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ABSTRACT
Influence of interaction fidelity and rendering quality on per-
ceived user experience have been largely explored in Virtual
Reality (VR). However, differences in interaction choices trig-
gered by these rendering cues have not yet been explored. We
present a study analysing the effect of thermal visual cues and
contextual information on 50 participants’ approach to grasp
and move a virtual mug. This study comprises 3 different tem-
perature cues (baseline empty, hot and cold) and 4 contextual
representations; all embedded in a VR scenario. We evaluate 2
different hand representations (abstract and human) to assess
grasp metrics. Results show temperature cues influenced grasp
location, with the mug handle being predominantly grasped
with a smaller grasp aperture for the hot condition, while the
body and top were preferred for baseline and cold conditions.

Author Keywords
Virtual Reality, Grasping Metrics, Hand Tracking, Hand
Interaction

CCS Concepts
•Human-centered computing → Interaction design theory,
concepts and paradigms; Virtual reality; Gestural input;
Human computer interaction (HCI); User studies;
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INTRODUCTION
Immersive headsets have experienced an unprecedented
growth in consumer availability [60], with companies such as
Facebook, Microsoft or Samsung enabling accessible VR ex-
periences for the masses. The sector’s growth prospects reflect
its potential to reshape the way people communicate [64, 91],
play [43], work [45, 50] and learn [38, 107], achieving high
levels of immersion [10].

Intuitive interaction in immersive environments plays a key
role in increasing presence [36] which in turn can improve the
overall user quality of experience. Seamless interactive VR
systems often rely on hand interaction due to their multiple
degrees of freedom [78] and human ability to use hands for
acquiring and manipulating objects [2, 41, 63, 94]. Previous
studies have shown that bare hand interaction (i.e. without
the use of supplementary wearables) is linked to ease of ac-
cess and naturalness. This is due to the absence of constraints
imposed by wearable devices and its potential in delivering
natural, intuitive and effective interaction in immersive envi-
ronments [37, 49, 56, 73, 97]. When creating new bare hand
interactive systems, several studies rely on predefined sets of
gestures for natural interaction [22, 103, 104]. These inter-
actions have predominantly been designed by researchers for
optional recognition rather than for naturalness, being often
arbitrary and not intuitive enough [66]. Therefore, one of
the interaction challenges in VR is to improve the intuitive
nature of interaction by improving natural grasping quality
[67], thus mimicking the behaviour our human hands have in
real environments [88].

Previous literature has explored the essential influencing fac-
tors to grasping real objects, with these being texture, hardness,
weight and temperature/thermal conditions [5, 46]. Rendered
textures and perceived hardness of objects and their effect
on usability and user perception have been widely explored
in immersive systems, with authors exploring texture repre-
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Figure 1. Conditions under study, with 1(a) and 1(b) showcasing the human hand representations and 1(d), 1(e), 1(f) and 1(g) showcasing the VR
environment conditions alongside visual thermal cues.

sentations using “custom-made” haptic actuators [5, 7, 32].
Additionally, thermal haptic feedback has been used to supple-
ment immersive environments. Recent studies have applied
thermal haptic feedback in differing configurations, namely,
around the wrist [61], to augment emotions [89], show di-
rectional cues for users [62], guide user behaviour [90] and
evaluate users’ perception [5, 108]. However, the effect of
visual thermal cues for grasping interaction in VR has not
been explored.

We present the first study evaluating thermal cues and their
effect on grasp metrics in VR. Across 50 participants we re-
port on user grasp aperture, grasp type and grasp location on
the object under different visual thermal cues. We further
evaluate four different contextual representations of the virtual
environment to assess the influence of thermal visual feedback
on grasp interaction. Findings from this study can be used
as guidelines for interaction design, helping developers and
designers to select the most suitable visual cues for facilitat-
ing an intuitive interaction with virtual objects and support
improved natural interaction design for VR.

RELATED WORK

Hand Interaction in VR
Hand interactions in VR were initially developed using instru-
mented gloves [29], which inspired the development of wear-
able equipment such as wireless data gloves [44], markers [94]
and electromyographic armbands [96, 106]. Wearable devices
have been widely used for hand interaction methods, how-
ever, they inherently constrain human motion [101] and they
have been often linked to discomfort [87], time-consuming
configuration and problems with wider user adaptation [35].

As a result of these constraints, researchers have considered
systems that do not require the full instrumentation of the
hand [41] or devices that allow bare hand interaction [2, 34,
103]. Hand based interaction that enables users to manipulate
objects as if they were real is known as grasping [3, 16]. This
natural interaction with objects in VR plays an important role

in increasing immersion in virtual environments [36], however
is still one of the ongoing interaction challenges in VR [67].

Grasping
Researchers have investigated human’s approach to grasping
real objects, aiming at understanding certain aspects of human
hand usage [72, 79], as well as classifying grasps in a discrete
set of types [21, 28, 39]. However, this knowledge cannot be
applied directly to virtual grasping, as it has been identified
that users interact with virtual objects differently than they
interact with real objects [54, 92, 98]. Therefore, virtual
grasping has extensively been explored as a technical and
computational challenge [12, 13, 88].

It has been identified that object characteristics as shape and
size influence the grasp choice when grasping real objects
[25], as well as virtual objects [3, 4]. However, VR commonly
lacks physical sensations of friction and weight to the hand
[12], key constraints considered in grasping real objects.

Visual Representations
The main feedback cue in VR environments is the visual ren-
dering [19]. Therefore, a number of works take advantage
of the easiness with which visual cues can be controlled and
evaluated in VR.

User Representation
The use of avatars and avatar representation in VR has received
significant attention from the research community exploring
how it effects the sense of body ownership [59, 84] and agency
[40] as they allow users to locate their own body pose within
the virtual environment.

Furthermore, additional visual aspects such as human-likeness
[48, 52], gender [82] or transparency [15, 42] of the virtual
representation have shown to influence ownership illusion as
well as user performance.

The human hand is a powerful physical tool through which
people interact with the surrounding world [30]. It has been
identified that perceived naturalness of virtual hands can have



a significant effect on perceived user presence [82] as well as
own-body perception and immersion [48].

Environment Representation
One important facilitator of immersion in VR is fidelity, the
degree of accuracy with which a system recreates real-world
experiences [14, 20, 55, 100], with high levels of interaction
fidelity being preferred for virtual object manipulation [75].
Multi-sensory feedback has proved to generate high levels of
fidelity in VR [23, 32, 33, 80], with an increased number of
works using haptic feedback devices to stimulate other sensory
channels [1, 7, 51, 58, 95, 105]. However, providing haptic
feedback generally requires complex hardware, while still
being limited [18, 47].

As an alternative, researchers rely on the concept of the kines-
thetic visual capture [86], the dominance of vision over propri-
oception, to efficiently deceive user experience through visual
cues in the environment [65].

Rietzler et al. [74] used visual cues to induce the haptic sensa-
tion of weight. They used perceivable tracking offsets of the
virtual hand, nudging the user to lift the arm higher to perceive
some form of additional exertion. To create the illusion of
resistance of wind in VR, Pusch et al. [70, 71] used visual
hand displacements. Their results show that the majority of
participants felt a force that was pushing their hands. Rosas et
al. [77] investigated how different types of visual cues for tex-
tures change depth perception. They found that textures with
a pseudo-random distribution of circles provide the highest
reliability in discriminating the distance of objects in motion.
Biocca et al. [11] investigated sensory illusions in a virtual
environment, and identified that when manipulating the visual
analogue for a physical force, a virtual spring, users reported
haptic sensations of “physical resistance”, even though the
interface included only visual representations. Vigier et al.
[93] studied the role of visual cues (sky aspect, shadows, sun
location and light effects) on climate perception (season, day-
time and temperature) in virtual urban environments. Their
results prove the feasibility of suggesting complex climatic
perceptions and thermal feelings using just visual representa-
tions.

Although the effect of visual representations of the virtual
environment on human perception has been investigated, its
effect on wider interaction patterns such as grasp choice in VR
is unknown.

STUDY DESIGN

Apparatus
We built a custom experimental framework using the Oculus
Rift DK2 VR Head Mounted Display (HMD) and the Leap
Motion hand tracking device. The Leap Motion was mounted
on the front of the HMD facing the participants’ hands, to
facilitate hand interaction. Additionally, we used a Logitech
Pro 1080p HD webcam positioned on top of the Oculus DK2,
to record participants’ hand from the user’s perspective at all
times. The system was developed using C#, Unity 2018.2
and Leap Motion 4.0 SDK. The virtual interaction space was
60 cm x 60 cm x 60 cm. The setup and equipment are shown
in Fig 2.

Figure 2. System configuration displaying the custom experimental
framework: Leap Motion and Logitech Pro 1080p HD camera attached
to the Oculus Rift DK2.

Environment
The experiment was conducted in a controlled environment
under laboratory conditions at location N 52◦ 28.35′ E 53◦
5.87′ in July 2019. The average outdoor temperature was
22.4°C (SD 3.8)1 and the indoor controlled environment tem-
perature was constant 20°C to minimise the potential inference
of environmental and weather conditions in the results of the
presented study. The test room was lit by a 2700k (warm
white) fluorescent with no external light source.

The virtual environment showed a virtual desk with its surface
aligned to a seating position, as in Figure 1(c). The virtual
mug was placed at the centre of the table, changing its texture
and content as presented in the next subsection and in Figures
1(d)-1(g). Additionally, the scenario showed a window, which
changed views in between conditions.

Conditions
Hand Representation
Following Schwind et al. definitions [82], for hand representa-
tions we selected an abstract hand model that was extracted
from the Leap Motion SDK and was represented as a set of
cylinders and spheres representing bones and joints respec-
tively (please refer to Figure 1(a). For the human hand condi-
tion we chose an androgynous model, following Schwind et al.
recommendation for avoiding noticeable gender characteristics
in human hands [82] (please refer to Figure 1(b)).

Thermal Representations
For this study, we chose a 3D mug as the interaction object, due
to its familiarity in everyday tasks, as well as the variations of
grasping it proposes. Won et al. [102] showed that the colour
red is associated to hot concepts, blue to cold and green to
reliable and safe. For the mug, we used the yellow colour, as it
is the only one of the primary colours that was not associated
to any connotation that may influence the study results.
1Weather data collected from: https://www.accuweather.com/en/
gb/birmingham/b5-5/july-weather/326966 (last accessed Septem-
ber 2019)

https://www.accuweather.com/en/gb/birmingham/b5-5/july-weather/326966
https://www.accuweather.com/en/gb/birmingham/b5-5/july-weather/326966


(a) Cold (b) Hot (c) Empty

Figure 3. Thermal representations for the virtual mug. 3(a) shows the
cold condition with ice cubes and a clear liquid, 3(b) shows the hot con-
dition with coffee steam coming out of the top and 3(c) shows the empty
condition with no content.

• Cold: The mug content in this condition was a set of ice
cubes inside a clear blue liquid (as in Figure 3(a)).

• Hot: The mug content was rendered as a brown liquid
simulating coffee with steam coming from the top of the
mug (as in Figure 3(b)).

• Empty: An empty mug with no content inside (as in Figure
3(c)).

We chose the colours of the liquid (blue for cold and brown for
hot) based on previous literature showing that surfaces whose
dominant frequencies are towards the blue end of the spectrum
are perceived as cold, and those towards the red end of the
spectrum are perceived as hot [8].

Virtual Environment
The environment surrounding objects has shown to influence
interaction choice [99], therefore, to evaluate this in the context
of the study, we explore different contextual representations
to support the thermal cues above.

• Basic: Presents a simple yellow mug, in all 3 temperature
conditions. As in Figure 1(d) the only visual difference be-
tween the thermal conditions is the rendered content inside
the mug.

• Content Label: Presents a mug with a label attached to it,
informing about the contents inside as in Figure 1(e).

• Glass: Presents a see-through mug in a transparent texture
as in Figure 1(f). This allows the user to see the content of
the mug through the mug itself, mimicking a glass texture.

• Context Objects: Presents the mug used in the basic condi-
tion accompanied by other contextual objects to support the
thermal representation as in Figure 1(g). These accompa-
nying objects were presented behind the mug, 10 cm away
from its original position in both z and x axes. The accom-
panying items were a coffee espresso machine for the hot
condition, ice bucket for the cold condition and an empty
bucket for the empty condition. The view from the window
also changed depending on the thermal cues, displaying a
snowy landscape for the hot condition, a beach for the cold
condition and a forest for the empty condition.

Task
Participants were instructed to pick and move the virtual mug
from the origin location to a target location situated on the left
of the original object and displayed as a 3D semi-transparent
virtual mug in a different colour, as in Figure 4.

Figure 4. Interaction environment displaying the virtual mug (yellow vir-
tual mug) and the target position (semi-transparent green virtual mug).

Participants
A total of 50 participants (21 females, 29 males) from a popu-
lation of university students and staff members volunteered to
take part in this study. Participants ranged in age from 18 to 50
(M=25.5, SD=14.57). All participants were right-handed, to
ensure they interacted with the mug under the same conditions
(i.e. the handle in the same orientation with respect to their
dominant hand).

All participants performed the experiment tasks under both
hand conditions(abstract and human). Participants completed
a standardised consent form and were not compensated. Visual
acuity of participants was measured using a Snellen chart, each
participant was also required to pass an Ishihara test to check
for colour blindness. Participants with colour blindness and/or
non corrected visual acuity of < 0.80 (where 20/20 is 1.0)
were not included in this study.

Participants were asked to self-assess their level of experience
with VR systems, with 16 participants reporting to have an
average level of experience, 31 reported being novice to the
technology and 3 self-labelled themselves as experts. Partici-
pants did not have any previous experience with hand tracking
sensors.

Protocol
Pre-test
Prior to the study, participants were given a written informed
consent form, where the test protocol and main aim of the
study were described. Additionally, participants completed a
pre-test questionnaire enquiring about their background level
of experience with VR systems and hand recognition sensors.

Calibration
Before each test, the test coordinator followed manufacturers’
guidelines to help participants fit the HMD in the most suitable
and comfortable way. The camera attached to the Oculus DK2
(Fig. 2) was adjusted each time to ensure the participants’
hand was in the field of view of the devices.

Training
Participants were trained to pick and move a neutral object (a
cube) from its original position to a target position, to famil-
iarise themselves with the VR environment and hand interac-
tion space. Thermal cues were not included at this stage of the
study. Participants spent 7-10 minutes training with the system
until they felt comfortable with the task and the apparatus.



Test
Once participants were comfortable with the interaction space
and the overall VR environment, they were presented with the
main experimental task. Each participant completed 24 tasks(2
hand representations × 3 temperature cues × 4 environmental
conditions as shown in Fig 1). The order of the hand repre-
sentation conditions were counterbalanced; half participants
started with human hand (Fig. 1(b)) and the other half with
the abstract hand (Fig. 1(a)). Thermal and environmental
conditions were then presented in randomised controlled order.
Participants were asked to pick and move the virtual mug the
way they felt most intuitive to them and instruct the test coor-
dinator when they were happy with their hold. Hand tracking
data was then recorded from the Leap Motion device, while
an image was captured of both the VR scenario and from the
Logitech webcam.

Post-Test
After each hand representation condition, participants were
asked to complete the Igroup Presence Questionnaire (IPQ)
and a set of tailored questions asking about their experience
during interaction with the virtual object in different condi-
tions.

Metrics
Grasp Aperture
We capture X, Y, Z positions of finger joints during the interac-
tion using the Leap Motion. We use the Grasp Aperture (GAp)
defined in equation 1 from the grasp model presented in [3].

GAp =
√
(Px−Bx)2 +(Py−By)2 +(Pz−Bz)2 (1)

Where GAp is the distance between the index and the thumb
fingers in the x, y and z axes, and Px, Py and Pz are the co-
ordinates of the index finger tip, and Bx, By and Bz are co-
ordinates of the thumb tip.

Labelling
Two trained rater academics labelled all grasps individually;
following the methodology described in [17]. The grasp types
used for labelling are those in the Human GRASP taxonomy
[28]. Additionally, raters labelled the grasp location of the mug
as explained in section Grasp Location. The raters came from
a computer science background and were familiar with human
grasping literature. Raters were asked to label both the real
view captured by the webcam and the virtual view captured
in Unity when the object was grasped. The difference in the
parameters between raters were analysed by rater 1, who made
a final decision about which rater’s assignment was correct as
in [27, 17].

Grasp Type
The full set of grasps used for labelling are those by Feix et al.
in the Human GRASP taxonomy [28]. This taxonomy divides
grasp types in three main categories: power, intermediate and
precision. Power grasps are linked to stability and security
and distinguished by large areas of contact between the hand
and the object [21]. Precision grasps are commonly defined
by the object being held between the finger tips, allowing

an increased level of manipulation [53]. Intermediate grasps
present elements of power and precision roughly in the same
proportion, enabling a finer representation of grasp types [28].

Grasp Location
An object can be manipulated in different ways. For each way
it is manipulated, there might be different proportions of the
object relevant for the actual grasp. Therefore, Feix et. al.
introduce the concept of grasped location, which they define
as the local part of the object specific to the grasp instance
(see Figure 5). An object can have multiple grasp locations,
and humans will chose a grasp location based on the task and
other parameters [26].

Figure 5. Grasp locations as by the Human Grasp Taxonomy [26] for
the virtual mug used in this study.

Presence Questionnaire
The IPQ is a scale for measuring the sense of presence experi-
enced in VR. When compared to other presence questionnaires,
IPQ has shown to provide the highest reliability [81]. We used
the IPQ to assess presence for each hand condition; human
and abstract. The questionnaire is structured in 4 sub-scales:
General Presence (PRES), Spatial Presence (SP), Involvement
(INV) and Experience Realism (REAL), with 14 items in total,
rated in 7-point scale (1-no feeling of presence, 7-strong feel-
ing of presence). The scores for each sub-scale as well as the
overall score are calculated by averaging their 7-point scores.

Post-Test Questionnaire
The post-test questionnaire consisted of tailored questions
asking about the perceived usefulness of thermal visual cues.
We used the post-test questionnaire, interview and observation
to assess the perceived usefulness of visual cues for each hand
condition.

Hypotheses
Following the current literature defined in this paper we pro-
pose the hypotheses listed below:

• H1:The thermal visual cues of the object have an effect on
the grasp metrics (i.e. aperture, location and type).

• H2:The visual representation of the hand have a effect on
the grasp metrics.

Statistical Analysis
The Shapiro-Wilk [85] normality test found the data to be
not normally distributed. We test for significance between
the conditions and the metrics described using a non para-
metric Friedman test [31]. 95% Confidence Intervals (CI)
and pair-wise Effect Sizes (ES) are reported following a non
dichotomous statistical approach [24].



RESULTS

Grasp Aperture (GAp)
A comprehensive analysis of grasp aperture with Effect Sizes
(ES) and 95% Confidence Intervals (CIs) per temperature
representation and scenario conditions is presented in Table 1
for the abstract hand and in Table 2 for the human hand.

Hand Representations
No statistically significant differences were found between
the abstract and human hand visualisations for any of the
environment conditions under study when comparing them
pairwise by thermal cue for all the available scenarios (i.e. Hot
abstract vs. hot human, empty abstract vs. empty human and
cold abstract vs. cold human).

Environment Conditions
• Basic: Statistically significant differences were found be-

tween temperature representations for the abstract hand,
with medium ES shown between the empty and hot con-
ditions and between the cold and hot conditions (Table 1).
Statistically significant differences were also found in the
human hand condition, with large ES between the empty
and hot conditions and medium ES between the cold and
hot conditions, as shown in Table 2.

• Content Label: Both hand conditions presented statisti-
cally significant differences between temperature represen-
tations, with large ES shown between the empty and hot
conditions (Tables 1 and 2). The human hand condition
showed a medium ES between cold and hot conditions.

• Glass: Only the human hand presented statistically signifi-
cant differences between the temperature representations,
presenting large ES between the empty and hot and between
the hot and cold conditions (Table 2).

• Context Objects: Statistically significant differences were
presented between temperature representations in the hu-
man hand condition with large ES between the empty and
hot conditions and medium ES between the cold and hot
conditions (Table 2).

Overall grasp aperture showed statistically significant differ-
ences for visual thermal cues in every condition under study
with the human hand interaction while it only presented sta-
tistically significant differences in basic and content label
conditions for the abstract hand model.

Grasp Location
Grasp location was defined as the preferred location for the
grasp as in Figure 5. A comprehensive analysis of grasp loca-
tion differences between visual thermal cues for all environ-
ment conditions is presented in Table 1 for the abstract hand
and in Table 2 for the human hand. These tables present the
statistical differences, Effect Sizes (ES) and visual heat-maps
for the grasp location. Heat-maps are calculated to show the
mid point between the thumb, and index finger during grasp.

Hand Representations
As with the grasp aperture no statistically significant differ-
ences were found between the abstract and the human hand

visualisations for any of the context conditions under study
when comparing them pairwise by temperature for all the
available scenarios (i.e. Hot abstract vs. hot human, empty
abstract vs. empty human and cold Abstract vs. cold human).

Environment Conditions
• Basic: Statistically significant differences were found be-

tween temperature representations for the abstract hand,
with medium ES shown between the empty and hot con-
ditions and between the cold and hot conditions (Table 1).
Statistically significant differences were also found in the
human hand condition, with large ES between the empty
and hot conditions and between the cold and hot conditions
(Table2).

• Content Label: Both hand conditions presented statisti-
cally significant differences between temperature represen-
tations, with large ES showing between the empty and hot
conditions and medium ES between the cold and hot condi-
tions as in Tables 1 and 2.

• Glass: Both hands presented statistically significant dif-
ferences between the temperature representations, with
medium ES between the empty and hot and between the hot
and cold conditions (Tables 1 and 2).

• Context Objects: Statistically significant differences were
presented for both hands with medium ES between empty
and hot conditions (Tables 1 and 2).

Overall, statistically significant differences were presented for
both hands across all environmental conditions with larger
effect sizes between the empty and hot conditions and cold
and hot conditions for both the abstract and the human hand.
The results suggest a change in the location of the grasp for
the hot content condition across all environmental conditions,
which is consistent with the visual density representation in the
heat-maps, where the hot conditions present a higher density
of grasps around the handle area.

Grasp Types
In this section we report on grasp choice patterns for each
grasped location (see Figure 5). Figure 6 presents grasp
choices based on hand conditi on and mug content repre-
sentation. A total of 1200 instances (50 participants × 2
hand representations × 4 environmental conditions × 3 visual
thermal cues) were labelled according to the methodology
presented in the Labelling section. Each hand representation
received 600 instances that were further analysed in the fol-
lowing paragraphs based on the grasp locations presented in
Figure 5.

• Grasp Location 1 (Handle): 53.16% (355 instances) of the
abstract hand data and 64% (380 instances) of the human
hand data were located in the handle of the mug.

– Abstract hand: Out of the 355 instances, 43.38% (154
instances, see Figure 6) of them belonged to hot con-
tent conditions while 31.54% (112 instances) were for
cold content and the remaining 25.07% (89 instances)
for empty conditions.



Table 1. Abstract Hand - Grasp aperture and grasp location statistics, displaying effect sizes (|ES|) and 95% confidence intervals (CI) where H stands
for Hot content, C for Cold content and E for Empty mug conditions.

Basic Content Label Glass Context Objects

G
ra

sp
A

pe
rt

ur
e

p
(Stat = 8.68,

p = 0.01)∗
(Stat = 13.0,

p = 0.02)∗
(Stat = 1.74,

p = 0.06)

(Stat = 1.48,

p = 0.47)

|ES|

E vs. H = 0.67

E vs. C = 0.13

C vs. H = 0.50

E vs. H = 0.86

E vs. C = 0.38

C vs. H = 0.44

E vs. H = 0.50

E vs. C = 0.22

C vs. H = 0.28

E vs. H = 0.46

E vs. C = 0.08

C vs. H = 0.38

95%

CI

G
ra

sp
L

oc
at

io
n

p
(Stat = 17.86,

p < 0.01)∗
(Stat = 23.51,

p < 0.01)∗
(Stat = 13.03,

p = 0.01)∗
(Stat = 8.22,

p = 0.02)∗

|ES|

E vs. H = 0.72

E vs. C = 0.17

C vs. H = 0.54

E vs. H = 0.84

E vs. C = 0.29

C vs. H = 0.48

E vs. H = 0.65

E vs. C = 0.23

C vs. H = 0.40

E vs. H = 0.52

E vs. C = 0.06

C vs. H = 0.45

Heat-

maps

(a) H (b) C (c) E (d) H (e) C (f) E (g) H (h) C (i) E (j) H (k) C (l) E

Table 2. Human Hand - Grasp aperture and grasp location statistics, displaying effect sizes (|ES|) and 95% confidence intervals (CI) where H stands for
Hot content, C for Cold content and E for empty mug conditions.

Basic Content Label Glass Context Objects

G
ra

sp
A

pe
rt

ur
e

p
(Stat = 26.28,

p < 0.01)∗
(Stat = 22.84,

p < 0.01)∗
(Stat = 7.8,

p = 0.02)∗
(Stat = 11.68,

p = 0.03)∗

|ES|

E vs. H = 0.95

E vs. C = 0.27

C vs. H = 0.65

E vs. H = 0.96

E vs. C = 0.35

C vs. H = 0.58

E vs. H = 0.82

E vs. C = 0.05

C vs. H = 0.79

E vs. H = 0.90

E vs. C = 0.38

C vs. H = 0.46

95%

CI

G
ra

sp
L

oc
at

io
n

p
(Stat = 27.18,

p < 0.01)∗
(Stat = 26.69,

p < 0.01)∗
(Stat = 21.5,

p = 0.02)∗
(Stat = 13.67,

p < 0.01)∗

|ES|

E vs. H = 0.98

E vs. C = 0.14

C vs. H = 0.79

E vs. H = 0.95

E vs. C = 0.38

C vs. H = 0.60

E vs. H = 0.75

E vs. C = 0.05

C vs. H = 0.71

E vs. H = 0.62

E vs. C = 0.19

C vs. H = 0.40

Heat-

maps

(a) H (b) C (c) E (d) H (e) C (f) E (g) H (h) C (i) E (j) H (k) C (l) E



Figure 6. Grasp type choice for each grasped location; N represents the number of instances for which that grasp location was chosen, for each
temperature condition. Grasp types are categorised in Power (variations of green) and Precision (variations of blue).

– Human hand: Handle grasps for the human hand were
divided as follows: 45.31% (174 instances as in Fig-
ure 6) for the hot conditions, 30.46% (117 instances)
for the cold conditions and the remaining 24.22% (93
instances) for the empty conditions.

The main grasp choice for this location was the Small Di-
ameter grasp for both hand conditions. This grasp belongs
to the Power Grasp category defined in the Grasp Types
section, thus a stable grasp enabling the firm grip of the vir-
tual mug. The remaining grasps belonged to the Precision
Grasp category, enabling a precise grasp of the mug using
the fingertips. All grasp choices identified in the dataset for
the handle location are reported in detail in Figure 6.

• Grasp Location 2 (Top): A total of 47 instances (7.83% of
the dataset) for the abstract hand and 42 (7% of the dataset)
for the human hand conditions were located around the top
of the mug.

– Abstract hand: Out of the 47 instances, 23.40% (11,
see Figure 6) belonged to hot content conditions while
27.66% (13 instances) were for cold content and the
remaining 48.94% (23 instances) for empty conditions.

– Human hand: 35.71% (15 instances) for the cold con-
ditions and the remaining 64.28% (27 instances) for the
empty conditions. No grasps were recorded in this area
for the hot condition in the human hand visualisation.

All grasps recorded in the top of the mug for both hand
conditions belonged to the Power Grasp category as defined

in the Grasp Types section. Figure 6 displays grasp choice
in more detail.

• Grasp Location 3 (Body/Side): 33% (198 instances) of
the abstract hand condition and 20% (174 instances) of the
human hand condition were grasps recorded in the body/side
of the mug.

– Abstract hand: Out of the 198 instances, 17.67% (35 as
in Figure 6) of them belonged to hot content conditions
while 37.88% (75 instances) were for cold content
and the remaining 44.44% (88 instances) for empty
conditions.

– Human hand: 14.36% (25 instances as in Figure 6) for
the hot conditions, 39.65% (69 instances) for the cold
conditions and the remaining 45.97% (80 instances)
for the empty conditions.

The only grasp type recorded in this area was a Large Di-
ameter grasp, from the Power Grasp category. This grasp is
categorised by large areas of the hand in direct contact with
the object, enabling a firm grip which is in alignment with
the location of the grasp in the virtual mug.

IPQ
The IPQ Presence Questionnaire showed no statistically signif-
icant differences between the hand representations under study,
with the abstract hand obtaining an average score of (M=4.54,
SD=1.02) and the human hand (M=4.75 SD=1). None of the



sub-scales of the questionnaire showed any statistically sig-
nificant results. Presence scores by sub-scale are presented in
Figure 7.

Figure 7. Scores for IPQ sub-scales and overall IPQ score for abstract
and human hand conditions; a score equal to 7 represents the highest
feeling of presence while 1 represents the lowest.

Post-Test Questionnaire
Participants were asked to complete a post-test questionnaire
to gain a better understanding of their perceptions while in-
teracting with the thermal cues, the environment and hand
representations.

Participants reported ice and steam visual cues from the ther-
mal representations section in Conditions as the strongest vi-
sual cue supporting their grasping behaviour. However, these
are the cues they were more familiar with, as they were present
in all environment conditions under study for both hand repre-
sentations.

Following these remarks, participants were asked if they felt
their grasp location and type was influenced by the different
thermal representations or the environment. 37 participants
(abstract hand) and 36 participants (human hand) reported that
grasp location was influenced by mug content. Additionally,
29 participants (abstract hand) and 37 (human hand) reported
that the visual thermal representation influenced the location
where they grasped. Some participants reported “I used the
handle because I did not want to get burnt or my hand to
be too cold.” [P34] or “I used the handle for hot content to
avoid being burnt” [P28] while other participants reported

“Not necessarily as I wasn’t too concerned about burning my
hand (because it is robotic [sic]), therefore, didn’t matter how
I grasped the mug ” [P03].

Some additional comments included: “With real hand, I al-
most expected the mugs to have different weights with respect
to the amount of liquid in each mug. This was to a greater
extent than the abstract hand.” [P11], “I felt that the simula-
tion with the human hand made me feel the need to be careful
in case I burnt myself a lot more than when using the robot
hand simulation.”[P24],“I first thought that it was my hand
and I realised that it was not only by looking at the short
nails.”[P47].

Overall, participants reported that mug content and thermal
cues have a stronger impact on their grasp choice and loca-

tion than other environmental cues such as changes in the
environment or in the hand representation.

DISCUSSION
We present a study to evaluate the influence of visual thermal
cues on VR grasp type, aperture and location. Our results
show how visual thermal feedback had an influence on grasp
aperture (GAp), grasp location and grasp type, thus we accept
the hypothesis H1 that thermal visual cues have an effect
on grasp metrics. Additionally, our results correlate with
prior work studying grasp patterns for real objects, therefore
showing that visual thermal feedback has an effect on grasping
approach [69] and indicating a connection between grasping
approaches across both VR and real environments.

Our results shown that visual representations of temperature
influenced GAp for all conditions under study when using
the human hand (Figure 1(b)) and for the Basic (Figure 1(d))
and Content Labels (Figure 1(e)) conditions when using the
abstract hand. Participants grasped the virtual mug with a
smaller GAp in the hot condition compared to cold and empty
for both hand representations (abstract and human).

Grasping instances presenting a small GAp were predomi-
nantly located around the handle of the virtual mug, showing
the influence of the size of the grasped location on the grasp
pattern when interacting with virtual objects. This correlates
with grasping real objects, where the aperture of the grasp is
primarily influenced by the size of the grasped location [26].
Participants predominantly used the handle as a grasp location
in both hot and cold conditions, while grasp location choice
varied between body/side, top or handle for the empty con-
dition. This shows that the visual representation of content
inside the mug influenced user’s behaviour when grasping,
and therefore could illustrate a strong functional correlation
between the shape of the grasped location and the manner
in which it is generally grasped by the hand which has been
shown in real object grasping [76]. Similarly, our results high-
lighted that the object shape and the chosen grasped location
had an influence on the grasp used. Participants predominantly
chose a Large Diameter for body/side (cylinder shape) and a
Power Sphere for top (disk shape) on the mug.

As with previous studies [66, 101], participants did not show
an awareness of the number of fingers involved while inter-
acting with the system. Commonly, users presented different
variations of the thumb-finger grasp for the same grasp lo-
cation; notably variations of Thumb-Index Finger, Thumb
2-Finger, Thumb 3-Finger, Thumb 4-Finger when grasping
the handle. Differences in grasp type were identified between
the human and abstract hand conditions; for instances where
the handle was chosen, participants used a power grasp in
80.72% of the instances in the human hand condition, while
choosing power grasps in only 69.29% of the instances in
the abstract hand condition. This result suggests that users
intuitively performed a grasp that could normally hold a heavy
object more often with the human hand than with the abstract
hand, with power grasps being associated with stability and
security when grasping real objects[21].



When comparing between conditions, ES was generally
smaller for the abstract hand than for the human hand, how-
ever, there were no significant statistical differences between
hand representations for grasp data. The IPQ scores did not
present statistically significant differences in perceived pres-
ence between hand representations. This finding is contrary to
popular literature [83], and therefore we reject our hypothesis
H2 for the effect of hand representations on grasp metrics.
However, during the interview and post-questionnaire within
the study, participants emphasised higher levels of attachment
to the human hand condition.

Throughout the study, participants were not specifically in-
structed that grasping type, location and aperture were under
study and were therefore free to interact with the virtual mug
as they felt suitable. However, they could have experienced
the Good Subject Effect. Notably, this is found when partici-
pants can respond to an experiment in ways that they believe
confirm the hypothesis of the study [57]. Although we believe
our methodology negates this effect, it can not be ruled out
completely. Therefore, future work should consider masking
the temperature representations or embedding the “pick and
move" task in a more complex task or environment and fur-
ther assess current results. Additionally, future studies could
integrate colour and context variations, building up the current
knowledge in grasping presented in this evaluation.

Overall, we presented the first study into understanding the
influence of visual thermal cues on grasping patterns, with
practical implications for the VR interaction design commu-
nity:

• Grasp aperture: Visual thermal feedback on an object had
an influence on grasp aperture (GAp) showing smaller aper-
tures for visual representations of hot content. This insight
should be considered for interaction virtual object design
in VR environments where the user needs to manipulate
thermally variable objects (i.e. welding training scenarios
as in [9, 68]).

• Grasp location and type: Objects representing a weight
or content showcased grasp location differences when com-
pared to the empty mug condition, with users presenting
a higher density of precision grasps in the handle area.
Participants performed more precise grasps for triggering
the interaction when the mug had content, therefore sug-
gesting that the perceived weight, content and/or fragility
of an object had an effect on grasp choice and location.
This interaction insight is useful for designers creating VR
environments that require direct interaction with objects,
specially for training (i.e. VR training environments in
construction and manufacturing [6]). In these scenarios,
the form and shape of objects need to be considered, with
objects being designed to specifically encourage this user
selection of precision grasps and thus facilitating a more
precise and finer manipulation.

CONCLUSION
The presented study evaluates the influence of visual ther-
mal cues in VR on grasping. We report on a within partic-
ipants study to evaluate how thermal cues (empty hot and

cold) affect user grasp metrics, notably grasp location, grasp
aperture (GAp) and grasp choice. Our results illustrate that
visual thermal feedback in VR can have an influence on user
grasp location when aiming to pick up and translate objects
of different content (i.e a mug with hot coffee or cold water).
Additionally, we report on the influence on grasp metrics such
as grasp aperture and grasp type and show that higher effect
sizes can be observed between the hot-cold and hot-empty
conditions. While future work could analyse other virtual
objects or thermal cues, our findings present the first study
into understanding the influence that visual cues have on user
grasping in VR.
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[91] Aurelijus Vaitkevičius, Mantas Taroza, Tomas
Blažauskas, Robertas Damaševičius, Rytis Maskeliūnas,
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