule

Shelves Rule Geometry Rule, Math Rule, Production Rule

Side & Dividing Walls Rule Geometry Rule, Math Rule

(SHS=(WAL-NSH*TSH)/NSH)

Vertical Space Rule Geometry Rule, Math Rule

Dividing Wall Position Rule

Multiple Dividing Walls Position

Rule

Shelf Position Rule
Multiple Shelf Position Rule
Side Wall Position Rule

Side Wall Right Position Rule

Topshelf Position Rule

(X1=TS+SHL,Y1=TB, Z1=0)
(X2=TS+SHL,Y2=TB,Z2=0)

(X3=T5,Y3=TB-T5H,Z3=0}
(X4=TS,Y4=TB+5HS,24=0)
(X5=0,Y5=TB,Z5=0)
(X6=W-TS, Y6=TB,Z6=0)

[¥7=0,Y7=TB+WAL,Z7=0)

Geometry Rule, Math Rule
Geometry Rule, Math Rule

Geometry Rule, Math Rule
Geometry Rule, Math Rule
Geometry Rule, Math Rule

Geometry Rule, Math Rule

Geometry Rule, Math Rule

Figure 6-22: Engineering Rules controlling the Design Process Activities for Bookshelf
Design Process: Knowledgebase

6.4.2 Informal / Semiformal Representation: GPM-DEA

An instance of bookshelf design process has been devised and instantiated in GPM-DEA as
informal / semiformal representation as shown in Figure 6-23. All activities are virtual
activities in context to the bookshelf design process as the process is realised at the detailed
design stage in the form of geometric modelling. For example ‘input bookshelf parameters’
will allow user to enter input values to bookshelf geometric attributes such as Width (W),
Height (H), Depth (T) and other attributes. All activities are represented using IDEFO
notation for functional modelling, and satisfy a function. As explained in the working of
GPM-DEA in section 5.3.1 with the help of Figure 5-3, if the functions of activities are not
available in the knowledgebase as inputs then the user will need to enter the functions of
activities and objects to successfully enable generative modelling capability of the model.
All activities are represented with inputs, controls as rules, outputs and mechanisms as

resources (ICOM).

The process-sequencing options are represented with red links as UML condition link for
multiple ‘what-if” scenarios. Sub-activities can be represented using blue link. The product

model representing the initial and the final state as bookshelf design parameter values and the
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designed bookshelf in virtual 3d model representation is represented using UML class
diagram with attributes and engineering rules as methods affecting the attributes. As
explained in Chapter 4 and 5, UML class diagram is used for representing all participating
objects in the engineering design process. Similarly, SysML requirement diagram is used for
representing the functional requirements of the bookshelf design process as sub functions in

context to the bookshelf as product.

Figure 6-24 shows a snapshot of function matching of individual activities as function
structures of bookshelf design process functional requirements with links to rules in ICOM

box.

Figure 6-25 shows a snapshot of product as bookshelf in initial and final state with UML
class diagram along with function matching of these objects. As it can be observed, various
engineering rules such as dividing walls, shelves, side and dividing walls, sidewall position
and topshelf position rules are informally represented as methods inside UML class diagram
along with attributes in this research. It also shows the interface of the process model to the
product model with part and assembly features of the bookshelf such as shelf, frame and

dividing walls using UML composition and aggregation structural links.
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Figure 6-25: Product in Initial and Final State and Function Matching — Bookshelf Design

Process Objects with Description of Rules
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6.4.3 Formal Representation: OWL/SWRL

The instantiated GPM-DEA model for bookshelf design process has been then represented in

OWL/SWRL as neutral formal representation in this research. The activities of the bookshelf

design process in GPM-DEA corresponding to the graphical representation in Figure 6-23

and 6-24 as IDEFO ICOM box are represented formally in OWL2 with associated id, inputs,

outputs, resources and linkage to engineering rules using classes and properties. All the

activities interlinked with product structure with attributes, function as sub-functions and

behaviour corresponding to UML class diagram and SysML requirement diagram are also

represented using OWL2 using classes and properties as illustrated in Figure 6-26.
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Figure 6-26: Bookshelf Design Process in OWL: TopBraid Composer FE

As observed from Figure 6-26, only OWL2 representation is utilised in Topbraid. All the

classes with class-subclass relationship can be observed on the left. All the properties for

inputs, outputs and other relationships marked as arrows in Fig 6-23 and 6-24 is represented
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on the right under the properties tab in Figure 6-26. Instances have been produced on the
bottom and all the relationships between instances can be observed in the resource form in
the centre tab. As also observed from Figure 6-26, the ‘input bookshelf parameters’ instance
of activity tab illustrates its ID as 1, allows user to enter input values to this activity in terms
of bookshelf geometric attributes as object attributes such as Object_Height H being given
value 5000 mm, Object_Horizontal _length_1 shelf HS being given value 1000 mm. The
equivalent activities and functions are also asserted using specified property in the form of

‘has Function’.

For the product attributes in UML class diagram as activity inputs and outputs as IDEFO
ICOM, in context to GPM-DEA, datatype properties have been created and instantiated. As
explained in section 5.5.1, (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs) are
the datatype properties created in GPM-DEA to assert activity inputs and outputs in terms of
object attributes. All sub-properties of (ProcessModel:has_Attributes) such as
(ProcessModel:has_Object_Size), (ProcessModel:has_Object_Position_Coordinates) and
(ProcessModel:has_Object_Orientation_Angle), (ProcessModel:has_Volume) can be asserted
as sub properties of (ProcessModel:has_Inputs) and (ProcessModel:has_Outputs). As
observed from Figure 6-22, following properties as sub properties of
(ProcessModel:has_Attributes) have been classified as sub  properties of

(ProcessModel:has_Inputs) as activity inputs —

I.  ProcessModel:has_Object_Depth T
Il.  ProcessModel:has_Object Height H
I1l.  ProcessModel:has_Object_Horizontal length_1 shelf HS
IV.  ProcessModel:has_Object_Thickness_bottom_shelf TB
V. ProcessModel:has_Object_Thickness_dividing_walls_TD

VI.  ProcessModel:has_Object_Thickness_inner_shelf TSH
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VIl.  ProcessModel:has_Object_Thickness_side_walls_ TS
VIIl.  ProcessModel:has_Object_Thickness_top_shelf TT
IX.  ProcessModel:has_Object_Vertical _length_1 shelf VS

X.  ProcessModel:has_Object Width W

Similarly, the following properties as sub properties of (ProcessModel:has_Attributes) have

been classified as sub properties of (ProcessModel:has_Outputs) as activity outputs —

I.  ProcessModel:has_Object_Length_of side_and_dividing_walls_ WAL
Il.  ProcessModel:has_Object No_dividing_walls NDW
1. ProcessModel:has_Object No_shelves NSH
IV.  ProcessModel:has_Object_Shelf length  SHL
V.  ProcessModel:has_Object Vertical space between_shelves SHS
VI.  ProcessModel:has_Object X Coordinate
VIl.  ProcessModel:has_Object_Y_Coordinate

VIIl.  ProcessModel:has_Object Z Coordinate

UML class diagram attributes can thus be neutrally represented using OWL2 datatype

properties. All the properties can be observed in Figure 6-26 on the right tab.

As per the class-subclass relationship of function structures discussed in section 6.4.1, the sub
function -  ‘Detailed design 3D model bookshelf” is an instance of class
‘Geometric 3D_Modelling’. The sub functions - “Variable_input_output_parameters’ and
‘Virtual_positioning’ are also instances of class ‘Geometric 3D Modelling’. Various

instances of functions are shown with the help of Figure 6-27.
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Figure 6-27: Instances of Functions — Bookshelf Design Process: Topbraid
The implementation of the SWRL generative modelling functions for bookshelf design
process is illustrated with the help of Figure 6-28.
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Figure 6-28: SWRL Functions - Generative Modelling in Bookshelf Design: Protégé
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Figure 6-28 illustrates the representation or codification of functions developed in this work,

which allow GPM-DEA to generate activities and objects based on the sub functions of each

activity and the object along with rules based on logic. The verification of the generative

modelling capability of GPM-DEA through bookshelf design use-case will be discussed in

next chapter by testing the reasoning capability of the drools reasoner on SWRL axioms and

SQWRL query language.

For the instantiated bookshelf design use case example in GPM-DEA, the final product is the

virtual representation of bookshelf as 3D model.The fit class becomes the most crucial class

in representing the part and assembly relations of the bookshelf. As illustrated with the help

of Figure 6-23 and 6-25, there are 6 parts of the bookshelf — dividing walls, frame, shelves,

bottom shelf, side walls and top shelf along with bookshelf and frame as assembly. All the

parent child relationships are shown graphically in the informal/semiformal model. The

assembly parts relations of the bookshelf are shown in OWL2 with the help of Figure 6-29.
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The assembly relationships can be queried in the SPARQL query tab to generate the results

required from the user. These queries results are illustrated with the help of Figure 6-30.
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Figure 6-31: SPARQL Query Result — Activity Function Mapping — Bookshelf Design
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Similarly, to illustrate the SPARQL query for activity-function mapping for the activity -

‘Input bookshelf parameters’ is illustrated with Figure 6-31.

SPARQL query for illustrating the rule to logic mapping for bookshelf design process with a
few examples is shown in Figure 6-32.
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- - Result Generated
SPARQL Query - Rule to Logic Mapping

Figure 6-32: SPARQL Query Result: Rule to Logic Mapping — Bookshelf Design Process

The engineering rules represented informally in GPM-DEA as methods in UML are also
codified using SWRL as neutral formal representation in this work. From the knowledgebase,
shown in Figure 6-22, consisting of engineering rules for the bookshelf design use case, all

the rules in SWRL axioms are illustrated as follows —

1. SWRL Dividing Walls Rule— NDW is based on HS and W, If (W<0.5*HS,
"ERROR") elseif (W<=HS, NDW=0) else (NDW=Int(W/HS)-1)

SWRL Representation - Product(?p) ~ has_Object Width W(?p, 2w) ~
has_Object_Horizontal_length_1_shelf_HS(?p, ?hs) N swrib:multiply(?x,
"0.5"Mxsd:float, ?hs) ” swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow
for a bookshelf")

And
Product(?p) A has_Object_Width_W(?p, 2w) A
has_Object_Horizontal length_1 shelf HS(?p, ?hs) A swrlb:multiply(?x,
"0.5""Mxsd:float, ?hs) ~ swrlb:greaterThan(?w, ?x) ~ swrlb:lessThanOrEqual(?w, ?hs)
-> has_Object_No_dividing_walls NDW(?p, "0.0""xsd:float)

And
Product(?p) A has_Object_Width_W(?p, 2w) A
has_Object_Horizontal_length_1_shelf_ HS(?p, ?hs) ~ swrlb:greaterThan(?w, ?hs)

197



swrlb:divide(?y, 2w, ?hs) " swrlb:subtract(?z, ?y, "1.0""xsd:float) ->
has_Object_No_dividing_walls_ NDW(?p, ?z)

. SWRL Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif
(2*VS>H, NSH=0) else (NSH=Int((H/VS)-1))

SWRL Representation - Product(?p) ~ has_Object Height H(?p, ?h) ~
has_Object_Vertical length_1 shelf VS(?p, ?vs) ™ swrlb:greaterThan(?vs, ?h) ->
sqwrl:select("Error - Too low for even one space in the bookshelf")

And
Product(?p) A has_Object_Height_H(?p, ?h) A
has_Object_Vertical length_1 shelf VS(?p, ?vs) ~ swrlb:lessThan(?vs, ?h) *
swrlb:multiply(?a, "2.0""xsd:float, ?vs) " swrlb:greaterThan(?a, ?h) ->
has_Object_No_shelves NSH(?p, "0.0""xsd:float)

And
Product(?p) A has_Object_Height H(?p, ?h) A
has_Object_Vertical_length_1_shelf _VS(?p, ?VS) A swrib:multiply(?a,
"2.0"Mxsd:float, ?vs) " swrlb:lessThan(?a, ?h) ~ swrlb:divide(?b, ?h, ?vs) *
swrlb:subtract(?c, ?b, "1.0""xsd:float) -> has_Object_No_shelves NSH(?p, ?c)

. SWRL Shelf Length Rule - (SHL=(W-(2*TS + TD*NDW))/(NDW+1))

SWRL Representation - Product(?p) ~ has_Object Width W(?p, 2w) ~
has_Object_Thickness_side_walls_TS(?p, 2ts) A
has_Object_Thickness_dividing_walls_TD(?p, ?td) A
has_Object_No_dividing_walls_NDW(?p, ?ndw) A swrib:multiply(?al,
"2.0"Mxsd:float, ?ts) " swrlb:multiply(?bl, ?td, ?ndw) ” swrlb:add(?c1l, ?ndw,
"1.0"Mxsd:float) ~ swrlb:add(?d1, ?al, ?bl) ~ swrlb:subtract(?el, 2w, ?d1) ~
swrlb:divide(?f1, ?el1, ?cl1) -> has_Object_Shelf _length_ SHL(?p, ?f1)

. SWRL Side and Dividing Walls Rule - (WAL=H-(TB +TT))

SWRL Representation - Product(?p) ~ has_Object Height H(?p, ?h) ~
has_Object_Thickness_bottom_shelf TB(?p, ?tb) A
has_Object_Thickness_top_shelf TT(?p, ?tt) ~ swrlb:add(?d, ?th, 2tt) ~*
swrlb:subtract(?e, ?h, 2d) ->

has_Object_Length_of side_and_dividing_walls_WAL(?p, ?e)

. SWRL Vertical Space Rule - (SHS=(WAL-NSH*TSH)/NSH)

SWRL Representation - Product(?p) A
has_Object_Length_of side_and_dividing_walls_ WAL (?p, ?wal) A
has_Object_No_shelves NSH(?p, ?nsh) A

N

has_Object_Thickness_inner_shelf_TSH(?p, ?tsh) ~ swrlb:multiply(?f, ?nsh, ?tsh)
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swrlb:subtract(?g, ?2wal, ?f) A swrlb:divide(?h, 29, ?nsh) ->
has_Object_Vertical_space_between_shelves SHS(?p, ?h)

6. SWRL Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0)

SWRL Representation - Part(Dividing_Wallsl)  ~  Product(?p) A
has_Object_Thickness_side_walls_TS(?p, ?ts) * has_Object_Shelf_length_SHL(?p,
?shl) ~ has_Object_Thickness_bottom_shelf TB(?p, ?tb) ~ swrlb:add(?i, ?ts, 7shl) ->
has_Object_X_Coordinate(Dividing_Walls1, 1)
has_Object_Y_Coordinate(Dividing_Walls1, ?th) A
has_Object_Z_Coordinate(Dividing_Walls1, "0.0" xsd:float)

7. SWRL Shelf Position Rule - (X3=TS,Y3=TB-TSH,Z3=0)

SWRL Representation - Part(Shelvesl) A Product(?p) A
has_Object_Thickness_side_walls_TS(?p, 2ts) A
has_Object_Thickness_bottom_shelf TB(?p, ?th) A

has_Object_Thickness_inner_shelf TSH(?p, ?tsh) “swrlb:subtract(?j, ?tb, ?tsh) ->
has_Object_X_Coordinate(Shelvesl, ?ts)  has_Object Y _Coordinate(Shelvesl, ?j) »
has_Object_Z_ Coordinate(Shelvesl, "0.0" xsd:float)

8. SWRL Side Walls Position Rule - (X5=0,Y5=TB,Z5=0)

SWRL Representation - Part(Side_Wallsl) A Product(?p)

has_Object_Thickness_bottom_shelf _TB(?p, ?tb) ->
has_Object_X_Coordinate(Side_Walls1, "'0.0"Mxsd:float) A
has_Object_Y_Coordinate(Side_Walls1, ?th) N

has_Object_Z Coordinate(Side_Walls1, "0.0"xsd:float)

9. SWRL Top Shelf Position Rule - (X7=0,Y7=TB+WAL,Z7=0)

SWRL Representation - Part(Top_Shelfl) A Product(?p) A
has_Object_Thickness_bottom_shelf TB(?p, ?tb) A
has_Object_Length_of _side_and_dividing_walls_ WAL (?p, ?wal) " swrlb:add(?k, ?tb,
?2wal) -> has_Object_X_Coordinate(Top_Shelfl, "0.0""Mxsd:float) A
has_Object_Y_Coordinate(Top_Shelfl,?k) ~ has_Object_Z Coordinate(Top_Shelf1,
"0.0"Mxsd:float)

Figure 6-33 illustrates all the SWRL rules for the bookshelf use case implemented in protége

SWRL tab.
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8 00

ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Bookshelf_Base 4 Rules.ttl]

| ® ProcessModel (http://example.org/P: Model) + | search.. |
Active Ontology x | Entities x| Individuals by class x| DL Query x | SWRLTab x| SQWRLTab x

#  Dividing Walls Position Rule  Part(Dividing Wall1) A Product(Zp) A has_Object_Thickness_side_walls_TS(p, 7ts) A has_Object_Shelf_length SHL(p, 7shl) A has_Object Thickness_bottom _shelf TB(?p, 7th) # swrlb:add(i, 7ts, 7shi) ...

Dividing Walls Rule 1 Product(?p) * has_Object Width W(?p, ?w) A has_Object_Horizontal_length_1_shelf HSZp, hs) A swrlb:multiplyZx, "0.5"AAxsd:float, hs) A swrlb-lessThan(w, 7x) -> sqwrl:select(’Error - Too narrow..
™  Dividing Walls Rule2 Product(?p) * has_Object Width W(?p, ?w) A has_Object_Horizontal_length_1_shelf HSCp, 7hs) A swrlb:multiply(?x, "0.5"AAxsd:float, 7hs) A swrlb-greaterThan(w, x) A swrlb:lessThanOrEqual(w, 7h...
™  Dividing Walls Rule3 Product(?p) * has_Object Width W(?p, ?w) A has_Object_Horizontal_length_1_shelf HS(p, 7hs) A swrlb:greaterThan(w, 7hs) A swrlb:divide(?y, 7w, hs) A swrlb:subtract(?z, %, "1.0"AAxsd:float) > h...
™ Shelf Length Rule Product(?p) * has_Object Width W(?p, ?w) A has_Object_Thickness_side_walls_TS(Zp, 7ts) A has_Object_Thickness_dividing walls_TD(?p, 7td) A has_Object_No_dividing_walls_NDW(p, Zndw) A swrlb:...
™ Shelves Position Rule Part(Shelf1) A Product(?p) A has_Object_Thickness_side_walls_TS(p, 7ts) A has_Object_Thickness_bottom_shelf TB(?p, 7th) A has_Object_Thickness_inner_shelf_TSH(p, 7tsh) A swrlb:subtract(zj, 7tb,.

Shelves Rulel Product(?p) * has_Object_Height_H(Zp, 7h) » has_Object_Vertical_length_1_shelf V3(?p, vs) A swrlb:greaterThan(vs, 7h) -> sqwrl:select(Error - Too low for even one space in the bookshelf)
™ Shelves Rule2 Product(?p) * has_Object_Height_H(?p, h)  has_Object_Vertical_length_1_shelf V3(?p, vs) A swrlb:lessThan(?vs, 7h) A swrlb:multiply(Za, “2.0"AAxsd:float, 2vs) A swrlb:greaterThan(?a, h) -> has_O.
™ Shelves Rule3 Product(?p) * has_Object_Height_H(?p, h)  has_Object_Vertical_length_1_shelf VS(?p, vs) A swrlb:multiply(7a, “2.0"AAxsd-float, 7vs) A swrlb:lessThan(?a, h A swrlb:divide(?h, h, 7vs) A swrib:subt...
¥ Side Walls Position Rule Part(Side_Walls1) A has_Object_Thickness_bottom_shelf TB(?p, 7th) * Product(’p) -> has_Object Z_Coordinate(Side_Walls1, "0.0"Axsd:float) » has_Object_X_Coordinate(Side_Walls1, "0.0"Axsd:flo..
¥ Side and Dividing Walls Rule  Product?p) A has_Object_Height H(?p, 7h) A has_Object_Thickness_bottom_shelf TB(Zp, 7tb) A has_Object_Thickness_top_shelf TT(?p, 7tt A swrlb:add(d, tb, 7t A swrlb:subtract(%e, 7h, 7d) -> ha...
¥ Topshelf Position Rule swrlb-add (%, 7, wal) A has_Object_Thickness_bortom_shelf_TB(?p, 7tb) A Part(Top_ShelfL) 4 Product(?p) A has_Object_Length_of side_and_dividing_walls_WAL(p, ?wal) -> has_Object_Z_Coordin...
™ Vertical Space Shelves Rule  Product(?p) A has_Object_Length_of side_and_dividing_walls WAL(p, ?wal) A has_Object_No_shelves_NSH(’p, 7nsh) A has_Object_Thickness_inner_shelf TSH(p, 7tsh) A swrlb:multiply(?f, Znsh, 7tsh ...

| New | Ed Clon: D

Control Rules  Asserted Axioms  Inferred Axioms OWL 2 RL

Using the Dreols rule engine.

Press the 'OWL+SWRL->Drools' button to transfer SWRL rules and relevant OWL knowledge to the rule engine.
Press the 'Run Drools’ button to run the rule engine.
Press the ‘Drools->OWL' button to transfer the inferred rule engine knowledge to OWL knowledge.

Rules such as Dividing Walls, Shelf Length, Topshelf Position

The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2 RL-based reasoner to perform reasoning. to Control the Geometric Attributes of the Bookshelf

See the 'OWL 2 RL' sub-tab for mere information on this reasoner.

| OWL+SWRL->Drools | | Run Drools | | Drools->owL |

To use th rassoner cick Rezsonar > Start rassoner (¥ Show Inferences

Figure 6-33: Engineering Rules — Bookshelf Design Process: Protégé

6.5 Summary

This chapter has discussed and elaborated on the 2 test use-cases for system development and
verification of GPM-DEA in OWL/SWRL ontology and rule representation for DEA with a
KBE approach with the effect of the process model on product’s geometric attributes. The
product’s attributes can be accessed at the detailed design stage across proprietary platform
specific DEA applications such as AML, ParaPy, CATIA Knowledgeware and Siemens NX
KF. Both these use-cases follow the method of GPM-DEA schema mapping at the Meta
model level and the instance level, developed as part of this research based on pilot use-cases
and literature analysis, where the initial product is assessed at the beginning and the product
with final state is produced at the completion of the process. The next chapter is going to
perform experiments on these use-cases with appropriate reasoning and query mechanism
and semantic clarity to test and verify the accuracy of the results produced from ontology and

rule representation.
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7 Experimental Verification of Knowledge Representation System

7.1 Introduction

This chapter elaborates on working and experimentation of the developed system with test
use-cases in order to explore various aspects of GPM-DEA implementation in ontology and
rule representation. It will provide experimental verification of the research hypothesis in
order to satisfy and provide proof of the novelty of this research work. Test use-cases in the
form of drilling a hole in a block and bookshelf design process collated from literature have
been instantiated in GPM-DEA and then formalised in OWL/SWRL as platform independent
and neutral representation as described in chapter 6 for system development. Aspects of both
these use-cases such as rules with links to activities and objects generated from functional
requirements, with their effect on product’s geometric attributes have been implemented in
proprietary platform specific DEA system applications such as AML, ParaPy with KBE
functionalities and CATIA Knowledgeware, Siemens NX KF with parametric modelling
providing GA. The comparison of the results generated from formal representation semantics
of GPM-DEA in OWL/SWRL will also be performed with corresponding rule

implementations in platform specific DEA systems.

7.2 Overview of the process model

Some of the critical aspects developed by this research that were discussed in section 5.5.2
are re-instated here as follows. These are considered to be an integral part for OWL/SWRL
ontology implementation using GPM-DEA method or schema as the basis for DEA with a
KBE approach for generative modelling as discussed in section 5.6.3. These would target
engineering design with focus on mechanical design and DFM/DFA with inclusion of both
geometric and non-geometric knowledge thus incorporating F-B-S aspects of a process model

for DEA.
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Generation of activities based on sub-functions as functional requirements

Generation of objects based on sub-functions as functional requirements

Generation of engineering rules for activities based on logic as the basis of rules

. Assessment of initial product to generate the initial activity of the process model

. Virtual and physical activity functional equivalence

To test the above formulated criteria, experimental system verification should satisfy the

following points in a nutshell —

Generative Modelling - The formal system should generate activities and objects of
the engineering design process based on the devised function structures as part of
functional requirements. It should also generate rules for activities based on logic. For
a generic process an initial step should be assessment of an object as product initial.
Also, for a DFM process with manufacturing knowledge, both the physical and virtual
representation of a product should be incorporated.

SWRL Rules - The engineering rules that are generated can incorporate product
knowledge such as configuration and attributes which can be accessed during detailed
geometric modelling such as features, parts, assemblies, location and orientation
inside a virtual environment

Output - The output of SWRL rules as platform independent and neutral
representation through reasoning and query should produce accurate results, which
should match the values upon execution of these rules inside platform specific DEA
systems. This will ensure the robustness and reusability of loaded ontology, as the
SWRL rules will only produce accurate results if the class hierarchy and properties of
ontology with instances has been modelled correctly. If the results of the SWRL rules
controlling the product parameters and configuration match to the specific rule

outputs inside platform specific DEA systems such as AML, ParaPy and GA based

202



CATIA Knowledgeware and Siemens NX KF; this will prove that the ontology and

rule representation works appropriately.

This will satisfy the aims and objectives by verifying the working of GPM-DEA, which
provides the method through schema to use ontologies as platform independent and neutral
representation in context of DEA with a KBE approach with semantic clarity, traceability and
transparency of concepts and relationships. This will ensure re-usability of modelled

knowledge as well.

7.3 Design of the Experimental System

Figure 7-1 illustrates the method of experimental system verification adopted by the author.
The first stage consists of the process knowledgebase consisting of mechanical design
process with DFM knowledge as high level intermediate and low level concepts formulated
as part of this research in section 4.3 of chapter 4. The second stage leads to formulation of
GPM-DEA based on the Author’s Metamodel as per developed concepts and relationships
with generative modelling capabilities for generation of activities and objects based on
functional requirements along with rules controlling the product’s attributes based on logic
and assessment of initial product. This is in line with the development and working of GPM-
DEA as described in section 5.3 of chapter 5. The mapping of the various concepts and
relationships as shown in Figure 7-1 is described in section 5.2 and 5.3. GPM-DEA is
described using a graphical representation as lightweight formalism using Drawlo. This is
saved as an XML file. The method of development of GPM-DEA along with its neutral
formal representation semantics in this research has been based on the findings of chapter 4
and described in detail in chapter 5. The third stage is the platform independent and neutral
formal representation of GPM-DEA using OWL/SWRL formalism as a .ttl file. The
equivalent implementation of GPM-DEA in OWL/SWRL as ontology and rule representation

is described in section 5.5 of chapter 5 thus providing a method to use ontologies in the
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context of DEA. Test use-cases have been elaborated with their formalisation as per the

developed GPM-DEA schema or method in chapter 6. Their inference and query results as

part of experimental verification of the developed system are discussed here.

High and
Intermediate Level
Concepts - Process

KnowledgeBase

Function / Functional

Requirements

Activities with Inputs
& Outputs

o
o

R

3

Informatical Activit

Physical Activity

Behaviour

Resources =y

:

GPM-DEA -
LightWeight
Formalism

Generation of
Activities based
on Functional
Requirements and
Initial Product
Assessment

Both Virtual and
Physical Activity
Functional
Equivalence

Draw 10 - XML
storage

"':-::..::;_\—{—_-_-_:'-:: A

SysML
Requirement
Diagram

o

- TUML Condition
Link

\.I

> UML Class
Diagram

Generation of
Objects based on
Functional
Reguirements

OWL/SWRL
Formalism

//;D

.TTL file

Integrated Process
\ Model: GPM-DEA

OWL Classes and
Relationships

SWRL
Functions

/

Integrated Query and
Reasoner

for OWL/'SWRL

Reasoner Queries

Design Engineering
Automation and

Generation of
Rules for Activities
based on Logic

Exploration

N~

Figure 7-1: Overview of Formalisation of GPM-DEA & Experimental System Investigation

Protégé is a tool that enables an integration of OWL2 ontology and SWRL as a rule language

through an in-built interface. This is the most important stage for experimental system

investigation and verification in this research. The generative capability of GPM-DEA has

been represented using SWRL functions as explained in section 5.5.3 in chapter 5. This is
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based on function structures described in section 5.5.2. Similarly, the engineering rules have
also been represented using SWRL functions. Querying and inference (automated reasoning)
is performed on the integrated knowledgebase as OWL/SWRL with preserved semantics
using SQWRL and Drools reasoner on top of SPARQL and Pellet reasoner enabling DEA
and exploration. The reasoning results and the query results are added as axioms in the
existing knowledgebase and can be saved as new .ttl file. If there are any conflicts in results,
modifications can be made in the classes and properties with instances for both text and
values such that the reasoner and query can then generate accurate results. All assertions and
queries with Pellet reasoner and SPARQL query on OWL2 ontology, Drools reasoner and

SQWRL on SWRL rule language have been tested and verified.

7.4 Illustration of Experiments

The following structured experiments have been devised to test and verify various research
aspects of this thesis. These will be tested with the drilling process and bookshelf design

process ontology and rule representation along with the discussion on results.

1. Generative Modelling Capability - Do the SWRL functions represented through the
inbuilt plugin enable generative modelling byautomatically generating activities and
objects that fulfil the same sub-functions as functional requirement of the design
process along with assessment of the initial product? This includes virtual and physical
activity functional equivalence and generation of engineering rules for activities based
on logic as the basis of rules.

2. SWRL Rules with Variation in Values - Do the SWRL engineering rules represented
through the inbuilt plugin add axioms on to the existing knowledgebase with both
object and datatype properties with real and float values to product attributes? How

does the system handle variation in values assigned?
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3. SQWRL Query with Violation in Asserted Values- Does the SQWRL return the correct
result while querying the knowledgebase? How does the system handle the violations in

assertions against the engineering rules?

4. Comparison of SWRL and SQWRL Rule Outputs to Platform Specific DEA Systems-

Does the SWRL/SQWRL outputs match to the outputs of axioms inside a DEA system?

7.5 Use Case 3: Experimentation

The first step in the experimental verification of the developed GPM-DEA in OWL/SWRL
for design process of drilling a hole in a block is the deployment of the instantiated model. As
observed from Figure 6-11 in section 6.3.3 in chapter 6, the generative modelling functions
for drilling use case have been represented using SWRL. Figure 7-2 shows the loaded
ontology in Protégé where the drilling process has 3 functional requirements with the axiom —

satisfies_Functional_Requirement (section E).

8600 ProcessModel (http://example. : [/Users/vibhor/| Formal Process Models/ProcessModel Drilling_Base 3(2) FuncModel 2.tt]

<) > ["® ProcessMaodel (http://example.org/ ProcessModel) 4| [ Search.. |

Active Ontology | Entities | Individuals by class x| DL Query x| SWRLTab x| SOWRLTab ~

' (1)
ufacturing Process' (1)

Object and Data
Property Tabs

Assertions for Drilling Process

To uss the reasoner cick Reasonar > Start reasonar (V] Show Inferences

Figure 7-2: Drilling Process Ontology: Protegé
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All the classes with hierarchical structure (section A) and binary relationships of GPM-DEA
for drilling process as properties have been instantiated (section B) and populated in the IDE
as axioms. It illustrates both physical and virtual view of drilling process by allocating it as a
subclass of extrusion process as well (section D). Text annotation properties (section C)
provide semantic clarity to the axioms. Using this standardised tab, other instances can be
populated in the corresponding tabs in protége IDE. All the experiments for drilling process

in a block are discussed in this section.
7.5.1 Experiment 1 - Generative Modelling Capability

Figure 7-3 shows a snapshot where assertions have been made for ‘drill hole’ and ‘assess
block’ activity as marked in red rectangles. Assertions have been made for the functional
requirements as sub functions of the activity, which will be tested in this section. The first
step is to activate the Pellet Reasoner followed by the Drools reasoner. Figure 7-4 illustrates

the tab that enables this functionality in the protégé IDE.

# Drill hale'
Individual Arnotations | Indivicual Usage
Ann eill hole

Assertions

==has_ID 3

Physical-Activity

e
[=has_Function Assess_bloc_strength

==has_ID 1

Figure 7-3: Axioms assertion for Drill Hole and Assess Block Activity with Sub-functions
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> calizesa del) i Pr | Drilling_ Base 3

& ProcessM

200 T TR s
< rfer rarchy
{of<,

ELK0.4.3
FaCT++ 1.6.5
HermiT 1.3.8.413

> ity
 Behaviour Ontop 1.18.1
v Design_Process Pellet rafs:iabel
8 cmmal_mn_vr Assess biock (workpiece)
v @ "Design for ing

Selection of Reasoner

Formal Process L Driling Base

@ ProcessMade)

I‘kiil‘kiil‘kiiﬁii 3

el

Steps to activate Drools Reasoner and add axioms to the existing knowledgebase

' WL+ SWRL-> Droals Run Drools Droals—>0WL |

15 e e s e - e Gncr -

Figure 7-4: Activating the Pellet and Drools Reasoner

It can be observed from section E of Figure 7-2 and Figure 7-3 assertions, both the activities
in the form of — ‘assess block’ and “drill hole’ satisfy sub-functions, which are equivalent to
the function structures as part of functional requirements of the drilling process. As observed
from Figure 7-5, upon activating both Pellet and Drools reasoners, all the activities in the
knowledgebase which match the drilling process functional requirements have been added as
axioms due to the SWRL generative modelling functions developed in this research. As per
the assessment of the block as the initial product, the axiom — ‘Starts with Activity’
indicates that the drilling process for block needs to start with the activity ‘Assess block’,

which has an equivalent virtual representation in the form of ‘ Assess protruded block’.
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ProcessModel (htp://example.org/ProcessModel) : [/Users/vibhor/Downloads/ Formal Process Models/ProcessModel_Drilling_Base 3(2) FuncModel 2.ttl]

[ < | | @ ProcessModel (http://example.org/ProcessModel) +| | Search.. | A
Active Ontology x| Entities | Individuals by class x| DL Query x| SWRLTab x| SQWRLTab x
@ 'Drilling process' — http://example.org/ProcessModel#DrillingProcess 1
ED D |“Asserted | [individual Anntations | Individual Usage
v @ Design_Process Annotatiens: 'Drilling process' [E =0
Conceptual_Design_Process .
» @ 'Design for Manufacturing Process ’ ) i
Detailed_Design_Process rdfs:label  [type: xsd:string
*Preliminary Design Process’ Drilling process
¥ © Function--FunctionalRequirement
Assess_Product_Initial
»> "Geometric 3D Sizing'
v @ Manufacturing_Feasibility
» @ 'Joining Process'
» © 'Removal Process’
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v @ "Output Performance evaluation®
Electrical_Performance
Mechanical_Performance
Thermodynamic_Performance
Individuals by type Annotation property hierarchy Datatypes
Object property hierarchy Data property hierarchy Description: 'Drilling process' M= mE [ Property assertions: 'Drilling process' NEDE

‘Design for Manufacturing Process

v @ Assess_Product_Initial (1) ‘Drilling process’ == 'consumes Product Initial' Blockl
@ Assess_block_strength ‘Extrusion Process’ isfies_| N _Requi
& 'Configuration Rule’ (4) Ccut_hole_of_circular_cross_section
» O ‘Create solid material' (1) > — -
¥ @ 'Design for Manufacturing Process' (1) Same Individual A fies_| _Req
Precision_of_hole_dimensions
» @ 'Drilling process' (1) itferent Inde == consists_of_Object ‘Drill Bit!
O "Extrusion Process’ (1) = consists_of_Object Reamer
» O Face (1
» () 'Geometry Rule' (6) = consists_of_Object Holel
: :‘“‘!‘(”t, - Activity (2) = consists_of_Activity 'Selection and positioning of drill bit'
nformatical-Activi
» © Logic (4) = consists_of_Activity 'Create hole'
: ":OQIC“ R;IE'_(Z Feasibility (4 = consists_of_Activity 'Set requirements of hole'
anufacturing_Feasibili
» @ 'Math Rule’ (7"',* vy (4) = consists_of_Activity 'Drill hole'
» © Mechanical_Performance (1) = consists_of_Activity Ream_hole
» O Metal (2)
== consists_of_Activity 'Subtract hole’
» © Non-Metal (2) i i ity o ke
v © Object (2) Generative Model ling Capablllty == ‘produces Product Final' Block1Final
:?:I'I";:; Inferred knowledge from SWRL mm Starts_with_Activity 'Assess block (workpiece)'
. i b .
» @reart(y) Functions Starts_with_Activity ‘Assess Protruded block’
v @ Physical-Activity (3)
Ream_hole Jata property assertions
@ 'Assess block (workpiece)' property asserten
@ 'Drill hole'
v

Product_Final (1) Negative object property assertions
P i e

Reasaner actve (@ Snow Inferences

Figure 7-5: Generative Modelling Capability - SWRL functions activated for drilling process ontology
for Block

It is important to notice that ‘Drill hole’ is a physical activity, which also has equivalent
virtual activities in the form of —Create hole’ and ‘Subtract hole’, which are realised in the
virtual engineering environment. These activities fulfil the same functions due to the SWRL
Function 7 stated in section 5.5.3 in chapter 5 and implemented for drilling process for block
in section 6.3.3 in chapter 6. As observed from Figure 7-5, these virtual activities are also
automatically generated for drilling process due to the inference on generative modelling
functions. Thus GPM-DEA provides both physical and the virtual representation of the
drilling process in terms of design process and manufacturing process requirements with the
SWRL functions developed as part of this research. Figure 7-6 illustrates inferred knowledge
with Pellet reasoner for ‘Assess block’ and equivalent ‘Assess protruded block’ as initial
activities as well as ‘Drill hole’ and other activities of the drilling process for block. The

SWRL functions are illustrated in section 5.5.3 in chapter 5 and implemented for this use-
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case in section 6.3.3 in chapter 6. Some engineering rules are governed by logic such as
Dimension, Material, Hole Depth, Hole Diameter Rule and others in this case. Heuristic rules

are not governed by logic and are disjoint from this relation.

Property assertions: 'Assess block (workpiece) MEmE
Property asse ssess Protruded block’
Object property assertians
== affectedbyLogic Ensure_block_rigidity
m=equivalent to' 'Assess Protruded block' = affectedbyLogic Ensure_block_rigidity
= requiresResources Fixture == controlled_by_Rule ‘Dimension Rule'
== has_Successors ‘Set requirements of hole' = controlled_by_Rule ‘Material Rule’
== has_Function Assess_block_strength mmhas_Function Assess_block_strength

W= contrelled_by_Rule 'Dimension Rule'
W controlled_by_Rule 'Material Rule'

Data property assertions
®shas_ID 1

Neg prop
Negati: b Pproy
Neg Prof
Inferred knowledge - Inferred knowledge -
Assess block activity Assess Protruded block activity
Reasoneracive (¥ Show Inferences Ressone active & Show inferen o
Object property assertions
oglc Hale_| Property assertions: 'Selection and positioning of drill [1H 8 &
y ion and positioning of drill bit'
= requiresResources 'Oil or Coolant’ Object property assertions
== ‘equivalent to' ‘Create hole’ == has_Function Tool_positioning
yLogic Tool_positi: mm affectedbyLogic

== has_Function Cut_hole_of_circular_cross_section

—=eani .. .
equivalent tn' 'Sublract hole = controlled_by_Rule Drill_Length_Rule
= requiresResources Fixture

= controlled_by_Rule Drill_Length. Rule W controlled_by_Rule Drill_Location_Rule

= controlled_by_Rule 'Hole Depth Rule’ = controlled_by_Rule Drill_Diameter_Rule

W= controlled_by_Rule Dril_Location_Rule . controlled Dy Rule Drill, Speed Rule
= controlled_by_Rule Hole_Diameter_Rule

= controlled_by_Rule Drill_Diameter_Rule
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Figure 7-6: Inferred knowledge — Drilling Process Activities

7.5.2 Experiment 2 - SWRL Rules with Variation in Values

As observed from inferred knowledge in Figure 7-6, ‘Assess block’ activity is controlled by
the following rules — ‘Dimension, Material” due to logic relation. However, as observed from
the graphical representation of Drilling processl in Figure 6-6 in chapter 6, ‘Assess block’
activity is also controlled by the Depth rule. This relation was not inferred, as Depth rule is

not associated with logic in the knowledgebase. ‘Assess block’ activity has equivalent virtual
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activity — ‘Assess protruded block’ which is also controlled by ‘Volume rule’, as the block
occupies 3D volume in a virtual domain. Figure 7-7 illustrates the loaded block and hole

attribute values along with its position coordinates as the initial product for the drilling

Property assertions: BlockL (I =
Property assertions: Holel 1 =]0fs]
= 'has Z Coordinate' 35.0f
- = " == hasDiameter 30.0f
-"Hs“,'gm su.nf == 'has X Coordinate' 30.0f
haswidth 50.01 = hasDepth 40.0f
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as SWRL rules as SWRL Rules

Ressonersctive (@] Show Inferences Ressoner active (] Show Infarances

Figure 7-7: Asserted and Inferred values to Block and Hole attributes - Drilling Process
Ontology / SWRL Rules for Block

As also observed from inferred knowledge in Figure 7-6, some of the rules that control the
‘Drill hole’ activity are Hole Depth and Hole Diameter Rule. All these rules are explained in

section 6.3.3 in chapter 6. Figure 6-16 and 6-17 shows the SWRL representation of these

engineering rules for the drilling process ontology.
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Figure 7-7 also illustrates the inferred knowledge in the form of Block Depth and Volume

along with Volume of Hole when the Drools reasoner is activated for the SWRL rules. As the

asserted width of the block is less than 100.00 mm, no material is allocated to the block as per

the Material Rule. Upon changing values of Block and Hole in terms of its size and

coordinates using datatype properties, changes in output values to Block Depth, Volume and

Hole Volume can be observed from Figure 7-8.

Property assertions: Block1 e Property assertions: Holel [T = = %]

Object property assertions
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Figure 7-8: Modification in Asserted Values with Variation in Output Values - Drilling

Process Ontology / SWRL Rules for Block

Figure 7-9 shows the implementation of Process Rulel based on the Tolerance of hole as

asserted value. According to the semantics of the Process Rule shown in Figure 6-18 in

chapter 6, if the tolerance of the hole is less than 0.2mm reaming should be performed, else

drilling should be performed.
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Figure 7-9: Process Rulel: Drilling Process SWRL

7.5.3 Experiment 3 - SQWRL Query with Violation in Asserted Values

The SQWRL runs the query on the OWL knowledgebase as the SWRL API supports an
OWL profile as OWL 2 RL based reasoner in the form of drools (Horridge et al., 2011; Kuba,
2012). For the asserted value to block and hole attributes in Figure 7-7, the query results for
all the 3 rules are illustrated with the help of Figure 7-10. All the results are satisfied as none

of the asserted values violate any of the engineering rules as represented in SWRL.
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Figure 7-10: Query Results: SQWRL Rules

‘Assess block’ activity is controlled by Dimension rule whereas ‘Drill hole’ activity is
controlled by Hole Depth rule. A few violations in terms of block width value 49.0 mm
(<50.0 mm as per dimension rule) and hole depth value 76.0 mm (>{1.5*50}=75.0 mm

[block depth]) are asserted as shown in Figure 7-11. As illustrated, the activity — ‘Drill hole’
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is also controlled by Hole Diameter rule. A violation is asserted to hole attributes in terms of
hole diameter 50.0 mm ({50*1.25}=62.5>60.0 mm [block width]) as shown in Figure 7-11.
All the SQWRL query results are illustrated in accordance with violation of Dimension, Hole

Depth and Hole Diameter Rule in line with semantic clarity.
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Figure 7-11: Violation of Asserted Axioms against Dimension Rule, Hole Depth Rule and
Hole Diameter Rule — OWL/SWRL
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7.5.4 Experiment 4 - Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems

An instance of the rules of the drilling process for block have been represented and codified
inside ParaPy as a platform specific DEA system by the author. Similar variations to values
as OWL/SWRL have been performed inside ParaPy and the results have been compared in
this section. It is important to note that ParaPy is based on inbuilt classes and has a built in
Graphical User Interface (GUI) geometry modeller to reflect the changes in product’s state
whereas the present OWL/SWRL representation reflects the changes in the query (SQWRL)
and reasoning (SWRL) tab without the visual representation of product’s geometric state. As
observed from Figure 7-7 in section 7.5.2, same values have been instantiated for both block
and hole inside ParaPy as observed from Figure 7-12 and 7-13. The representation of

engineering rules follows O-O representation in the form of a method.

216



Inputs

Inpuls Hole

LOEEEEEEEE

Elle Edit View Navigate Code Befactor Run Tools VCS Window Help
9.€: ;I Users ) 0 ID916136 » 10 Diesktop » 191 ParaPy-Starter-Kit 11 ParaPy starterskit BCU Vibhor ) I tutorials ) 19 solutions tutorial basics 2 ) ( block - drillhole - Rules.py )

LR R

block - drillhole - Rules ~ | P, # B

& Project  ~

4| - 10 | | (A positioningpy | [ boxes.py | [~ staircase;py < | [~ booleanexamples.py < | [ blockfordrillholepy < | (= block -

Giinolepy 1| i block - crilol - Rules.py

B DriMHole C:\Users\ID916136\Pycharm Projects\DrillHole [Brock|

# Il Extemal Libraries from __future_ import division

s from parapy.core Lwport *
s from parapy.geon mport *
< from mvh import pi, degrees, radians
B class Block(GeomBase) Inputs
s
s 4 Block Dimensions - wictr Mengen (ifiant), Heians (veptr)
10 #: itype: float 3 z 3NSi 3
- T TrreTTeT e e Depth and Dimension Rule
12 block_tength = Input (60) # Rock Heaght (1)
14 @arrribute
15 def block height (self): # Block Depth(D) #Depth Rule
. Fotum acif.block wadtntl.s
1 def Blockl (seif):
= retumn Box (261 block width if ss1f|block wiath>=50 else "ERROR", #pinension Rule
2 a01.block_length 1f 3¢1{.Dlock_Lengtny=50 €lae "ERROR", # hlock Heignt(i)  4Dimenzion Rule
2 2¢1¢ Block height iF sel] Block height>=50 slss "ERROR, ¢ 5lock Depth (D)
color="red")

#Dinension Rule |

Ihn]eidlun\eaez = Input (30}

7 Fole Diameter(R01) |

@Attribute
def hole_radius(self):
return aclf.hole_dismeter/2

¥ Hole Ra

= = HD1/2

" blockfardrillhole

# License type: evaluation
# Activation type: deaignated computer
# Expiry date: 2017-06-21

+

P

B

expanding root node ...

#####4 3D rendering pipe initialisacion ####4

Diaplay3d class initialization atarcing ...
ephic device crested.

WIT window creaced.

Viewer created.

Interactive convext ereated.

Diaplaydd class successfully imitialized.

~ X%

Platform and Plugin Updates
PyCharm Community Edition is ready to update.

7] PyCharm C y by

131 CRLF: UTF-8: & & ()

rillHe \Users\ll AU 16134
File Edit View Mavigate Code Refactor Run Tools VCS Window Help
10 C: ) B Users ) 1 ID916136 ) I Desktop ) I ParaPy-Starter-Kit ) 11 ParaPy starterskit BCU Vibhor » 10 tuterials ) 10 solutions tutorial basics 2

block - drillhele - Rules.py »

block - drillhole - Rules = | B # 1 Q

O projec @ | - 1| (A fuselagepy ~ | [ positioning.py < | (& boxespy | [ staircase.py | x| i | 1% block - dillnole.py | i block - drilhole - Rt
» 8 DrilHole. CAUsera\IDS16136\PycharmProjectaDrilHole [Blook
» 1l External Libraries o 3t 1type: Float [
1 Block width = TAput(50) T REE | g Inputs
12 block length = Inpu(60) 4 Block Height ()
1
1 BActribure
15 def block_height (e1f): + Block Depeh () fptn
16 return ac1f.block_width?l.5
1 orart
19 def blockl(aelf):
20 roturn Box (ae1f.block widch 1f aelf.block widdh>=50 efse "ERROR", #Dinension Rule
21 aelf.block_length Lf self.block, else "ERROR", # Block Height(H)  #Dimension Ruls jm
22 self.bleck height if self.bloe) "ERROR", # Block Depth(D) #Dimension Rule H
2 color="red")
20
26 #: Hole Dimensions - Radius (Diameter/2), Yength (Depth)
26 #: rtype: Float
2 hole_diameter = Inpuc(30) # §f1e Dismeter D1
20
25 hceribuce
20 def hole_radius (self): Hole Diameter H
a rotumn 201 hole_diomerer/2 4 Hole Redivs = HDL/2 3
- - and Depth Rule =
33 hole_height = Input(40) 4 Hole Depth (HDZ)
3
35 Trart
’ dof holel taelf) :
Taturn Cylindax (3617 hole_radius 3F 5617, hole_¥adluavs. sse17 Block Width
se17.hole_radius*2.5<aelc. block_lendth else "ERROR",  fiiole Diameter
o "ERFOR", #itole Deptn
Color-"blue", position=aeL:.position.tzanslate('x's 30, 'y', 20, 'z', 351}
L

B | + * Expiry date: 2017-06-21 0
+ +

|+

| &

expanatng root node ...
3 |[E] 4essae 30 rendering pipe inicialisacion sees
{5 Displeydd class initializavion stercing ...
| g O Geaphic device cresces:
WIT window creaced.
x Viewer created.

7 Interactive context created.
Displaydd class successfully initialized.
4D Platform and Plugin Updates
Procesa finished with exit code -1073741819 (OxCO000005) PyCharm Community Edition is ready to update.
Platform and Plugin Updates: PyCharm ty is ready to update 131 CRLF: UTF8: & & ()

Figure 7-12: Inputs and Evaluated values inside ParaPy: Drilling Process — Block

217



e E
€ ) B Users y starterskit BCU Vibhor ) [0 tutorials » 19 solutions tutorial basics 2 » (@ block - drillhole - Rules.py » o block - drillhole -Rules | b, % B Q
i project ~ | & positioning.py | # boxespy | i stai <[ i x| i | 1% block- drillnolepy | 7 block- crillnole - Ru
» I DrillHole C:\Users\ID916136\PycharmProjects\DrillHole [5tocx | [notet ) |
>l Extemal Libraries block width - Input (60) + Blo
bleck_length = Input(80) # Blo
@Attribute I
def Block height(seif): ¢ Block pepen () Modified values to
return scli.block width*l.S hole aﬂl’ibUTeS
gParc
def blockl({self):
return Box(s=1%.block width if s=1%.block else "ERROR",
block_length if self.block ] else "ERROR"
height if CXk_height>=S0 else "E ]
|hnleihel.ﬂh: = Input(20) # Hol: | 1
@Part
def holel(self):
retum Cylinder(self.hole radius i
: lengch e1¥ "ERROR",
13 height else "ERROR"
I 'x', 30, '¥', iaﬁ) I
Run: | - L
(‘- L
- +
u +
n|g * #
= B
-]
x| lisation #28#%
i
x tarting ...
?
a.
succe::\rjly initialized @ Platform and Plugin Updates
PyCharm Community Edition is ready to update.
[0 Piatform and Plugin Updates: PyCharm Community Edition is ready to update. (today 08:45) 41:88 CRLF: UTF-8: & & ()

Figure 7-13: Inputs and Evaluated values with modifications to asserted values inside ParaPy:
Drilling Process — Block

It can be observed that the calculated and evaluated values for block and hole attributes are
same as the values inside OWL/SWRL (platform independent and neutral representation)
inferred knowledge in Protégé IDE. Similarly, upon modifications in the asserted values to
hole attributes, which are same as those in OWL/SWRL representation of drilling process in
Figure 7-8, same values are evaluated inside ParaPy as a platform specific DEA system as

observed from bottom Figure 7-13. However, there is a slight difference in the volume of the
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hole as calculated in SWRL as 28260.0 mm?® and 44156.25 mm? as observed from Figure 7-
7and 7-8 against the calculated value of 28274.33 mm?®and 44178.64 mm? as observed from
Figure 7-12 and 7-13. This is due to the fact that a value of 3.14 is used in SWRL rule, which
is rounded up to two decimal places against the actual value of = (3.141592653589793238)
inside ParaPy. A few violations are introduced for the block attributes (Block Width=49.0
mm< 50.0 mm as per Dimension Rule), hole attributes (Hole Depth=76.0
mm>{1.5*50}=75.0 mm [Block Depth] as per Hole Depth Rule), Hole Diameter (Hole
Radius=25.0 mm {2.5*25}=62.5>60.0 mm Block Width), all of which are of same value in

OWL/SWRL in Figure 7-11.
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Figure 7-14: Violation of Asserted Axioms against Dimension Rule - ParaPy
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Figure 7-15: Violation of Asserted Axioms against Hole Depth and Hole Diameter Rule —
ParaPy
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Figure 7-14 illustrates the output in ParaPy as no block is created in the graphical user
interface (GUI) for violation of Dimension rule. Similarly, as observed from Figure 7-15, no
hole is created in GUI for violation of Hole Depth and Hole Diameter Rule. The text in the
run and compiler window also indicates that it could not bind the value to the Block Width,
Hole Height (Depth) and Hole Radius respectively, which are the same results in the query

tab in SQWRL in Figure 7-11.

7.6 Use Case 4: Experimentation

This use-case has been derived from the LinkedDesign project (Liitzenberger et al., 2012) as
illustrated in chapter 6 with addition of knowledge to develop a more comprehensive
knowledgebase for this research. The main purpose of this use-case is to ensure the proposed
working of GPM-DEA through its OWL/SWRL representation for a bookshelf design
process, which varies from the design process of drilling a hole in a block and thus creates a
different product. Similar steps and experiments have been conducted for this use-case to
illustrate the generic and uniform working of the developed process model GPM-DEA
enabling DEA through its neutral formal representation. This further strengthens the research

hypothesis and provides verification to the research objectives.

The first step in the experimental verification is the deployment of the instantiated model. As
observed from Figure 6-28 in chapter 6, the generative modelling functions for bookshelf
design processuse case have been represented using SWRL. Figure 7-16 shows the loaded
ontology in Protégé where the bookshelf design process has 3 functional requirements with

the axiom — satisfies_Functional_Requirement (section E).

All the classes (section A), binary relationships of GPM-DEA and text annotation properties

(section C) for bookshelf design process as properties (section B) have been instantiated and
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populated in the IDE as axioms. All the experiments for bookshelf design process are

discussed in this section.
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Figure 7-16: Bookshelf Design Process: Ontology

7.6.1 Experiment 1 - Generative Modelling Capability

Figure 7-17 illustrates the asserted axioms for activities such as ‘Input bookshelf parameters’,
‘Compute parameters NDW NSH’ and ‘Positioning of the bookshelf”. Sub-functions for these
activities have been instantiated using object property — ‘has Function’ and bookshelf
attributes have been allocated using datatype properties as a subclass of — ‘has_Inputs’ as

explained in section 6.2.2.3 in chapter 6.
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Figure 7-17: Axiom Assertions for Activities: Object and Datatype properties

Generative modelling capabilities of this research are illustrated with the help of Figure 7-18.
Upon activating the Pellet and Drools reasoner, all the activities are inferred as the individual
activity sub-functions match the functional requirements of the bookshelf design process. As
per the assessment of initial product based on SWRL functions, ‘Starts with activity’ axiom is
also inferred. Similarly, engineering rules such as ‘Dividing walls Rule’, ‘Shelves Rule’,

‘Side walls position Rule’ are governed by logic, which is represented as text under ‘Logic’
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class. As individual activities are also affected by this logic, SWRL functions infer the rules

controlling the individual activities.
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Figure 7-18: Generative Modelling and Inferred Knowledge — Bookshelf design process —

SWRL functions

7.6.2 Experiment 2 - SWRL Rules with Variation in Values

As observed from Figure 7-18, the rules controlling the activities based on logic are inferred.

Values are asserted to bookshelf attributes using inputs property as shown in Figure 7-19.

The SWRL rules for the bookshelf are represented in the SWRL tab as illustrated in Figure 6-
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33 in chapter 6. Upon activating the pellet and drools reasoner and addition of axioms to the
knowledgebase enables deduction of other attributes based on all the generated rules at
specified asserted values, which are inferred as shown in Figure 7-19 along with other rules
which are not based on logic.
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Figure 7-19: Asserted and Inferred values to Bookshelf Attributes: SWRL Rules

Similarly, the asserted and inferred values to subassembly components of Bookshelf such as
the Dividing walls, Shelves and Frames are also shown in Figure 7-19. All the corresponding
informal part and assembly relations of the bookshelf are illustrated in Figure 6-23 and 6-25

in chapter 6.
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Figure 7-20: Asserted and Inferred value to Bookshelf Sub-assembly: SWRL Rules

To illustrate changes in the inferred values as per changes in asserted value of the bookshelf

and its subassembly attributes, as per the SWRL engineering rules, a few dimensions are

altered as shown in Figure 7-21. The changes in asserted values are illustrated with the help

of Figure 7-22.
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Figure 7-21: Modifications in asserted values — Bookshelf and subassembly attributes
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Figure 7-22: Changes in Inferred Values: Bookshelf and Subassembly attributes

As, it can be observed by comparison of Figures 7-19, 7-20, 7-21 and 7-22, in spite of the fact

that the value of Thickness of inner shelf (TSH) is kept at the same value of 20.0 mm, the

position co-ordinates of the shelves in the virtual space still change as inferred values as they

are dependent upon other attributes such as Thickness of side walls (TS) and Thickness of

bottom shelf (TB) along with TSH as per the Shelves Position SWRL rule. All the other

attributes such as No. of dividing walls (NDW), No. of shelves (NSH), Vertical
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spacebetweenShelves (SHS), Shelf Length (SHL) and Length of Side and Dividing walls
(WAL) are altered as per their corresponding SWRL rules such as Dividing walls rule,

Shelves, Shelf Length, Side and Dividing Walls along with Vertical Space Shelves rule.
Similarly, the position coordinates of the Dividing walls, Shelves, Top shelf and Side walls
are also altered as per the SWRL positioning rules such as Dividing walls Position rule,
Topshelf position and Side Walls position rule.

7.6.3 Experiment 3 - SQWRL Query with Violation in Asserted Values

A few violations are asserted as per the Dividing walls rule and Shelves rule to calculate the

No. of Dividing walls and Shelves. As per the semantics and the SWRL representation,

violations to bookshelf attributes are illustrated with the help of Figure 7-23.
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Figure 7-23: Violations of assertions and SQWRL Query Results — Dividing walls and Shelves Rule
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As per the semantics of Dividing walls rule, If (W<HS*0.5), then its an error as no dividing

wall can be created. Thus as per assertion in figure 7-23, W=2000.0 mm, HS=4200.0 mm and

hence the initial clause is correct. The SQWRL query returns the result ‘ERROR- Too narrow

for a bookshelf’ as illustrated. Similarly, as per the Shelves rule, If (VS>H), then no shelf can

be created. Thus as per asserted values in Figure 7-23, VS = 2500.0 mm, H=2000.0 mm and

thus the SQWRL query returns ‘ERROR — Too low for even one space in the bookshelf’.

Same values to W=8000.0 mm, HS=2000.0 mm, VS=2000.0 mm and H=7000.0 mm are

asserted to bookshelf in Figure 7-24 and 7-21. As observed from Figure 7-22, NDW is

inferred at value 3.0, the query result of Dividing walls rulel clause should not return
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Similarly, as observed from Figure 7-22, NSH is inferred at 2.5, the query result of Shelves
rulel clause should not return ‘ERROR’. As can be observed from Figure 7-22, the SQWRL
result are not generated which is in line with the semantic clarity of the represented SWRL

syntax of the represented rules.

7.6.4 Experiment 4 - Comparison of SWRL and SQWRL Rule Outputs to Platform

Specific DEA Systems

This section has elaborated upon the comparison of testing to attributes of bookshelf in GPM-
DEA with OWL/SWRL and its implementation inside proprietary DEA systems such as
AML, Siemens NX Knowledge Fusion (KF) and CATIA Knowledgeware as part of this
thesis. Although the bookshelf has been implemented in all three DEA systems, the method
of implementation varies as AML is a true KBE system and enables generative modelling
through functional requirements but GA based CAD systems such as Siemens NX KF and
CATIA knowledgeware enable parametric modelling but don’t enable generative modelling.
Thus the knowledge analysis is performed after the geometric design stage in Siemens NX
KF and CATIA knowledgeware whereas the knowledge analysis is done prior to the
geometric design stage in DEA through a KBE approach, which is the adopted method in this

research.
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z3
Listed Expressions @
[Named ]| S
| Name = Formula Value Units  Type Comment
| Dividing_wall PoInt(TS+SHL,TB.0) Point(1023.50,0) Point
Diwdmg wall_multi__Point(TS+SHL.TB.0) Point{1023.50.0) Point
H 5000 5000 mm Number The overall hight of the bookshelf
MAX_HS 1000 1000 mm Number Maximum honzontal length of one shelf
TNOW TTOW 0.5 "MAX . HSNErTon e1Sel MW <=MAX HONO) elselvi/MAX HS 1) & Integer . Number of Griaing walls
| NSH iffVS=H)error) else( ifi2*VS>HXO) else(H/VS-1)) 4 Integer  Number of shelves
| Shelf Point(TS.TB-TSH,0) Point(40,30,0) Point
Shelfi Point(TS TB+SHS 0) Point{40,1260,0) Point |
| SHL (W-2*TS+TD*NDW)/(NDW+1) 983 mm  Number Shelf length
%SHS ((WAL-NSH*TSH)/(NSH) 1210 mm  Number Real vertical spacing between shelves ‘
| Side_wall Point(0,78,0) Point(0.50,0) Point
| Side wall right POINUW-TS TEO) Point9960,50,0) Point
T 500 500 mm  Number Depth of the bookshelf
8 50 50 mm  Number Thinkness of bottom she¥f
TD 10 10 mm Number Tickness of dmgng walls
Toeshelf Pomt.(.(-)l,TBa WAL 0} Pom&O 4970.0} Point
TS 40 40 mm Number Thickness of side walls
TSH 20 20 mm  Number Thickness of shelves
LR 30 30 mm  Number Thinkness of top shelf
Vs 1000 1000 mm Number Vertical spacing between shelves
W 10000 10000 mm__ Number The overall width of the bookshelf
| WAL HATB+TT) 4920 mm Number The height of the walls
Type | Point a -
Name[ v
Formnlal | v X

[ e R - (& x

[0k [ Apoty | [ cancel |

Figure 7-25: Input values to bookshelf attributes — Siemens NX Expression Window

(Liitzenberger et al., 2012, Pg 39)

For experimental verification of the implementation, the same values are instantiated to

bookshelf attributes in the developed ontology as shown in Figure 7-19 and 7-20 as compared

to the implementation in Siemens NX expression window in Figure 7-25. The output values

of attributes based on rules inside the expression windows are illustrated with Figure 7-26.
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< >|
Listed Expressions : @
[Named 17) S
Name Formula Value Units | Type  Comment
Dividing_wall Point(TS+SHL.T8,0) Point(1023,50,0) Point
Dividing_wall_multi  Point{TS+SHL.T8,0) Point(1023,50,0) Point
H 5000 5000 mm Number The overall hight of the booksreif
MAX_HS 1000 1000 mm ___ Number Maximum hon&tal length of one shelf
NDW IW<0.5*MAX_HSKerron else{ Ifw<=MAX_HS)O) else(W/MAX_HS-1) 9 irteger  Number of dividing walls
NSH if(vS>HKerron else( ifi2*VS>HKO) else(H/VS-1)) 4 Irteger  Number of shelves
She Point{TS.TB-TSH.0) Point(40,30.0) Point
Shelf1 PoInt(TS,TB+SHS.0) Point{40,1260.0) Point
i fSHL (W2*TS+TD*NDWI)/(NDW+1) 983 mm  Number Shelf length
SHS ((WAL-NSH*TSH/(NSH)) 1210 mm_ Number Real vertical spacing between shelves
Side_wall Point{0,TB,0) Point(0,50,0) Point
{ Side_wall_right Point{W-TS,78,0: Point{9960,50,0) Point
T 500 500 mm  Number Depth of the bookshelf
18 50 S0 mm  Number Thinkness of bottom shelt
L[} 10 10 mm Number Tickness of dividing walls
Topshelf Point{0. TB+WAL.0) Point{0.4970.0) Point
TS 40 40 mm Number Thickness of side walls
TS 20 20 mm Number Thickness of shelves
v 30 30 mm  Number Thinkness of top shelf
Vs 1000 1000 mm  Number Vertical spacing between shelves
W 10000 10000 mm Number The overall width of the bookself
WAL H{TR+TT) 4920 mm Number The height of the walls
Dividing_wall Point{TS+SHL TB,0) Point(1023,50,0) Point
Dividing_wall_multi  Point(TS+SHLTB,0) Point(1023,50.0) Point
H 5000 5000 mm Number ?he overall hight of the bookshelf
MAX_HS 1000 1000 mm  Number Maximum horizontal length of one shelf
NDW ifiw<0 S*MAX_HSNerror) else( iffwW<=MAX_HSK0) else(W/MAX_HS-1)) 9 Integer  Number of dividing walls
NSH iffVS>H)error} else( afE'VS>H)(0) else(H/VS-1)) 4 Integer  Number of shelves
Shelf Point(TS, TB-TSH,0) Point(40,30,0) Point
Shelfl Point(TS, TB+SHS. 0) Point{40,1260.0) Point
SHL (W-2*TS+TD*NDWI/(NDW~1) 983 mm Number Shelf length
SHS (IWAL-NSH*TSH)V/(NSH)} 1210 mm Number Real vertical spacing between shelves
Side wall PoINt(0,T8,0) Point(0,50,0) Point
Side_wall_right Point(W-TS.78.0) Point(9960,50.0) Point
T so00 S00 mm Number Depth of the bookshelf
T8 50 50 mm  Number Thinkness of bottom shef
TD 10 10 mm  Number Tickness of dividing walls
| Togshelf Point(0.TB+WALO) Point{0,4970.0) Point
s 40 40 mm  Number Thickness of side walls

Figure 7-26: Output values to bookshelf attributes — Siemens NX Expression Window
(Litzenberger et al., 2012, Pg 40, 41, 43)

On comparison of the inferred values for the bookshelf design in OWL/SWRL in Figure 7-19
and 7-20 to the attributes inside Siemens NX Expression Window in Figure 7-26, it can be
observed that the values are exactly the same such as NDW=9, NSH=4, SHL=983 mm,
WAL=4920 mm, Topshelf position coordinates as (0,4970,0) and Dividing Walls position

coordinates as (1023, 50, 0).

An anomaly is also compared in both OWL/SWRL and AML as a violation of assertion.
Figure 7-27 illustrates the specified incorrect value to asserted parameters — Bookshelf height

(H) as 2.5 m and Vertical spacing between shelves (VS) as 2.6 m inside AML.
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Bookshelf height 25

Bookshelf width 3
Marimum horizontal length of one shelf 0.5
I\-"ertic:al zpacing between sheles 2B
Thickness bottam shelf 0.05
Thickness top shelf 0.05
Thickness of dividing walls 0,05
Thickness side walls 005
Thickness of shelves 0.05
b ?[X

WRONG INPUT PARAMETERS: The bookshelf is too low For even one
vertical space in the bookshelf, Adjust bookshelf height or vertical
spacing between shelves,

[ OK_J [ Cangl

Figure 7-27: Incorrect value to H and VS parameters inside AML — Bookshelf Design
Process (Litzenberger et al., 2012, Pg 73)

It is important to note the difference in units in AML, which is in Meters (m) and Siemens
NX Expression window and OWL/SWRL (Protégé) in Millimeters (mm). Upon assertion of
the same set of values to H and VS and all the other bookshelf attributes in OWL/SWRL
model in this research as shown in Figure 7-28, the query result of the shelves rulel clause
shows “Error — Too low for even one space in the bookshelf” which offers the same result as

the output message inside AML in Figure 7-27.

The AML code for the rules for the bookshelf design is shown in Appendix.

233



806 ProcessModel (http:/ Jexample.org, : [{Users/vil loads/Farmal Process Models/ProcessModel Bookshelf Base 4 Rules.tt]

< @ ProcessModel (http /| example.org) ProcessMode! : Search... | A
Active Ontoiogy x Entities x Individuals by class x DL Query x SWRLTab x SQWRLTab x
Property assertions: Bookshelf1 LISIOEN | name Query Comment
Dividing Wals Posiion Rule PartDividing WallL) 4 Productp) A has_Object_Thickness_side_walls_TS(p, 7s) # has_Object_Shelf_length SHLCp, 7shi 4 has_Object Thickness_bo
Object property assertions Dividing Walls Rulel Product’p) » has_Object_Width_) has_Object_Horizantal_length_L_shelf HS(p, 7hs) A swrib-multiplyx, “0.5"Axsd-flaat, Ths) A swribless..
m='has part’ Framel Dividing Walls Rule2 Product?p) A has_Object_ Width ) has_Object_Horizontal_length_1_shelf HS(p, 7hs) A swrib:multiply(7x, "0.5"AAxsd-float, 7hs) A swrib:gre.
- ) Dividing Wals Rule3 Product7p) # has_Object Width Object_Horizantal_length_L_shelf_HSp, Ths) A swrib-greaterThanw, Ths) A swrlb:dividef?y, Tw, 7hs...
has part’ Shelves1 shelf Length Rule Product?p) # has_Object_Width W(?p has_Object_Thickness_side_walls_TS7p, 7s) » has_Object_Thickness_dividing walls TD{p, 7td) * has 0.
m='has part' Dividing_Walls1 Shelves Pasition Rule Part(shelf1) A Product?p) A has_Object_Thickness_side_walls_TS"p, 7ts) » has_Object_Thickness_hottom_shelf TB(p, 7th) A has_Object_Thickness_..
Shelves Rule1 Product7p) # has Object Height HiZp, 7h) A has_Object Vertical length L shelf VSp, %s) # swrlo:greaterThan(vs, 7h) -> squrl:selectError - Too...
Shelves RuleZ Product7p) # has_ Object Height HiTp, ) 4 has_Object Vertical length 1 shelf VSi?p, vs) # swrl:lessThanvs, 7h) A surlb-multnlya, 2.0°Axsdt...
Da ions Shelves Rule3 Producti?p)  has_Object_Height_H(Ip, 7h) A has_Object_Vertical_length_1_shelf VS(p, 2vs) # swrib:multiply(7a, *2.0°"#xsd-flcat, vs) A swrib:lessTh.
. . : Side Walls Position Rule ~ Part(Side_Walls1) A has_Object Thickness_bottom_shelf TB[p, 7th) A Producti?p) -> has_Object_Z_Coordinate(Side_Walls1, "0.0"Mxsd-float) A has_...
mmhas_Object_Thickness_side_walls_TS 50.0f
—Ohject Th —sire — side and Dividing Walls Rule Productp) A has_ Object Height_ (i, 7h) A has_Object Thickness_bottom_shelf TBp, 7th) A has_Object Thickness_top_shell_TTitp, 7 A swrib:a..
-hasfob;er.tiwmthfw 3000.0f Topshelf Position Rule swrib:add(k, 7th, wal) » has_Object_Thickness_bottom_shelf TB{p, 7tb) » Part(Top_Shelf1) » Product?p) * has_Object_Length_of_side_and_dividin..
mmhas_Object_Thickness_top_shelf_TT 50.0f Vertical Space Shelves Rule  Producti?p) » has_Object_Length_of_side_and_dividing_walls_WALT?p, Pwal) A has_Object_No_shelves_NSH(Zp, 7nsh) A has_Object_Thickness_inner_sh...
| ==has_object_Height_H 2500.0f | _ New |
"=has_Object_Thickness_bottom_shelf_TB 50.0f SQWAL Queries | OWL 2 RL | Dividing Walls Rulet | Shelves Rule1
== has_Object_Vertical_length_1_shelf_vs @
2600.0f Error - Too low for even ane space in the bookshelf |
== has_Object_Horizontal_length_1_shelf_HS
500.0f
== has_Object_Thickness_dividing_walls_TD /50.0f
== has_Object_Thickness_inner_shelf_TSH /50.0f .
SQWRL Query Result - Shelves Rule1 Clause as per asserted values
ive abiect property assertions H =2500 mm, VS = 2600 mm
st ey ¥ 8€IEd Values to
H=2500 mm, VS=2600 mm
Save as CSV.. Rerun Close
To use tha reasaner click Reasoner > Start reasoner (¥ Show Inferences Ressoneractve (¥ Show Infernces

Figure 7-28: Incorrect value to H and VS parameters in OWL/SWRL — Bookshelf Design
Process

7.7 Discussion of the experimentation results

The results of the Use Case 3 & 4 experiment prove that the inference and query mechanism
in OWL/SWRL for GPM-DEA enables DEA in a virtual environment with both design and
manufacturing knowledge by providing accurate results with transparency of knowledge. It is
important to state platform specific DEA systems such as ParaPy, Siemens NX and AML
have an inbuilt GUI to show the effect of assertions and violations directly on the product’s
visual form through an inbuilt geometry modeller but without any semantic clarity, which is
open to interpretation by engineers. The OWL/SWRL representation formulated in this
research doesn’t provide a GUI interface through incorporation of an inbuilt product
geometry modeller to show the effect of GPM-DEA on the product’s visual form in the
present stage. However, the inference and query results with variation in assertions and
violations are created as text and numerical values to show the effect of the process model on
product’s attributes and provide much more semantic clarity as compared to ParaPy, AML as
a DEA system. Thus the GPM-DEA schema, developed by this research, provides a method

to use ontologies with rule representation in context to achieving DEA with a KBE approach
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with semantic clarity, transparency, traceability and re-usability of developed Meta model in
this research. GPM-DEA provides a robust, structured and coherent method to build
knowledge model with usage of formal OWL/SWRL ontologies as knowledge
representation (KR) in context to achieving KBE based DEA. The ontology and rule based
OWL/SWRL representation adopted by the author successfully represents the equivalent

platform independent and neutral formal representation.

7.8 Summary

This chapter has provided experimental verification of various research aspects of this
thesis with the testing of the functionality of GPM-DEA implemented in OWL/SWRL
ontology and rule representation as formal logic based neutral representation. Thus it has
been proven that the GPM-DEA in its informal /semiformal representation, through
OWL/SWRL as platform independent and neutral formal representation enables DEA with
generative modelling catering to multiple mechanical design with DFM/DFA cases and
provides accurate results similar to a platform specific DEA system. The experimentation
with both Use Case scenarios provides proof of generic working of GPM-DEA with both re-
usable and product specific knowledge. An important point of consideration is the fact that
the first step of representing the informal / semiformal knowledge is manually represented in
OWL/SWRL as platform independent and neutral formal representation with accurate
semantics. The inference (automated reasoning) and the query mechanism on the formally
represented OWL/SWRL knowledge returns accurate results with varied generic and product
specific concepts and relations of the process model with semantic clarity for DEA with both
design and manufacturing viewpoints during the design stage. The inference and query
results are shown as text and numerical values to product’s attributes as compared to the

product’s geometric form with GUI inside a proprietary DEA system.
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8 Conclusion

8.1 Introduction

The research work discussed in this thesis has developed a Generative Process Model for
Design Engineering Automation (GPM-DEA) with neutral formal semantics utilising
OWL/SWRL ontology and rule representation formalism for DEA with a KBE approach.
GPM-DEA built on the author’s Meta model provides a model driven approach utilising
strengths of existing modelling standards such as UML/SysML and IDEFO for building
structured knowledge models of mechanical design process with DFM knowledge for human
access and aid as an informal/semiformal representation. It provides a method to use formal
OWL/SWRL ontologies through its schema for the use of DEA with a KBE perspective with
generative modelling based on generic SWRL functions developed by the author for queries
and reasoning. With experimental system development and verification through 2 test use-
cases, it has been demonstrated that the corresponding platform independent and neutral
formal representation of GPM-DEA, for machine interpretation, using OWL/SWRL enables
DEA for mechanical product design process with DFM/DFA with preserved semantics within
a virtual engineering environment and with generative modelling capabilities using the
SWRL functions developed in this research as explained in section 5.6.3. This chapter
compiles the discussion, provides conclusion from the results and suggests some future work

based on the research work completed in this thesis.

8.2 Summary of Thesis and Discussion

The current research has introduced a novel Generative Process Model for Design
Engineering Automation (GPM-DEA) with exploration of formal representation with
machine interpretation. The schema of the process knowledge model provides a method to

use formal logic based ontology representation to achieve DEA with a KBE perspective with
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generative modelling. Various concepts and relations of mechanical design process with
manufacturing knowledge based on the authors Meta Model have been informally captured in
GPM-DEA as a process model and then formally represented in OWL/SWRL as platform
independent and neutral formal representation with preserved semantics to address the needs
of DEA with a KBE approach. The research work satisfies the aim and objectives stated in
section 1.3, which helped raise a few research questions in section 4.3. This research is based
on the shortcomings of KBE methodologies such as MOKA being a comprehensive one,

others such as KNOMAD and CommonKADS, in order to target the needs of DEA.

‘This aim of this research is to provide a coherent method to develop platform independent
and neutral formal representation of an engineering process model, with focus on
mechanical product design process with manufacturing knowledge, and semantic clarity for
DEA. This coherent method will capture various knowledge entities and relationships such as
activity, product attributes, rule, function and behaviour as Meta Model, identified with
literature analysis in an informal process model (for human aid and interpretation). The 2"
step will provide a method to represent the schema of the structured process model in neutral
formal representation (for machine/system interpretation) with open standards for DEA with
KBE as a holistic approach. This will include generative modelling capability by building
queries as per a set of generic predefined functions. It will perform DEA with effect of the
process model on product attributes with the help of inference (automated reasoning) and
querying’

Post MOKA, Systems engineering approach such as Model Based Systems Engineering
(MBSE) based UML/SysML have been used by academics and researchers to capture
knowledge with a model driven approach along with formal logic based ontology languages
to formally represent engineering design knowledge for machine interpretation with neutral

semantics. Chapter 2 described DEA with various perspectives such as CAXx
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(CAD/CAE/CAM), PDM/PLM and KBE where it was identified that KBE as a design
method provides a more holistic automation enabling generative modelling and with a

process oriented approach. This provided accomplishment of research objective 1 —

1. To investigate different approaches for Design Engineering Automation (DEA)

including CAx, PLM and KBE for product and process based automation

Under the KBE umbrella with a focus on platform independent and neutral knowledge
models for design automation, crucial work has been performed by (Sanya and Shehab, 2015,
2014) for usage of OWL/SWRL ontologies, utilisation of OWL/RIF/MathML based ontology
representation by (Reijnders, 2012) and RIF for product design engineering rules by
(Colombo et al., 2014; Litzenberger et al., 2012). An application was also developed in the
form of Design and Engineering Engine (DEE) by (Curran et al., 2010). However, some of
the shortcomings that were identified were a structured knowledge modelling method for
engineering design with focus on mechanical design and DFM/DFA by developing a process
model whose schema can be utilised to effectively use formal ontologies such as OWL based
languages to address the needs of DEA in a standardised way. The platform independent and
neutral model developed should provide re-usability, transparency, traceability of concepts
and relationships based on Meta Model analysis and provide generative modelling. The
knowledge should include both geometric and non-geometric knowledge with Function-
Behaviour-Structural (F-B-S) aspects such that the developed system can enable rule based
modelling and geometry automation (GA) along with wider design space exploration with
functional requirements with reasoning and query mechanism on the formal axioms thus

targeting DEA for mechanical product design process with DFM/DFA aspects.

The compliance of the outcomes of this research work as per the set objectives, identified
research gap along with critical analysis of the developed process model with the ontology

system development and its experimental verification is presented in this section.
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8.2.1 Development and Formulation of GPM-DEA model
Research Question 1 in section 4.3 is stated as -

I.  ‘How can the mechanical product design process with inclusion of manufacturing
knowledge (DFM/DFA) based on various entities such as activities, rules, logic,
function and behaviour for product realisation as per author’s Meta model, be
captured in a generic and re-usable process model as a model driven approach with

structured knowledge model for automation in a virtual engineering environment?’

The answer to this question caters to research objectives 2 and 4 in section 1.3 which are

stated again as —

2. To analyse and compare various informal and semiformal process modelling methods
to capture various aspects of an engineering design process with focus on mechanical
product design with design for manufacturing knowledge for automation

4. To develop and build a detailed informal/semiformal process model with explicit
relationships between identified knowledge entities of a mechanical product design

process with design for manufacturing knowledge.

After careful assessment of existing literature for addressing the needs of DEA with KBE as a
holistic approach, requirements were formulated for informal/semiformal modelling methods
for knowledge modelling of various mechanical design process with manufacturing
knowledge concepts such as activities with inputs, outputs, engineering rules, resources,
function, behaviour and its effect on the product in section 3.2. Comparative analysis of
informal/semiformal modelling methods was performed against the formulated requirements
in section 3.5. The results in section 3.8 indicated that, individual modelling methods are
able to informally capture certain aspects for mechanical design knowledge with
manufacturing aspects such as IDEFO for process knowledge with inputs, outputs, links to

rules as controls and resources and UML and SysML for product knowledge with
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attributes and methods. However, none of the modelling methods are able to capture all
aspects in a unified process model, with its effect on product attributes. This includes

function, behaviour and structure (F-B-S) in context to the process model.

The findings of careful literature analysis in chapter 3 for research question 1, demonstrate
that a hybrid approach needs to be adopted for knowledge modelling of a complete
mechanical design process knowledge covering manufacturing aspects. GPM-DEA is
developed by this research which can informally capture all the aspects of mechanical
design process with inclusion of manufacturing knowledge as DFM/DFA based on the
authors Meta model utilising a hybrid approach of existing modelling standards along with
addition of new knowledge objects. It achieves this by integration of existing modelling
methods such as IDEFO0-based function modelling of activities, UML class diagram, UML
condition link, SysML requirement diagram and the addition of constructs on top of this to
demonstrate behaviour such as bidirectional arrows as properties between IDEFO
activities, SysML requirement diagram and UML class diagram. The activities include
inputs and outputs in terms of product geometric attributes as parameters with float values,
engineering rules based on both text and math along with resources. The engineering rules
vary from purely process rules to an integrated product specific and process knowledge.
Process rules are represented with UML condition links to control the sequence of
activities. Engineering rules controlling the topology of the product are represented using

UML class diagram methods.

Thus, GPM-DEA provides a model-driven approach for knowledge modelling of mechanical
design processes for DEA. The breakdown of the design process functional requirements into
sub-functions for various stages of the design process along with objects has been explained
in section 5.3.1 and 5.3.2 along with the integration of the process model with its interface to

the detailed product model in UML class diagram. The complete functioning of GPM-DEA
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with generative modelling capability for DEA with KBE approach has been explained with
Figure 5-4 in section 5.4 and section 5.5, which satisfies research objectives 2 and 4 and
provides the answer to research question 1. Along with literature analysis, the development of
GPM-DEA has been completed in compliance with the results of the comparative analysis in

section 4.8 and 4.9, and in-line with the research methodology in section 1.4.2.

8.2.2 Neutral formal representation of GPM-DEA in OWL/SWRL ontology and

rule representation
Research question 2 in section 4.3 is stated as -

Il.  ‘How can the developed process model in line with author’s Meta model be then
formally represented for machine interpretation in platform independent and neutral
representation standards with semantic clarity (clear meaning of concepts) for Design
Engineering Automation (DEA) for mechanical design with DFM/DFA with a KBE

approach through open standards?’

The answer to this question satisfies the needs of research objectives 3 and 5 in section 1.3

which have been stated as

3. To analyse and compare state of the art in existing formal representation (machine

readable) techniques and standards.

5. To formalise the process model in platform independent and neutral formal
representation standards for DEA with semantic clarity. This will incorporate
generative modelling capability by generating the activities, objects of the process

and rules based on logic as per set of developed generic functions.

GPM-DEA is built as a process model for knowledge modelling of mechanical design
process with DFM knowledge for DEA with MOKA as the basis for knowledge modelling

and formalisation. Section 2.5.3 discussed various KBE methodologies such as
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KOMPRESSA, KCM, CommonKADS, MOKA and KNOMAD. MOKA methodology is one
of the most comprehensive and is focussed on the product design process. Section 2.5.3
showed that the MOKA formal knowledge model in the form of MML wasn’t successful in
achieving DEA with its formal representation. It was verified that UML/SysML based
notation as an MBSE language lacks formal semantics and is suitable as semiformal or
lightweight formal representation for visual display (Chungoora et al., 2013a, 2013b; Graves,
2009). Thus in order to represent all formulated concepts and relations of GPM-DEA with
neutral formal semantics, knowledge representation (KR) languages such as PSL, OWL,
RuleML and RIF were considered. Requirements for a generic and re-usable process model
for DEA with neutral formal representation with semantic clarity have been compiled in
section 4.7. The comparative analysis of formal representation standards against the compiled

requirements has been performed in section 4.8 and 4.9.

The results indicate that all the concepts and one-to-many relations of GPM-DEA as
described in section 5.2 in chapter 5, cannot be semantically mapped to a single existing
neutral formal representation language such as OWL, PSL, RuleML, RIF and MathML.
Thus, as discussed in section 4.9.1, PSL comes across as a very capable ontology for neutral
formal process descriptions for manufacturing and production operations. Although OWL is
less expressive than PSL, it provides a neutral platform to formally represent concepts and
binary relations of GPM-DEA for mechanical design processes with both design and
manufacturing knowledge. Rule language is required to formally represent the rules
represented in UML class diagram with its interdependency on IDEFO rules to activities such
as RuleML, RIF and MathML. Thus integration of ontology with rule language is mandatory
to fully represent the GPM-DEA with its F-B-S on neutral formal representation. The final
results concluded that OWL/SWRL as a combination of both ontology and rule language is a

suitable candidate for the semantic mapping of GPM-DEA concepts and relations.
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According to the research methodology in section 1.4.2, the ontology development
methodology (Noy and McGuinness, 2001) for GPM-DEA needs to be experimentally
verified to show the effectiveness of its working. In spite of the fact that process model
aspects as part of pilot use-cases have been experimented with PSL syntax in section 4.4, due
to the lack of availability of tools for experimental verification of formal axioms with PSL
along with its limitation to represent knowledge for design systems, OWL with its ease of
integration with Datalog dialect of RuleML as OWL/SWRL within Protégé IDE (Horridge et
al., 2011) as the editing tool was finalised. The GPM-DEA is saved as an XML file using

Drawlo tool before being manually mapped to OWL/SWRL ontology.

8.2.3 Functioning of OWL/SWRL system

Research question 3 in section 4.3 is stated as —

I1l.  ‘Can the formalised process model enable automation with generative modelling from
the functional requirements generated at the initiation of the design process as the
design intent with queries and reasoning on developed generic functions?’

The answer to this question satisfies the needs of research objectives 5 and 6 in section 1.3

which are stated again as —

5. To formalise the process model in platform independent and neutral formal
representation standards for DEA with semantic clarity. This will incorporate
generative modelling capability by generating the activities, objects of the process and

rules based on logic as per set of developed generic functions.

6. To perform experiments in order to validate and verify the process based knowledge
model with its platform independent and neutral formal representation for re-usability,

transparency and accuracy.

The OWL/SWRL representation for GPM-DEA is illustrated in section 5.5. The generative

modelling capability of GPM-DEA has been added as a very crucial part of this research
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with the help of SWRL functions on top of OWL ontology and has been demonstrated in
section 5.6.3 and validated with experimental verification of test use-cases in chapter 7. It
is based on function structures of design process with activities and objects functional
requirements as illustrated in section 5.5.2. All the knowledge objects such as activity, rules,
resources, function have been created as classes within OWL ontology whereas inputs and
outputs for activities have been created as datatype properties as binary relations between
classes and float values. This is explained in section 5.5.1. The engineering rules as methods
in the UML class diagram are also represented using SWRL formalism. All the class types,

properties and restrictions for the OWL/SWRL are illustrated in section 5.5.

The application of the complete OWL/SWRL model for GPM-DEA as Knowledge
Representation (KR) system development has been elaborated in detail in chapter 6 using test
use-cases as Use Case 3 and 4. Use-case 3 is an instance of drilling as a design process in a
block as a product. The initial task is to break down the function structures of various
activities such as drilling, reaming, boring which all can achieve the desired functional
requirement of creating a hole along with the assessment of the initial product as block. This
has been discussed in section 6.3.1. An instance has been visually represented using GPM-
DEA concepts and relations with the Figure 6-6, 6-7 and 6-8 as informal/semiformal
representation in section 6.3.2. The corresponding OWL model with classes, properties,
restrictions, SWRL rules and the SWRL generative modelling functions for the instance of

the drilling process in the plug-in have been explained in section 6.3.3.

The wider applicability and re-usability of this work is proven with the experimentation with
another test use-case (Use Case 4), which includes designing a bookshelf. The application of
GPM-DEA and its neutral formal representation in OWL/SWRL follows a similar approach
to the instance of drilling and is described in section 6.4. The initial step is breaking down of

the function structures for bookshelf design process activities and objects along with

244



assessment of the initial product as described in section 6.4.1. The informal/semiformal
representation is illustrated in section 6.4.2 with the OWL/SWRL as neutral formal
equivalent representation in section 6.4.3. This includes all the classes, properties,
restrictions, SWRL rules and the SWRL generative modelling functions based on existing

classes and properties in the OWL model.
8.2.4 Reasoning and querying on OWL/SWRL model

Research question 2 and 3 also provide answer to the research objective 6 in section 1.3. The
OWL/SWRL provides a platform independent and neutral representation to the coherent
model driven GPM-DEA thus providing DEA for mechanical design process and DFM with
generative modelling based on authors set of generic SWRL functions. The OWL/SWRL
model has been populated with test use-cases to demonstrate generic working, re-usability
and traceability of Meta model concepts along with the effect of the process model from
functional requirements analysis to inclusion of product parameters. The rule outputs from
both these use-cases have been validated inside proprietary platform specific DEA systems
such as KBE based AML, ParaPy and GA based parametric CAD based Siemens NX KF and
CATIA Knowledgeware. The reasoning and querying on the OWL/SWRL knowledge model
has been performed with the rule outputs being compared with corresponding implementation

inside DEA systems to test the accuracy of reasoning and querying with semantic clarity.

Various experiments were designed as described in section 7.3 to experimentally test and
verify the reasoning capability of OWL/SWRL for both test use-cases. Section 7.7 discusses
the results, which indicate that the generative modelling functions generate appropriate
results for activities and objects based on functional requirements along with rule
generation based on logic and initial assessment of product. The input of the model is a
product in initial state and the output of the model is a product in final state where state is

indicated by product attributes. The SWRL rules also provide accuracy in float value with
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variation in both datatype and object properties based on engineering rules. The SQWRL
query also returns appropriate results with preserved semantics based on variation in values
and violation of asserted rule axioms. The SQWRL results are text based, which provide
semantic clarity. However, they can incorporate float and integer values as well in the query
tab. The comparison of both SWRL reasoning and SQWRL query results as rule outputs
match to the values of the rule outputs for product configuration inside ParaPy, AML as a
KBE based DEA system and Siemens NX KF and CATIA Knowledgeware as GA for
parametric modelling based which proves that the inference with Pellet and Drools reasoner

is accurate for the equivalent OWL/SWRL model of GPM-DEA schema.

However, a limitation of the OWL/SWRL model in this research is the generation of text
and numerical based results with reasoning and querying which provide semantic clarity
but are unable to show the exact effect on product attributes with the help of GUI to show

the results on product’s visual form as a product model with an inbuilt geometry modeller.

8.3 Applicability and Effectiveness of the Research Outputs

GPM-DEA was developed with generic and re-usable engineering concepts such as activity,
product attributes, rule, function-functional requirements, behaviour based on authors Meta
model for knowledge modelling with a model driven approach (MDA). The MDA approach
led to the development of GPM-DEA with functional modelling as the basis, as the purpose
of the engineering mechanical design process is to satisfy a set of functional requirements in
context to a product (Chen et al., 2008). After experimental verification of the OWL/SWRL
as system development based on GPM-DEA schema, the concepts and relations of GPM-
DEA have been proven effective for generic and product specific design processes with
concepts and relations such as activity with inputs and outputs, engineering rules comprising
of both design and manufacturing constraints, function and product architecture covering a

wide array of cases. GPM-DEA contains both declarative and procedural design process
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knowledge with more focus on declarative knowledge to satisfy the needs of DEA with a
KBE approach as against purely procedural approach for DEA with other virtual engineering
approaches such as CAx tools and PDM/PLM systems (Cooper and LaRocca, 2007; Prasad,
2006). The use of OWL ontology and SWRL rules as a platform independent and neutral
knowledge model for DEA supports both representation of declarative and procedural

knowledge, supports modularity and re-usability (Siricharoen, 2007).
8.3.1 Positioning of the Model in Comparison to Related Work

Work performed by (Usman, 2012; Usman et al., 2013) and (Chungoora, 2010; Chungoora et
al., 2013a) has elaborated on the usage of Common Logic based PSL ontology as neutral
formalised semantics for equivalent UML based lightweight formal representation for
machining processes with knowledge sharing and access across product design. Their work
caters to the needs of PLM systems and can also be used for automation purposes specially
manufacturing and production automation. However, as discussed, pertaining to the
engineering design domain, due to the lack of formal axioms for design systems such as
functional requirements analysis and finer product attributes with form, fit and features
(Cochrane et al., 2009; Young et al., 2007; Zhan et al., 2010) along with the lack of
supporting tools for PSL in accordance with research design, OWL/SWRL based ontology

has been adopted in line for the needs of developing neutral knowledge models for DEA.

Work has been performed in developing neutral knowledge model for DEA in context to a
KBE approach specifically for the aerospace industry (Sanya and Shehab, 2015, 2014).
Following the MOKA methodology and formulation of platform independent models for
ensuring high abstraction, modularity and re-usability of represented knowledge,
OWL/SWRL as a combination of semantic web representation language was chosen to
formalise the design knowledge with Protége as a tool. Although the knowledge model was

based on functional requirements as the basis, more focus was laid on design intent in the
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form of design parameters, constraints and rules for specific aerospace components such as
compressors and turbines based on feature and shapes such as sleeve, panel and flanges as
compared to the more generic and re-usable process oriented approach as part of this
research. GPM-DEA developed as part of this research has been validated for wider
applicability with use-cases from aerospace components with pilot use-cases, DFM aspect
with drilling process and bookshelf design process. It was also recognised that using semantic
web based languages such as OWL ontology for DEA with a KBE approach, there was a lack
of common model based on a set of activities which would deploy the OWL based model for
use in KBE applications with a lack of widely adopted ontology development for engineering
design and DEA (Sanya and Shehab, 2014). This research bridges this gap by not only using
OWL/SWRL as a platform independent and neutral representation of mechanical design
knowledge with DFM for DEA in a KBE environment, but also providing clear and concise
method of modelling of the knowledge into ontology development with reusable classes and
properties in OWL using concepts and relationships in the structured knowledgebase as
formulation of GPM-DEA schema. The population of GPM-DEA with multiple use-cases as
instances verifies the effective working of the process model. The work carried out by Sanya
and Shehab focussed on the usage of BPMN along with UML for process modelling on
context to DEA as informal representation. Contrary to this approach, research work in this
thesis has elaborated on the usage of IDEF0 and UML/SysML as the basis and then
addition of concepts and relationships as illustrated in section 8.2.1 to formulate a more
comprehensive informal process model with generative modelling capability with initial
assessment of product as GPM-DEA. It was also recognised that there was lack of research
between ontology development and engineering design (Sanya and Shehab, 2015). This
research also bridges this gap by merging and mapping engineering design aspects for DEA

and ontology development using OWL/SWRL.
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Post MOKA, another contribution was made by (Reijnders, 2012) in developing platform
independent and formal representation of engineering design knowledge for aerospace
industry for DEA with a KBE approach using a combination of OWL, RIF Production Rule
Dialect (PRD) and Content MathML using a commercial implementation tool AllegroGraph
based on Allegro Common Lisp platform. Although both product and process knowledge was
represented, the main focus of the captured and represented knowledge was based on
engineering rules for product design as compared to a process based approach performed in
this thesis. MOKA ICARE forms were used as informal representation with the
corresponding platform independent formal representation of rules in RIF-PRD and Content
MathML (Reijnders, 2012). As explained earlier, this research has developed an advanced
process model GPM-DEA that is much more comprehensive than MOKA ICARE forms for
knowledge modelling or informal representation for mechanical design. In Reijnders work,
although the forward reasoning works on the rules leading to the successful implementation
of design knowledge, the predicates of the rules such as the antecedent and the consequent
couldn’t be queried due to integration between RIF-PRD and OWL leading to loss of
contextual relevance of rules with co-related knowledge. On the contrary, this research has
used SWRL, which offers ease of integration with OWL making the query on the internal
predicates of the rules relatively easier thus also preserving the semantic clarity of the
represented knowledge of GPM-DEA. Also, it was stated that single rules related to an object
or a process were easily modelled, but multiple rules were difficult to implement. However,
in this research multiple rules related to an object or a process have been modelled at the
same level as a singular rule within the SWRL tab with the same ease of implementation for

inference and querying.

Other work that was also similar in developing platform independent and neutral knowledge

models for DEA with a KBE perspective was performed by (Litzenberger et al., 2012;
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Pardalis and Kadiri, 2014; Pugliese and Colombo, 2014), where the authors recommended
the usage of RIF, as the focus was purely on formal representation of engineering rules. The
investigation of OWL/SWRL as the potential for representation of neutral knowledge models
for DEA with a KBE perspective was recognised which is discussed in Table 2-3 in section
2.8 of Chapter 2. This research has bridged this gap by potential investigation of
OWL/SWRL for knowledge representation for DEA based on the developed model GPM-
DEA, along with Use Case 4 adopted from this project and verified by experimentation that
OWL/SWRL as ontology and rule representation is successful as platform independent and

neutral formal representation of mechanical design knowledge for automation.

Also, as compared to AMAAD (Van Der Velden et al., 2012) for DEA with a KBE
perspective, this research has successfully provided a structured method to perform detailed
activities with product architecture knowledge. This research has also provided the
association of the activities of the process model with the working of the developed

OWL/SWRL system attributes, which is explained in chapter 5.

Thus, as compared to the previous work by Sanya, Rejinders and LinkedDesign project,
GPM-DEA provides a method to describe mechanical design process models with DFM in
platform independent and neutral formal representation as OWL/SWRL enabling DEA with
generative modelling capabilities and preserved semantics, with a KBE approach. The
working of the GPM-DEA model in OWL/SWRL proves that logic based formalisms such as
OWL based on DL and SWRL based on Horn Logic do have the potential capability as

knowledge representation formalisms for DEA.
8.3.2 Integration and Extension of the Model to other Engineering Applications

The GPM-DEA working has been validated with multiple use cases varying from aerospace
components such as compressor and fan blades design and manufacturing processes at a

preliminary level to a simpler drilling process and bookshelf design process at the detailed
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product attribute level. Even though the ontology model contains extensive manufacturing
aspects, the verification of the model has not been performed for all complete
manufacturing domains with tooling for e.g. additive manufacturing. Although the model
provides the sub-functions as functional requirements of various CAE analysis processes,
the testing and verification of the model with CAE analysis processes such as stress
analysis, structural analysis and thermal analysis has not been performed. Thus the model
may need extensions in its classes and relationships along with SWRL rules to fully cover
the CAE analysis process lifecycle along with wider manufacturing domain with newer

methods.

In its present stage, the testing and verification of the model has proved that it is
comprehensive for mechanical design, manufacturing and design for manufacturing
(DFM)/design for assembly (DFA) stages of the product development lifecycle based on the
functional requirements. The current model has proven to be generic and high level for a
mechanical design process with manufacturing knowledge for DEA. The implementation of
the model in OWL/SWRL can be extended for detailed manufacturing and production
processes domain along with Design for Manufacturing (DFM) ontologies such as MASON

and ONTO-PDM (Chang et al., 2010; Lemaignan et al., 2006; Panetto et al., 2012).

As the main strength and applicability of GPM-DEA is a process modelling approach with its
effect on product attributes with an interface to the product model, its corresponding
implementation in OWL/SWRL also provides compatibility with detailed product models
with geometry kernels for visualisation, for DEA. This research provides scope of integration
with previous work in developing semantic product models with geometric kernels using
OWL/SWRL ontology across heterogeneous CAD systems with various product attributes as
parameters, features and shapes such as surfaces, faces, edges (Lu et al., 2016; Qin et al.,

2016; Tessier and Wang, 2013) which have been included in this research to show the effect
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of the process model on product geometric attributes with an interface. This also includes
features such as holes, extrusion and chamfering with Boolean representations, which have
been embedded in this research with SWRL, making this directly compatible as a KR

language for integration with GPM-DEA as a process model for DEA.

This work can also be integrated with non-geometric product models. An example as
illustrated in section 3.7.5.2, an ontology was developed for UML based CPM/OAM product
model with both non-geometric and geometric attributes along with function and behaviour,
although it was not fully validated for visual display using geometry kernel as it was targeted
for PLM systems (Fiorentini et al., 2007). Other work for integration to the process model in
this research are ontology based neutral product models for visual display with geometry
kernels across CAx systems, which have been developed. These include mapping of STEP
based EXPRESS schemas to OWL/SWRL based ontologies in order to develop neutral
product models with geometric knowledge such as Onto-STEP and ONTO-PDM (Barbau et
al., 2012; Krima et al., 2009; Zhao and Liu, 2008a, 2008b). The reason for conversion of
OWL ontology to STEP schemas for product models for geometric representation is that
STEP is the current widely adopted neutral product model representation across various CAx
and DEA systems. Thus, the OWL/SWRL process model of GPM-DEA provides a good
foundation as KR formalism with automated reasoning to integrate with detailed platform
independent and neutral product models with geometric kernels for DEA. As stated in section
3.7.1 and 3.7.5.2, work has been performed for capturing design rationale with the help of
DRed (Design Rationale editor) and DRed 2.0 based on both UML/SysML and OWL/SWRL
based ontology as formal representation for access in PLM systems and also across CAD
applications (Bracewell et al., 2009a, 2009b; Eng et al., 2011). Although, GPM-DEA in the
present stage doesn’t include the Rationale class as rationale in not a necessary

requirement for DEA, it can be added both informally based on UML notation and its
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corresponding ontological representation in OWL/SWRL. Thus GPM-DEA as a
knowledgebase can be extended with rationale for mechanical design process. Similarly,
although presently, GPM-DEA is quite exhaustive for function and behaviour as FBS for a
mechanical design process with manufacturing knowledge for DEA, it can be extended and
merged with functional and behavioural aspect of other engineering processes and products
both informally and with ontologies as formal representation. The working of the
OWL/SWRL model with drilling a hole in a block and bookshelf design process has been
validated inside platform specific DEA systems such as KBE based AML, ParaPy and GA
based parametric CAD applications such as CATIA Knowledgeware and Siemens NX KF at
the product geometric attribute level. Thus the OWL/SWRL model of GPM-DEA with its
interface to the product model to illustrate the effect of mechanical design process on the
geometric attributes of the product, can be used as a basis for integrating with a product
model in neutral format using a front-end visual DEA application with product form, shapes
and features using X3D (Web3D, 2017) based geometry kernels. Along with extension to
wider domain such as design rationale, function and behaviour of engineering design and
manufacturing, it can also be used as a back end platform for visualisation of queries and
inference results to the design engineer for decision support and DEA with the support of
semantic web pages. This visualisation of automation results over the semantic web pages
can be achieved with the help of an API written on OWL/SWRL with languages such as Java

such as those supported by Apache Jena framework.

8.4 Contributions to Knowledge

a. This research has developed a standardised and coherent method to use ontology
based structured knowledge model as formal representation to address Design

Engineering Automation (DEA) for mechanical design and DFM process with a KBE
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perspective with semantic clarity and generative modelling by building queries and
reasoning on author’s set of generic SWRL functions.

b. The method to use OWL/SWRL ontology is based on the schema of developed
informal/semiformal model GPM-DEA as a structured knowledge modelling method,
based on author’s Meta model which is built on strengths of IDEF0O, UML/SysML and

addition of modelling constructs by the author.
The main strengths and contribution of this research work are -

8.4.1 Model Driven Approach for Knowledge Modelling and Automation for

Mechanical Design Process with DFM

The knowledge modelling method through GPM-DEA with an MBSE approach provides a
generic, re-usable process model with transparency and traceability of concepts and
relationships as per author’s Meta model based on activity, product attributes, rules and logic,
function-functional requirements, behaviour for mechanical design processes with DFM. It is
based on F-B-S based modelling and includes functional requirements analysis, activity-
object-rule association and an interface to the product model with geometric attributes and
form-features-fit, thus including both geometric and non-geometric knowledge to cover and
address automation for mechanical product design process with DFM/DFA. Thus the

knowledgebase acts as superset of platform specific DEA applications.
8.4.2 Utilisation of Formal Logic for Implementation of a Process Model for DEA

The successful implementation of GPM-DEA with OWL/SWRL ontology and rule
representation proves that formal logic is able to capture the semantic meaning of various
mechanical design process concepts and properties with inclusion of manufacturing
knowledge. Thus it provides a suitable machine interpretation of mechanical design
knowledge for DEA with its automated reasoning on the formal axioms as syntax with depth

of meaning of classes and relationships as concepts and bi-directional properties with OWL
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(DL) and addition of forward chaining reasoning capability on classes and properties using
SWRL (Horn logic) with math, boolean and comparison built-ins. The inclusion of float
datatype properties ensures that product parameters as geometric attributes can be included in

the model although it depends upon careful execution of the OWL/SWRL model.

8.4.3 Neutral (Open Standard) Usage of the Ontology Knowledge Model across

Platform Specific DEA Systems with Semantic Clarity

The developed process model GPM-DEA with its mapping to equivalent OWL/SWRL
representation as platform independent formal representation with semantic clarity provides a
structured method to use formal ontologies for DEA with a KBE perspective within a virtual
engineering environment. Ontology provides open standard usage and provides neutral
knowledge model outside of platform specific DEA applications such as KBE based AML,

ParaPy and GA based CATIA Knowledgeware, Siemens NX KF.
8.4.4 Extensibility and Scalability of the Knowledge Base

The model offers ease of extensibility with the aid of formal OWL/SWRL representation.
Ontology based on formal logic with semantic clarity provides scalability with addition of
classes, properties and instances. The model can be extended to cover other aspects of
engineering knowledge depending upon the end user such as design rationale, function-
behaviour and product data models, advanced and detailed manufacturing, maintenance
and operations for production including tooling. The new knowledge objects can be easily
integrated or merged in the OWL/SWRL ontology representation to cater to specific

engineering requirements.
8.4.5 Web Based Decision Support for Engineering Applications

The knowledge within the platform independent and neutral model can be extracted to
platform specific DEA applications or web pages to provide decision support for a wider

design space exploration for the designer by developing an APl on the OWL/SWRL model.
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These can be developed using languages such as Java. Ontology models can be directly
exported to Java code within Protégé IDE. Methods have been devised to map OWL/SWRL
ontology methods to O-O programming which can pave the way for retrieving the knowledge
in neutral file format, developed as part of this research, for direct utilisation inside the

proprietary DEA applications.
8.4.6 Integration of Generative Modelling Capability within Process Model

The developed formal model enables generative modelling capabilities by building queries
and reasoning on author’s generic set of SWRL functions by automatically generating the
activities and objects based on the functional requirements as sub-function structures of the
mechanical design process with DFM along with process sequencing. It also provides initial
assessment of a product to adapt and provide re-usability of processes and activities for
different products. The automatic generation of the activities, objects based on matching the
functional requirements as sub-function structures to those of the mechanical design process
along with the initial assessment of product is achieved with implementation of developed
SWRL functions as part of this research. For engineering rules based on logic, the rules are
automatically generated based on SWRL functions by matching the engineering logic
structures developed as part of this research. All the SWRL inference and query results have
been validated during experimentation including the execution of generic and product

specific engineering rules for block and bookshelf usage as test use-cases.
8.4.7 Ontology Representation of Design and Manufacturing Knowledge within a

Unified Process Model

The process model includes manufacturing knowledge and DFM/DFA aspects during the
mechanical design stage and represents both physical and virtual representation of the
products in context to mechanical product design with DFM processes. Both design and

manufacturing requirements have been included in the functional requirements (equivalent to
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function) class and sub-class as function structures with instantiation. The individual
activities can be classified as physical, virtual and informatical and the equivalence between
physical and virtual representation is achieved with the SWRL functions developed as part of

this research.

8.5 Limitations

Although the research contributes to the body of scientific knowledge by satisfying the aim
and objectives thus verifying the research hypothesis, there are a few limitations due to the

scope and the context in which the results are valid.

Firstly, the focus of both pilot and test use-cases collected from industrial partner and
literature is on mechanical design, DFM with manufacturing processes as part of product
development cycle. Although the ontology model is quite exhaustive, it has not been verified
through use cases for all aspects of manufacturing/production methods with tooling such as
additive manufacturing. Although CAE analysis process concepts such as stress analysis,
thermal analysis, structural analysis have been included as subclasses in the OWL/SWRL
model for GPM-DEA, the model has not been instantiated or populated and verified with
analysis process use-cases to validate the implementation results. Also, the complexity of the
model based on Meta model concepts such as activity, product attributes, rule and logic,
function-functional requirements and behaviour may need extension to cover these other
engineering processes not covered in this research. Secondly, the reasoning results of GPM-
DEA as a process model with an interface to the product model on OWL/SWRL as formal
logic based representation generates both text and numeric values for product parameters as
geometric attributes as described within a CAx virtual platform. However it doesn’t
incorporate the visual representation of product form, shape and features through its
geometry kernels. In spite of the limitations, the model is widely applicable to mechanical

design and manufacturing along with DEA both within a KBE context and GA based
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parametric CAD automation, which proves that GPM-DEA is robust, structured, generic and

re-usable as extensions can be applied within a specific domain for highly granular

capabilities within the mechanical design space.

8.6 Recommendations for Future Work

Based on the results of this research work, further work can be conducted in the following

areas for the applicability of this research to a wider problem domain -

The integration of geometry kernels for detailed product model visual representation
through a GUI in terms of its form, features and shapes using neutral format such as
X3D for DEA. This will help the designer visualise the direct impact of the process
model on the geometry with open standards. This can cover different kernels such as
NURBS, splines and closed profiles for surface along with extrusion, pockets, notch for
volume representation as part of neutral product model

The mapping or equivalent formal representation of GPM-DEA in OWL/SWRL
ontology as a proof—of-concept follows a manual approach in accordance with research
design to ensure the correctness of formal syntax, preserved semantics and detailed
implementation for accurate reasoning results. Although the inference and query results
are found accurate for the test use-cases during experimentation, the process of
populating the knowledgebase is slightly time consuming. In order to reduce the
translation time for high volume use-cases and industrial implementation, automatic
mapping can be addressed to a certain extent from GPM-DEA schema as
informal/semiformal process model to OWL/SWRL knowledge model

For platform independent and neutral formal representation of mathematical rules with
complex equations currently not supported by built-in SWRL plugins, MathML with
various dialects such as Presentation MathML with focus on Content MathML can be

investigated for integration on top of OWL/SWRL as an additional layer.
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8.7 Closing Summary

GPM-DEA is a process model with F-B-S modelling, based on authors Meta model, as an
MBSE approach and its effect on the product parameters as geometric attributes with form-
features-fit through an interface. It combines the strengths of UML/SysML and IDEFO and
addition on authors constructs, is a high level, generic, re-usable and extensible process
model for knowledge modelling of mechanical design processes with incorporation of
DFM/DFA as manufacturing knowledge. The model enables DEA through OWL/SWRL as a
platform independent and neutral formal representation with generative modelling based on
generic SWRL functions developed by the author. The development of GPM-DEA follows a
model driven approach with equivalent ontology and rule representation as neutral standards
with open standard usage. OWL/SWRL provides combination of DL and horn logic based
formal logic representation with automated reasoning capabilities for the developed process
model GPM-DEA to satisfy the needs of DEA. The inference and query results on
OWL/SWRL have been experimentally verified at generic as well as product specific level
for mechanical design, manufacturing and DFM as part of engineering processes. GPM-DEA
can be extended or merged with other function-behaviour, rationale, product data models and
integrate with manufacturing and production domain both at the informal level and at the
OWL/SWRL as formal model. Thus a contribution to knowledge has been made in terms of

fulfilment of aim and objectives, which verifies the research hypothesis and can be stated as-

“Platform independent and neutral formal representation of an engineering design
process model with focus on mechanical product design and manufacturing knowledge
built on standardised concepts and relationships, structured and well defined axioms
along with semantic clarity can achieve the requirements of design engineering

automation (DEA) enabling generative modelling and re-usability of knowledge”
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Appendix 1: Ontology Development Methodology

A. Introduction

Ontology is a formal explicitdescription of concepts in a domain of discourse (classes
(referred as concepts)),properties of each concept describing various features and attributes of
the concept (slots(referred as roles or properties)), and restrictions on slots (facets (referred as
role restrictions)). Ontology together with a set of individual instances of classesconstitutes a
knowledge base(Noy and McGuinness, 2001). Ontologies have been used in engineering
applications as part of artificial intelligence and can be used for various purposes such as
those of CAD systems, PLM systems and KBE applications along with adopted as part of
model driven approach for interoperability. They have been used for product and process
model and structure, design automation, requirements engineering, manufacturing and
production processes for exchange of knowledge and automation (El Kadiri et al., 2015; EI

Kadiri and Kiritsis, 2015).

B. Steps adopted to create an Ontology for Design Engineering Automation

In order to create an ontology to address Design Engineering Automation (DEA) with
inclusion of manufacturing knowledge, high-level ontology development methodology has
been adopted from (Noy and McGuinness, 2001) as shown in Figure A 1. Specifically
catering to engineering design domain with manufacturing knowledge for optimisation,
ontology development methodology has been also adopted from (Ahmed et al., 2007;

Witherell et al., 2007) as shown in Figure A 2.
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Determine the domain and scope of the Step 1
ontology P
Consider reusing existing ontologies Step 2
Enumerate important terms in the ontology Step 3
Define the classes and class hierarchy Step 4
h 4
Define the properties of classes - slots Step 5
Y
Define the facets of the slots Step 6
Y
Create instances Step 7
Y
Perform tests through inference and query Step 8

Figure A 1: Ontology Development Methodology [Adopted from (Noy and McGuinness,
2001)]

Define Formulate Identify acceptable
optimization |::> Identify I:> problem I:> optimization
problem parameters and techniques
(objective) constraints
Review Enter data into Choose
solution, share Solve optimization optimization
findings problem software method

Figure A 2: Ontology Development Approach for Engineering Design Optimisation with
DFM [Adopted from (Ahmed et al., 2007; Witherell et al., 2007)]

As observed from Figure A 1 and A 2, the various steps include —

Define the scope of the problem domain — Engineering knowledge capture based on a model
driven approach with focus on re-usable and generic processes wit their effect on product

attributes
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Formulating the problem domain with knowledge entities such as activities, object, rule,
logic, function and behaviour as high-level concepts. The complete 3 level description of
concepts has been illustrated in Figure 4-3 in Chapter 4

The optimisation method should involve inference and query supporting OWL/SWRL as an
integrated layer based on description logic and fragment of horn logic. The optimisation
should generate both text based description as string type and product attributes as float type
Define the class hierarchy, properties with data typing as string, float and population with
instances based on pilot and validation use-cases

Input all the specified data using Protégé IDE as the supporting tool

Run the Pellet reasoner along with Drools and SQWRL query language on the
knowledgebase to generate results

Verify the inference and query results with specific rule outputs to the rule outputs

controlling product configuration and topology inside platform specific DEA systems.

C. OWL Ontology Model - Platform Independent and Neutral Formal

Representation System

This document contains the classes, properties and restrictions of the GPM-DEA model

mapped to its OWL2 based ontology model, developed in this research.
i. Class Hierarchy

owl: Thing

ProcessModel: Activity (http://example.org/ProcessModel#Activity)
ProcessModel: Informatical-Activity
ProcessModel:Physical-Activity
ProcessModel:Virtual-Activity

ProcessModel:Engineering_Design_Process(http://example.org/ProcessModel#Engineering
Design_Process)

ProcessModel:Computational_Fluid_Dynamics_CFD
ProcessModel:Fluid_Flow_Analysis
ProcessModel:Thermal_Analysis
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http://example.org/ProcessModel#Activity
http://example.org/ProcessModel#Engineering_Design_Process
http://example.org/ProcessModel#Engineering_Design_Process

ProcessModel:Design_for_Cost
ProcessModel:Design_for_Ergonomics
ProcessModel:Design_for_Manufacturing_Assembly
ProcessModel: Additive_Manufacturing
ProcessModel:Casting
ProcessModel:Centrifugal _Casting
ProcessModel:Die_Casting
ProcessModel:Permanent_Mould_Casting
ProcessModel:Forming
ProcessModel:Blanking
ProcessModel:Extrusion
ProcessModel:Cold_Extrusion
ProcessModel:Hot_Extrusion
ProcessModel:Forging
ProcessModel:Cold_Forging
ProcessModel:Drop_Forging
ProcessModel:Hot_Forging
ProcessModel:Precision_Forging
ProcessModel:Press_Forging
ProcessModel:Heading
ProcessModel:Punching_Piercing
ProcessModel:Rolling
ProcessModel:Cold_Rolling
ProcessModel:Hot_Rolling
ProcessModel:Stamping_or_Pressing
ProcessModel:Cold_Pressing
ProcessModel:Hot_Pressing
ProcessModel: Thermo_Forming
ProcessModel:VVacuum_Forming
ProcessModel:Joining
ProcessModel:Brazing
ProcessModel:Riveting
ProcessModel:Welding
ProcessModel:Machining
ProcessModel:Boring
ProcessModel:CNC_Machining
ProcessModel:Drilling
ProcessModel:Electrical_Discharge Machining
ProcessModel:Electro_Chemical _Machining
ProcessModel:Milling
ProcessModel:Reaming
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ProcessModel:Turning
ProcessModel:Moulding
ProcessModel:Blow_Moulding
ProcessModel:Compression_Moulding
ProcessModel:Injection_Moulding
ProcessModel:Design_for_Recycling
ProcessModel:Finite_Element_Analysis FEA
ProcessModel:Stress_Analysis
ProcessModel:Structural _Analysis
ProcessModel:Mechanical _Design
ProcessModel:Feature
ProcessModel:Attach_Connect_Parts
ProcessModel:Depression_Extrusion
ProcessModel:Hole
ProcessModel:Notch
ProcessModel:Pocket
ProcessModel:Slot
ProcessModel:Protrusion
ProcessModel:Block
ProcessModel:Shaft
ProcessModel:Fit
ProcessModel: Assembly
ProcessModel:Part
ProcessModel:Form
ProcessModel:Edge
ProcessModel:Chamfer
ProcessModel:Fillet
ProcessModel:Line
ProcessModel:Face
ProcessModel:Circle
ProcessModel:Ellipse
ProcessModel:Hyperbola
ProcessModel:Parabola
ProcessModel:Polygon
ProcessModel:Surface
ProcessModel:Bézier_Surface
ProcessModel:NURBS_Surface
ProcessModel:VVolume
ProcessModel:Box
ProcessModel:Cone
ProcessModel:Cylinder
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ProcessModel:Ellipsoid
ProcessModel:Hyperboloid
ProcessModel:Paraboloid
ProcessModel:Polygon_Volume
ProcessModel:Sphere
ProcessModel:Material_Selection
ProcessModel: Alloys
ProcessModel:Brass
ProcessModel:Bronze
ProcessModel:Duralumin
ProcessModel:Inconel
ProcessModel:Manganin
ProcessModel:Nimonic
ProcessModel:Ceramics
ProcessModel:Boron_Carbide
ProcessModel:Boron_Oxide
ProcessModel:Silicon_Carbide
ProcessModel:Silicon_Nitride
ProcessModel:Composites
ProcessModel:Carbon_Fiber
ProcessModel:Glass_Fiber
ProcessModel:Kevlar
ProcessModel:Reinforced_Plastic
ProcessModel:Ferrous_Metal
ProcessModel:Carbon_Steel
ProcessModel:Cast_Iron
ProcessModel:Mild_Steel
ProcessModel:Stainless_Steel
ProcessModel:Wrought_Iron
ProcessModel:Non_Ferrous_Metal
ProcessModel: Aluminium
ProcessModel:Copper
ProcessModel:Lead
ProcessModel:Nickel
ProcessModel: Tin
ProcessModel: Titanium
ProcessModel:Zinc
ProcessModel:Polymer
ProcessModel:Neoprene
ProcessModel:Plastic
ProcessModel:Polyethylene
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ProcessModel:Polypropylene
ProcessModel:Polystyrene
ProcessModel:Polyvinyl_Chloride
ProcessModel:Wood
ProcessModel:Multi_Body Dynamics_MBD
ProcessModel:Electromagnetic_Analysis
ProcessModel:Kinematic_Analysis
ProcessModel:Stages
ProcessModel:Conceptual_Design
ProcessModel:Detailed_Design
ProcessModel:Computer_Aided_Design_CAD
ProcessModel:Computer_Aided_Engineering_ CAE_Analysis
ProcessModel:Computer_Aided_Manufacturing CAM
ProcessModel:Embodiment_Design

ProcessModel:Function—
FunctionalRequirement(http://example.org/ProcessModel#Function--FunctionalRequirement)

ProcessModel:Assess_Product_Initial
ProcessModel:Geometric_3D_Analysis
ProcessModel:Analysis_Stage
ProcessModel:Analysis_Solving
ProcessModel:Post_Processing
ProcessModel:Pre_Processing
ProcessModel: Apply_Boundary_Conditions
ProcessModel:Dirichlet_Boundary_Conditions
ProcessModel:Neumann_Boundary_Conditions
ProcessModel:Robin_Boundary_Conditions
ProcessModel:Meshing
ProcessModel:Hexahedron
ProcessModel:Pyramid
ProcessModel:Quadrilateral
ProcessModel:TetraHedron
ProcessModel: Triangle
ProcessModel: Triangular_Prism
ProcessModel:Geometric_3D_Modelling
ProcessModel:Create_Point_Cloud
ProcessModel:Create_Solid_as_Added Volume Boolean
ProcessModel:Add_Box_Volume
ProcessModel:Add_Cone_Volume
ProcessModel:Add_Cylinder_Volume
ProcessModel:Add_Ellipsoid_Volume
ProcessModel:Add_Polygon_Volume
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ProcessModel:Add_Sphere_Volume
ProcessModel:Create_Surface_Volume_Boolean

ProcessModel:Create_Surface_Volume_Bézier
ProcessModel:Create_Surface_Volume_NURBS
ProcessModel:Remove_Solid_as_Subtracted_Volume_Boolean

ProcessModel:Subtract_Box_Volume
ProcessModel:Subtract_Cone_Volume
ProcessModel:Subtract_Cylinder_Volume
ProcessModel:Subtract_Ellipsoid_Volume
ProcessModel:Subtract_Polygon_Volume
ProcessModel:Subtract_Sphere_Volume
ProcessModel:Manufacturing_Feasibility
ProcessModel:Attach_Connect
ProcessModel: Assemble_Parts
ProcessModel:Attach_Connect_Fixture
ProcessModel:Attach_Connect_Jig
ProcessModel:CNC_Path_Instructions
ProcessModel:Costing
ProcessModel:Manufacturing_Method
ProcessModel:Material _Allocation
ProcessModel:Positioning
ProcessModel: Axial
ProcessModel:Circumferential
ProcessModel:Concentric
ProcessModel:Radial
ProcessModel: Tangential
ProcessModel:Quality _Control
ProcessModel:Measurement_Capability
ProcessModel:Precision_Accuracy
ProcessModel:Tool_Selection
ProcessModel:Output_Performance_Evaluation
ProcessModel:Electrical _Magnetic_Performance
ProcessModel:Capacitance
ProcessModel:Current
ProcessModel:Electric_Field
ProcessModel:Electro_Magnetic_Energy
ProcessModel:Electric_Energy
ProcessModel:Magnetic_Energy
ProcessModel:Electro_Magnetic_Power
ProcessModel:Electro_Magnetic_Work
ProcessModel:Induction
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ProcessModel:Magnetic_Field
ProcessModel:Voltage
ProcessModel:Mechanical_Performance
ProcessModel:Acceleration
ProcessModel: Angular_Momentum
ProcessModel:Fatigue
ProcessModel:Force
ProcessModel:Foreign_Object_Damage
ProcessModel:Hardness
ProcessModel:Linear_Momentum
ProcessModel:Mechanical_Energy
ProcessModel:Elastic_Energy
ProcessModel:Gravitational _Energy
ProcessModel:Kinetic_Energy
ProcessModel:Potential_Energy
ProcessModel:Mechanical_Power
ProcessModel:Mechanical _Work
ProcessModel:Pressure
ProcessModel:Speed
ProcessModel:Stiffness
ProcessModel:Strain
ProcessModel:Strength
ProcessModel:Stress
ProcessModel: Torque
ProcessModel:Velocity
ProcessModel:Vibration
ProcessModel: Thermodynamic_Performance
ProcessModel:Compression
ProcessModel:Expansion
ProcessModel:Flow
ProcessModel:Foreign_Object_Damage
ProcessModel:Heat
ProcessModel:Pressure
ProcessModel: Thermodynamic_Energy
ProcessModel:Kinetic_Energy
ProcessModel:Potential _Energy
ProcessModel: Thermal _Energy
ProcessModel: Thermodynamic_Power
ProcessModel: Thermodynamic_Work
ProcessModel:Velocity
ProcessModel:Vibration
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ii.

ProcessModel:Logic
ProcessModel:Object(http://example.org/ProcessModel#Object)

(The object model has the same classes as Feature, Form, Fit and Material Selection. All
these 4 classes with their class hierarchy have been assigned subclasses of both Object class
and Mechanical Design Class by the author. The object model has 1 additional sub-class,
which is shown below)

ProcessModel:Product
ProcessModel:Product_Final
ProcessModel:Product_Initial
ProcessModel:Resources (http://example.org/ProcessModel#Resources)
ProcessModel:Rule (http://example.org/ProcessModel#Rule)
ProcessModel:Configuration_Rule
ProcessModel:Geometry_Rule
ProcessModel:Heuristic_Rule
ProcessModel:Logic_Rule
ProcessModel:Math_Rule
ProcessModel:Process_Rule
ProcessModel:Production_Rule
ProcessModel:Sub-Activity(http://example.org/ProcessModel#Sub-Activity)

It can be observed from the class hierarchy that a few classes such as Velocity, Vibration,
Kinetic energy, and Potential energy occur under more than 1 class. In the ontology editor,
these classes only exist as 1 class and have been marked as subclasses of multiple classes
such as Thermodynamic performance and Mechanical performance in this work, similar to

the object model class hierarchy.

Properties

Object Properties with Domain and Range

ProcessModel:affectedbyLogic
Domain - ProcessModel: Activity
Range - ProcessModel:Logic

ProcessModel: Assesses
Domain - ProcessModel:Assess_Product_Initial
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Range - ProcessModel:Product_Initial

ProcessModel:consists_of Activity
Domain - ProcessModel:Engineering_Design_Process
Range - ProcessModel:Activity

ProcessModel:consists_of Object
Domain - ProcessModel:Engineering_Design_Process
Range - ProcessModel:Object, ProcessModel:Product

ProcessModel:consumes_Product_Initial
Domain - ProcessModel:Engineering_Design_Process
Range - ProcessModel:Product_Initial

ProcessModel:controlled_by Rule
Domain - ProcessModel: Activity
Range - ProcessModel:Rule

ProcessModel:fulfills_Function
Domain - ProcessModel:Object, ProcessModel:Product
Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:governedbyLogic
Domain - ProcessModel:Rule
Range - ProcessModel:Logic

ProcessModel:has_Edge
Domain - ProcessModel:Object, ProcessModel:Product
Range - ProcessModel:Edge

ProcessModel:has_Face
Domain - ProcessModel:Object, ProcessModel:Product
Range - ProcessModel:Face

ProcessModel:has_Feature

Domain - ProcessModel: Assembly, ProcessModel:Object, ProcessModel:Part
Range - ProcessModel:Feature

ProcessModel:has_Form
Domain - ProcessModel:Object, ProcessModel:Product
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Range - ProcessModel:Form

ProcessModel:has_Function
Domain - ProcessModel: Activity
Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:has_Object_Material
Domain - ProcessModel:Object, ProcessModel:Product
Range - ProcessModel:Material _Selection

ProcessModel:has_Part
Domain - ProcessModel: Assembly
Range - ProcessModel:Part

ProcessModel:has_Successors
Domain - ProcessModel: Activity
Range - ProcessModel:Activity

ProcessModel:has_Surface
Domain - ProcessModel:Object, ProcessModel:Product
Range - ProcessModel:Surface

ProcessModel:hasSub-Activity
Domain - ProcessModel: Activity
Range — ProcessModel:Sub-Activity

ProcessModel:produces_Product_Final
Domain - ProcessModel:Engineering_Design_Process
Range - ProcessModel:Product_Final

ProcessModel:requires_Resources
Domain - ProcessModel: Activity
Range - ProcessModel:Resources

ProcessModel:satisfies_Functional _Requirement
Domain - ProcessModel:Engineering_Design_Process
Range - ProcessModel:Function—FunctionalRequirement

ProcessModel:Starts_with_Activity
Domain - ProcessModel:Engineering_Design_Process
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Range - ProcessModel:Activity

. Datatype Properties with Domain and Range

ProcessModel:has_Attributes
Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

Following have been created as the sub-properties of the datatype property in this work -
ProcessModel:has_Attributes -

ProcessModel:has_Object_Orientation_Angle,
ProcessModel:has_Object_Position_Coordinates, ProcessModel:has_Object_Size

Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

Following have been created as the sub-properties of
ProcessModel:has_Object_Orientation_Angle -

ProcessModel:has_Object_Orientation_X_AXis,
ProcessModel:has_Object_Orientation_Y _AXis,
ProcessModel:has_Object_Orientation_Z_AXis

Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

Following have been created as the sub-properties of
ProcessModel:has_Object_Position_Coordinates —

ProcessModel:has_Object X Coordinate, ProcessModel:has_Object Y _Coordinate,
ProcessModel:has_Object_Z_ Coordinate

Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

Following have been created as the basic sub-properties of ProcessModel:has_Object_Size —

ProcessModel:has_Object_Depth, ProcessModel:has_Object_Height,
ProcessModel:has_Object Width

Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

However, it is very crucial to note that other properties can be created by the user as
additional sub-properties of ProcessModel:has_Object_Size, as it has been illustrated with

both test case 4 and 5 in this thesis. For example, test case 4 has an additional sub-property
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named as ProcessModel:has_Object_Diameter as a sub-property of

ProcessModel:has_Object_Size.
Other datatype properties have been created such as -

ProcessModel:has_Surface_Area, ProcessModel:has_Surface_Finish,
ProcessModel:has_Tolerance, ProcessModel:has_Volume

Domain - ProcessModel:Object, ProcessModel:Product
Range - xsd:float

ProcessModel:has_Temperature_Limit, ProcessModel:has_Youngs_Mod
Domain - ProcessModel:Material _Selection
Range — xsd:float

ProcessModel:has_ID
Domain - ProcessModel: Activity
Range - xsd:integer

ProcessModel:has_Inputs, ProcessModel:has_Outputs
Domain - ProcessModel: Activity
Range — xsd:float

Pertaining to a specific use-case, all the object properties as described above can be classified
as sub-properties of ProcessModel:has_Inputs, ProcessModel:has_Outputs to indicate inputs
and outputs of activity completion and execution in terms of its product attributes as
developed in this research. Both test use-cases 4 and 5 have adopted the same approach to
create properties with various object attributes as activity inputs and outputs to reflect the

working of the model GPM-DEA as developed by the author.

Existential restrictions have been created on the activity class in order to describe it for a

DEA system in this research, as explained in chapter 5. These are illustrated here as follows -

Class Name - - ProcessModel:Activity

Existential Restrictions —

ProcessModel:has_ID some xsd:integer
ProcessModel:has_Inputs some xsd:float
ProcessModel:has_Successors some ProcessModel:Activity
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D. SWRL in built operators for utilisation and representation of Generative

Modelling Functions and Engineering Rules

SWRL offers comparison, math and boolean built-ins on top of OWL classes, properties and
restrictions and thus enhances the expressiveness of OWL (“SWRL Section 8. Built-Ins,”
2009). These have been adopted by the author to represent generative modelling functions as
described in chapter 5 and specific engineering rules for test use cases as described in chapter
6 as part of system development. These have been further experimentally verified in this
research using the Pellet and Drools reasoner along with SQWRL query language using the
test use cases in chapter 7 using Protégé IDE. Some of the in built operators by the author

have been adopted from the following set as described in this appendix.
Comparison Operators

swrlb:equal(op:numeric-equal, op:compare, op:boolean-equalop:yearMonthDuration-equal,
op:dayTimeDuration-equal, op:dateTime-equal, op:date-equal, op:time-equal,
op:agYearMonth-equal, op:gYear-equal, op:gMonthDay-equal, op:gMonth-equal, op:gDay-
equal, op:anyURI-equal)

Satisfied if the first argument and the second argument are the same.

swrlb:notEqual(from swrlb:equal)
The negation of swrlb:equal.

swrlb:lessThan (from XQuery op:numeric-less-than, op:compare, op:yearMonthDuration-
less-than, op:dayTimeDuration-less-than, op:dateTime-less-than, op:date-less-than, op:time-
less-than)

Satisfied if the first argument and the second argument are both in some implemented type
and the first argument is less than the second argument according to a type-specific ordering
(partial or total), if there is one defined for the type. The ordering function for the type of
untyped literals is the partial order defined as string ordering when the language tags are the
same (or both missing) and incomparable otherwise.

swrlb:lessThanOrEqual (from swrlb:lessThan, swrlb:equal)
Either less than, as above, or equal, as above.

swrlb:greaterThan(from XQuery op:numeric-greater-than, op:compare,
op:yearMonthDuration-greater-than, op:dayTimeDuration-greater-than, op:dateTime-greater-
than, op:date-greater-than, op:time-greater-than)

Similarly to swrlb:lessThan.
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http://www.w3.org/TR/xpath-functions/#func-dateTime-greater-than
http://www.w3.org/TR/xpath-functions/#func-date-greater-than
http://www.w3.org/TR/xpath-functions/#func-time-greater-than

ii.

swrlb:greaterThanOrEqual (from swrlb:greaterThan, swrib:equal)
Similarly to swrlb:lessThanOrEqual.

Math Operators

swrlb:add(from XQuery op:numeric-add)
Satisfied if the first argument is equal to the arithmetic sum of the second argument through
the last argument.

swrlb:subtract (from XQuery op:numeric-subtract)
Satisfied iff the first argument is equal to the arithmetic difference of the second argument
minus the third argument.

swrlb:multiply (from XQuery op:numeric-multiply)
Satisfied if the first argument is equal to the arithmetic product of the second argument
through the last argument.

swrlb:divide (from XQuery op:numeric-divide)
Satisfied iff the first argument is equal to the arithmetic quotient of the second argument
divided by the third argument.

swrib:integerDivide (from XQuery op:numeric-integer-divide)

Satisfied if the first argument is the arithmetic quotient of the second argument idiv the third
argument. If the numerator is not evenly divided by the divisor, then the quotient is the
xsd:integer value obtained, ignoring any remainder that results from the division (that is, no
rounding is performed).

swrlb:mod (from XQuery op:numeric-mod)

Satisfied if the first argument represents the remainder resulting from dividing the second
argument, the dividend, by the third argument, the divisor. The operation a mod b for
operands that are xsd:integer or xsd:decimal, or types derived from them, produces a result
such that (a idiv b)*b+(a mod b) is equal to a and the magnitude of the result is always less
than the magnitude of b. This identity holds even in the special case that the dividend is the
negative integer of largest possible magnitude for its type and the divisor is -1 (the remainder
is 0). It follows from this rule that the sign of the result is the sign of the dividend

swrlb:pow
Satisfied if the first argument is equal to the result of the second argument raised to the third
argument power.

swrlb:abs (from XQuery fn:abs)
Satisfied if the first argument is the absolute value of the second argument.

swrlb:round (from XQuery fn:round)
Satisfied if the first argument is equal to the nearest number to the second argument with no
fractional part.
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10.

11.

iii.

swrlb:sin
Satisfied if the first argument is equal to the sine of the radian value the second argument.

swrlb:cos
Satisfied if the first argument is equal to the cosine of the radian value the second argument.

Strings

swrlb:stringConcat (from XQuery fn:concat)
Satisfied if the first argument is equal to the string resulting from the concatenation of the
strings the second argument through the last argument.

swrib:substring (from XQuery fn:substring)
Satisfied if the first argument is equal to the substring of optional length the fourth argument
starting at character offset the third argument in the string the second argument.

swrlb:contains (from XQuery fn:contains)
Satisfied if the first argument contains the second argument (case sensitive).

swrlb:containslgnoreCase
Satisfied if the first argument contains the second argument (case ignored).

swrib:startsWith (from XQuery fn:starts-with)
Satisfied if the first argument starts with the second argument.

swrlb:endsWith (from XQuery fn:ends-with)
Satisfied if the first argument ends with the second argument.

swrlb:matches (from XQuery fn:matches)
Satisfied if the first argument matches the regular expression the second argument.

swrlb:replace (from XQuery fn:replace)

Satisfied if the first argument is equal to the value of the second argument with every
substring matched by the reqular expression the third argument replaced by the replacement
string the fourth argument.
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Appendix 2: - Use Case 4 and 5 Axioms - Test Cases

E. Use Case 4

i. ParaPy Source Code - Created by Author

As shown in experimental verification with test use cases in chapter 7 in this work, one of the

targets for the 4" experiment as designed by the author is to compare the rule output in

ontology model as platform independent and neutral formal representation standards to the

specific rule outputs inside platform specific and proprietary DEA systems such as ParaPy.

The following is the source code created by the author in ParaPy as a platform specific DEA

system to represent some of the specific engineering rules controlling the topology and

configuration of the block as a product.

from __ future__ import division
from parapy.core import *

from parapy.geom import *

from math import pi, degrees, radians

class Block(GeomBase):

#: Block Dimensions - Width, Length(Height), Height(Depth)
#: :type: float

block_width = Input(50) # Block Width(W)

block_length = Input(60) # Block Height(H) #User Inputs
@Attribute

def block_height(self): # Block Depth(D) #Depth Rule

return self.block_width*1.5

@Part
def block1(self):

return Box(self.block_width if  self.block_width>=50
#Dimension Rule

"ERROR",
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self.block_length if self.block length>=50 else "ERROR", # Block Height(H)
#Dimension Rule

self.block_height if self.block_height>=50 else "ERROR", # Block Depth(D)
#Dimension Rule

color="red")

#: Hole Dimensions - Radius(Diameter/2), Length(Depth)
#: :type: float

hole_diameter = Input(30) # Hole Diameter(HD1) #User Input

@Attribute
def hole_radius(self):
return self.hole_diameter/2  # Hole Radius = HD1/2

hole_height = Input(40) # Hole Depth(HD2) #User Input
@Part
def holel(self):
return Cylinder(self.hole_radius if self.hole_radius*2.5<self.block_width
and

self.hole_radius*2.5<self.block_length else "ERROR",
#HoleDiameter Rule

self.hole_height if self.hole height<=self.block height else "ERROR",
#Hole Depth Rule

color="blue", position=self.position.translate('x’, 30, 'y', 20, 'z', 35))

@Part
def blockwithholel(self):
return SubtractedSolid(shape_in=self.block1,

tool=self.holel) #Subtraction of Volume for Drilling
if _name__ =='_main__"
from parapy.gui import display
obj = Block()
display(obj)

304



ii.

and Comparison with ParaPy

Variation of SWRL Rule Outputs for Block and Hole Attributes in Ontology

The source code created by the author has resulted in variations in output with block and hole

attributes in ParaPy as a platform specific DEA application in this research as shown below —

Refactor Run Tools VC5 Window Help

solutions tutorial basics 2 ) [ black - drillole - Rules.py [

|, block- drillhole - Rules ~ | b, % W Q

Eile Edit View Navigate Code
[ Users ) [ IDS16136 Desktop ParaPy-Starter-Kit ParaPy starterskit BCU Vibhor tutorials
B Project - @ = | % 1| [® fuselagepy ‘ * positioning.py # boxes.py

# staircase, # booleanexamples,| # blockfordrillhole, # block - drillhole, # block - drillhole - Ru
Py ples.py Py Py

DrillHole C:\Users\ID316136\PycharmProjects\DrillHole

Block | [ holel()
i External Libraries

block width = Input(0)
block_length = Input(20)

Attribute
def block_height (self):
return self.block width*l1.5

Fart
def blockl (self):

color="red")

return Box(self.block_width if self.block_width>=50 else "ERROR",
self.bleock_length if seli.block_length>=50 else "ERROR", # o2
self.block_height if seli.block_height>=50 else "ERROR", # BINCK

Inputs

|hu1e7d1amece: = Input(25)

@hctribute
def hole_radius(self):
return s=1f.hole_diameter/2

Engineering Rules

|hu1e7he1th = Input(90)

jdef holel(self):

l a7 return Cylinder(self.hole_radius if self.hole_radius*2.5<¢self.block_width

self.hole_height if self.hole height<=s=1f.block height else "ERROR",
color="blue’, position=self.position.translate('x’', 30, 'y', 20))

and
self.hole radius*2.5<self.block length else "ERROR",

block - drillhole - Rules [RCIEE S I EIERN:TES

Run:
& # License type: evaluation E
# Activation type: designated computer 3
| # Expiry date: 2017-06-21 #
mi= ¢ M
o ||
i expanding root node ...
,‘\? - ##4### 3D rendering pipe initialisation #####
% I pisplay3d class initialization starting ...
WNT Graphic device created.
? WNT window created.
Viewer created.
Interactive context created.
Display3d class successfully initialized.

@ Platform and Plugin Updates
PyCharm Community Editien is ready to updste,

|| 0 Piatorm and Plugin Updates: PyCharm Community Edition is ready to update. (today 08:45)

41:88 CRLF: UTF8: » & ()

Figure B 1: ParaPy Source Code — Inputs and Rules for Block and Hole Attributes

The SWRL rule representation of the specified engineering rules in this research as part of

the developed ontology model corresponding to GPM-DEA schema are explained as follows

Dimension Rule - Minimum dimensions of the block is 50 mm, W>=50mm, H>=50 mm,

D>=50mm)

SWRL Representation - Product(?p) ~ hasWidth(?p, ?w) ” swrlb:greaterThanOrEqual(?w,
"50.0"Mxsd:float) * hasHeight(?p, ?h) ~ swrlb:greaterThanOrEqual(?h, "50.0""xsd:float) ~
hasDepth(?p, ?d) ~ swrlb:greaterThanOrEqual(?d, "50.0" xsd:float) -> sqwrl:select("Block

adheres to dimensions")
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Depth Rule - D=W*1.5

SWRL Representation - Product(?p) ~ hasWidth(?p, ?w) ~ swrlb:multiply(?x, 2w,
"1.5"Mxsd:float) -> hasDepth(?p, ?X)

Hole Depth Rule - Hole depth should be less than or equal to depth of block, HD2<=D

SWRL Representation - Product(?p) ~ hasDepth(?p, ?d) ~ Hole(?h) ~ hasDepth(?h, ?d2) ~
swrlb:lessThanOrEqual(?d2, ?d) -> sqwrl:select((""Hole adheres to dimensions")

Else
Product(?p) ” hasDepth(?p, ?y) ~ Hole(?h) ~ hasDepth(?h, ?z) ~swrlb:greaterThan(?z, ?y) ->
sqwrl:select("Hole can't be created")

Hole Diameter Rule - HD1*1.25<W, HD1*1.25<H

SWRL Representation - Product(?p) ~ hasWidth(?p, ?a) ~ hasHeight(?p, ?b) ~ Hole(?h)
hasDiameter(?h, ?c) “swrlb:multiply(?d, ?c, "1.25"xsd:float) ~ swrlb:lessThan(?d, ?a) *
swrlb:lessThan(?d, ?b) ->sqwrl:select("Hole adheres to dimensions™)

Else
Product(?p) ~ hasWidth(?p, ?e) ~ Hole(?h) ~ hasDiameter(?h, ?g) ” swrlb:multiply(?i, ?g,
"1.25"Mxsd:float) ~ swrlb:greaterThanOrEqual(?i, ?e) -> sgwrl:select("Hole can't be
created")

Else
Product(?p) ~ hasHeight(?p, ?f) ~ Hole(?h) ~ hasDiameter(?h, ?g) ~ swrlb:multiply(?i, ?g,
"1.25"Mxsd:float) ~ swrlb:greaterThanOrEqual(?i, ?f) -> sqwrl:select("Hole can't be
created")

The output in product form through the Graphical User Interface (GUI) for visual display is

illustrated with Figure B 3 and B4.
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Eile Edit View MNavigate Code Refactor Run Tools VC§

[90C: ) [0 Users ) [ ID916136 ) [ Desktop ) [ ParaPy-Starter-Kit ) [0 ParaPy starterskit BCU Vibhor ) [0 tutarials ) (' solutions tutorial basics2 ) (i black - drillhole - Rules.py

block - drillhole - Rules = | , # B O

G Project  ~ D 5| ¥

4 fuselagepy | (@ positioningpy « | 4 boxespy * | (4 staircasepy - | &

py *

[ bloc il

py | 1@ block - drllholepy | % block - drillhole - Ru

» [ DrillHole C:\Users\ID9161364PycharmProjects\DrillHole
» |l External Libraries

43

o

holel()

return self.block width*1.5

@Part
def blockl(self):

return Box(self.block_width if self.block_width>=50 else "ERROR",
seli.block_length if selfi.block length>=50 else "ERROR",
seli.block height if self.block height>=50 else "ERROR",

color="red")

#: :type: float
hole diameter = Input(25)

BAttribute
def hole_radius{self):

return self.hole diameter/2

hole_height = Input(90)

@Part
def holel(self):

Hole Dimensions - Radius (Diameter/2), Length(Depth)

#Dimension Rule
#Dimen.
#Dimension Rule

# Block Height (H)
# Block Deptk (D)

n Rule

# Hole Diameter(ED1)

# Hole Depth(ED32)

# Hole Radius

HD1/2

return Cylinder(seli.hole radius if self.hole radius*2.5<self.block width

and

self.hole_radius*2.5<self.block_length else "ERROR",
seli.hole height if seli.hole height<=seli.block height else "ERROR",

#Hole Diameter Rule
#Hole Depth Rule

color="blue", position=self.position.translate('x', 30, 'y', ZC']]

Part
pef blockwithholel (self):

return SubtractedSolid(shape_in=self.blockl,

tool=self.holel)

Virtual Qutput of Drilling - Subtraction of Volume

Run:

#- L

# License type: evaluation
# Activation type: designated computer
2 Expiry date: 2017-06-21

nis ¢

|1

EE Y

expanding root node ...

WNT Graphic device created.

WNT window created.

Viewer created.

Interactive context created.

Display3d class successfully initialized.

~ X% [B

#2848 3D rendering pipe initialisation #3#3%
Display3d class initialization starting ...

@ Platform and Plugin Updates
PyCharm Community Edition is ready to update.

Platform and Plugin Updates: PyCharm Community Edition is ready to update. (today 08:45)

41:88 CRLF* UTF-8: & & )

Figure B 2: ParaPy Source Code — Virtual Subtraction of Hole Volume

File View Help

Tree View
2 ] root
53
L holel

& blockwithholel

Root View

Property View
=) (] <Block root at Oxfef42e8> &
B Inputs -
block width 60
block length 80
hole_diameter 25
hole_height 90
position Position(Point(0, 0, 0))
hidden False
label None L
color yellow' 3
teestie ()
B Attributes
block_height | 50.0
hole_radius|125
location Point(0, 0,0)
orientation | Orientation(x=Vector(L, 0, 0), y=Vector(0, 1, 0), z=Vector(0, 0,1))
center Point(0, 0,0) I
[<Cylinder root holel at 0:8£26£28>, <Subtractedsolid root block
children <double-click to evaluate>
B Parts
blockl <Box root blockl at (xB36e80> =
path

Geometry View

PIIITIIe T 2

Figure B 3: ParaPy GUI — Output with Root View
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View
View Geometry View
root

Block with Hole - Subtracted Volume
view

Property View
B @ B ) [#) (& <subractedsoid rootblockvithholel at [
B loputs : K
B on_invaiid do ko evaluate:
shape.in <Box root blockd at 0:9096¢80>
tool <Cylinder root holel t 0:0096(28> 4
aigorithm “new’ F
je_compound cick to evaluate>

PFIIHNIDs O

Figure B 4: ParaPy GUI — Output with Subtracted VVolume View

The comparison of these specific values for block attributes and representation of SWRL engineering

rules on top of OWL as platform independent and neutral representation with those against ParaPy as

platform specific DEAS is shown below with Figure B 5 —

Property assertions: Blockl Property assertions: Holel

Object property assertions a Object property assertions 0

-l'has Y Coordinate' 0.0f 0000 -l'has Y Coordinate' 20.0f 000
== 'has X Coordinate’ 0.0f 0 | | mhas X coordinate’ 30.0f 0000
w1111 [ty 9006
w= hasWidth 60.0f (| | mhaszcoordinate' 0.0f 0000

Negative chject property assertions 0 Negative object property assertions u

Negative data property assertions ° Negative data property assertions o

Asserted value to block input

attributes Asserted values to hole attributes

Input

To use the reasoner click Reasoner = Start ressoner E Show Inferences. To usa the reasoner click Reasonar = Start reasoner [gl Show Inferences

Figure B 5: Asserted Input Values — Block and Hole in OWL/SWRL Ontology
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The output of SQWRL query results for the dimension, hole depth ad hole diameter rule is

shown with Figure B 6 and B7.

800 ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Drilling_Base 3(2) Rules 2.ttl]

| © ProcessModel (http://example.org/ProcessModel) s | Search.. | A

<

|Mive Ontology x| Entities x| Individuals by class x | DL Query x ‘ SWRLTab x | SQWRLTab x ‘

Name Query Comment
Depth Rule Product(Zp) ~ haswidth(?p, 2w) A swrib:multiplyi?x, 7w, "1.5"~Axsd:float) -> hasDepth(¥p, 7x)

Dimension Rule hasHeight(Zp, ?h) * hasWidth(?p, ?w) A hasDepth(?p, 7d) A Product(?p) A swrlb:greaterThanOrEquali?d, "50.0"AAxsd:float) A swrlb:greater...

Hole Depth Rule Product(?p) ~ hasDepth(?p, 7d) ~ Hole(?h) 4 hasDepth(7h, 7d2) » swrlb:lessThan(?d2, ?d) -> sqwrl:select("Hole adheres to dimensions”)

Hole Depth Rule else Product(Zp) A hasDepth(?p, ?y) A Holei?h) A hasDepth(?h, 7z) A swrlb:greaterThan(?z, ?y) -> sqwrl:select("Hole can't be created”)

Hole Diameter Rule Product(Zp) ~ hasWidth(?p, 7a) ~ hasHeight(?p, 7b) ~ Hole(?h) » hasDiameter(Zh, 7c) » swrlb:multiply(?d, 7c, "1.25 "~ xsd:float) A swrib:les...

Hole Diameter Rule else Product(?p) ~ hasWidth(?p, ?e) » Hole(?h) A hasDiameter(7h, 7g) & swrib:multiply(i 1.25"AAxsd:float) A swrib:greaterThanOrEqual(?i,
Hole Diameter Rule else2  Product(?p) » hasHeight(?p, ?f) » Hole(?h) ~ hasDiameter(?h, 7g) ~ swrib:multiply(?i, 7g, "1.25"AAxsd:float) » swrlb:greaterThanOrEqual(?i,
Material Rule Product(Block1) ~ haswidth(Blockl, 7w} A swrib:greaterThan(?w, "100.0"AAxsd:float) -> hasMaterial(Block 1, Metallic_Aluminium)

Volume Rule Product(Zp) ~ hasWidth(?p, w) A hasHeight(?p, 7h) A hasDepth(?p, 7d) A swrlb:multiply(?v, 7w, 7h, 7d) -> hasVolume(?p, 7v)

| New | Edit Clone Delete

| SQWAL Queries | OWL 2 RL | Dimension Rule | Hole Depth Rule |Hole Diameter Rule | I
= |

~——

SQWRL Query Output - Hole Diameter Rule

l Save as CSV... | | Rerun || Close |
Reasoneracive (W] Show Inferences.
@00 ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Drilling_Base 3(2) Rules 2.ttl]
[ < ] > | @ ProcessModel (htip:/jexample.org/ProcessModel) s | Search.. | A

|Active Ontology x| Entities x | Individuals by class x| DL Query x | SWRLTab x| SQWRLTab x|

Name Query Comment
Depth Rule Product(?p) # hasWidth(?p, 2w) & swrib:multiply(?x, 7w, "1.5"Anxsd:float) -> hasDepth(?p, 7x)
Dimension Rule hasHeight(p, 7h) » haswidth(?p, 7w) A hasDepth(?p, 7d) # Product?p) » swrlb:greaterThanOrEqual(zd, "50.0"*Axsd:float) » swrib:greater...
Hole Depth Rule Product(?p) A hasDepth(?p, 7d) A Hole(Zh) A hasDepth(?h, 7d2) A swrib:lessThan(?d2, 7d) -> sqwrl:select("Hole adheres to dimensions”)
Hole Depth Rule else Product(?p) A hasDepth(?p, 7y) A Hole(7h) A hasDepth(?h, 7z) A swrlb:greaterThan(7z, %y) -> sqwrl:select("Hole can't be created”)
Hole Diameter Rule Product(?p) A hasWidth(?p, ?a) ~ hasHeight(?p, 7b) A Hole(?h) A hasDiameter(?h, 7c) A swrib:multiply(?d, ?c, "1.25"Aaxsd:float) A swrib:les...
Hole Diameter Rule else Product(?p) # hasWidth(?p, ?e) » Hole(?h) # hasDiameter(Th, 7g) » swrlb:multiply(7i, ?g, "1.25"AAxsd:float) » swrlb:greaterThanOrEqual(?i, ...
Hole Diameter Rule else2  Product(?p) A hasHeightiZp, 7f) A Hole(7h) A hasDiameter(?h, 7g) A swrlb: multiply(7i, 7g, "1.25"~Axsd:float) A swrib:greaterThanOrEqual(7i,...
Material Rule Product(Block1) A haswidthiBleckl, w) » swrib:greaterThan(?w, "100.0"*Axsd:float) -> hasMaterial(Block 1, Metallic_Aluminium)
Volume Rule Product(?p) A hasWidth(?p, 2w) A hasHeight(?p, 7h) A hasDepth(7p, 7d) A swrlb:multiply(?v, 7w, 7h, 7d) -> hasVolume(?p, )
| New | Edit Clone Delete

|SQWRL Queries ‘ OWL 2 RL ‘ Dimension Rule ‘|HOIe Depth Rule ‘I
| IE——— |

Hole adheres to dimensions I

SQWARL Query Output - Hole Depth Rule

Save as CSV... | Rerun | | Close

Ressoner active (@ Show Infarences.

Figure B 6: SQWRL Query Results — Hole Diameter and Hole Depth Rule
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®00 ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Drilling_Base 3(2) Rules 2.ttl]

| < | > | @ ProcessModel (http://example.org/ProcessModel) 3| | Search.. | A

Active Ontology = | Entities = | Individuals by class = DL Query = SWRLTab = SQWRLTab =

Name Query Comment
Depth Rule Product(?p) A hasWidth(?p, 7w) & swrib:multiply(7x, 7w, "1.5"AAxsd:float) -> hasDepthi7p, 7x)

Dimension Rule hasHeight(?p, 7h) A hasWidth(?p, W) A hasDepth(?p, 7d) » Product(?p) A swrlb:greaterThanOrEqual(?d, "50.0"AAxsd float) A...

Hole Depth Rule Product(?p) A hasDepth(?p, ?d) A Hole(?h) ~ hasDepthi?h, ?d2) & swrib:lessThan(?d2, ?d) -> sqwrl:select("Hole adheres to d...

Hole Depth Rule else Product(?p) ~ hasDepth(?p, 7y) ~ Hole(?h) # hasDepthi?h, 7z) # swrlb:greaterThan(?z, ?y) -> sqwrl:select("Hole can't be crea...

Hole Diameter Rule Product(?p) A hasWidth(?p, 7a) A hasHeight(?p, 7b) A Hole(?h) # hasDiameter(?h, 70 A swrib:multiply(zd, ?c, "1.25"~Axsd:floa...

Hole Diameter Rule else Product(?p) A hasWidth(?p, 7e) A Hole(Zh) A hasDiameter(h, 7g) ~ swrlb:multiply(?i, ?g, "1.25"AAxsd:float) A swrlb:greaterTh...
Hole Diameter Rule else2  Producti?p) A hasHeight(?p, 7f) A Hole(?h) # hasDiameter(*h, 7g) A swrlb:multiply7i, ?g, "1.25"AAxsd float) A swrlb-greaterTh...

Material Rule Product(Block1) A hasWidth(Block1, ?w) A swrib:greaterThan(?w, "100.0"A~xsd:float) -> hasMaterialiBlock 1, Metallic_Alumin...
Volume Rule Product(?p) A haswidth(?p, 7w) ~ hasHeight(Zp, ?h) ~ hasDepthi?p, d) A swrlb:multiply(?v, ?w, ?h, 7d) -> hasVeolume(?p, 7v)
| New | d Clon )

SQWRL Queries | OWL 2 RL
Block adheres to dimensions

SQWRL Query Output - Dimension Rule

| Save as CSV... | | Rerun | Close

Reasoner active (¥ Show Infarances

Figure B 7: SQWRL Query Result — Dimension Rule

It can be observed that the query results are inline with the specific output attributes of block
and hole inside ParaPy although the output is supported by visual display through an inbuilt
GUI. However, the ontology model although doesn’t currently support and inbuilt GUI, the
query results are accurate and provide semantic clarity. Similarly, the SWRL rule output for

hole volume is supported with Figure B 8 and B 9.

It can be observed that the hole volume is similar inside both ontology model and ParaPy.
However, there is a slight difference from 44178.64 mm?® to 44156.25 mm?3due to the value of

pi as n© =3.141592653589793238 inside ParaPy and 3.14 used inside SWRL rule.
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Geometry View

& blockwithholel

Property View

= <Cylinder root holel at 0:f36128> &
B Inputs =
radius 125
height 0
6.283185307179586
False
Pasition(Point(30, 20, 0))
Mone
i Non:
isy ode Nons
isos. Non:
renadiecton Yo Gomputed Hole Volume
abel MNone
color ‘blue'
tree style 4
B Attributes
center &
= |
Surfece =
path holel

PIFFTHITE L W &

Figure B 8: Computed Hole VVolume — ParaPy

Property assertions: Holel

e e P

B hasSize 90.0f
I 'has Y Coordinate' 20.0f
I 'has Z Coordinate' 35.0f

B 'has 3D Position Coordinates'
30.0f

I 'has 3D Position Coordinates'
35.0f

B 'has X Coordinate' 30.0f
B hasDiameter 25.0f

I 'has 3D Position Coordinates'
20.0f

| ™ hasVolume 44156.25f ]

B hasSize 25.0f
B hasDepth 90.0f

Megative object property assertions

Inferred Hole Volume

Megative data property assertions
Reaszoner active g Show Inferences

Figure B 9: Inferred Hole VVolume — Hole Volume Rule — OWL/SWRL Ontology Model
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A violation is also introduced by increasing the hole diameter from 25 to 50 mm which
violates the Hole Diameter Rule keeping the block attributes same as above. The output

inside ParaPy is shown with the help of Figure B 10.

il

File Edit Mavigste Code Refactor Run Iools VC3 Window Help
199 G ¢ 1 Users ) 10 IDS16136 » 14 Desktop » 1% ParsPy-Starter-Kit * 11 ParaPy starterskit BCU Vibhor ) 1 tutorials ) ' solutions tuterial basics 2 ¢ 1 block - drillhole - Rulespy ) b E Q
[ Project - @ # | %~ b~ | (5 fuselagepy ~ | (& positioning.py * | (4 boxespy * | (@ staircase.py | [ bool lespy < | (& illhole.py ~ | (& block - drillolepy - | i block - drillnole - Ru
B DrillHole Ci\Users\ID916136\PycharmPrajects\DrillHole Siock
Il External Libraries
10 :type: float
11 block_width = Input(60) # Block Width (W)
1z block length = Input(80) # Block Height (H)
13
14 @Attribute
15 def block _height (self # Block Depth(D) #Depth Rule
18 return self.block_width*l.5
o
18
13
20 .block_width if se block_width>=50 else "ERROR", #Dimension
21 k_length if ==1Z.block ] else "ERROR", + Block Height(E)  #Dimeasion i
22 seli.block_height if self.block_height>=50 else "ERROR", # Slock Deptia(D) #Dimension A
3 color="red")
24
25 Hole Dimensions - Radins (Diameter/2), Length(Depth)
27 # Hole Diameter (HD1) ‘
b
2s e .
o der hole radius (s217): Variation in value to Hole Diameter i
31 return self.hole_diameter/2 # Hole Radius = HD1/2 1
a3z
23 hole_height = Input{30) # Hole Depth(ED2) Violation of Hole Diameter Rule
34
35 @Parc
i 36 def holel(self): l
37 return Cylinder(self.hole radius if self.hole_radius*2.5<self.block width
kL]
33
40
a

= ; T
L L P TITN  o block - drillnole - Rules #- L

:\Python27\1ib\3ite-packages\parapy\core\abstractslot.py”, line 585, in _ get__
Python27\1ib\3ite-packages\parapy\core\validate.py”, lime 107, in _ call
obj, self})
Ji | & VvelidetionError: Blocked attempt to bind 'ERROR' Go "radius”. Instance: <Cylinder raot.holel at O0xBfE6128>. Test: <value > 0>.
ParaPy GUI: evalustion of slot 'volume' on instance <Cylinder root.holel at 0x886£28> failed
=i @ Traceback (most recent call last):
] File "C:\Python27\lib\site-packages\parapy\gui\data.py”, line 35, in on_double_click
= File "C:\Python27\lib\site-packages\parapy\core\abstractslot.py”, line 581, in _ get
x B rile "C:\Pyshon27\1ib\eite-packages\parapy\core\abstractslot.py”, line 486, in evaluase
File "C:\Python27\lib\site-packages\parapy\geom\occ\primitives.py”, line 493, in volume
? return 0.5 * self.angle * self.radius ** 2 * self.height
File "C:\Python27\lib\site-packages\parapy\core\abstractslot.py”, line 585, in _get__
- lj;:?onz'!\ln:\sur. ackages\parapy\core\validate.py”, line 107, in _ call @ Platform and Plugin Updates
| ValidationError: Blocked atterpt o bind 'ERROR' to "radius”. Tnstance: <Cylinder root.holel at OxEZ36£28>. Test: <value > 03. | PyCharm Community Edition is ready to update.
|| @ Pratform and Plugin Updates: PyCharm Community Edition is ready to update. (today 08:45) 21:29 CRLF: UTF8: & & ()

Geometry View

No Hole created in GUI

—

Propety View
B () @) (8] [&] <Cyinderroothoiel a0msize> =]
B lnputs -
m;;-x £l ‘
angle 6.283185307179586

double-click to evalust
Postion(Pont(30, 20,0))

BIIOIHNII e 0 2

Figure B 10: Violation of Hole Diameter Rule — ParaPy
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The output of violation of hole diameter as per Hole Diameter Rule in ontology model is
explained with Figure B 11

Property assertions: Holel (1] = =] [X]

Object property assertions

Data property assertions

B hasDiameter 50.0f
BN'has Y Coordinate' 20.0f
B'has X Coordinate' 30.0f
B hasDepth 90.0f

B'has Z Coordinate' 0.0f

Megative chject property assertions
Megative data property assertions

Asserted value to Hole attributes -
Violation of Hole Diameter Rule

To use the reasoner click Reasoner = Start reasoner g Show Inferences
8 00 ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Drilling_Base 3(2) Rules 2.ttl]
3| | Search.. | A

| < | | @ ProcessModel (http:/ fexample.org/ProcessModel)

| Active Ontology x| Entities x | Individuals by class x | DL Query x| SWRLTab x| SQWRLTab x

Name Query Comment
Depth Rule Product(?p) A haswidthi?p, 7w} A swrlb:multiply(?x, 7w, “1.5"*Axsd:float) -> hasDepth(?p, 7%

Dimension Rule hasHeight(?p, ?h) A hasWidth(?p, ?w) A hasDepth(?p, ?d) # Product(?p) ~ swrlb:greaterThanOrEqual(?d, "50.0"*Axsd:float) A swrib...

Hole Depth Rule Product(7p) ~ hasDepth(Zp, 7d) A Hole(?h) ~ hasDepth(7h, ?d2) # swrlb:lessThan(?d2, 7d) -> sqwrl:select("Hole adheres to dimen...

Hole Depth Rule else Product(?p) ~ hasDepth(Zp, 7y) & Holei?h) ~ hasDepthih, ?2) » swrlbzgreaterThan(?z, 7y) -> sgwrl:select("Hole can't be created”)

Hole Diameter Rule Product(?p) ~ hasWidthi?p, 7a) A hasHeight(?p, 7b) A Hole(?h) A hasDiameter(?h, 7c) A swrlb:multiply(?d, 7¢, "1.25"AAxsd:float) A s...

Hole Diameter Rule else Product(?p) & hasWidthi?p, ?e) A Hole(?h) A hasDiameter(?h, ?g) ~ swrlb:multiply(?i, ?g, "1.25"*4xsd:float) ~ swrlb:greaterThanOrE...

Hole Diameter Rule else2  Product(?p) ~ hasHeight(?p, ?f) A Hole(?h) A hasDiameter(?h, ?g) A swrib:multiply(?i, ?g, “1.25"AAxsd:float) » swrib:greaterThanOr...

Material Rule Product(Block1) A haswidth(Block1, 7w) » swrlb:greaterThan(?w, "100.0"AAxsd:float) -> hasMaterial(Block 1, Metallic_Aluminiurm)

Volume Rule Product(?p) ~ hasWidthiZp, w) A hasHeight(?p, ?h) A hasDepth(?p, 7d) ~ swrlb:multiply(?v, 7w, ?h, ?d) -> hasVolume(Zp, 7v)

| New | Edit Clone Delete

| SQWRL Queries | OWL 2 RL | Hole Diameter Rule else | |
—_
co

Hole can't be created \

SQWRL Query Output - Hole Diameter Rule (else clause)
Violation of Rule

Save as CSW... | Rerun | Close

Reasoner active (¥ Show Inferences

Figure B 11: Violation of Hole Diameter Rule — OWL/SWRL ontology model

Thus, all the results are in line with the results from the experimental verification of the

knowledge representation system for Use Case 4 as Test Case performed in Chapter 7.
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F. Use Case 5

iii. = AML Source Code snippets

As illustrated in Chapter 6 and 7, Use Case 5 as Test Case is adopted from (Liitzenberger et
al., 2012) with addition of knowledge such as function, activity and object and rule
association. The following section shows small snippets of AML source code as a platform
specific DEA system for the engineering rules controlling the bookshelf topology and

configuration.

;;;Filename: kbe-bookshelf-input-mixin.aml
(in-package :AML)

(define-class kbe-bookshelf-input-mixin
:inherit-from (object)

‘properties (

;;; parameters set in GUI

height-input 5

width-input 3

max-hs-input 0.5
vertical-spacing-shelves-input 0.5
shelf-depth 0.7
thickness-bottom-shelf-input 0.05
thickness-top-shelf-input 0.05
thickness-dividing-walls-input 0.05
thickness-of-shelves-input 0.05

thickness-side-walls-input 0.05 #Input Parameters

)

:subobjects (

)

) (Litzenberger et al., 2012, Pg 58, 59)

(define-method kbe-validate-bookshelf-width kbe-bookshelf-data-model-class ()

(if (< 'width-input (* 0.5 (Imax-hs-input)))

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too narrow. Adjust
bookshelf width or maximum horizontal length of one shelf. ")

nil #Dividing Walls Rule
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(define-method kbe-validate-bookshelf-height kbe-bookshelf-data-model-class ()
(if (> vertical-spacing-shelves-input !height-input)

(pop-up-message "WRONG INPUT PARAMETERS: The bookshelf is too low
for even one vertical space in the bookshelf. Adjust bookshelf height or vertical
spacing between shelves. ")

nil #Shelves Rule
)
) (Lutzenberger et al., 2012, Pg 61, 62)

iv. Variation in SWRL Rule Outputs for Bookshelf Attributes in Ontology

A few variations are produced in the bookshelf design ontology model by the author as per
the modelled semantics of Dividing Walls Rule. These are shown with the support of Figure
B 12, B 13 and B 14. Similarly, asserted values to bookshelf attributes as violation of Shelves
Rule is shown with Figure B 15. The rule and their SWRL representations developed by this

research are illustrated as follows -

Dividing Walls Rule — NDW is based on HS and W, If (W<0.5*HS, "ERROR") elseif
(W<=HS, NDW=0) else (NDW=Int(W/HS)-1)

SWRL  Representation -  Product(?p) ~  has_Object Width_ W(?p, 2w) ~
has_Object_Horizontal length 1 shelf HS(?p, ?hs) ~ swrlb:multiply(?x, "0.5""xsd:float,
?hs) ~ swrlb:lessThan(?w, ?x) -> sqwrl:select("Error - Too narrow for a bookshelf")
And

Product(?p) A has_Object_ Width_W(?p, W) A
has_Object_Horizontal length 1 shelf HS(?p, ?hs) ~ swrlb:multiply(?x, "0.5""xsd:float,
?hs) ~  swrlb:greaterThan(?w, ?x) "  swrlb:lessThanOrEqual(?w,  ?hs) ->
has_Object_No_dividing_walls_ NDW(?p, "0.0""xsd:float)

And
Product(?p) A has_Object_ Width_W(?p, 2wW) A
has_Object_Horizontal length_1 shelf HS(?p, ?hs) ~ swrlb:greaterThan(?w, ?hs)
swrlb:divide(?y, ?w, ?hs) ~  swrlb:subtract(?z, ?y, "1.0""xsd:float) ->

has_Object_No_dividing_walls_NDW(?p, ?z)

Shelves Rule - (NSH is based on H and VS, If (VS>H, "ERROR") elseif (2*VS>H, NSH=0)
else (NSH=Int((H/VS)-1))
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SWRL  Representation -  Product(?p) ~ has_Object_Height H(?p, ?h) ~*
has_Object_Vertical_length_1_shelf VS(?p, ?vs) " swrlb:greaterThan(?vs, ?h) ->
sqwrl:select("Error - Too low for even one space in the bookshelf")

And
Product(?p) ~ has_Object_Height H(?p, ?h) ™ has_Object_Vertical length_1 shelf VS(?p,
?2vs) ™ swrlb:lessThan(?vs, ?h) ~ swrlb:multiply(?a, "2.0""xsd:float, ?vs) *
swrlb:greaterThan(?a, ?h) -> has_Object_No_shelves NSH(?p, "0.0""xsd:float)

And
Product(?p) ™ has_Object_Height H(?p, ?h) ™ has_Object_Vertical length_1 shelf VS(?p,
2vs) N swrlb:multiply(?a, "2.0"xsd:float, ?vs) ~ swrlb:lessThan(?a, ?h) ” swrlb:divide(?b,
?h, ?vs) ” swrlb:subtract(?c, ?b, "1.0" xsd:float) -> has_Object_No_shelves NSH(?p, ?¢)

Property assertions: Bookshelfl LS jofes)
Object property assertions

Bu'has part’ Framel

E'has part' Shelvesi

Wu'has part' Dividing_Walis1

EEhas_Object_Width_W 5000.0f

W has_Object_Horizontal_length_1_shelf_HS
11000.0f

Euhas_0Object_Thickness_bottom_shelf_TBy 50.0f
BEhas_Object_Thickness_top_shelf_TT 30.Df

B has_Object_Vertical_length_1_shelf_VS
1000.0f

mmhas_Object_Thickness_side_walls_TS 40.0f
mmhas_Object_Thickness_inner_shelf_TSH 2{.0f
mmhas_Object_Height_H 5000.0f

o ”:Ass.erted values for violation of
Dividing Walls Rule 1

To use the ressoner click Ressoner  Start rsasoner [ Show Inferences.

@& 00 ProcessModel (http:/, org/Proc : [{Users/vibhor/Downloads/Formal Process Models/ProcessModel_Bookshelf Base 4 Rules.ttl]

| € ProcessMedel (hitp:/ /example.org/ProcessModel) +| | search.. | &

Active Ontology x | Entities x | Individuals by class x DL Query x SWRLTab x| SQWRLTab x

Name Query Comment
Dividing Walls Position Rule Part(Dividing_Wall1) » Product(?p)  has_Object_Thickness_side_walls_TS(p, 7ts) A~ has_Object_Shelf_length_SHL(Zp, 7shl) A has_Object_T...

Dividing Walls Rule1 Product(?p) A has_Object_Width_W(?p, 2w) 4 has_Object_Horizontal_length_1_shelf HS(?p, ?hs) A swrib:multiply(?x, "0.5"AAxsd:float, 7hs) ...

Dividing Walls Rulez Product?p) A has_Object_Width_W(?p, 7w) A has_Object_Horizontal_length_L_shelf_HS(?p, 7hs) ~ swrib:multiply(?x, "0.5"»~xsd:float, 7hs) ...

Dividing Walls Rule3 Product(?p) A has_Object_Width_W(?p, 7w) A has_Object_Horizontal_length_L_shelf_HS(?p, 7hs) A swrlb:greaterThan(?w, 7hs) A swrib:divid...

Shelf Length Rule Product(?p) A has_Object_Width_W(?p, 7w) A has_Object_Thickness_side_walls_TS(7p, 7ts) # has_Object_Thickness_dividing_walls_TD(?p, 7...

Shelves Position Rule Part(Shelf1) » Product(?p) A has_Object_Thickness_side_walls_TS(?p, 7ts) A has_Object_Thickness_bottom_shelf TB(?p, 7th) A has_Obje

Shelves Rulel Product(?p) A has_Object_Height_HZp, ?h) # has_Object_Vertical_length_1_shelf_VS(?p, 7vs) » swrlb:greaterThan(?vs, 7h) -> sqwrl:select("...

Shelves Rule2 Product(?p) A has_Object_Height_HZp, 7h) » has_Object_Vertical_length_1_shelf_VS(p, ?vs) » swrlb:lessThan(?vs, ?h) & swrlb:multiply(Za, ...

Shelves Rule3 Product(?p) A has_Object_Height_H(Zp, 7h) » has_Object_Vertical_length_1_shelf_V5(p, 7vs) » swrlb:multiply(7a, "2.0"Axsd:float, 7vs) A s...

Side Walls Position Rule Part(Side_Walls1) A has_Object_Thickness_bottom_shelf_TB(7p, 7tb) A Product(?p) -> has_Object_Z_Coordinate(Side_Walls1, "0.0"AAxsd fl...
Side and Dividing Walls Rule Product(?p) ~ has_Object_Height_H(p, 7h) # has_Object_Thickness_bottom_shelf_TB(?p, 7tb) » has_Object_Thickness_top_shelf_TT(?p, tt...
Topshelf Position Rule swrlb:add(?k, 7tb, ?wal ~ has_Object_Thickness_bottom_shelf_TB(?p, 7tb) A Part(Top_Shelf1) » Product?p) A has_Object_Length_of_side_...
Vertical Space Shelves Rule Product(?p) » has_Object_Length_of_side_and_dividing_walls_WAL(?p, ?wal) # has_Object_No_shelves_NSH(?p, ?nsh) A has_Object_Thickn...

SQWRL Queries | OWL 2 RL |Dividing Walls Rule1

co
Error - Too narrow for a bookshelf I

SQWRL Query Output - Violation of Dividing Walls Rule

| Save as CSV... | | Rerun | | Close

Reasanersctve (W Show Inferences

Figure B 12: Violation of Dividing Walls Rulel: Bookshelf Design Process Ontology Model
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Property assertions: Bookshelfl ME =
Object property as
BN 'has part’ Framel
BN 'has part' Shelvesl
B 'has part’ Dividing_Walls1

Data
B has_0Object_Thickness_dividing_walls_TD 10.0f
muhas_Object_Width_W 11000.0f

== has_0Object_Horizontal_length_1_shelf_HS
11000.0f

opert: rtions

Property assertions: Bookshelfl [T = ] (%]

BN 'has size' 20.0f

B has_Object_Thickness_bottom_shelf_TB 50.0f

B has_Object_Thickness_top_shelf_TT 30.0f

10920.0f

10.0f

0.0f

BN 'has size' 4.0f

B has_Inputs 50.0f

B has_Inputs 10.0f

= has_Inputs 5000.0f

BN 'has size' 50.0f

B has_0Object_Horizontal_length_1_shelf_HS 11000.0f

B has_Object_Vertical_space_between_shelves_SHS 1210.0f
B has_0Object_Vertical_length_1_shelf_VS 1000.0f

BN has Object No dividing walls NDW 0.0f I

B 'has size'
B 'has size'
B 'has size'

B has_0Object_Thickness_bottom_shelf_T! 0.0f
W= has_Object_Thickness_top_shelf_TT 30.,0f

B has_Object_Vertical_length_1_shelf_VS| 1000.0f
BE has_Object_Thickness_side_walls_TS 4D.0f

B has_0Object_Thickness_inner_shelf_TSH 20.0f

B has_Object_Height_H 5000.0f
Negative ohject property assertions

Negative data property assertions

Asserted values to semantically
generate NDW =0

== has_0Object_Length_of_side_and_dividing_walls_WAL 4920.0f
= has_0Object_Shelf_length_SHL 10920.0f

== 'has size' 5000.0f

== 'has size' 40.0f

= has_Object_No_shelves_NSH 4.0f

== has_Inputs 20.0f
Inferred NDW = 0 as per

== 'has size' 1210.0f

== has_Inputs 11000.0f Dividing Walls Rule 2
== has_Object_Height_H 5000.0f c|ause

== has_Inputs 30.0f

== 'has size' 11000.0f

== 'has size' 30.0f

B 'has giza' 4920.0f

To uss the reasoner click Reasoner > Start reasoner (W] Show Inferences Reasoneractive (@] Show Inferences
Figure B 13: Dividing Walls Rule Clause 2

Property assertions: Bookshelfl [ = (] []
Object property assertions
B ‘has part’ Framel
B 'has part’ Shelvesl
== ‘has part’ Dividing_Walis1

rtions
B has_0Object_Thickness_dividing_walls_TD
10.0f

has_Object_Horizontal_length_1_shelf_HS
1000.0f

B has_0Object_Thickness_bottom_shelf_TB
50.0f

mmhas_Object_Thickness_top_shelf_TT 30.0f

B has_Object_Vertical_length_1_shelf_VS
1000.0f

mmhas_Object_Thickness_side_walls_TS 40.0f

B has_Object_Thickness_inner_shelf_TSH
20.0f

mm has_Object_Height_H 5000.0f
| ™has_object_width_w 8000.0f 1

Megative ohject property assertions .
Asserted values to bookshelf attributes
Nenative dara nronerv accarrinng

To use the reasaner click Reasoner = Start reasoner (@] Show Infersnces

Jbject prop assen
B 'has part' Framel

W 'has part' Shelvesl

B 'has part' Dividing_Walls1

=]

ata Property assertions

B has_Object No_dividing_walls_ NDW 7.0f

B has_Object_Thickness_dividing_walls_TD 10.0f
m=has_Inputs 8000.0f

== has_Object_Horizontal_length_1_shelf_HS 1000.0f
mu'has size' 20.0f

m= has_0Object_Thickness_bottom_shelf_TB 50.0f

B has_Object Thickness_top_shelf _TT 30.0f

m='has size' 10.0f

m'has size' 4.0

mhas_tnputs 50.0f  Oufput NDW =7 as per
mhas_Inputs 5000.0f gocurate semantics of

m=has_Inputs 10.0f  nyjyiding Walls Rule Clause 3
B'has size' 50.0f

== has_Object_Vertical_space_between_shelves_SHS 1210.0f
m=has_Object_Vertical_length_1_shelf_VS 1000.0f

B has_0Object_Length_of_side_and_di ng_walls_WAL 4920.0f
B has_Object_Width_W 8000.0f

W'has size' 5000.0f

m='has size' 40.0f

= has_Object_No_shelves_NSH 4.0f

m=has_Inputs 20.0f

B ‘has size' 1210.0f

Reasoner active [V Show Inferences

Figure B 14: Dividing Walls Rule Clause 3 — Variation in asserted Values
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Property assertions: Bookshelf1 [0 = ] ]
Object property assertions

W 'has part' Framel

W 'has part’ Shelves1

W 'has part' Dividing_Walls1

=]

Jata property assertions
B has_Object_Thickness_dividing_walls_TD 10.0f
B has_Object_Horizontal_length_1_shelf_HS 1000.0f
B has_Object_Thickness_bottom_shelf_TB 50.0f
B has_Object_Thickness_top_shelf_TT 30.0f
B has_Object_Thickness_side_walls_TS 40.0f
B has_Object_Thickness_inner_shelf_TSH 20.0f
| ™ has_object_Height_H 5000.0f |
B has_Object_Width_W 10000.0f
I B has_Object_Vertical_length_1_shelf_VS 5500.0f

MNegative object property assertions

Negative data property assertions

Asserted values as violation of
Shelves Rule

To use the reasoner click Reasoner > Start ressoner (W] Show Inferences

8 00 ProcessModel (http://example.org/ProcessModel) : [/Users/vibhor/Downloads/Formal Process Models/ProcessModel_Bookshelf_Base 4 Rules.ttl] |
| < | > | @ ProcessModel (http://example.org/ProcessMadel) +| | search.. | A

| Active Ontology x| Entities x| Individuals by class x DL Query x SWRLTab x SQWRLTab x|

Name Query Comment

Dividing Walls Position Rule  Part(Dividing_Wall1) » Product(?p) A has_Object_Thickness_side_walls_TS(?p, 7ts) A has_Object_Shelf_length_SHL(?p ) & has_Object_Thickness_...

Dividing Walls Rulel Product(7p) A has_Object_Width_W(?p, 7w) A has_Object_Horizontal_length_1_shelf_HS(Zp, 7hs) & swrlb:multiply(?x, ‘naxsd:float, 7hs) A swrib:le...

Dividing Walls Rule2 Product(Zp) A has_Object_Width_W(?p, 7w) A has_Object_Horizontal_length_1_shelf_HS(p, 7hs) » swrlb:multiply(?x, ‘waxsd:float, 7hs) A swrib:g...

Dividing Walls Rule3 Product(7p) A has_Object_Width_W(?p, 2w) A has_Object_Horizontal_length_1_shelf_HS(p, ?hs) ~ swrlb:greaterThan(w, hs) & swrlb:divide(y, w, ...

Shelf Length Rule Product(7p) A has_Object_Width_W(?p, 7w) A has_Object_Thickness_side_walls_TS(Zp, 7ts) A has_Object_Thickness_dividing_walls_TD(p, 7td) A has...

Shelves Position Rule Part(Shelfl) # Product(?p) ~ has_Object_Thickness_side_walls_TS(?p, 7ts) ~ has_Object_Thickness_bottom_shelf_TB(Zp, 7tb) # has_Object_Thicknes...

Shelves Rulel Product(p) A has_Object_Height_H(p, ?h) # has_Object_Vertical_length_1_shelf_VS(p, ?vs) » swrlb:greaterThan(?vs, ?h) -> sqwrl:select{"Error - T...

Shelves Rule2 Product(Zp) A has_Object_Height_H(7p, 7h) » has_Object_Vertical_length_1_shelf_v5(Zp, 7vs) » swrlb:lessThan(?vs, 7h) ~ swrlb:multiply(7a, "2.0""Ax...

Shelves Rule3 Product(Zp) A has_Object_Height_H(7p, 7h) » has_Object_Vertical_length_1_shelf_Vv5(7p, 7vs) # swrlb:multiply(7a, "2.0"*xsd:float, ?vs) A swrlb:less...

Side Walls Position Rule Part(side_Walls1) A has_Object_Thickness_bottom_shelf_TB(Zp, 7th) A Preduct(?p) -> has_Object_Z Coordinate(Side_Walls1, "0.0"Axsd:float) A ha...

Side and Dividing Walls Rule Product(?p) A has_Object_Height_H(?p, ?h) A has_Object_Thickness_bottom_shelf TB(?p, 7th) A has_Object_Thickness_top_shelf_TT(Zp, 7tt) A swrib...

Topshelf Position Rule swrib:add(?k, 7tb, 7wal) # has_Object_Thickness_bottom_shelf TB(?p, 7th) A Part(Top_Shelfl) A Product(?p) A has_Object_Length_of_side_and_di...

Vertical Space Shelves Rule  Product(?p) A has_Object_Length_of_side_and_dividing_walls_WAL(p, 7wal) ~ has_Object_No_shelves_NSH(?p, ?nsh) A has_Object_Thickness_inner...

| New | Edit Clone Delete

SQWRL Querles | OWL 2 AL | Shelves Rulet | |

o
Error - Too low for even one space in the bookshelf I

SQWRL Query Output - Violation of Shelves Rule

| Save as CSV... | | Rerun | | Close

Ressaner active (¥ Snow Infarences

Figure B 15: SQWRL Query Output - Violation of Shelves Rule

Dividing Wall Position Rule - (X1=TS+SHL,Y1=TB, Z1=0)

SWRL Representation - Part(Dividing_Walls1) A Product(?p) A
has_Object_Thickness_side_walls_TS(?p, ?ts) * has_Object_Shelf _length_SHL(?p, ?shl) »
has_Object_Thickness_bottom_shelf TB(?p, ?tb) ~ swrlb:add(?i, ?ts, ?shl) ->
has_Object_X_Coordinate(Dividing_Walls1, 1) A
has_Object_Y_Coordinate(Dividing_Walls1, ?th) A
has_Object_Z Coordinate(Dividing_Walls1, "0.0"xsd:float)
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The dividing walls position as per the semantics of Dividing Walls Position Rule is indicated

with Figure B 16. A variation in values is illustrated with Figure B 17.

Property assertions: Bookshelf1 [ = ] []
Object property assertions

®‘has part’ Framel

®‘has part' Shelvesl

B ‘has part' Dividing_Walls1

Data property assertions
has_0Object_Thickness_side_walls_TS 80.0f
has_0Object_Thickness_dividing_walls_TD 10.0f

has_0Object_Horizontal_length_1_shelf_HS
1000.0f

has_0Object_Thickness_bottom_shelf_TB 100.0f
has_0Object_Thickness_top_shelf_TT 30.0f
has_Object Vertical_length_1_shelf VS 1000.0f
has_0Object_Thickness_inner_shelf _TSH 20.0f
has_0Object_Height_H 5000.0f
has_0Object_Width_W 10000.0f

Negative obiect property assertions \

Neaative b PARRESHEY Walues to Bookshelf Attributes

To usa the reasoner click Reasoner > Start reasoner (] Show Inferances

Property assertions: Dividing_Walls1

Object property assertions

Data property assertions
‘has 3D Position Coordinates’ 100.0f
has_Inputs 10.0f
has_0Object_Z_Coordinate 0.0f
has_0Object_Thickness_dividing_walls_TD 10.0f
‘has 3D Position Coordinates’ 0.0f
has_Object_X_Coordinate 1055.0f
'has size' 10.0f
‘'has 3D Position Coordinates’ 1055.0f
has_Object_Y_Coordinate 100.0f

MNegative object property assertions

Negative data property assertions

Inferred
Dividing Walls Position as per
Asserted Values

Reasoner active [2] Show Inferences

Figure B 16:Inferred Dividing Walls Position Coordinates as per Asserted Values

HI=I0]E|

Property assertions: Bookshelfl
Object property assertions
B 'has part' Framel
B 'has part' Shelves1
m'has part' Dividing_Walls1
. I_I_nl_“_t__”(I_tinl\y'ariation in asserted Values

B has_Object_Thickness_dividing_walls_TD
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B has_Object_Thickness_top_shelf_TT 30.0f
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Figure B 17:Modifications in Dividing Walls Position — Variation in Asserted Bookshelf
Attributes
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Appendix 3: Experimentation of Pilot Use-Cases with Neutral Formal

Semantics

G. Process Specification Language

Process Specification Language has been investigated as potential knowledge representation
formalism for activity description with focus on manufacturing and production processes
based on pilot use-cases. PSL is based on Common Logic Interchange Format (CLIF) and is
regarded as ISO 18629. It is based on first order calculus or first order predicate logic
(FOPL). The syntax for activity and object description for engineering processes is illustrated

as follows —
PSL activity role declaration (ARD) and object declaration syntax:

(define-activity-role

:id <number>*

‘name <string>

:successors <number>*
:preconditions <PSL sentence>*
‘postconditions <PSL sentence>*)
(define-object

‘name <KIF constant>
:constraints <PSL sentence>*)
(define-parameter

‘variable <KIF variable>
:constraints <PSL sentence>*) (Griininger and Menzel, 2003)

For representation of inputs and outputs axioms for pilot use-cases, the syntax has been
adopted from (Bock and Gruninger, 2004) as explained with the help of a milling process in

Figure B 1.
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Electricity

Figure C 1: Inputs and Outputs for a Milling Process (Bock and Gruninger, 2004, Pg 3)

Inputs and Outputs in PSL syntax:
Parameterised term for activities -

(forall (?a ?m ?i ?0)
(implies (= ?a milling(?m ?i ?0))
(and (activity ?a)
(metal ?m)
(instructions ?i)

(0il 70))))

Inputs and outputs at activity occurrence —

(forall (?x ?s)
(implies (or (occurrence-input ?x ?s)
(occurrence-output ?x ?s))
(and (object ?x)
(not (state ?x))
(activity_occurrence ?s))))

(forall (?x ?s)
(iff (participant ?x ?s)
(exists (?t)
(participates_in ?x ?s ?t))))

(forall (?x ?s)
(implies (or (occurrence-input ?x ?s)
(occurrence-output ?x ?s))
(participant ?x ?s)))

Piece of
Metal

Shavings
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(forall (?x ?s2)
(implies (and (occurrence-input ?x ?s2)
(legal ?s2))
(exists (?s1)
(and (occurrence-output ?x ?s1)
(earlier ?s2 7s1)))))

(exists (?sDrill 2sMill ?m ?i ?0)
(and (occurrence_of ?sDrill drilling(?m ?i ?0)
(occurrence_of ?sMill milling(?m ?i ?0)
(occurrence-input ?m? sDrill)
(occurrence-output ?m ?sDrill)
(occurrence-input ?m ?sMill)
(occurrence-output ?m ?sMill)
(earlier ?sDrill ?sMill)

(legal ?sMill)))))

(forall (?x ?s ?f)
(implies (or (input-state ?x ?s ?f)
(output-state ?x ?s ?f))
(and (object ?x)
(not (state ?x))
(activity_occurrence ?s)

(state ?f))))
(forall (?x ?s 1)
(implies (input-state ?x ?s ?f)
(and (occurrence-input ?x ?s)
(prior ?f ?s)
(exists_at ?x (begin_of ?5)))))
(forall (?x ?s ?f)
(implies (output-state ?x ?s ?f)
(and (occurrence-output ?x ?s)
(achieved ?f ?s)
(exists_at ?x (end_of ?s)))))
subactivity(subactivityl, activity)
subactivity(subactivity2, activity)

H. RuleML

RuleML is a markup language for representing rules using semantic standards and based on
horn logic. For experimentation of engineering rules of pilot use-cases with Datalog version
of RuleML (Boley et al., 2005), based on XML, RDF, XSLT and OWL, the following syntax

was adopted for engineering rule axioms —
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Natural Language Sentence - "Peter Miller's spending has been min 5000 euro in the

previous year."

Datalog RuleML syntax —

<Atom>
<Rel>spending</Rel>
<Ind>Peter Miller</Ind>
<Ind>min 5000 euro</Ind>
<Ind>previous year</Ind>
</Atom>

Natural Language Sentence - "A customer is premium if their spending has been min 5000

euro in the previous year."
Datalog RuleML syntax —

<Implies>

<head>

<Atom>
<Rel>premium</Rel>
<Var>customer</Var>
</Atom>

</head>

<body>

<Atom>
<Rel>spending</Rel>
<Var>customer</Var>
<Ind>min 5000 euro</Ind>
<Ind>previous year</Ind>
</Atom>

</body>

</Implies>

Natural Language Sentence - The discount for a customer buying a product is 7.5 percent if

the customer is premium and the product is luxury."

Datalog RuleML syntax —

<Implies>

<head>

<Atom>
<Rel>discount</Rel>
<Var>customer</Var>
<Var>product</Var>
<Ind>7.5 percent</Ind>
</Atom>

</head>

<body>
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<And>

<Atom>
<Rel>premium</Rel>
<Var>customer</Var>
</Atom>

<Atom>
<Rel>luxury</Rel>
<Var>product</Var>
</Atom>

</And>

</body>

</Implies>

Natural Language Sentence - "The discount for Peter Miller buying a Porsche is 7.5 percent"

Datalog RuleML syntax —

<Atom>
<Rel>discount</Rel>
<Ind>Peter Miller</Ind>
<Ind>Porsche</Ind>
<Ind>7.5 percent</Ind>
</Atom>
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