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ABSTRACT 

To assist in the early warning of deterioration in hospitalised children we studied the feasibility of collecting 

continuous wireless physiological data using Lifetouch (ECG-derived heart and respiratory rate) and  

WristOx2 (pulse-oximetry and derived pulse rate) sensors. We compared our bedside paediatric early 

warning (PEW) score and a machine learning automated approach:  a Real-time Predictive Indicator of 

Deterioration (RAPID) to identify children experiencing significant clinical deterioration.  

982 patients contributed 7,073,486 minutes during 1263 monitoring sessions.  The proportion of intended 

monitoring time was 93 % for Lifetouch and 55% for WristOx2.  Valid clinical data was 63 % of intended 

monitoring time for Lifetouch and 50% WristOx2. 29 patients experienced 36 clinically significant 

deteriorations. RAPID Index detected significant deterioration more frequently (77 to 97%) and earlier than 

the PEW score 9/26. High sensitivity and negative predictive value for RAPID Index was associated with 

low specificity and low positive predictive value.  

We conclude that it is feasible to collect clinically valid physiological data wirelessly for 50% of intended 

monitoring time. The RAPID Index identified more deterioration, before the PEW score, but has a low 

specificity.  By using the RAPID Index with a PEW system some life-threatening events may be averted.  
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Introduction 

Paediatric Early Warning (PEW) systems have reduced the late or undetected clinical deterioration 

experienced by some hospitalised children[1-3]. Following the introduction of the bedside PEW score in 

Birmingham Children’s Hospital, a multidisciplinary team identified missed opportunities and 

recommended more continuous monitoring for visualisation of trends and a smart alarm for earlier 

detection of deterioration. 

Continuous and intermittent monitoring has led to early identification of patient deterioration, increased 

rapid response activations and improvements in completeness of vital signs documentation[4,5]. Standard 

monitors require sensors to be hard-wired to patients and require additional software to extract data for 

advanced analytics[6]. Wireless monitoring offers a potentially more comfortable and economical solution 

although accuracy, continuity, patient tolerability and power management are challenging[7,8]. A number 

of sensors and monitoring systems have been developed and shown to be feasible but few have been 

sufficiently developed and tested in large clinical trials[7-15]. The advantage of more continuous 

monitoring for ward patients is that trends and Big Data analytics can be used to improve detection of 

deterioration[16-18]. The intent is not that smart alarms replace clinical surveillance but that they are used 

in addition to current systems to support and augment decision making[19-21].  

Neither continuous wireless monitoring nor integrated smart alarms have been reported in the context of 

paediatric wards. This study tests the feasibility of collecting sufficiently useful continuous wireless 

monitoring and the feasibility of a real-time smart alarm to assess whether the technology is at a clinically 

acceptable level. This report provides the study recruitment, wireless monitoring duration and 

identification of significant clinical deterioration in comparison to the PEW score.  

Methods 

Study setting and population 
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The study was conducted in Birmingham Children’s Hospital, a Specialist secondary, tertiary and quaternary 

paediatric hospital in two wards of 36 beds from November 2015 to March 2018. The patients in this study 

had cyanotic and acyanotic cardiac and non-cardiac conditions and were admitted for elective procedures 

and emergency care. The levels of care provided in this area are intermittent monitoring, continuous 

monitoring, continuous humidified high flow oxygen (HHFO), continuous nasal positive airway pressure 

(CPAP), infusions of vaso-active medications (Prostaglandin, Dobutamine and Milrinone) and internal or 

external pace-maker support. Patients requiring urgent Paediatric Intensive Care Unit (PICU) admissions 

are frequently at a high level of support (level two paediatric critical care).[22]  

Study design 

A prospective cohort study design with analysis protocol was developed before data collection 

commenced. South West Research Ethics Committee approval was obtained (SWREC 13/SW/0001) for 

children to wear two additional wireless sensors. Research nurses approached children and young people 

and their parents or legal guardian on the study wards to gain prospective informed consent. All methods 

were carried out in accordance with relevant ethical and data regulation guidance.  

Eligibility criteria 

All children, from birth to 17 years, with or without a primary cardiac diagnosis, were eligible except those 

requiring pacemakers and those in whom informed consent could not be achieved.  

Data transmission 

The WIFI in the ward was confirmed to be adequate and a medical device bandwidth was applied. The CE 

marked Patient Status Engine System (Isansys, Oxford, UK) was established for 36 beds in two wards. This 

system included a gateway (modified Samsung tablet) at each bed space and a data server behind the 

secure hospital firewall. The sensors and gateway were registered to a specific patient. The bedside 

gateways had a simple graphic display to confirm that data was being collected. A dashboard was 

developed to view high and low level patient data using the familiar PEW system chart. Two CE marked 
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wireless sensors were used.  The LifeTouch (Isansys, Oxford, UK) measured ECG-derived heart rate (HR) and 

respiratory rate (RR). The WristOx2 (Nonin, Plymouth, MN) measured pulse oximetry (SpO2) and derived 

pulse rate (PR). Data was transferred each minute by low power blue tooth to the gateways. Sensor 

position was checked to confirm correct placement by streaming waveforms.  

Data collection 

Data was prospectively collected on patient recruitment, demographics, and clinical outcomes. The 

quantity, quality and accuracy of physiological data were measured throughout the study. To calculate 

valid clinical data we applied broad filters for each parameter to exclude technical noise. Data was 

excluded if values were outside the ranges of:  HR <20/min or HR >300/min, RR <5/min or RR >200/min and 

SpO2 <30%. In the absence of a standard for wireless monitoring we chose duration of intended monitoring 

time with clinically relevant data.  We chose the usual 24 hour and a longer exploratory 72 hour window 

for identification of deterioration.   

PEW score  

Our PEW system combines education, an aggregated PEW score, monitoring standards, patient specific 

thresholds and clinical judgement[23]. Nurses measure observations and the PEW score every one to four 

hours and follow guidance on routine and enhanced monitoring.  The PEW score includes seven 

parameters: respiratory rate, respiratory distress, pulse-oximetry, inspired oxygen, heart rate, systolic 

blood pressure and capillary refill time[1,3]. A PEW score of 9 of 26 or significant concern triggers a 

request for PICU review. They can request assistance from the patient’s medical team, a nurse-led Patient 

at Risk Team (PART), a senior PICU clinician or the cardiac arrest team. The threshold of PEW score 9 was 

used for comparison with the RAPID Index.  

RAPID Index  

The RAPID Index was developed using bespoke machine learning techniques designed for this study. It is a 

novel patient-adaptive ‘index of surprise’, representing a digital equivalent of the PEW score. To develop 
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the RAPID Index a sample of 410 training monitoring sessions of more than four hours duration was 

selected between May 2015 and March 2016. Sessions of patients who had experienced clinical 

deterioration and sessions with only spurious data were excluded. The algorithm was trained, tested and 

used on raw, noisy and unfiltered data so that it can work in real-time with imperfect real-life data. The 

training sample was used to identify patient “phenotypes”.  These phenotypes are groups of patients 

whose HR, RR and SpO2 interact in a similar way and provide an expected range against which each patient 

can be compared; similar to the normal range used in PEW scores. When patients deteriorate they move 

away from the cluster of phenotypes representing conventional behaviour. The RAPID Index provides an 

instantaneous measure of deviation between the probability distributions of the actual observed patient 

physiological interaction data and the expected patient dynamics based on their recent physiological data. 

In summary, the algorithmic method involved stages of: signal conditioning and feature extraction, time 

series modelling, dissimilarity characterisation, machine learning interpolation, data visualisation, and the 

calculation of the RAPID index. Signal conditioning and feature extraction involved data verification and the 

creation of windows of time series segments across all sensors and the use of singular vectors to eliminate 

unphysical high frequency events. Multiple predictive linear multivariate time series models were created 

to model the feature space time series vectors, and the residuals across a temporal interval were used to 

characterise the validity of the set of models.  A measure of dissimilarity was used between time series 

models and data to infer how distinct each patient’s biopattern was. These patient models were visualised 

in a two-dimensional projection by a Neuroscale machine learning approach using the model dissimilarities 

to characterise the population response as represented through their sensor data. New behaviour could be 

observed in this distribution of the patient models of the selected population as trajectories which project 

into novel or sparse regions in this visualisation space.   This indicated new patient behaviour and was used 

to define patient “phenotypes”; i.e. characteristics of patients sufficiently distinct to the existing observed 

population characteristics to warrant the creation of a new “patient behaviour type” we interpreted as a 

phenotype.  So phenotypes span a medical characterisation space, representative of the patient population 

under consideration. The trained Neuroscale model creates a visualisation space, the geometry of which is 
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informative of the training patient cohort.   In particular the local curvature of the visualisation space 

indicates the data disparity. When new patients are presented to the trained architecture as described 

above, if their response behaviour of their sensor data is consistent with previously observed patient data, 

as captured in the visualisation space, then those new patients are well-represented by the existing 

phenotypes.  A measure of their instantaneous medical “state” is determined by the local curvature of 

where their data projects in the visualisation space. This measure of local curvature is used as a “surprise” 

index, since it reflects how unusual (or not) a specific patient’s sensor responses are relative to the historic 

training data across many hundreds of patients.   This is how the RAPID index is calculated.  Whilst the 

patient data projections are consistent with the historic behaviour of the training data phenotypes, their 

RAPID index also remains consistent with the training data. However, if new patient data is projected into 

novel regions, the curvature changes and the RAPID index increases.  The rise in the RAPID index was used 

in this study as a measure of patient-specific stress, and an empirically-determined threshold used to 

create an alarm for the nurses.  

Observation of the training patient data enabled the selection of a suitable threshold value of the RAPID 

index to detect deterioration. The RAPID Index can be visualised as a frequency-time plot or mapped over 

the cluster of phenotypes in real-time within 5 minutes of monitoring commencing. If the deviation from 

the expected stable trajectory is severe the RAPID index will be higher than the threshold and an alert via 

the dashboard could recommend clinical review. The RAPID Index continues to monitor patients when one 

of the sensors temporarily ceased to transmit valid data. The missing data can be imputed using signals 

from the patient phenotype space to provide realistic continuous signals for 15 minutes. 

Reference standard—significant clinical deterioration 

The target outcome condition was significant clinical deterioration which included cardiac arrest (defined 

as any cardiac massage), respiratory arrest (defined as needing ventilator support), other life-threatening 

events on the ward and unplanned PICU admissions. Two research clinicians (HD, BF) reviewed all cases 

with significant deterioration and reached agreement in all cases. The onset of deterioration was defined as 
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escalated therapy on the ward including starting antibiotics, starting respiratory support or increasing from 

a stable background of support, addition of vaso-active and anti-arrhythmia medications.  

Statistical analysis 

Descriptive statistics were used to describe the overall cohort and consider the feasibility of wireless 

monitoring. In the absence of data to inform the sample size 1200 sessions were chosen (20% of the 

anticipated 6000 admissions).   

To compare the RAPID Index and a PEW score 9 the sessions with significant clinical deterioration were 

compared with an equal number of randomly selected control patients. For cases all alerts were considered 

to be true positives and those without alerts were considered to be false negatives. For controls all alerts 

were considered to be false positives and those without alerts were considered to be true negatives. The 

frequency of measurement of the PEW score is every one to four hours and the frequency of the RAPID 

Index is every minute. 

Basic estimates of test accuracy (sensitivity, specificity, positive predictive value [PPV] and negative 

predictive value [NPV]) were estimated for both the RAPID index, and PEW score, along with corresponding 

confidence intervals. The difference in sensitivity and specificity was calculated using McNemar’s test. 

Estimates of PPV and NPV were calculated assuming the true prevalence was 5.6%, as seen overall in the 

RAPID study. Confidence intervals for the PPV and NPV estimates were calculated using the method of 

Mercaldo[24].  

Results  

Population demographics  

A total of 982 patients contributed 1,263 monitoring sessions including 7,073,486 minutes of monitoring 

time (Figure 1). Despite recruiting to the 1200 session target only 20.5 % of the total population were 

recruited (Table 1). The demographics of the recruited and not recruited patients were similar. 
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[Figure 1 near here]  

 

[Table 1 near here] 

 

Feasibility of wireless physiological monitoring  

The proportion of session time recorded and validity of data (within clinical ranges) improved during the 

study. Modifications to software and hardware improved data capture from 74% to 93%. Lifetouch 

improved from 66% to 93 % and WristOx2 improved from 49% to 55% as a proportion of intended 

monitoring time.  Valid clinical data also improved: Lifetouch increased from 58% to 63 % and WristOx2 

increased from 23% to 50% as a proportion of intended monitoring time. Overall valid wireless data was 

recorded for more than 50% intended monitoring time.  

 

Clinical outcomes  

Twenty nine patients had 36 significant deteriorations: two patients had three events and three patients 

had two events; 16/29 (55%) were male. The age range was four days to 16 years and the median (IQR) age 

was 11 (2 to 18) months. All patients with significant clinical deteriorations had an underlying primary 

cardiac diagnosis. The cause of the acute deterioration was heart failure or structural heart disease (n=20), 

viral respiratory infection (n=8), arrhythmia (n=4) or gastro-intestinal disease (n=4). The mean time from 

identification of deterioration to significant clinical outcome was 40.2 hours for the PEW score and 46.9 

hours for the RAPID Index (Table 2).  

[Table 2 near here] 

The onset of deterioration was identified within 72 hours by the PEW score in 31/36 (86%) and RAPID Index 

in 35/36 (97%) of cases. RAPID Index identified patients on average 52 hours earlier than the PEW score 

one patient was not identified by the RAPID Index (Table 3). The RAPID Index produced more alerts/ hour 

for cases and controls (Table 4). 
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[Table 3 near here]  

[Table 4 near here]  

PEW score ≥9 has an overall better predictive discrimination; the sensitivity of RAPID Index is high with a 

poor specificity. Both have value to exclude those patients who are unlikely to experience significant 

deterioration (Table 5).  

[Table 5 near here] 

[Table 6 near here] 

Clinical review identified that patients experiencing 22 of the 36 significant deterioration sessions were 

escalated in a timely manner and 14 patients could have benefitted from earlier review. The RAPID Index 

identified all 14 of these patients who could have benefitted from earlier review; the PEW score identified 

13 patients with enough time to intervene (Table 6). However, in all there was less than an hour between 

the PART and PICU doctor attending and significant deterioration. Four individual patients (aged 3 to 28 

months) with potentially avoidable respiratory and cardiac arrests had RAPID monitoring for a mean of 83 

hours (range 20 to 218 hours).  The mean duration of warning was adequate to intervene; 33.4 hours for 

the PEW score and 37.8 hours for the RAPID Index. Had the wireless monitoring and RAPID Index been 

reviewed the four arrests could potentially have been avoided. Wireless monitoring trends were visible at 

the bedside but the RAPID Index smart alarm was not.  We received no verbal or email feedback that 

indicated that clinicians used research data in real-time.  

 

Discussion  

We have demonstrated the feasibility of wireless monitoring and displaying a smart alarm in real-time in 

982 hospitalised children. Depending on the sensor it is feasible to collect valid clinical data wirelessly for 

50-63 % of the intended monitoring time. The continuous data contributed to a novel machine-learning 
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smart alarm, the RAPID Index that has high sensitivity, poor specificity and an earlier detection of 

deterioration.  The PEW score has an overall better predictive discrimination, however, RAPID Index 

identified more (77 to 97%) significant clinical deteriorations than the PEW score. 

Data loss from sensors, even when the collection system (Bluetooth, gateways, WiFi, and server) is 

working, is well described and less with non-mobile patients[25-28]. Patients remove the sensors, the 

sensors lose power, disconnect, and there is signal noise from movement between the patient and sensor. 

There are currently no standards for wireless data quantity, quality and spread. Previous studies report 6 to 

80% loss with various devices[25-28]. The difference potentially relates to whether clinicians are using the 

information from these sensors and so ensuring good sensor positioning. Current routine hourly 

observations provide a single measure per hour. In the absence of guidance and the technology untested at 

this scale we chose to strive for 50% of intended monitoring time which was able to detect deterioration. 

The optimal sample frequency, or spread, is also not clear. In our PICU study the prediction of cardiac 

arrest sampling less than every 15 minutes had a detection advantage[29]. Sensor usability was different 

between the two sensors as reflected in the reduced data from the SpO2 sensor indicates that a better and 

more tolerable device is required. Although new sensors will improve the continuity and quality of data it is 

anticipated that wireless data will still be at least briefly discontinuous and often noisy. 

Big data and smart analytics have been used with patients hard-wired to monitors with an indication that 

they can identify significant deterioration[17,30-32]. The RAPID Index is a new smart alarm that identifies 

patient-specific normality and when a patient’s physiology is deviating from the expected. Potential 

benefits of the RAPID Index are patient-specific earlier identification, the ability to detect deterioration 

when dealing with imperfect, noisy, real-time data and when only a single sensor remains attached.  

Sensitivity and specificity are used to establish effectiveness of early warning scores. For the smart alarm 

we followed this approach although it is more relevant to a binary clinical test rather than an evolving 

clinical picture with interventions. 
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Clinical deterioration occurs on a spectrum. We defined the onset of deterioration as escalation of 

respiratory support and specific medication. Alternatives would have been to use the time that PICU or the 

PART was called to review the patient but this was sometimes planned or inconsistent. Previous early 

warning studies have used a one to 24 hour windows for detection[1,3,29]. Being an observational 

feasibility study we chose to extend the window of detection to 72 hours to identify the spectrum of 

deterioration, responses and outcomes. The onset of deterioration was detected by the RAPID Index about 

47 hours before and PEW score 40 hours before the event. The long duration of warning is illuminating but 

does allow for more false alarms[33]. Detection was associated with further escalation of therapy until 

PICU was required. For early warning this means that there could be multiple cycles of alert and 

interventions in the period between the onset and significant clinical deterioration. The PEW score was 

measured every hour and the RAPID Index each minute. Therefore the test favoured the less frequent PEW 

score and penalised the RAPID Index and partly explains the high sensitivity and frequent false alarms. 

Considering the deterioration continuum and frequent sampling we need more appropriate analysis tools 

than sensitivity and specificity for technology assessments.  

In this design, escalation of patients for medical review was based on the PEW system. The performance of 

the PEW score to detect deterioration in this study is similar to that previously reported but clinicians often 

aren’t escalating at this threshold[2,3,34-35]. This shows a human factors based over-ride that has 

important implications for technology developments in this area; we need to understand the ‘implicit rules’ 

that clinicians are following in order to maximise the potential benefit of early detection[35-38]. Paying 

attention to visualisation, using a recommending system with automated alerts in conjunction with 

advanced analytics are possible solutions[6,30,35-42].  

There are many limitations of this study mainly relating to generalisability. It was conducted in a single 

centre that delivers enhanced care on paediatric wards to a specific, mainly cardiac, population. Our 

threshold for significant deterioration may differ from institutions where higher dependency therapies are 

only provided in PICU. Only 20% of the ward population was recruited; similar to other studies[11,25] 
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although the demographics show our sample was representative of the whole population.  Future efficacy 

studies need to offer a different model of consent in order to achieve the majority of the population as the 

sample[43-45]. The RAPID Index training sample for the phenotypes and algorithm identified children with 

mainly cardiac conditions. Paradoxically we proposed that if RAPID could work with highly variable 

physiology could make it more transferable to less varied populations; a theory yet to be tested. The 

definition and onset of deterioration was determined through consensus between two of the investigators 

potentially introducing bias and overfitting. In this feasibility study we did not separate out the contribution 

of better trend information with wireless monitoring from the RAPID smart alarm to detecting 

deterioration.  

There are many challenges to implementing wireless monitoring and smart alarms[45]. Research into 

sensor and trial design, implementation, taxonomy, sample frequency, standards and analysis is required 

to evolve and tame the technology[45,47]. Large clinical trials with varied populations are required to 

establish efficacy and cost-effectiveness.  

Conclusions 

Wireless monitoring in children can collect clinically valid data for more than 50% of intended monitoring 

time. An improved pulse oximeter sensor is required to improve data capture. We have shown it is feasible 

to develop and display a smart alarm in real-time. The RAPID Index can detect the majority of significant 

deteriorations before the current early warning system but has a low specificity and is currently associated 

with false alarms. The RAPID Index and PEW score are effective at ruling out the likelihood of significant 

deterioration. Further improvements in data quality will hopefully improve the precision. By using the 

RAPID Index in addition to PEW system it is possible that some life-threatening events may be averted. This 

data is very preliminary and the technology needs further efficacy and health economic evaluation prior to 

adoption.  
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Figure 1. Flow diagram of recruitment and significant deteriorations  
 


