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ABSTRACT This paper investigated a coordinated optimization problem of production and delivery
operations with parallel machines and multiple vehicles so that a more cost-effective and sustainable supply
chain performance can be achieved.We propose an effective hybrid metaheuristic solution framework to deal
with this problem, by which the investigated problem is decomposed into 3 sub-problems namely, vehicle
assignment, parallel machine scheduling and traveling salesman sub-problem. This framework is established
for handling the 3 sub-problems in a coordinated manner so as to simplify the optimization process and to
reduce the computational complexity. To evaluate the effectiveness of the methodology, this paper integrates
a genetic algorithm, the longest processing time heuristic and a tabu search under this framework to solve
the investigated problem. Extensive numerical experiments have been conducted and experimental results
show that the proposed solution framework can handle the investigated problem efficiently and effectively.

INDEX TERMS Production planning, parallel machines, distribution, genetic algorithm.

I. INTRODUCTION
Supply chain management is one of the most important
research subjects in operation management. The increasing
fierce competition forces enterprises to compete with other
enterprises both on price and quality, and on the reliability
and timeliness of delivery [1]. Due to the increasing market
globalization, coordination between various stages of supply
chain operations has received more and more attention from
industry practitioners and academic researchers [2], [3].
One of critical aspects of the supply chain coordination is
the integration of production and outbound logistics oper-
ations, which is important to reach a sustainable supply
chain. To obtain an expected delivery performance at the
minimum total cost, both production scheduling and logistics
scheduling need to be considered in a coordinated and jointly
manner [4]–[10], which is particularly important in some
manufacturing companies producing time-sensitive products
such as fast food and cement. In these companies, finished
products usually need to be transported to customers shortly
or immediately after the production process is finished. This
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paper deals with a coordinated optimization problem of pro-
duction and delivery operations with parallel machines and
multiple vehicles, called coordinated production and delivery
optimization (CPDO) problem.

We first establish the mathematical model of the CPDO
problem. To solve this problem, a novel solution framework
is proposed based on hybrid metaheuristic, by which we
decompose the investigated problem into 3 sub-problems,
including an assignment sub-problem of orders to vehicles,
a machine scheduling sub-problemwith makespanminimiza-
tion, and a travelling salesman sub-problem. This research
contributes the literature by proposing the novel multi-level
hybrid metaheuristic solution framework for complex CPDO
problems. Comparing with other approaches, the proposed
novel hybrid framework is able to simplify the optimization
process and reduce the complexity of computation.

II. LITERATURE REVIEW
A. COORDINATED PRODUCTION AND
DELIVERY OPTIMIZATION
The coordinated production and delivery optimization prob-
lem is also called as integrated production and delivery
(or distribution) scheduling (CPDO) problem. Research on
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CPDO has attracted more and more researchers’ attention
in recent years. Chang and Lee (2004) investigated a CPDO
problem with one vehicle and single machine [2]. Boudia et
al. (2008) researched into a single-product CPDO problem on
a multi-period horizon [11]. They considered a production
environment that both manufactures and customers could
store the finished products. Toptal et al. (2013) investigated
a CPDO problem with heterogeneous vehicles [12]. The
manufacturer used two types of vehicles to deliver goods.
Viergutz and Knust (2014) addressed a CPDO problem with
lifespan constraints in single machine and single vehicle envi-
ronment [1]. Seyedhosseini and Ghoreyshi (2014) presented
a CPDO model for perishable products [13]. Chen (2010)
has made a comprehensive review on CPDO problems and
pointed out that the CPDO problems were more challenging
than other CPDO problems and deserved more research due
to their practicality [4]. However, CPDO problemswith vehi-
cle routing (i.e., CPDO) have been investigated seldom in the
literature although vehicle routing widely exists in production
and delivery operations in real world. Chen et al. (2009)
examined CPDO problem of perishable food products in a
single-machine environment [14]. Ullrich (2013) addressed
a CPDO problemwith the total tardiness [15]. Li et al. (2016)
addressed a CPDO problem in a single-machine environ-
ment with the objective of minimizing vehicle delivery and
total customer waiting time [10]. However, CPDO problems
with parallel machines, heterogeneous vehicles and total cost
minimization objective have not been reported so far. These
problems widely exist in many make-to-order manufacturing
environments, such as lumber and porcelain industry [16],
which are the focus of this research.

B. TECHNIQUES FOR COORDINATED PRODUCTION
AND DELIVERY OPTIMIZATION PROBLEM
Two types of approaches are usually adopted to handle
CPDO problems, including exact methods, heuristics and
metaheuristics. The exact methods are usually used to han-
dle small-sized CPDO problems with a limited number
of machines and vehicles. Li et al. (2005) addressed a
CPDO problem in a single-machine environment and pre-
sented a dynamic programming model for handling a general
case [17]. They pointed out that the model’s computa-
tional complexity is very high when the number of machines
was greater than 1. Mazdeh et al. (2007) addressed a
single-machine scheduling problem with delivery by present-
ing a branch-and-bound scheme for this problem [18]. Due
to the NP-hard nature of most CPDO problems [15], these
problems have been solved usually bymetaheuristic methods.
Armentano et al. (2011) presented a tabu search method with
a process of path relinking to deal with the CPDO prob-
lem in an environment with single plant and homogenous
vehicles [19]. Chang et al. (2014) developed an ant colony
optimization process for the CPDO problem with multiple
unrelated machines and capacitated vehicles [20].

With the complexity increase of CPDO problems, tra-
ditional heuristics and metaheuristics have difficulties in

finding effective solutions to these problems because even
a very simple CPDO problem is NP-hard. Some researchers
thus aim at converting the original problem into some sim-
pler sub-problems so as to simplify the optimum-seeking
process [21]. Geismar et al. [22] proposed a two-phase
metaheuristics to handle a CPDO problem for short shelf life
products. They used either genetic or memetic algorithm to
choose firstly a locally optimal customer sequence, and then
splitted the customer sequence and used theGilmore-Gomory
approach to sort the subsequences of customers and to
form the coordinated schedule. Chen et al. (2009) pre-
sented a non-linear mathematical program model for CPDO
problem with a single machine and perishable food prod-
ucts [14]. They decomposed the integrated problem into a
production sub-problem handled by the constrained Nelder-
Mead approach, and a vehicle routing sub-problem han-
dled by a metaheuristic. Ullrich (2013) adopted a genetic
algorithm-based approach for the CPDO problem [15],
which decomposed the problem into a machine scheduling
sub-problem as well as a vehicle routing sub-problem. This
approach is easy to get trapped in local optimum because of
the complexity of its genetic optimization mechanism with
a complicated solution representation. Following these previ-
ous studies, this research develops a novel hybrid metaheuris-
tic solution framework with simpler solution representation
for the investigated CPDO problem by effective problem
decomposition.

III. PROBLEM STATEMENT
A. PROBLEM DESCRIPTION
We investigate a coordinated production and delivery opti-
mization problem with one manufacturing plant and multiple
vehicles and many customers. The plant has multiple iden-
tical parallel machines to produce customer orders. Orders
cannot be split and each order must be continuously produced
on one machine. After production, orders are delivered to
widely dispersed customers by heterogeneous capacitated
vehicles. Finished orders should be delivered to specified
customers before the specified delivery due dates, otherwise
tardiness penalties are incurred. The manufacturing plant has
to obtain a joint production and delivery plan, by deciding
the optimal assignment of orders to machines, the optimal
production sequence of customer orders, and the optimal
vehicle routes of delivering finished orders to customers. The
problem objective is to minimize the total cost of transport
and delivery tardiness.

On the basis of real-world practices, we make the follow-
ing reasonable settings in establishing the mathematical pro-
grammingmodel of the investigated CPDO problem: (1) each
customer has one order and one location; (2) each vehicle’s
departure time is the last completion time of all orders trans-
ported by this vehicle; (3) orders that are produced (delivered)
on a same machine (vehicle) are processed consecutively on
the same machine; (4) the product volumes of all orders are
the same; and (5) the transport time among customers is equal
to the transport distance among customers.
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FIGURE 1. Illustration of a CPDO solution.

To facilitate the understanding of the investigated problem,
we consider a CPDO example with ten orders (customers),
two machines and three vehicles. FIGURE 1 depicts a fea-
sible CPDO solution. Machine 1 produces orders 1, 2, 5,
6, 10 and production sequence is 2, 10, 1, 6 and 5 in turn.
Machine 2 produces the remaining five orders and production
sequence is 3, 4, 8, 7 and 9 in turn. Vehicle 1 delivers orders 2,
3, 4, 10 and the delivery route is 0→3→10→2→4→0 (0 is
the depot). Vehicle 2 delivers orders 1, 7, 8 and the delivery
route is 0→7→1→8→0. Vehicle 3 delivers orders 5, 6, 9 and
the delivery route is 0→6→5→9→0.

B. NOTATIONS
Notations that are used in this paper are presented below.

Indices
i, customer/ order (alias h, j, i = 1, . . . , I )
m, parallel machine (m = 1, . . . ,M )
k , vehicle (k = 1, . . . ,K )
Parameters
pi, production processing time of order i
qi, size of order i
li, delivery due date of customer i
cij, travel time between customer i and customer j
Qk , vehicle k’s capacity (maximal number of products

vehicle k can transport)
µ, an infinite large number
α, transport cost per unit time
β, penalty cost per unit tardiness
Intermediate variables
CTi, completion time of order i
ai, arrival time at customer i
dk , makespan of orders transported by vehicle k
Decision variables
omi, 1 if order i is produced on machine m; 0 otherwise
yijm, 1 if order i is the direct preceding of order j on

machine m; 0 otherwise
tki, 1 if order i is delivered by vehicle k; 0 otherwise
xijk , 1 if the link (i, j) is a part routing of vehicle k;

0 otherwise.

C. MATHEMATICAL MODEL

min F(omi, yijm, tki, xijk ) = α
∑
k

∑
i

∑
j

cij · xijk

+ β
∑
i

max(ai − li, 0) (1)

Subject to :
∑
m

∑
i

omi = I (2)∑
m

omi = 1, ∀i (3)

I+1∑
i=1,i 6=j

yjim = 1, ∀j ∈ {0, 1, . . . , I } ; ∀m (4)

I∑
i=0,i 6=j

yijm = 1, ∀j∈{1,. . . ,I , I+1} ; ∀m

(5)

CT0 = 0 (6)

CTi=
∑
j,j6=i

∑
m

(
CTj · yjim

)
+ pi

∀i; ∀j ∈ {0, 1, . . . , I − 1} (7)

dk = max
i
(CTi · tki) , ∀k (8)∑

i

∑
k

tki = I (9)∑
k

tki = 1, ∀i (10)∑
j

∑
k

xijk = 1, ∀i ∈ {0, 1, . . . , I } (11)

I∑
i=0

xijk −
I∑

i′=0

xji′k = 0, ∀j, k (12)∑
j

x0jk = 1, ∀k (13)

∑
i

xi0k = 1, ∀k (14)∑
i

qi · tki ≤ Qk , ∀k (15)

ai + cij − µ
(
1− xijk

)
≤ aj, ∀i, j, k (16)

ai ≥
∑
k

(dk · tki)+ c0i, ∀i (17)

omi, tvi, yijm, xijk ∈ {0, 1} , ∀i, j, k,m (18)

Objective (1) aims to minimize the total cost, including
transport costs and tardiness penalty of all customer orders.
Constraints (2)–(7) are machine scheduling constraints. Con-
straint (2) stipulates that all I orders should be allocated to
machines I times while constraint (3) stipulates that each
ordermust be exactly allocated to onemachine. Constraint (4)
ensures that order j either succeeds another order i or is the
first order to be produced on machine m, where order 0 indi-
cates the dummyfirst order processed on parallel machinesm.
Constraint (5) indicates that the order i is either the last to
be produced on machine m or the immediate predecessor
of order j, where I + 1 is the dummy last order processed
on parallel machines. Constraints (6)-(7) calculates order i’s
completion time and the completion time CT0 of the dummy
first order is set to zero. Constraint (8) indicates that, for
any vehicle k , the makespan dk of orders delivered by this
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vehicle is the maximal completion time of these orders. Con-
straints (9)-(10) guarantee that each order is allocated exactly
to one vehicle. Constraints (11)–(17) are flow conservation
constraints of traveling salesman problem. Constraints (11)
and (12) enforce that vehicle k arrives at customer i once
at most and each entering vehicle leaves customer i. Con-
straint (13) and Constraint(14) guarantee that each vehicle
route starts and returns the same plant. Constraint (15) stip-
ulates that the load delivered by vehicle k cannot exceed the
vehicle capacity. Constraint (16) calculates the delivery time
ai of order i. Constraint (17) indicates that the delivery time ai
of order i is equal to or greater than the transport time from
the customer to the plant plus the departure time of the
vehicle transports this order. Constraint (18) stipulates the
value ranges of four decision variables.

D. PROBLEM COMPLEXITY
The problem formulated above can be reduced easily to a
vehicle routing problem if we set all orders’ production times
to zero. It is well-known that the vehicle routing problem
is strongly NP-hard. The integrated problem is thus strongly
NP-hard as well.

The investigated CPDO problem is very hard to solve
because if its huge solution space. Consider the problem
instance withM machines, K vehicles and I orders, the solu-
tion space of machine scheduling is CM−1

I · I !, the solution
space of vehicle routing is CK−1

I · I !, and the solution space
of investigated CPDO problem is CM−1

I · I ! ·CK−1
I · I !. Take

a simple CPDO problem with M = 2,K = 2, and I =
10 as an example. This problem has 8.7 × 109 candidate
solutions. The real-world CPDO problems have the much
larger solution space and are intractable since they usually
need to deal with more machines, orders and vehicles.

IV. METHODOLOGY
A. PROBLEM DECOMPOSITION AND HYBRID
METAHEURISTIC SOLUTION FRAMEWORK
We simplify the problem formulated above by effective prob-
lem decomposition and transformation. According to the
actual characteristics of the CPDO, each order must be pro-
duced on one machine and transported by one vehicle, all
orders are delivered byK vehicles and each vehicle leaves the
plant immediately after the orders transported by the vehicle
are finished. We can thus classify all orders into K groups,
each of which consists of orders transported by a vehicle.
Let Nk denote the number of orders transported by vehicle k .
We have N1 + N2 + ... + NK = I . As a result, we need
to address a vehicle assignment sub-problem, which assign
appropriate orders to each vehicle (determining the values
of variable tki). Based on the vehicle assignment solution,
we then need to address a parallel machine scheduling sub-
problem, which decides these orders’ production sequences
on appropriate parallel machines (i.e., deciding the values of
two variables - omi and yijm). Lastly, for each vehicle, a trav-
elling salesman sub-problem is solved, which determines the

FIGURE 2. Pseudo-code of hybrid metaheuristic solution framework.

optimal travel routes of each vehicle (i.e., determining the
values of xijk ).
All the three sub-problems are classical optimization

problems. The 1st sub-problem is equivalent to a general-
ized assignment problem, the 2nd sub-problem is a parallel
machine scheduling sub-problem with makespan minimiza-
tion, while the 3rd one is a travelling salesman problem.
All these problems are NP-hard problems [23], [24], solution
approaches for which range from exact techniques [25]–[32],
heuristic techniques [33]–[43] to various metaheuristic tech-
niques [44]–[48]. With the increase of problem scale and
complexity of these problems, metaheuristic techniques usu-
ally exhibit superior performances to exact and heuristic
techniques because the latter two have difficulty in find-
ing effective solutions to complex NP-hard problems in a
reasonable computation time.

Compared with the original CPDO problem, the 3 sub-
problems are easier to handle. For example, the parallel
machine scheduling sub-problem can be solved effectively by
some heuristic rules [49], [27]. If so, the remaining solution
space we need to search for is only the solution space size
(Ck−1

I · I !) of the vehicle assignment sub-problem times the
solution space size (I !) of travelling salesman sub-problem,
which is CK−1

N · I ! · I !.
On the basis of these 3 sub-problems, we propose a

novel multi-level hybrid metaheuristic solution framework
to solve the problem investigated. FIGURE 2 outlines the
pseudo-code of the hybrid metaheuristic solution framework.
First, we initialize algorithm parameters, including popula-
tion size (ρ), the total number of orders (i), the total number of
vehicles (k), and the total number of parallel machines (m) as
well as the maximal number of iterations (gmax). We initialize
the number of iterations in line 2. An Initialization proce-
dure is utilized to generate randomly some initial vehicle
assignment (VA) solutions {tki} to the vehicle assignment
sub-problem in line 3. Line 4 is utilized to access the perfor-
mance (objective value) of candidate VA solution {tki}, which
is performed according to Procedure 1. Then, a repeat-until-
loop (from lines 5 to 10) is executed to generate the best
solution Ibest . From the parental VA solution at the gth itera-
tion, the new VA solution is generated by performing genetic
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FIGURE 3. A representation example of assigning 10 orders to 2 vehicles.

operators in line 6. In line 7, the new VA solution is evaluated
according to Procedure 1. Then, the newVApopulationMg+1

for the next generation Ig+1 of VA solution is produced in
line 8. Mg+1 is composed of the best ρ VA solutions in the
specified value range. After each iteration, the termination
criteria of maximal iterations gmax is checked in the next line.
If the number of maximum iteration is satisfied, the iterative
process is ended. The resulting best solution is selected from
Mg as the best one produced by our hybrid metaheuristic
solution approach in line 11. Otherwise, the iterative process
goes back to line 6 and continues generating newVA solution.
Procedure 1:
Step 1: obtain the values of {omi} and

{
yijm

}
by handling

the machine scheduling sub-problem;
Step 2: obtain the values of

{
xijk
}
by solving the traveling

salesman sub-problem;
Step 3: calculate the objective function values according

to formulation (1) based on the values of {tki} , {omi} ,
{
yijm

}
and

{
xijk
}
.

B. A GENETIC ALGORITHM-BASED HYBRID
INTELLIGENT APPROACH
On the basis of the solution framework presented in the
section A. PROBLEM DECOMPOSITION AND HYBRID
METAHEURISTIC SOLUTION FRAMEWORK, a genetic
algorithm-based hybrid intelligent (GAHI) approach is con-
structed to deal with the problem investigated [47], [50].
This research adopts the standard genetic algorithm, proposed
by Goldberg (1989) [51], to handle the vehicle assignment
sub-problem and obtain variable tki’s value. The LPT rule,
proposed by Adams et al. (1988), is adopted to handle the
parallel machine scheduling sub-problem and obtain vari-
able omi’s value. The tabu search with intermediate-term
and long-term memory, proposed by Fiechter (1994) [52],
is utilized to handle the traveling salesman sub-problem
and obtain variable xijk ’s value. In the genetic algorithm,
the chromosome representation incidates a candidate vehicle
assignment solution {tki}, which is coded by a gene sequence,
whose length is the number of orders to be produced. A gene
indicates an order and the gene value implies the vehicle
assigned to transport the order. A representation example
of assigning 10 orders to 2 vehicles is shown in Fig. 3.
The tournament selection (Goldberg 1989) [51] and the
uniform-order crossover (Davis 1991) [52] are utilized as
selection and crossover operations respectively. On the basis
of the uniform mutation (Goldberg 1989) [51], a modified
mutation operator is presented, which randomly changes the
values of several randomly chosen genes.

The longest processing time (LPT) heuristic, developed
by Adams et al. (1988) [54], has been proved to be very

effective for the parallel machine scheduling problem with
makespan objective andwithout preemptions [55], [56]. The
tabu search, proposed by Fiechter (1994) [52], has been
demonstrated that it can solve travelling salesman problems
with up to 500 vertices very effectively. This method is able
to find the optimal solutions to travelling salesman prob-
lems since the problem sizes of travelling salesman problem
instances involved in this research are not more than 100.

V. EXPERIMENTS
This section validates the performance of proposed hybrid
framework for the investigated CPDO problem based on
extensive numerical experiments.We highlight 3 experiments
next due to the page limit of the paper.

A. EXPERIMENT DATA AND SETTINGS
Extensive experiments have been performed to validate the
effectiveness of the hybrid metaheuristic solution framework.
Three representative experiments with different number of
customers, vehicles and machines are shown as follows:

1) Experiment 1: 25 orders, 3 vehicles and 3 machines;
2) Experiment 2: 50 orders, 3 vehicles and 3 machines;
3) Experiment 3: 100 orders, 3 vehicles and 3 machines.
The capacities of vehicles in these experiments are 900,

1000, 1100 respectively. The data of customers and their
orders are shown in Appendix. In the first 6 columns, the val-
ues show the customer number, geographical data in x-axis
and y-axis, delivery due date, order size and processing time
respectively. The processing time is set as the corresponding
order size. The plant is located at coordinate (40, 50).

In our experiments, we set the population size to 100, the
number of generations to 2000, the crossover probability to
0.7, and the mutation probability to 0.3 in GA [57], [47].
In tabu search [48], the tabu list length is set to 10, the number
of neighboring solutions is set to 25, the maximum generation
is 70, and ten best neighboring solutions are saved in each
move. We set α = 1, β = 0.25. The experiments were con-
ducted on a laptop with Intel Core i5-3210M CPU@2.1 GHz
and 3 GB RAM using MATLAB R2013a.

B. EXPERIMENTAL RESULTS AND
PERFORMANCE COMPARISON
To evaluate the performance of the developed hybrid meta-
heuristic solution framework, we compared the performance
of GAHI approach with that of the genetic algorithm, UGA,
proposed by Ullrich (2013) [15].

In GAHI approach and UGA, if no better solution is found
in several consecutive iterations or the maximum number
of iterations is reached, the optimization process is stopped.
Tomake a fair comparison, some algorithm parameters are set
to the same. In GAHI approach and UGA, we set the popula-
tion size to 100, the crossover probability to 0.7, the mutation
probability is 0.3, the maximum number of iterations to 2000,
and the number of consecutive iterations is 500.

Table 1 shows that the comparison results produced by
the proposed GAHI approach and the UGA for the 3 CPDO
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TABLE 1. Comparisons between GAHI approach and UGA.

experiments in 10 repetitive runs. In table 1, the rows of
‘‘Minimum’’ and ‘‘Maximum’’ mean the minimum and max-
imum of the objective functions, generated via GAHI and
UGA in 10 repetitive runs. For each experiment, the relative
gap between GAHI approach and UGA is calculated by the
following formula (19).

gap =
TUGA − TGAHI

TUGA
× 100% (19)

where TUGA and TGAHI denote the minimal total cost gener-
ated by the UGA and by the GAHI approach respectively.

The experimental results of table 1 show that:
1) The GAHI approach shows the better optimization per-

formance than the UGA. The objective values of three exper-
iments obtained by the GAHI approach are 861, 2323 and
11160 respectively, while the objective values obtained by
the UGA are 1143, 3057 and 23080 respectively. These
results show that the objective values obtained by the GAHI
approach are much smaller than those obtained by UGA. The
developed GAHI approach is capable of generating the better
solutions to the CPDO problem compared to the UGA.

2) Compared to the UGA, the GAHI approach has a faster
convergence rate and more difficult to trap in local optimum.
Due to the difference of genetic code, the GAHI approach has
a relative smaller searching space than the UGA, which leads
to the UGA converges slower than GAHI approach. Accord-
ing to the results of experiment 1, the GAHI approach con-
verged in the 85th generation, while the UGA converged in
the 300th generation.

In summary, the proposed novel hybrid metaheuristic solu-
tion framework converts the CPDO into three sub-problems,
which makes it possible to narrow down the search space
of the CPDO. Compared with UGA, the GAHI approach
under this framework could generate better solutions in terms
of the examined experiments, and show a superior optimiza-
tion performance.

C. OPTIMIZATION PERFORMANCE
OF THE GAHI APPROACH
We further examine the optimum-seeking performance of the
GAHI approach. The enumeration method (EM) is adopted

TABLE 2. Comparisons between GAHI and EM.

to find the optimal solutions to small-sized CPDO problems.
The comparisons were conducted based on 3 small-sized
problem instances with 10 orders, 3 vehicles and 2 machines.
We perform 10 trials for the GAHI approach for each
instance.

The comparison results between the GAHI approach and
the EM are shown in table 2. The GAHI approach gen-
erated the optimal solutions to the three instances in each
trial. The GAHI approach exhibits the good optimum-seeking
performance for the CPDO problem investigated. For these
instances, the computation time (denoted by t_GAHI ) of
GAHI approach is much shorter than that (t_EM ) of the EM.
Taking the instance with 2 machines, 10 orders and 3 vehicles
as an example, the CPU time (denoted by t_EM ) of the EM
is 6123.012 s, while the GAHI approach only uses 143.335s,
which is only 2.34% of the former. When the problem size
increases, the gap in CPU time between the GAHI approach
and the EM goes bigger.

Based on the comparison results described above,
the GAHI approach and the proposed hybrid metaheuristic
solution framework have the capability of handling the inves-
tigated CPDO problem effectively.

VI. CONCLUSION
This paper addressed a collaborated production and deliv-
ery optimization problem with parallel machines and mul-
tiple heterogeneous vehicles in manufacturing environments
producing time-sensitive products. The mathematical pro-
gramming model of the CPDO problem is established.
A multi-level hybrid metaheuristic solution approach is
developed to deal with this problem, by which the investi-
gated problem is decomposed into 3 simple sub-problems
including an assignment sub-problem of orders to vehicles,
a machine scheduling sub-problem with makespan objective,
and a travelling salesman sub-problem. By so doing, the can-
didate solution space searched by metaheuristics is reduced
largely since the machine scheduling sub-problem can be
solved determinedly by some classical heuristics.

To evaluate the performance of the hybrid metaheuris-
tic solution framework, this research constructed a genetic
algorithm-based hybrid intelligent approach by combining
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TABLE 3. Original data of the 100 customers. TABLE 3. (Continued.) Original data of the 100 customers.
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TABLE 3. (Continued.) Original data of the 100 customers.

a genetic algorithm, a LPT rule and a tabu search under
this framework. Extensive experiments have been performed
to validate the effectiveness of the proposed framework by
comparing the GAHI approach and two other approaches. For
small-sized instances, the GAHI approach showed the ability
of achieving the optimal solutions within a much shorter
time than the enumeration method did. The GAHI approach
generated much smaller objective values for the examined
three problem instances, and showed a better optimization
performance than the Ullrich’s genetic algorithm did [15].

To sum up, this paper demonstrates that it is possible to
handle effectively the CPDO problem based on the proposed
hybrid metaheuristic solution framework. As a start, this
paper presented the results of integrating several commonly
used metaheuristics into this framework. We do not claim
that the used techniques (e.g., GA, LPT heuristic) are the
best under the solution framework, under which other meta-
heuristics can also be used. Future work can aim to integrate
more advanced metaheuristics for each sub-problem into the
proposed framework, and to compare their performances with
those of the GAHI approach. Another future direction can
consider the effects of vehicle departure time on integrated
scheduling performances.

APPENDIX
See Table 3.
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