
 

VOLUME XX, 2020 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number 

IMPACT: Impersonation attack detection via 
edge computing using deep autoencoder and 
feature abstraction 

Seo Jin Lee1, Paul D. Yoo2, Senior Member, IEEE, A. Taufiq Asyhari3, Senior Member, IEEE, 
Yoonchan Jhi4, Lounis Chermak1, Member, IEEE, Chan Yeub Yeun5, Senior Member, IEEE, 
Kamal Taha5, Senior Member, IEEE 
1Centre for Electronic Warfare, Information and Cyber (CEWIC), Cranfield School of Defence and Security, Defence Academy of the United 

Kingdom, Shrivenham, SN6 8LA, United Kingdom 
2Dept. CSIS, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom  
3School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, United Kingdom 
4Security Research Center, Samsung SDS, Seoul, South Korea 
5Center for Cyber-Physical Systems (C2PS), Khalifa University, Abu Dhabi, United Arab Emirates 

Corresponding authors: Chan Yeob Yeun and Paul D. Yoo (e-mail: chan.yeun@ku.ac.ae and paul.d.yoo@ieee.org). 

 

This work was supported in part by the Samsung’s Global Outreach Fund under Grant P10458, and in part by the Center for Cyber-Physical 

Systems, Khalifa University, under Grant 8474000137-RC1-C2PS-T3. 

 

ABSTRACT An ever-increasing number of computing devices interconnected through wireless networks 

encapsulated in the cyber-physical-social systems and a significant amount of sensitive network data 

transmitted among them have raised security and privacy concerns. Intrusion detection system (IDS) is known 

as an effective defence mechanism and most recently machine learning (ML) methods are used for its 

development. However, Internet of Things (IoT) devices often have limited computational resources such as 

limited energy source, computational power and memory, thus, traditional ML-based IDS that require 

extensive computational resources are not suitable for running on such devices. This study thus is to design 

and develop a lightweight ML-based IDS tailored for the resource-constrained devices. Specifically, the study 

proposes a lightweight ML-based IDS model namely IMPACT (IMPersonation Attack deteCTion using deep 

auto-encoder and feature abstraction). This is based on deep feature learning with gradient-based linear 

Support Vector Machine (SVM) to deploy and run on resource-constrained devices by reducing the number 

of features through feature extraction and selection using a stacked autoencoder (SAE), mutual information 

(MI) and C4.8 wrapper. The IMPACT is trained on Aegean Wi-Fi Intrusion Dataset (AWID) to detect 

impersonation attack. Numerical results show that the proposed IMPACT achieved 98.22% accuracy with 

97.64% detection rate and 1.20% false alarm rate and outperformed existing state-of-the-art benchmark 

models. Another key contribution of this study is the investigation of the features in AWID dataset for its 

usability for further development of IDS.   

INDEX TERMS IoT security, intrusion detection, feature engineering, mutual information, machine 

learning, edge computing.

I. INTRODUCTION 

The role of edge devices has been elevated by the recent 

development of cloud and IoT technologies supporting in the 

need for intelligent, computing power and advanced services 

at the network edge. This new concept allows decentralised 

processes in interconnected devices. The rapid growth of 

interconnected smart and mobile devices has posed 

significant dangers on security and privacy of individuals, 

societies, nations and even in the extreme, the globe as a 

whole [1]. The impact of massive data breach and security 

threats is increasing with more advanced emerging 

applications such as healthcare, smart homes and cities and 

autonomous vehicles. All these domains deal with sensitive 

and confidential data, deeply mined from private activities 

on daily basis and the nature and scale of interconnection of 

the devices do not only seriously harm a single device or 

mailto:chan.yeun@ku.ac.ae
mailto:paul.d.yoo@ieee.org


 

 

2 VOLUME XX, 2020 

operator, however, all connected objects and involved 

humans in a large scale. 

Such devices however have unique security challenges 

[2], among which their limited computational resources such 

as limited energy source (e.g. battery power) and 

computational power (e.g. processors and memories) [3][4]. 

The requirement of real-time processing also adds 

complexities on the development and deployment of both 

existing and new security measures. 

IDS has been effective as a next line of defence for such 

computing devices and networks and extensively studied 

since the seminal work by Denning [5]. IDS can be classified 

into two major categories, signature and anomaly based. The 

anomaly-based IDS is designed to detect unknown attacks 

that deviate from the profile of normal network activities. On 

the other hand, signature-based system can only detect 

known attacks that can match the patterns or signatures 

stored in a database. As cyber-attacks are evolving, the 

flexibility and adaptability of signature-based IDS need to be 

further developed.  

The concepts in machine learning (ML) and its subfield 

deep learning (DL) seem to be, by their inherent approaches, 

the right candidates for designing the adaptable IDS [6][7]. 

However, high-dimensional nature of ever-increasing data 

and iterative training process of models require extensive 

computational resources, thus, traditional ML-based IDS are 

not suitable for training and inference on resource-

constrained devices.  

Due to the high demand of computational resources for 

training and inference, the current approach is to transfer 

collected data to the central nodes (e.g. data centres) that have 

powerful resources. However, the distance between the 

devices and remote central nodes causes latency which could 

be a bottleneck to modern time-critical systems and 

applications that often require real-time processing of such big 

data. Besides, this centralised approach implies a single point 

of failure. For example, dysfunctionality or shutdown of a part 

of system leads to the failure of the entire system and has other 

issues including storage capacity, availability, scalability and 

privacy. 

To mitigate the aforementioned problems, a new 

paradigm, called edge computing [8] has emerged. Its 

principle relies on the ability to perform computational tasks 

locally such as data processing and analysis are performed at 

the edge of the network near or at data sources rather than the 

central nodes. This paradigm benefits from the proximity 

between the data sources and computing nodes and also can 

solve the problem of poor or absent connectivity and 

bandwidth which are always required in the cloud-based 

systems. It is not surprising that cloud to the edge is one of the 

top strategic technologies for 2018 and 2020 according to a 

report by Gartner [9][10]. 

To compute efficiently and effectively closer to or at the 

edge of the network, the utilisation of ML approaches that 

can enable dimensionality reduction of data and efficient 

detection is critical. This study investigates potential ML 

methods to design and develop an efficient and effective 

ML-based IDS for the resource constrained edge devices 

which involve processing of a large amount of data and 

training of models. The key contributions of this study are: 

 to determine the feasibility of a lightweight machine-

learning IDS to be designed and deployed on resource 

constrained devices, 

 to demonstrate, building upon earlier work [11][12], the 

effectiveness of extracted abstract features using a deep 

SAE, along with mutual information theoretic feature 

selection that outperforms other state-of-the-art models, 

 to propose an architecture of gradient based SVM for the 

proposed IDS model, 

 to analyse the temporal features within AWID dataset 

and their usability for the further development of IDS, 

and 

 finally, to provide a new benchmark result on AWID 

dataset without using temporal features.  

The remainder of this paper is organised as follows. Section 

II introduces the proposed IMPACT algorithm outlining its 

three novel concepts. Section III analyses and evaluates the 

performance of IMPACT and existing benchmark models 

along with investigations of the features of the AWID dataset 

and Section IV concludes with recommendations for further 

research. 

 
II. RESEARCH METHODOLOGY  

A.  Data 

To train, test and evaluate the proposed model, AWID 

dataset [13] was used due to its unique features in 

comparison with other existing datasets. While it contains 

new attack types, the AWID dataset is simulated using real-

world wireless network which is a critical feature for modern 

IoT environments. 

The dataset is divided by the types of attack classes. 

“ATK” set contains 16 attack classes and “CLS” has 4 

classes in which 15 attacks are categorised by attack 

methodologies: impersonation, flooding and injection. For 

this study, “CLS” dataset is used and impersonation attack is 

considered only. The impersonation attacks included in the 

dataset are Caffe Latte, Evil Twin, and Hirte attack. Caffe 

Latte and Hirte are keystream retrieving attacks and Evil 

Twin is a man-in-the-middle attack according to their attack 

purpose. The tools used to implement the attacks include the 

Aircrack-ng suit, MDK3 tool, the Metasploit framework and 

custom tools made by authors using C language and the 

Lorcon2 library. Attackers mostly use the Airbase tool 

contained within Aircrack-ng suit for releasing Evil Twin 

attacks. 

To gather the data, the authors created a realistic resource 

constrained environment of small office/home office 

(SOHO) wireless network infrastructure that consisted of a 

number of mobile and static clients such as smartphones, 
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tablets, smart TV and laptops and a single mobile attacker 

node to release the attacks. A single Access Point (AP) was 

set up with the WEP encryption. 

The dataset in the original form is imbalanced in such 

manner that the size of the normal class is significantly larger 

than the attack class with the ratio of 10:1 for the training set 

and 11:1 for the test set. Since this configuration could result 

in a bias during the model training phase, the dataset is 

balanced making the ratio 1:1 between the two classes for 

both training and test sets through pre-processing [12]. 

B.  IMPACT 

The IMPACT has three main components: i. feature 

extraction, ii. feature selection and iii. classification. 

Through feature extraction and selection, the dimensionality 

of data required for training and testing the model is reduced, 

increasing the efficiency of the model in terms of 

computational cost required to deploy on the resource-

constrained devices. Stacked autoencoder (SAE), a type of 

deep neural network, was used for feature extraction and 

mutual information (MI) and C4.8 wrapper for feature 

selection. For the detection task, SVM with gradient descent 

optimisation was adopted that they were more effective in 

terms of detection performance compared to other models 

based on the experiment results. 

To build the model, reduced AWID training and test 

datasets with 154 features were fed to the SAE. Through the 

SAE, a set of 50 new features with new data instances were 

extracted and appended to both the original training and test 

sets, producing the larger dataset with 204 features as a 

whole. This dataset was the input for the feature selection to 

find the reduced optimal feature subset and the reduced 

training and test sets with the final 5 selected features were 

used for training and testing of the ML classifier which 

produces the best classification result. 

As shown in Fig. 1., an autoencoder (AE) [14] is a type 

of unsupervised neural network algorithm that learns from 

unlabeled data using backpropagation. It sets the output 

values to be the same as the input values, trying to learn the 

hypothesis function, 

 

ℎ𝑊,𝑏(𝑥) ≈ 𝑥 (1) 

 

The AE consists of an encoder and a decoder in which 

the encoder compresses input data into a low dimensional 

representation and the decoder reconstructs the input data 

from the low dimensional representation. In other words, the 

input data is replicated at the output layer. During the process 

of encoding, the input feature vectors are converted to an 

abstract feature vector and the dimensionality of the input 

data space can be reduced. 

To achieve this, several constraints should be put on the 

network. For instance, setting the number of hidden neurons 

less than that of the input features, and some meaningful 

representations of the data can be discovered while 

attempting to reconstruct the input with the limited number 

of hidden neurons. Consequently, if some correlations exist 

between the features, the algorithm would be able to find 

them. 

The constraint (2) is imposed on the hidden neurons in 

the encoders to compress the representation of the input data 

and extract features, where 𝜌̂𝑗 (3) is the average activation 

and 𝑎𝑗(𝑥)  is the activation of the hidden neuron 𝑗 

respectively. If the activation of the neuron 𝑗 is 1, the neuron 

is active and if the activation is 0 (or −1 if 𝑡𝑎𝑛ℎ is used as 

activation function instead of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ), the neuron is 

inactive. The variable 𝜌 denotes the sparsity parameter and 

is set to the value near 𝑧𝑒𝑟𝑜  to force the neurons to be 

inactive most of the time. 

 

𝜌̂𝑗 = 𝜌 (2) 

𝜌̂𝑗 =
1

𝑚
∑[𝑎𝑗(𝑥)]

𝑚

𝑖=1

 (3) 

The cost function of the AE is specified by the mean squared 

error (MSE) function (4), given m training instances and the 

cost function for a single instance 
1

2
‖ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
. 

𝑀𝑆𝐸 =
1

𝑚
∑

1

2
‖ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

 (4) 

L2 regularisation (5), also called weight decay term, is added 

to the cost function, which will prevent overfitting by 

reducing the magnitude of the weights 𝑊𝑗𝑖
(𝑙)

 between neuron 

i in layer l and neuron j in layer l+1:  
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Fig. 1.  Autoencoder (AE), where m and n indicate the number of neurons in 

the layer, x is an input feature, b is a bias, a is an activation and y is an output. 
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where L is the total number of layers in the network and n 

and k are the number of neurons in layer l and l+1 

respectively. 

In addition, a penalty term, called sparsity regularisation (6) 

is added to the cost function to penalize 𝜌̂𝑗  that diverges 

from 𝜌 using the Kullback-Leibler (KL) divergence [15]. KL 

is a measure of the different between two different 

distributions. This function has the value either zero if (2) is 

satisfied or higher if 𝜌̂𝑗 diverges from 𝜌. Hence, minimising 

this term encourages 𝜌̂𝑗 to be close to 𝜌. 𝑆2 is the number of 

hidden neurons within the encoder.   

 

Ω𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = ∑ 𝐾𝐿(𝜌 ∥ 𝜌̂𝑗)

𝑠2

𝑗=1

= ∑ 𝜌 log
𝜌

𝜌̂𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − 𝜌̂𝑗

𝑠2

𝑗=1

 (6) 

The overall cost function is then the sum of MSE, L2 

regularisation and sparsity regularisation term, where 𝜆 and 

𝛽  controls the strength of L2 regularisation and sparsity 

respectively.  

𝐽𝑆𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 𝑀𝑆𝐸 + 𝜆 ∗ Ω𝐿2𝑅𝑒𝑔 + 𝛽 ∗ Ω𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (7) 

A stacked (or deep) autoencoder (SAE) consists of 

multiple AEs connected from one layer to the subsequent 

layer. The output of the previous encoder is the input of the 

next encoder and from this structure, higher representations, 

i.e. features, of the input data can be found. The reason why 

the SAEs was chosen is explained by the fact that a single 

AE behaves too greedily and important information for 

accurate classification of the target class could be discarded. 

The SAE prevents such behaviour by refining gradually the 

neurons in the hidden layers. In other words, the SAE learns 

a better representation of the input data than a single AE. 

However, as more encoders need to be trained, the training 

time and complexity of model are increased. For the number 

of hidden neurons for two encoder layers, 100 and 50 were 

chosen respectively which were found to be optimal for the 

AWID impersonation dataset according to Aminanto et al. 

[11]. 

Following feature extraction using SAE, IMPACT 

performs feature selection to find the optimal feature subset 

from the whole feature set comprising of the original and 

extracted features produced from the feature extraction 

stage. This process finds the most relevant features and 

removes irrelevant features so that it reduces the complexity 

and computational cost of the model and also improves the 

detection performance. Hence, the feature selection can 

make the model both efficient and effective achieving the 

aim of this study. Among a variety of available methods, this 

study utilises mutual information (MI) and C4.8 wrapper. 

MI is a quantity that measures the mutual dependence 

between two random variables. That is how much 

information one random variable has about another.  In other 

words, it is the indication of the reduction in uncertainty of 

one random variable when given the knowledge about 

another. MI is related to the concept of entropy H (8) which 

is the expected information content in a random variable X:  
 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖).

𝑖

 (8) 

Herein P denotes the probability that an event with index 𝑖 

occurs. Conditional entropy (9) of two random variables 𝑋 

and 𝑌 with values 𝑥𝑖 and 𝑦𝑗 can be defined as  
 

𝐻(𝑋|𝑌) = − ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)𝑙𝑜𝑔
𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑦𝑗)
𝑖,𝑗

 (9) 

where 𝑃(𝑥𝑖 , 𝑦𝑗) is the joint probability distribution. Then, 

the definition of MI of two discrete variables X and Y is given 

by 
 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
= 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

= ∑ 𝑃(𝑥𝑖 , 𝑦𝑗)𝑙𝑜𝑔
𝑃(𝑥𝑖 , 𝑦𝑗)

𝑃(𝑥𝑖)𝑃(𝑦𝑗)
𝑖,𝑗

 
(10) 

where 𝐻(𝑋, 𝑌) is the joint entropy. The higher the MI value 

is, less the uncertainty in a variable is and vice versa. Zero 

MI means the variables are independent.  
C4.8 wrapper [16] is a decision tree-based algorithm 

extended from ID3. It uses pruning strategies to avoid 

overfitting. During the learning process of C4.8 algorithm, a 

decision tree is built first from the given training set using 

ID3, and then the learnt tree is converted into a set of rules, 

Ω𝐿2𝑅𝑒𝑔 =
1

2
∑ ∑ ∑(𝑊𝑗𝑖

(𝑙)
)2

𝑘

𝑗=1

𝑛

𝑖=1

𝐿−1

𝑙=1

 (5) 
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Fig. 2.  Stacked autoencoder (SAE) 
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each of which is a rule for the path from the root to a leaf 

node. Each rule is pruned where preconditions that improve 

the estimated accuracy are removed. The pruned rules are 

then sorted by the accuracy and considered when subsequent 

instances are classified. A feature is useful for generalisation 

if it is present as a node or part of the rules and in contrast, 

the removed features are not important if they do not 

improve the accuracy. C4.8 utilises the measure of 

information gain (IG), which is exactly the MI, to select 

features and these features are then used as a subset for ML 

classifiers. Finally, IMPACT classifies network data into 

two classes using support vector classifier: normal and 

attack. For this task, linear support vector machine (SVM) 

with gradient descent as the optimiser is utilised. 

Linear SVM is a supervised machine learning algorithm 

used to deal with binary classification problems that have 

two classes. Many possible boundaries or hyperplanes that 

can separate the classes exist, thereby a method to find the 

best one is required. SVM aims to find the optimal decision 

boundary (or maximum-margin hyperplane) in the way that 

the margin between the boundary and the nearest data 

instances of the classes is maximised as shown in Fig. 3. The 

nearest data instances that define the maximum margin (or 

hyperplane) are called support vectors. 

Given a training data of 𝑛 instances (𝐱1, 𝑦1), … , (𝐱𝑛, 𝑦𝑛), 

where 𝑦𝑖 is the true class of input data 𝐱𝑖  (𝑖 = 1, … , 𝑛)  and 

either 1 or −1, the decision boundary is defined as 
 

𝑓(𝐱𝑖) = 𝐰T𝐱𝑖 + 𝑏 = 0 (11) 

where 𝐰 is the weight vector and 𝑏 is the bias. 

To prevent the data instances from lying on the incorrect 

side, the following constraints are added for each 𝑖: 
 

𝑖𝑓 𝑦𝑖 = 1, 𝐰T𝐱𝑖 + 𝑏 ≥ 1 (12) 

𝑖𝑓 𝑦𝑖 = −1, 𝐰T𝐱𝑖 + 𝑏 ≤ −1 (13) 

and these can be combined into 
 

𝑦𝑖(𝐰T𝐱𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑛. (14) 

SVM can solve non-linearly separable problems by 

utilising the method called kernel trick that maps the original 

data into higher dimensional space to make the data linearly 

separable. A potential limitation is that SVM may require 

extensive training time. Though SVM produced high 

performance results, the training times are often too high in 

comparison to other classifiers. However, in this study, by 

using a linear form of SVM, the training time was reduced 

while achieving comparable results. 

SVM uses hinge loss as its loss function for optimisation. 

In linear SVM, for an output 𝑦𝑖 = ±1, the hinge loss can be 

defined as  
 

𝑚𝑎𝑥 (0, 1 − 𝑦𝑖𝑓(𝐱𝑖)). (15) 

 If 𝑓(𝐱𝑖)  predicts the correct class, then 𝑦𝑖  and 𝑓(𝐱𝑖) 

have the same sign and 𝑦𝑖𝑓(𝐱𝑖) ≥ 1, so the loss is zero. If  

𝑦𝑖  and 𝑓(𝐱𝑖) have the opposite sign and 𝑦𝑖𝑓(𝐱𝑖) < 1, the 

loss increases linearly. The hinge loss penalizes incorrect 

classifications within 𝑦𝑖𝑓(𝐱𝑖) < 1  that corresponds to a 

margin in SVM.  
 

 
 

The objective function 𝐽(𝐰) (18) consists of two terms: 

regularisation term and loss. As the hinge loss function is 

convex, ML convex optimisers can be used. For 

optimisation, the objective function should be minimised: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝐰) =
𝜆

2
‖𝐰‖2

+
1

𝑛
∑ 𝑚𝑎𝑥 (0, 1 − 𝑦

𝑖
𝑓(𝐱𝑖))

𝑛

𝑖=1

 

(18) 

   

Gradient descent takes steps iteratively to update 

parameters in the direction of the gradient. To run gradient 

descent, derivatives with respect to 𝑏  and 𝐰 are required. 

However, the hinge loss is not differentiable, thus, a sub-

gradient should to be used with respect to w and 𝑓(𝐱𝑖) as 

follows: 
 

 

𝜕

𝜕𝐰
𝑚𝑎𝑥 (0, 1 − 𝑦𝑖𝑓(𝐱𝑖))

= {
0, 𝑖𝑓 𝑦𝑖𝑓(𝐱𝑖) ≥ 1

−𝑦𝑖𝐱𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(19) 

 

III. EVALUATION AND ANALYSIS 

The confusion matrix is commonly used to evaluate the 

performance of a ML model, particularly for binary 

classification which is the case in this study. Based on the 

confusion matrix, the below evaluations measures are 

intended to give information on the effectiveness and 

efficiency of the proposed algorithm. The evaluation measure 

used are accuracy (Acc), detection rate (DR), false alarm rate 

(FAR), F-measure (F1), Mathew’s correlation coefficient 

(Mcc) and Time To Build (TTB) and can be calculated using 

the below equations.  

𝑐(𝑥, 𝑦, 𝑓(𝐱𝑖)) = 1 − 𝑦𝑖𝑓(𝐱𝑖) (16) 

𝑐(𝑥, 𝑦, 𝑓(𝐱𝑖)) 

= {
0, 𝑖𝑓 𝑦𝑖𝑓(𝐱𝑖) ≥ 1

1 − 𝑦𝑖𝑓(𝐱𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(17) 

Fig. 3.  Linear Support Vector Machine 
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𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(20) 

 

𝐷𝑅(𝑟𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(21) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(22) 

 

𝐹𝐴𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(23) 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(24) 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(25) 

 

𝑀𝑐𝑐

=  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(26) 

 
 

A. Theoretic Feature Selection using Mutual Information 

After the feature extraction process, MI values for all 204 

features consisting of original 154 and extracted 50 features 

were calculated. The features then were ranked from the 

highest to the lowest MI values. Among 204 features, 83 

features were found to have the MI values greater than 0 and 

the rest 121 features had the value 0 which means that they 

had no relevance to the attack class. All 50 extracted features 

were among the afore-mentioned 83 features whereas 33 were 

original features of which only 4 features were within top 20 

features. This suggests that the SAE was able to successfully 

extract the features that are relevant to the attack class with 

meaningful representations. In turn, it demonstrates the 

effectiveness of SAE as a feature extraction method to build a 

lightweight IDS by discovering relatively more meaningful 

features and reducing the dimensionality of data and the 

complexity of the model.  

Among the most relevant 20 features based on the MI 

values were original features 4, 7, 8, 9, 38 and 82, however, 

there was some redundancy that the features 4 and 7 had 

exactly the same data instances resulting in the same MI 

values and so did 8 and 9. Therefore, features 7 and 9 were 

removed from the datasets for training the model. The top 20 

features based on MI values are 8, 82, 4, 38, 157, 162, 168, 

160, 188, 161, 199, 176, 159, 191, 182, 186, 195, 156, 158 and 

165 [12]. 

To find the optimal subset from the top 20 features, Parker 

et al. [6] experimented five wrapper algorithms to select 

features and evaluated in terms of the number of features and 

Acctraining time with the aim of minimising computational 

cost for resource-constrained devices. C4.8 has taken the least 

time compared to the other algorithms. In terms of the number 

of features, C4.8 had only one or two more features than RF, 

MLP, and RBF that were significantly slower than C4.8 even 

though they resulted in the smaller number of features. 

Though logistic regression was the second fastest algorithm, it 

had the number of features twice or more than all the other 

algorithms, significantly increasing the complexity and 

computational cost of the model. The selected feature subset 

consists of five features including three original features 4, 8 

and 82 and two extracted features 156 and 157.  

B. Gradient-based Optimisation 

The weights of SVM are found using gradient decent 

algorithm. Learning rate of 0.00001 achieved the highest DR 

and lowest FNR, however, it showed the worst performance 

in Acc, Precision, FAR, F1 and Mcc. There is a trade-off 

between DR and FAR as DR tends to fall whereas FAR 

improves. The overall performance slightly improves between 

0.00001 and 0.1 and rapidly increases between 0.1 and 0.5. 

Acc, FAR, Precision, F1 and Mcc gradually increase until 0.1 

then rapidly improves until 0.5. Therefore, the learning rates 

around 0.5 – 0.51 and 0.52 – were investigated. In addition to 

that, 0.5 has the highest Acc, F1 and Mcc, however, also the 

second highest Precision and second lowest FAR and DR, 

thus, 0.5 was chosen. Learning rate of 0.55 has the highest 

Precision and lowest FAR, however, worse in other metrics 

than 0.5. The final results using learning rate of 0.5 are 

provided in Table I.  

C. Comparisons between baselines and IMPACT 

The most recent research for impersonation attack using 

AWID datasets were performed by Kolias et al. [13], 

Aminanto et al. [17], D-FES Corr [11] and DEMISe-RBFC 

and DETEReD [12]. As shown in Table I, IMPACT achieved 

the highest F1 and Mcc while Acc is the second highest and 

FAR is the second lowest. Kolias et al. [13] has the lowest 

Mcc and the highest FAR. This is considered to be due to the 

imbalanced dataset used and feature selection method that 

Kolias et al. [13] utilised only expert knowledge without any 

ML, data-driven or statistical methods. Compared to D-FES 

Corr [11], though IMPACT has higher FAR by 0.16% and 

lower Acc by 0.004%, it achieved higher DR by 1.73%, higher 

F1 by 2.04% and higher Mcc by 1.4%.  

TABLE I  
COMPARISONS BETWEEN IMPACT AND THE STATE-OF-THE-ART MODELS 

Model 
No of 

features 
Acc DR FAR F1 Mcc TTB 

IMPACT 5 (3+2) 98.22 97.64 01.20 98.21 96.45 299.97* 

DEMISe-RBFC [12] 7 (4+3) 98.00 99.04 03.00 97.98 96.02 301.53* 

DETEReD [12] 5 (3+2) 98.04 99.07 02.96 98.01 96.09 603.33** 

D-FES-Corr [11] 12 98.26 95.91 01.04 96.17 95.05 1264.00 

Kolias et al. [13] 20 94.91 97.23 74.21 97.37 22.12 NRA 

Aminanto et al. [17] 35 97.60 85.00 02.36 NRA NRA NRA 

The performance of IMPACT is measured on learning rate of 0.5 on the feature subset of 

three original features (4, 8 and 82) and two abstract features (156 and 157) only.  
* The time to build (TTB) for the models includes the 293s required for SAE. 

** Includes TTB required for both SAE and C4.8 wrapper. 

NRA = No results available. 
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Even though DETEReD and DEMISe-RBFC achieved the 

highest DR and excelled in Acc, F1 and Mcc, DETEReD has 

the highest FAR and DEMISe-RBFC the second highest. Both 

have much higher FAR—more than double—than either 

IMPACT or D-FES Corr [11]. Considering the throughput of 

network data in the era of big data, this amount of false alarms 

cannot be ignored because it will cause much higher cost to 

network administrators than IMPACT. Within the context of 

IDS, minimising FAR is crucial. In comparison with 

DETEReD and DEMISe-RBFC, the IMPACT has lower DR, 

however, it is still higher than those of three other models (D-

FES Corr, Kolias et al. and Aminanto et al.) and has FAR less 

than half of the results of DETEReD and DEMISe-RBFC. The 

reason why DETEReD had the better result for DR is that it 

had more number of TP than that of IMPACT whereas 

IMPACT had a higher sum of TP and TN for Acc than that of 

DETEReD. The values of the denominators for both DR and 

Acc were the same in the two models. For Mcc, IMPACT had 

a higher proportion of the numerator per denominator than 

DETEReD. 

IMPACT performed better with the optimised subset 

selected, using C4.8, from the top 20 features rather than 10 

features in contrast to the result produced by DEMISe in 

which the authors’ logistic regression classifier showed better 

performance with the optimised subset from the 10 features.  

The training time of the model is also an important 

measure for computational time efficiency of the model. 

IMPACT has TTB requirement considering of SAE and 

classifier training time, but excluding the time required for 

C4.8 wrapper as the feature subset was provided by the authors 

of the earlier work, DEMISe, and there was no need of re-

running C4.8. Kolias et al. [13] and Aminanto et al. [17] do 

not provide the exact model build time. All the models were 

run on different hardware setups, thus, the models cannot have 

fair comparison in terms of training time. However, in terms 

of the number of features which could be a measure of 

memory efficiency of the model, IMPACT utilises the least 

number of features, significantly less than the three other 

benchmark models (D-FES, Kolias et al. and Aminanto et al.), 

while outperforming them.  

Overall, the IMPACT achieved the performance t 

mitigates the drawbacks of DETEReD and D-FES Corr as 

FAR is significantly lower than DETEReD, DR is better than 

D-FES Corr and F1 and Mcc are the best among all the other 

models. Based on the evaluation of the comparison of 

performance results, it proves the effectiveness of SAE, MI 

and C4.8 wrapper methods for the dimensionality reduction of 

dataset for the lightweight IDS reducing computational cost in 

terms of time and space. 

TABLE II  

SELECTED FEATURES USING C4.8  

Feature Name Description 

4 frame.time_epoch Epoch time when this frame was captured 
8 frame.len Frame length on the wire 

82 wlan.seq Sequence number 

156 Extracted feature Extracted from SAE 

157 Extracted feature Extracted from SAE 

D. AWID Feature Analysis 

Each feature within AWID dataset has been investigated in 

order to verify if any of them contains temporal information. 

The temporal features (a.k.a. time domain features), which are 

simple to extract and have an easy physical interpretation. 

However, if the presence of information within the temporal 

Fig. 4. Feature 4 Epoch Time in Wireshark 
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features are used for the learning algorithm, then it will 

remember the time of each attack during the training. 

Consequently, detected observations in testing set rely on 

temporal information learned from training set. That being 

said, this information must not be used in training or in testing 

the model as in a real scenario an IDS never knows the actual 

time of attack.  

In impersonation attack such as Evil Twin and Caffe Latte, 

it is found that the number of beacon frames in the victim’s 

network are almost doubled and about half of these frames 

contained intrusive characteristics, that is, the impersonation 

attacks occurred during these durations [13]. 

Unfortunately, we found that Kolias et al. [13] set up an 

attacker and attacks were injected at particular times in their 

experiments and these were recorded in some of their features.  

The features used in AWID dataset were derived from 

Wireshark and the full list can be found in the official AWID 

dataset website [18] and Wireshark display filter reference 

page [19]. Among the selected features in Table II, the top 

ranked raw feature 4 (frame.time_epoch) is the epoch time 

when the frame was captured as shown in Fig. 4 and the 

redundant feature 7 (frame.time_relative) also has the same 

characteristics as feature 4 and therefore, it had the same MI 

value as feature 4 as mentioned in Section III-A. Additionally, 

feature 38 (radiotap.mactime) is MAC timestamp, another 

temporary feature, defined in Radiotap [20] as “Value in 

microseconds of the MAC’s 64-bit 802.11 Time 

Synchronization Function timer when the first bit of the 

MPDU arrived at the MAC. For received frames only.” [20]. 

We found that the benchmark models, DEMISe and 

DETEReD utilised the temporal feature of 4, while Aminanto 

et al. and D-FES utilised all three temporal features of 4, 7, 

and 38. 

 

TABLE III  

PERFORMANCE RESULTS OF IMPACT WITHOUT TEMPORAL FEATURES 

Acc DR FAR F1 Mcc 

94.72 94.04 04.61 94.68 89.43 

 

As the final selected feature set of IMPACT has only 

temporal feature (frame.time_epoch), the model trained 

without the temporal feature was experimented and the results 

showed that the model without the feature had worse 

performance than the model with the feature. Therefore, it has 

been proved that the temporal feature significantly contributed 

to the performance of the model and the feature selection 

method was effective, however, in fact, this feature is not valid 

to use for the development of IDS. 

IV. CONCLUDING REMARKS 

This paper presents the development of a machine learning 

based approach of an IDS offering the ability to be deployed 

and run directly on the resource-constrained devices. This was 

achieved through a smart strategy aiming to reducing the 

complexity of the model which consists of two main steps. 

First to the ability reduce the number of features through 

feature extraction and selection using SAE and MI and to 

evaluate their effectiveness in both efficiency and 

performance. The results showed that the extracted abstract 

features were selected as top features among the whole set of 

original and extracted features. MI values of the features could 

be utilised to select most relevant features and remove 

irrelevant features, resulting in the reduction of the complexity 

of the model without decreasing the performance, however, 

outperforming other models. 

The second step consisted in training and testing the linear 

SVM using gradient descent. In comparison with other models 

using different classifiers or SVM, (providing higher training 

time on the AWID impersonation dataset), the IMPACT 

demonstrated better performance including much lower FAR 

compared to DEMISe models. With the investigation of 

temporal features existing in AWID dataset, IMPACT 

provided its new benchmark results without using any 

temporal features in AWID dataset proving that it is the only 

ML-based IDS tailored for resource constrained devices and 

which is independent of such features in contrary to its 

competing DEMISe, DETEReD and D-FES algorithms. 

Based on these findings, the ways for further development 

could be proposed. Firstly, successful use of an SAE, opens 

perspectives for the use of other deep neural networks to 

extract abstract features. Secondly, this study only focuses on 

impersonation attack, however, there are two other type of 

attacks in AWID dataset, flooding and injection. IMPACT has 

not been yet tested against these, neither on newer attack types 

found in wireless IoT networks. Finally, IMPACT needs to be 

trained and tested on additional datasets providing their own 

features existing within the IDS research in order to prove its 

usefulness and effectiveness. Today, most wireless sensor 

network used as an automatic data acquisition and 

transmission system in monitoring applications is based on 

802.15.4. However, the dataset in [7] is built on 802.11. For 

the usefulness and coverage of the proposed algorithm, in our 

future work, the proposed algorithm will be tested on a new 

benchmark dataset created on 802.15.4.  
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