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Abstract—The use of network applications to manage network
operations by the controller in SDN architecture introduces a
threat that makes the controller to be susceptible to several net-
work attacks. This is possible because the network applications
operate without any access control mechanism that authenticates
or dictates what operations they can execute in the network. This
consequently makes the network applications to take advantage
of their ability to manipulate, change or modify network state
to compromise network operations and resources. In order
to address this problem this paper introduces a token-based
authentication method that enables the controller to authenticate
the various network applications. The application of this method
builds an access permission zone where only legitimate network
applications with the correct token credentials can have access
to the network prior to implementing any network changes. This
paper contributes in providing an authorisation method Boolean
Access Matrix that enforces permission constraints on what the
network applications can access or execute within the network.
The authorisation method helps limits the unprecedented access
the network applications have over the control layer resources,
core services and the network operations. The paper introduces
a novel method of evaluating the trust between the controller
and the network application based on Subjective Logic Reasoning
(SLR) which is a belief learning model. SLR is an advanced
learning algorithm that is derived from Probability Calculus and
Statistics. Experiments demonstrate the efficiency and scalability
of the proposed algorithms in a large scale test environment.

Keywords: SDN, Trust, Authentication, Authorisation, Se-
curity.

I. INTRODUCTION

Software Defined Networking (SDN) is an emerging
paradigm that changes the way networks are managed by
separating the control plane from the data plane and making
networks programmable. The separation brings about flexibil-
ity, automation, orchestration and offers savings in both capital
and operational expenditure [1].

The main problem of SDN stems from the benefits it
provides [2]. Thus network programmability and innovation
at the application layer. These introduce new faults and attack
plane which consequently give way to new threats that were
not present before or difficult to exploit [3]. These new threats
are discussed in [4], where the identified severe threat among
them is the trust between the controller and the network
applications. In SDN environment, the controller is logically
centralised and have the global view of the network state, these

include topology, connected hosts, forwarding devices and
links. The network applications request information about the
network state and view from the logically centralised controller
and transmit commands that dictates the forwarding behaviour
of the data plane.

This form of communication between the controller and
the network application is perceived as threat from a network
security perspective. For example a network application with a
malicious intent can take advantage of the global network state
information to manipulate traffic flow based on the motive of
the adversary. In addition poor application design can intro-
duce security vulnerabilities that can otherwise compromise
network operation.

The SDN paradigm supports third party development efforts
and suffers from trust issues on deployed network applica-
tions. The violation of trust can leads to different types of
attacks, where the consequences are severe and have impact
on the entire network [5]. Therefore trust violation is a threat
and resides between the controller and the application. SDN
networks are programmed with policies that explicitly allow
network applications to apply changes in the network and no
formal verification technique or semantics to assess the trust
of these applications [6][7]. Malicious applications can abuse
these privileges and harm network operation.

When network applications are instantiated with the con-
troller, they automatically inherit all the access rights to
change, manipulate or modify network state [8]. This is a se-
rious threat that receives little attention and sparsely explored
within literature. This threat from network applications arises
from how to verify the trustworthiness and reliability of a
program module, because network applications have access to
critical network resources like flow table, device configura-
tions, CPU memory, RAM partitions, input and output ports.

Most network administrators that use third party applica-
tions assume same trust level similar to that of the controller
on the network applications [9]. This is because controller
modules must undergo series of tests and verification to make
sure that they are reliable and fit for use in research and
production network. However it is difficult to ascertain the
reliability and trustworthiness of a third party application [10].
A malicious or compromised application can be a sink for
various network based or host based exploits. This can give



way to control plane attacks that can lead to code execution
or information disclosure.

The design of the SDN architecture is in such a way
that application layer contains the various various network
applications that modify, change and manipulate network oper-
ations [11]. Each application has a distinct logic and function
for which it was designed for, example switching, routing,
firewall, load balancing and so on [12]. SDN applications run
on top of the controller, and communicate with the network via
the Northbound Application Programmable Interface (API).
The core functionality is to manage flows that are contained
in the forwarding elements using the controller’s API [13].
With the help of the API applications can:
• Set up flows to route packet via the optimal best path

between two endpoints.
• Traffic aggregation and loadbalancing across multipath.
• React to topology dynamism in case of device failure,

change in location, device join or leave event.
• To redirect traffic for security related functions like au-

thentication, deep packet inspection, intrusion detection
and segregation for further analysis.

Within the scope of our knowledge there is absence of
an access control mechanism that verifies the interaction and
association of network applications with the controller. With
the controller having full knowledge of the network under
control, if a malicious application takes over the controller,
the result would be catastrophic. Some of the implications
are redirection of sensitive traffic, controller spoofing, DoS
attack, network reconnaissance attack, tampering with flow
rules etc. There is large state space control delegated to the
controller that its compromise could leads to hijacking of the
entire network operation [14]. Every secure communication
network should guarantee confidentiality, integrity, availability,
authentication and non-repudiation between communicating
entities. This cannot be achieved without having concrete
threat mitigation techniques in SDN architecture.

This paper contributes in providing a novel Trust Manage-
ment Framework that:
• Authenticates the various network applications that are

situated in the network function virtualisation layer.
• Apply authorisation privileges and constraint network

application behaviour to conform with set network policy.
• Evaluate the trust relationship based on Subjective Logic

Reasoning between the network applications and the SDN
controller.

The mitigation of this threat that exist between the controller
and the network application will be the primary focus of
this work and this will aid towards building a secure and
dependable trust framework for the SDN architecture. SDN is
a new network paradigm at an early stage with the potential
of becoming the next generation communication network, with
this in mind there is growing need to have a dependable and
reliabe architecture [15].

The rest of the paper is organised as follows: Section II
presents the problem statement and motivation as to why

there is need to mitigate the devastating threat between the
controller and the network application. Section III presents
related work on controller to network application security. Sec-
tion IV presents the proposed design of the trust management
framework and Section V provides detailed implementation,
testing and evaluation of the framework. Section VI provides
a comparative evaluation and validation with other frameworks
that attempt to mitigate similar threat. Finally, section VII
concludes and discusses future directions.

II. PROBLEM STATEMENT

The interaction between controller and the network ap-
plications takes place between the northbound interface [7].
Based on SDN secure design architecture, this interface should
allow only trusted network applications to program and request
services from the network [16]. The network interaction and
the implementation of network changes is enabled by access
permissions that give the network application ability to read,
write, receive notification and make system calls to control
network state [17].

The network applications interact with the shared SDN con-
trol plane state through service API calls and event callbacks.
A network application can read from and write to one of
the controller modules (e.g network information base) via a
particular service and the service method [18]. For the event
callback, a network application can register with the controller
and subscribe to events of interest. In essence, the interaction
is about control which involves reading network state, writing
network policies, getting notification of events and access to
resources via system calls.

A. Read Network State

The communication between the controller and the net-
work application is implemented either via Representational
Stateful Transfer (REST) APIs or the native controller API
[8]. For example, java based controllers like OpenDayLight
and Floodlight can use both native java based API or REST-
APIs to enable interaction of network applications with the
controller [14]. For a network application to read network state
it can send a HTTP GET request to pull for example state
information of the network topology or device configurations.
The controller serves as an intermediary to relay the request by
the network application to the forwarding devices at the data
plane via any available southbound API majorly OpenFlow
[19]. The forwarding devices at the data plane will then
respond with the requested data which the controller interprets
and forward back to the network application in form of a
HTTP response. The query follows a similar method if the
native controller API is used instead of REST API request.

B. Write Network Policy

In order to implement or effect a change in the network
state, a HTTP POST request is sent by the network application
to the controller. The controller serving as a proxy would trans-
late the request as a flow modification or packet out instruction
to be implemented in the flow table of the relevant switch



in the data plane via the southbound API [20]. The network
state change implemented by the HTTP POST method is been
enabled by the write access permission [21]. Some functions
allowed by the write access permission include but not limited
to adding of flow rules, modifying flow rules, sending flows
out to a designated port, assigning VLAN tags, flow queues,
metering and deleting of flows. The ability to write network
policies that can affect the global state of the network gives the
network application an edge in terms of network control and
management. When configuring an application, it is necessary
to know precisely which access right is needed for the network
application to function correctly without impacting the security
and network operation [22].

C. Notify

Network application can subscribe to certain events in the
network and receive notifications[17]. There is no limit to
the number of events a network application can subscribe to
and application can subscribe to as many events as necessary
to accomplish its designated tasks [23] Example of some of
the notification events include a switch join or leave event,
switch port status (up or down state), link status etc. A
network application can join or subscribe to network event of
interest, a malicious network can subscribe to event in order to
listen, monitor and observe network activity for reconnaissance
purposes.

D. System Call

Network applications can access the local operating sys-
tem resources, these are resources that are shared across
all applications resident on that local machine [16]. These
shared resources are CPU, RAM, Storage, processor threads,
file system and kernel libraries [24]. Access to operating
system resources should be monitored because the controller
sits on the abstraction provided by the operating system.
The operating system contains the kernel base code where
tampering of system properties by the network application can
be critical to network operations and the controller at large.

Analysing how the interaction of the network application
and the controller takes place there are identified vulnerabili-
ties in this approach:
• Network applications are not required to provide any kind

of identity or credentials before sending network request.
There is no method to verify the authenticity of network
applications [16][21].

• There is no method to monitor, constrain or limit the
set of requests or operations being executed by network
applications. In essence no regulation of behaviour after
installations, and network application can access and
make changes to network operations without any hin-
drance [4][23].

From this assessment, the potential solution will be to
provide:

1) A method of identifying network applications.
2) A method to control the level of access a network

application has when managing network states.

3) To provide a trusted communication between the con-
troller and the network application.

With exposed network resources and APIs at the disposal of
the network applications. Developers can design and distribute
applications. However this flexibility as a way of innova-
tion can be constrained if an adversary decides to launch a
malicious application with rogue intentions [25]. Figure 1a
shows the threat that leverages the inability of the controller
to completely identify the various network applications that
make changes to network in the SDN architecture.

Network applications that control network states have all the
access permissions read, write, notify and system call at their
disposal. If a third party network application developer decides
to implement a malicious application that can leverage these
access levels to disrupt network operation and compromise
network assets then there is no access control mechanism in
place to stop the malicious intent [8]. The breach would go
undetected. For example Figure 1b presents how a malicious
network application is been installed and initiated in the
network.

The focus of this work is to presents a method of identifying
the network applications via authentication, and providing an
authorisation method that constrains the behaviour and level
of access every network application has on the network. And
the last part entails using a trust method to evaluate how the
network application interacts with the controller.

III. RELATED WORK

This section analyses the previous work and attempts made
by the research community to address this threat that exist
between the controller and the network application. The threat
is introduced due to the inability of the control layer to identify
the network application and the level of authorisations they
have when modifying network states.

In [26] the authors propose FortNox which is one of the
first attempt to implement an authentication mechanism for
network applications within an SDN environment.The moti-
vation of FortNox approach is based on flow-rule conflict and
contradiction due to various network applications sending flow
requests simultaneously to the SDN controller. The means of
identifying a network application in FortNox is via generated
flow rules, each flow rule is signed to make sure there is no
overlap from a previous installed flow. The signing of the
flow rule serves as the method of identifying the network
application. FortNOX implements a real-time algorithm that
detects and mediates rule conflict.

In FortNox, the authentication approach is to identify flows
coming from various network applications in order to avoid
rule overlap and rule bypass. FortNoX is not authenticating
the network applications to be specific, however substantial
amount of work has been done in identifying flows and
implementing polices for granularity and control.

In [27] the authors propose Rosemary which is an SDN
controller framework that is designed and centred on security.
Rosemary builds upon the work conducted in FortNox because
it is introduced by the same authors. Network application



(a) Application to Control layer threat
(b) Malicious Application Threat Scenario

Figure 1: Network threat and means of propagation in the SDN architecture.

identification is still via flow signing, however in this case,
the authors introduce a method that authorises what network
application can access or execute via system call access check
module. The system call access check module runs in isolated
containers called micro network operating system (microNOS)
and intercept requests made by network application.

Rosemary aims at providing control layer resiliency in
the event of a network application crashing due to instabil-
ities or vulnerabilities. In some situations the failure of a
network application may halt the operation of the control
layer. Rosemary achieves this through application spawning
that provides containment and resiliency. Rosemary does not
provide trust between application and controller, but provides
a means of threat containment in case of malicious application
compromise. It has the capability to isolate the fault and keeps
the network operating system functional.

PermOF is another approach proposed by authors in [17]
that introduces a filtered fine grained authorisation permission
system for network applications. They introduced a layer that
restricts application to make direct calls to controller memory
base. This layer is configured and managed by the controller so
that unsolicited communications between network applications
and the control layer is prevented.

PermOF makes a good proposal on authorisation strategy
by providing a fine grained permission system that aid in
authorising network applications. Though PermOF is not im-
plemented and does no have any authentication mechanism,
but the authors put up a good authorisation mechanism to
checkmate network application privileges and escalation of
privileges.The approaches discussed do not provide a com-
prehensive framework that comprises of both authentication,
authorisation and trust.

Another related attempt is our earlier work on trust between

SDN controller and the network applications [28]. The re-
search work identifies , highlights and give directions as to how
the trust issues can be resolved between the controller and the
network application. The aim is to address the vulnerability in
the SDN architecture that exists when the network applications
are interacting with the controller. The violation of trust by
the network application can lead to different types of attacks
and the consequences are severe and heavily impact the entire
network operation.

The ability to segregate and isolate the different applications
running on the controller in order to provide logical segmenta-
tion to support authentication of the applications and to enforce
level of authorisation and privileges will be paramount to a
secure and dependable control layer.

IV. PROPOSED DESIGN OF THE TRUST MANAGEMENT
FRAMEWORK

Considering the security problems discussed in Section
II about the inability of the controller to identify network
applications and authorise what operations they can execute
in the network. This section presents the system design and
the architecture of the trust management framework. The aim
of the proposed trust management framework is to mitigate
the identified security problem. The architecture is illustrated
in Figure 2. Technically the framework is integrated as a
module in the control layer. Matlab and Python scripts are
used in developing the packages and incorporated directly at
the control layer. RYU controller is used to demonstrate the
feasibility of the proposed design.

The developed modules are compiled as part of the con-
troller and have access to various controller classes, methods
and data. The trust management framework contains various
modules and submodules that interact with one another to



provide a secure and trusted communication between the
controller and the network application.

The system design of the trust management framework will
satisfy the security requirement needed to mitigate the threat
between the controller and the network application by:

1) Providing a method of identifying a network application
via a credential.

2) Defining set of permission for network applications. The
permission should include all application related task
that are required for smooth operation of the network.

3) Evaluate the reliability and dependability of network
applications based on the interaction with the controller.

The proposed framework aims at establishing a trusted
relationship between the control layer and the network ap-
plications. Figure 2 shows the architecture of the framework
and it is made up of three main blocks.
• Authentication Module
• Authorisation Module
• Trust Evaluation Module
Apart from the three main modules, there are however

peripheral modules and interfaces that majorly make up
the framework which include the controller core services
modules. The framework involves implementing a controller
with modules that assist in carrying out core functions of the
proposed trust framework as seen in the architecture. The
interfaces and modules are discussed as follows:

• Application Interface: Provides the chaining (service
requests) between the controller and respective network
applications.

• Authentication Interface -The interface that connects to
the authentication module. It checks and verifies applica-
tions using application instance and a unique token.

• Authorisation Interface - The interface that connects
to the authorisation module which applies permission
constraints to authenticated applications.

• Trust Interface - The interface that connects to the trust
evaluation module it aids in calculating the confidence
and reliability of a network application.

• IP - The IP address of the controller for reachability .
• Location - The controller location whether remote, local

or on the cloud.
• Identity - Identifies the controller in a cluster of con-

trollers.
• Event handler - Handlers that listen for event and react

based on the defined logic to carry out specific task.
This section provides detailed design and development of

the main blocks starting with authentication, authorisation
then trust evaluation module.

A. Authentication Module
This is one of the main modules of the framework, the

authentication module checks, verifies and allows or blocks
SDN applications on the grounds that they pass the network
application credential checks. A unique identifier in terms of

Token is assigned to every network application, which is used
in the application permission management at the authorisation
stage.

The authentication process is the first phase in the
framework and is triggered when an application initiates a
request to implement network changes via the control plane.
Each instance of application that runs have a unique token, the
token serves as basis of checks and verification. The network
application in this context is a view, the view is the context
through which the application in conjunction with the token
is seen by the framework during authentication. This means
that there is no physical exchange of credentials because the
application is not a physical object like a user with credential
but rather an automated batch process that is abstract
and verified before execution of its task. Authentication
always runs at the beginning before permission check for
authorisation and before any other code is allowed to execute.
The Authentication Module has two main functional blocks as
seen from the architecture on Figure 2 that helps in successful
execution of authentication, they are Application Correctness
and Token derivation. These functional modules are analysed
as follows:

1) Application Correctness and Verification: Checks for
correctness and verification to make sure the authentication
process goes smoothly. This is carried out by the Application
correctness and verification block. The authentication module
takes in two arguments, the first being the network application
and the second argument is the token. This sets the stage for
application verification and makes sure errors related to the
authentication are addressed.

To demonstrate the feasibility of the concept two applica-
tions are used mainly:
• Layer 2 MAC learning Application (L2 MAC)
• IP Blacklist Application
These two applications will serve as the centre of the

analysis and evaluation of the framework. A database is
created for these applications where App1 is mapped to L2
MAC and App2 mapped to the the blacklist IP application
together with their respective token.

Application database = {App1, App2, ... App n } (1)

Where App n ∈ Application, and n ∈ N

Function desc = {L2 Mac, IP Blacklist, ... X } (2)

Where description X ← APPn and, X ∈ Function desc

Token = {Token1, Token2, ... Token n} (3)

Where Token n ← APPn token and n ∈ N
After the initiation the next step is to commence the veri-

fication where the authentication procedure AuthenticateApp()
checks for incoming challenge request from network applica-
tion.



Fig. 2: Trust Management Framework

AuthenticateApp(arg app, token),

arg app ← Network applications as argument.
token ← Token for the network application.

If there is a call to the AuthenticateApp module without
any apparent argument. Thus if nargin = ∅ , where nargin
means number of arguments input, then the resulting output
is to provide more arguments.

To elaborate on the rest of the application correctness
algorithm, the following conditionals are set:

1) ψ1 = If naragin is numeric
2) ω1 = Then error authentication failure resulting from

condition ψ1
3) ψ2 = If the input is arg app 1, where arg app ∈

Application
4) ω2 = Then incomplete authentication, token required

from condition ψ2
5) ψ3 = If the input is arg app 2, where arg app ∈

Application
6) ω3 = Incomplete authentication, token required from

condition ψ3

Therefore if nargrin = 1,

(ψ1→ ω1) ∧ (ψ2→ ω2) ∧ (ψ3→ ω3)

For the last part where AuthenticateApp takes in ap-
plication that is not contained in the library of defined
network applications thus (arg app /∈ Application) then
the resulting output should be:

7) ψ4 = arg app, where arg app /∈ Application
8) ω4 = Wrong application, valid application required from

condition ψ4

(ψ4→ ω4)

The token is obtained by set of defined algorithm that will
be discussed in next section IV-A2. A snippet from the pseudo
code of the Network application correctness and verification
can be seen in Algorithm 1.

2) Token Derivation: Conventional methods mostly use
heavy encryption ciphers that delay the process token ex-
change to the extent of timing out, to avoid such issues of
downtime an efficient method with less cycles of processing is
presented and implemented to achieve a successful verification
of network applications [29]. Another challenge is the security



Algorithm 1 Network Application Correctness

1: Initialising checks, verification and correctness of the
Application

2: Procedure AuthenticateApp(Application, Token)
3: Application = {APP1, APP2, }
4: Function desc = {L2 MAC, IP BLACKLIST}
5: Token = {Token1, Token2}
6: Application ← Application view, Where Applica-

tion view is a process
7: Token as application key of length(n), keyspace(n) = 20
8: if (nargin == ∅) then
9: display(’More arguments required’)

10: EXIT
11: else if (nargin == 1) then
12: if isnumeric(arg app) then
13: arg app ∈ N∩Z
14: Action:= Deny
15: error(’Authentication Failure’)
16: Controller info(’Application view 6∈ N∩Z ’)
17: else if App parser(App view, arg app) then
18: arg app ∈ Application
19: arg app = APP1 ∪ APP2
20: display(’Incomplete Authentication, token required’)
21: error(’Auth Failure’)
22: Controller info(’arg app and token expected’)
23: else if App parser(App view, arg app) then
24: arg app 6∈ Application
25: display(’Application input expected’)
26: error(’Auth Failure’)
27: Controller info(’Input not allowed)
28: end if
29: end if

=0

issues of using some encryption ciphers. For example in
some versions of SSL/TLS there are fatal vulnerabilities that
exist like the POODLE [30] and BEAST [31] exploit. These
exploits can decipher messages in transit and recover session
information from a secure connection.

In this research work the token is unique to every network
application and should change after a certain defined period.
These tokens are generated locally and play a local signifi-
cance in the ecosystem of the architecture. They cannot be
exported nor used twice for different application. Figure 3
shows a process of token exchange between the controller and
the network application.

The initiation of the token involves permutation, combina-
tion and randomisation of alphanumeric variables and set of
natural numbers with defined boundaries. They have certain
length which define their key space and strength against brute
force. The initiation is as follows:

A = {a, b, c, d, e ..... z}

B = {0, 1, 2, 3,.....9}

Fig. 3: Authentication Process

Therefore AB,

AB = {x| x ⊆ (A ∧ B) ∧ x ∈ N ,0 < x < 10}

The set AB contains union of both set of A and B, these will
serve as the input of the next stage of the token derivation.
With the result of AB, a function Zeroes that increases entropy
of randomisation will be used in conjunction with the length
of AB .

AB = {A ∪ B}

The function Zeroes takes two arguments (M,D). The value
for D is arbitrary chosen to be 20, for robustness and resiliency
the higher the better. The defined variables:
• M = length of AB
• D = key size which is 20

Zeros(M, D)

The algorithm is built in stages with each output laying as
the foundation of the next input function. The result of Zeroes
is assigned as Data.

Data = Zeroes(length(AB), 20)

Data will serve as the upper boundary of the next procedure
which is size. The lower boundary will be a chosen integer that
fits within the required expected output and in this scenario 2
is arbitrarily selected.

Size(Data, 2) (4)

For every output from equation 4, initiate a loop starting
from integer 1. The output serves as our Token pass which
can be mapped to application view for authentication purpose.

Size(Data,2)

∑
i=1

rand perm(length(AB))



The pseudo code for the token derivation is seen in Algo-
rithm 2.

Algorithm 2 Token Derivation for Network Application

1: Declaring and instantiating variables for TOKEN key
generation

2: A = {a, b, c, d, e ..... z}
3: B = {0, 1, 2, 3,.....9}
4: AB = {x| x ⊆ A ∩ x ∈ N ,0 < x < 10}
5: AB = {A ∪ B}
6: Procedures Zeros(M, D)
7: M = length(AB)
8: D = 20, key space length
9: Data = Zeros(length(AB), D)

10: For loop initiating, Lowerbound = 1 and Upperbound =
Size(Data,2)

11: Size(Data, 2) is a function and the (Data,2) are the input
vectors

12: ∀ k(Lowerlimit, Upperlimit) do
13: Output = randperm(Length(AB))
14: Token1 = {ZPD5H580XJWLZ1RKDOE7’ ,}
15: Token2 = { ’HNHAKGA2ZMRDQCOH9JRV}
16: END

=0

The token to be used for the two applications respectively
(L2 MAC and IP blacklist) are seen on Table I as the output
from Algorithm 2.

TABLE I: Token for Applications

Application Token
L2 MAC ZPD5H580XJWLZ1RKDOE7
IP Blacklist HNHAKGA2ZMRDQCOH9JRV

B. Authorisation Module

This module is very crucial in the evaluation and reali-
sation of the framework. It serves as the second stage after
which successfully authenticated applications will be assigned
authorisation privileges. Authorisation deals with the specific
permissions the network application is allowed to execute on
the network after successful authentication.

These permissions are derived from the nature and be-
haviour of the application. What builds an application is the
list of attribute actions in terms of permission it can execute
within the network operating system.

The set of these permissions vary from one application
to another based on the functionality and behaviour of the
application. For example some identified attributes of a load
balancing application are seen in Table II. From the list of the
attributes of a network application, a wrapper is applied on
the attributes via which access control and authorisation can
be enforced.

Attributes Function
Read Buffers This is an attribute that read buffers of ports

and interfaces. Based on predefined limit
and capacity a buffer can store packet half
or full packet payload in a queue.

Read Port To map out connected ports of a data plane
element, whether physical or virtual.

Select Route Choose the optimal route for traffic based
on preconfigured policy. The procedure can
be based on link saturation or to distribute
traffic loads evenly across the different path.

Flow Count Take a record of total flows received or sent
in a flowtable.

TABLE II: Load Balancing Attributes

In the authorisation stage the set of permissions for every
network application are defined. Each network application
has a unique identifier which is used to bind the related
permissions of that application. A database structure uses the
unique identifier to store the permission of every network
application. The identifier can be used as a key to access
all the permission of that application in the database. These
permissions are made up of the related commands used by a
network application to read state of network, write network
policy, register for events or make system calls.

The actualise this concept, the authorisation model is made
up of :

• Applications = { App1, App2, App3 .... Appn}
• Objects = { o1, o2, o3, o4 .... on}
• When interacting with network states, network applica-

tions make changes to objects. These objects are mapped
to various instances of read, write, notify and system call
objects. The level of access to these objects depends on
the privileges of the network application.

• Set of Read permission R = { r1, r2, r3, .... rn}
• Set of Write permission W = { w1, w2, w3, .... wn}
• Set of Notify permission N = { n1, n2, n3, .... nn}
• Set of System call permission S = { s1, s2, s3, .... sn}
• Union of all permissions P = { R ∪ W ∪ N∪ S}
• Example of an application with combinations of permis-

sion APP1 = { r1, w2, n3, s4, r3, w4, s2 }
• At any instance, applications can only have a subset of P

which means no application can have a global permission
to read, write, receive notifications or make system calls
to all network states thus App ⊆ P.

The concept that implements the presented authorisation
model above is Boolean Access Matrix (BAM) [32][33], this
method checks the privilege permissions of every network ap-
plication with the saved application permission in a database. It
carries out a Boolean comparison of the application permission
and outputs either (0,1), where 1 means the application has that
permission and 0 signifies a null permission.

In the authorisation module there is a method that helps
network applications to query the controller in order to know
the permission sets assigned to them. This is required consid-
ering the nature of network applications where the external



applications that exercise control over the REST API and
internal application that use local controller modules.

The controller provides set of Uniform Resource Identifiers
(URIs) which a network application can use to specify its
required resources and actions. The permission set should
include all the relevant actions and resources needed by a
network application to execute it intended design purpose.

When there is a network operation that is associated with
one of the defined permissions of an application, the authori-
sation method known as BAM is called to determine whether
that permission is allowed. If the permission is allowed then
the operation will execute however if the application does not
have the appropriate authorisation of that permission then that
request will be denied in order to protect the network from
malicious or unauthorised access. Section V elaborates more
on the application and implementation of the Boolean Access
matrix (BAM).

The authorisation module comprises of the authentication
module and the respective allowed authorisation permissions
for that application. Thus, an application has to be authen-
ticated with its token before authorisation privileges are as-
signed to that application.

Authorisation = Authentication ‖ App privileges (5)

Authorisation =

AuthenticateApp(argapp ∧ token argapp) ‖
f unc argapp

(6)

1) Attributes: They are the functional building block of
every application. They exist in every network application.
They serve as the gauge via which the authorisation module
can build a wrapper around the attributes and used it as a mode
of access control. The analytical derivation is seen as follows:

∀arg app , ∃ f unc(i)[ f unc ∈ arg app attributes]

∀ f unc(i) , ∃Operation[Read ∨write ∨system call ∨noti f y]

Attributes have the ability to carry out data modification
actions like read, write, system call and notify. Careful obser-
vation and knowing the behaviour of an application can aid in
identifying these various operations so that an authorisation
control can be implemented against them. For instance a
monitoring application that reports port events and gather
statistics about link status should not be given access to system
calls. Because that is not part of its primary function, so any
suspicious request to system calls from that application should
be denied and refused in the future. Algorithm 3 provides the
pseudocode for authorisation.

Algorithm 3 Authorisation

1: Initialising checks, verification and authorisation
2: AuthoriseApp=AuthenticateApp((arg app,token argapp)
‖ func argapp(i))

3: Application = {APP1, APP2, }
4: Token = {Token1, Token2}
5: arg app ∈ Application
6: token ∈ Token
7: if (AuthenticateApp() == False) then
8: Action := (’Deny Authorisation’)
9: Controller info(’Failed Authentication’)

10: else if (AuthenticateApp() == True) then
11: Apply arg app func(n)
12: n = number of allowed permissions
13: else
14: Controller info(Authorisation Denied)
15: end if=0

C. Trust Module

Trust is subjective and can be modelled as opinion that
can be used as input arguments based on Subjective Logic
reasoning models [34]. Subjective Logic Reasoning (SLR) is
an advanced learning algorithm that is derived from Proba-
bility Calculus and Statistics [35]. It is a branch of artificial
reasoning with a learning process at the initial stage of
evaluating a proposition [36]. SLR extends standard Boolean
Logic and provides room for making flexible decision that
is beyond absolute (True or False) or (0,1) [37]. The end
decision comes in three state which are (0,1, [0-1]), the first
two are Boolean Logic (0,1) and the last value is a range from
[0-1] that represents continuous uncertainty values since the
expected outcome is either trusted, not trusted and the extreme
values between trusted and untrusted relationship.

Trust can be seen as a directional graph relationship between
two entities called the trustor and trustee. Subjective logic
is a belief calculus specifically developed for modelling trust
relationships [36][38][39].

Trustor −→ Trustee

In the context of this trust framework, the controller is
trustor and the respective network application as trustee. It
is modelled as moving from one edge of a graph to another.

Controller −→ Application

The trustor must have a sense of logical and intelligent
decision and make assessment based on received information
that can serve as input for decision making. These criteria fits
into the model of a controller because it is the central logic of
the network that oversees network operation. While the trustee
is the agent which trustor relies on to provide vital service
or information that will aid the trustor in making a global
decision [40]. This goes well for the network application as
trustee because it has task to execute in the network.



Trust opinions can be binomial opinions where absolutism
is expected, because they can take two values as True or False
or [1,0]. This domain can be denoted as T = {t, t̄ }, so that
the resulting decision can take either of the two between the
controller C and the application A.

T=



t : ”The application is trusted .”

t̄ : ”The application is not trusted .”

t : ”Trust state is uncertain [0,1].”

The analytical representation of trust is given as ωtA. The
preamble for the trust is to provide a mental map of how it
is going to be applied in the framework. Based on the policy
conditions set after the application pass authentication stage
and authorisation, the next stage is the trust value which will
give network application a more solid recommendation based
on the conformity of application behaviour.

An application can be trusted or not, which is quite intuitive
and absolute, however there are circumstances where the
application can have trust value between these two extremes
of trusted and not trusted. Subjective opinion provides a
way of expressing the truth of propositions under degree of
uncertainty. The notation ωC

A is used to denote trust opinion
in subjective logic, where the subscript A (trustee) in this
context is the network application and denotes the variable
or the proposition on which the opinion applies to [41]. The
superscript C (trustor) is the subject that holds the opinion
which is the controller.

The equivalent trust opinion between a controller and a
network application is a composite function as follows:

ω
C
A = (bC

A,d
C
A , uC

A, aC
A) (7)

TABLE III: Trust Mass

Mass Representation
bC

A The controller belief mass on the application
dC

A The controller disbelief mass on the appli-
cation

uC
A The controller uncertainty mass on the ap-

plication
aC

A Base rate is a priori value assigned based
on subjective assessment of the execution
environment

Details are seen on Table III, and the proposition X from
Table IV is the relationship between the controller and the
network application. The concept of base rate a x is tight to
theory of probability. Given a domain D, with cardinality K ,
the default base rate is 1/k . The base rate is used in deriving
an opinion probability expectation value.

There is additive law for the trust evaluation and it is
represented as follow:

(bx +dx + ux) = 1 (8)

bx

dx

Ux

u vertex (uncertainty)

X vertex (belief)
¬X vertex (disbelief) Px ax

ωX 

Fig. 4: Disbelief and belief visualisation

This translates to the sum of belief , disbelief and un-
certainty must be equal to 1. In trust relationship the given
probabiity based on binomial opinion at any given instance is
:

Px = bx +axux (9)

The functional trust (trust discounting[34]) that exist be-
tween the controller and the network application is given as
follows:

ω
[C:A]
x =



b[C:A]
x (x) = PC

A bX
C (x)

d[C:A]
x (x) = PC

A dX
C (x)

u[C:A]
x = 1−PC

A (b
X
C +dX

C (x));

a[C:A]
x (x), = aC

x (x);

(10)

Since trust can be seen as extended graph from one edge
to another, there is a way to visualise the equivalent result
of the trust relationship via barycentric coordinate [42]. An
example where the various trust parameters are represented
on these coordinates, the visualisation of the opinion can
be seen on the baryccentric triangle in Figure 4 . The point
where both bx, dx and ux meet is the equivalent opinion
ωx. The projected probability can be obtained by running a
line perpendicular on the opinion point. And the base rate
ax is priori value. Table IV presents the various meaning
and implication of the trust values, the following barycentric
coordinates provide a visualised representation of the trust
opinions. Equivalent trust values can be numeric (0, 0.1, 0.3)
or based on severity (high,medium or low). In this work the
trust assessment and evaluation will use numeric percentage.

1) Trust Handler Functions: These are the core critical
components that help execute the real implementation of trust
between the controller and the network applications. The
handlers are as follows:



TABLE IV: Trust Opinion Truth Table

Mass Values Representation
bx = 1 Designates an absolute opinion equivalent

to Boolean True
dx = 1 Designates an absolute opinion equivalent

to Boolean False
ux = 0 There is no uncertainty and designates a

dogmatic opinion
0 < ux < 1 Opinion with some uncertainty
ux = 1 This purely uncertain and designates a vac-

uous opinion

a) ReceiveRequest: This helper function interfaces with
the authorisation module and is responsible for relaying the
execution state of every network application. In the event
that during execution an anomaly or breach is observed, it
is the responsibility of this module to communicate such
outcome to the OpinionOperation module. The output of the
ReceiveRequest serves as the input to the OpinionOperation
component.

b) OpinionOperation: This component works on the
output of the ReceiveRequest and derives the trust equivalence
using belief operation belief (b), disbelief (d), uncertainty(u),
baserate (a)) and probability calculus. When this operation
is carried out this component reports on the reliability and
dependability of the network application based on state exe-
cution. The module provides ground on which the trust can be
visualised on graph, triangulation and probability distribution
function.

c) Probability Distribution Function Equivalent (PDFE-
quivalent): The outcome from the OpinionOperation reports
the outcome on a continuous range, and the most accurate and
precise model to visualise the equivalent trust is to use the
probability calculus. At any given state PDFEquivalent will
show the trust value that can help the framework to make a
solid decision on the trustworthiness of the application. More
on probability is discussed later in this section.

d) TrustDB handler: All derived decisions from network
applications are cached in the TrustDB, this happens after the
learning process based on the state of execution of the network
application. This helps in fast tracking the trust process when
the same network application is evaluated in future because
the module already have the running attributes and anomalies
if any.

e) LoginHandler: A log sink has been designed to report
all unauthorised attempts and network state events. The logs
are saved with time stamps and the ID of network applications
the events is related to. Network management reports are
dumped for analysis and further evaluation. Details of anomaly
and threat detected are saved to this log. With the Login-
Handler network admin can use threat quarantine mechanism
or Advance Persistence Threat (APT) evasion mechanism to
further safeguard the perimeter of the network.

A cognitive layer derived from Subjective Logic Reasoning
is implemented in the control layer and this provides the
controller with the ability to reason and analyse network
application state based on combined opinion operations

(belief, disbelief, uncertainty and base rate). The outcome
from the combined opinion operations help designate whether
a network application is trusted or not. This approach learns
from giving input (network application state) and decides on
the degree of trust of that application.

2) Trust Evaluation Methods: There are other relevant trust
evaluation methods used in data and communication networks
environment like the Recommender Trust System [43], Tran-
sitive (Indirect Trust)[34] and the Reputation Trust [44]. All of
them provide a trusted relationship within the defined domain
of use. However in the context of SDN networking these
models can not provide the needed semantic and the flexibility
to abstract and model a working relationship between the
controller and the network application. How they derive the
equivalent trust in their respective domain of application is as
follows:

a) Recommender System: The equivalent trust is eval-
uated based on reliable transaction, process, or communica-
tion between a single entity (trustor) and multiple entities
(trustee)[45]. The relationship can be depicted as many to
one as seen in equation 11. The trustor holds a value or
propositions (θ ) that is needed by the trustees, these entities
report on the reliability of the trustor after a successful
transaction. A trust value is then compute to help prospective
trustees make careful judgement when initiating a transaction
with the trustor.

n

∑
i=1

User1,User2,User3..Usern
f (Trust)−−−−−→Userxθ (11)

Application of Recommender System is seen in buyer
confidence used in Ebay, Amazon and onine auctions.

b) Transitive (Indirect Trust): In this method the trustor
believes the reliability of a proposition based on a third
party direct experience with the trustee. It differs from
recommender systems, because there is no direct association.
The trustor hinges the trust based on a third party relationship
with the trustee.

A −−> B −−> C —-> D
The trust equivalent between A and D is evaluated via

the two transitive entities (B and C). There is no direct link
between A and D, however with a single direct trust to D via
the entity C, then A can trust D. The dash-line is transitive
trust while the straight-line is direct functional trust. The
transitive trust evaluation of [A,D] is seen as follows:

[A,D] = [A;B] : [B;C] : [C,D]

[A,D] = [A;C] : [C,D]

[A,D] = [A,D]

The evaluated transitive trust in the last stage grants A the
full judgement to trust D.



c) Reputation Trust: In this method, trust is evaluated
based on past behaviours of a trustee in a given domain, every
trustee has a local trust value and the total trust of other entities
is aggregated to obtain an equivalent trust mass for that domain
[46]. Application of reputation trust can be seen in the Peer
to Peer (P2P) networks. P2P is stateless relationship between
peers, each peer has its own responsibility and power, it lacks
central management system and as such peers can be malicious
at will. The trust evaluation depends on aggregate local trust
derived from each peer in the network.

All these trust evaluation methods are presented in order
to justify why subjective logic is the best method to use in
this research work, due to how the semantics and analytical
derivation fits the concept of trust in the SDN network domain.

V. EVALUATION AND IMPLEMENTATION

This section presents the evaluation and implementation
of the proposed Trust Framework which is an extension of
our earlier work [28] on Controller to Network Application
Trust . The implementation is carried out on Matlab simulator
on a PC with Intel Core i5-4200M and 16GB RAM. The
implementation is carried out as a set of Matlab scripts and
functions with Object Oriented Concept which makes the
project easy to use, extend and port to different implementation
environment and testbed.

The controller core services and modules are explained
in Section IV. The modules in conjunction with the main
blocks of the proposed trust framework help in implementing
and evaluating the framework. The evaluation will start with
Authentication, Authorisation and then Trust.

A. Testing of Authentication
To test the feasibility of authintcation procedure, the two

applications highlighted earlier will be used. And they are:
• L2 MAC learning Application
• IP Blacklist Application

1) Testing L2 MAC application for authentication: The L2
MAC learning is referred to as App1 in the test and will be
applied as arg app, the token derived from Algorithm 2 will
be put into action to actualise the objective of the framework.

Authentication(arg app App1 ‖ arg app token Ap1)

When there is an inbound request to install flows from the
application, a challenge request is presented to the application
view, this challenge is handled by the app parser which picks
the prospective application and the mapped token. The code
snippet is seen on Algorithm 4. To evaluate the process let :

1) ψ1 = arp parser module with first argument as App1.
2) σ1 = second argument of app parser with argument

token of App1.
3) σ2 = second argument of app parser with argument not

App1 token.
4) τ = Successful authentication.
5) Ω = Error resulting from incomplete or failed authenti-

cation.

Therefore
(ψ1 ∧ σ1) → τ

iff arg app ∈ Application
and, arg app token ∈ Token

The situation however will change if the expected
arg app token in the app parser module failed to mapped
the entry contained in the database of Token as follows:

(ψ1 ∧ σ2) → Ω

iff arg app ∈ Application
and, arg app token /∈ Token

The other side of the authentication process entails if there
is a failure to match any of the conditions ψ1,σ1 and τ .The
result will be:

¬(ψ1 ∧ σ1) → Ω

Algorithm 4 Authenticate Application (L2 MAC learning
test)

1: Proceeding with application
2: Procedure AuthenticateApp(Application, Token)
3: Application = {APP1, APP2, }
4: Application DB: Application ← Token
5: Token = {Token1, Token2} Token, derived from Algo-

rithm 2
6: if app parser(app view, arg app) ∩ tokencmp(Token,

arg pp token) then
7: arg app ∈ Application, arg app =1
8: arg app token ∈ Token, arg app token=token1
9: contorller info: Authentication Successful

10: save(arg app(1) ← arg app token(1))
11: else if app parser(app view, arg app) ∩

tokencmp(Token, ¬arg arp token) then
12: arg app ∈ Application, arg app = 1
13: arg app token 6∈ Token
14: controller info: (Wrong token for arg app)
15: error(Authentication fail)
16: controller info(Access Denied)
17: Save(arg app ← arg app token)
18: else
19: error(Invalid Application)
20: end if

=0

2) Testing IP Blacklist Application: This is the second
test demonstrating how IP blacklist application is verified
against the authentication module. The trigger occurs when
there is an inbound IP packet to the controller looking for a
route out of the network. The authentication module calls the
app parser module to carry out the authentication procedure
on the Application. To test the process let:

1) ψ2 = arp parser module with first argument as App2.



2) σ3 = second argument of app parser with argument
token of App2.

3) σ4 = second argument of app parser with argument
not App2 token.

4) τ = Successful authentication.
5) Ω = Error resulting from incomplete or failed authenti-

cation.

Therefore

(ψ2 ∧ σ3) → τ

iff arg app ∈ Application
and, arg app token ∈ Token

The situation however will change if the expected
arg app token in the app parser module failed to mapped
the entry contained in the database of Token as follows:

(ψ2 ∧ σ4) → Ω

iff arg app ∈ Application
and, arg app token /∈ Token

The other side of the authentication process entails if there
is a failure to match any of the conditions ψ2,σ3 and τ .The
result will be:

¬(ψ2 ∧ σ3) → Ω

The pseudo code for testing IP blacklist is similar to
algorithm 4 that authenticates L2MAC, the only difference is
that the network application of interest here is the IP blacklist.
That is why the pseudo code serves as framework via which
repetitive network applications can go through for the purpose
of application and verification.

To further check for the correctness and precision of the
network application detection by the trust framework. A matrix
based on the ground truth of authentication is presented
in Table V. The nomenclature of the matrix provides True
Positive as (TP), True Negative (TN), False Positive (FP)
and False Negative (FN). The results obtained in Table VI
are derived from running algorithm 1 which is application
correctness.

TABLE V: Nomenclature for Authentication Correctness

TP There is a request for authenti-
cation by a legitimate network
application and application au-
thenticates successfully.

TN There is a request for authen-
tication by illegitimate appli-
cation but the application fails
due to wrong credentials.

FP Failed authentication by a le-
gitimate network application
with correct credentials.

FN Malicious application that au-
thenticates successfully.

TABLE VI: Precision Test for Application with correct Cre-
dentials

Authentication TP TN FP FN
L2 MAC 50 0 0 0
IP Blacklist 50 0 0 0
Malicious L2MAC 0 50 0 0

For the correctness and precision test, the two applications
(L2 Mac and IP blacklist) were run with correct credential
(Token) against the authentication module 50 times. During the
test all the 50 trials were successful, there are no anomalies
recorded only True Positive (TP) hits. The same test for a
malicious L2 MAC application is initiated too, however the
Malicious L2MAC authentication would fail because it has
the wrong token and this time around all the hits are on True
Negative (TN).

B. Testing for Authorisation
Evaluation and testing of the network application continues

with the authorisation being the second part of the verification.
The network applications in use are still the L2 MAC learning
and the IP Blacklist. To authorise an application the logic and
the intended purpose of the application has to be known and
preconfigured beforehand. The test will begin with L2 MAC
application, the prerequisite is that the application cannot
proceed to authorisation if it fails authentication.

1) Authorising L2 MAC application: To authorise L2
MAC learning application, there are steps that must be fol-
lowed and they are:
• The attributes have to be identified.
• And the attributes are derived from the logic and be-

haviour of L2 MAC learning application.
Typically in L2 MAC learning implementation and proce-

dures, when packets arrive at the switch via the packet in
event, and the switch has no matching flow entry for that
inbound packet. The table miss is applied and the flow is
forwarded to the controller. The logic of the L2 MAC learning
has the ability to update the incoming flow because it has
the flow and the source port where the flow originates. The
incoming flow is saved in the flow table.

This process exhibits a function of reading and writing.
However in the context of L2 MAC learning application
the incoming flow is src mac and attempting to establish a
connection with the destination end (dst mac). The next stage
is to check whether the destination is contained in the flow
table, if yes then the flow is forwarded. This exhibits a unicast
message between two end points. However if the destination is
not known then the switch will definitely flood to all connected
ports, and this is a broadcast.

The host will respond on receiving the broadcast, this
broadcast is further forwarded to the controller, the controller
will now set flow for that destination. With both the source
and destination contained in the flowtable now the controller
can set a flow with timer for future flows to be forwarded
without taking the control path.



Fig. 5: High-level view of L2 MAC Learning Application

The high level representation of L2 MAC learning can be
seen on Figure 5 and from careful analysis and evaluation
Table VII shows the set of attributes highlighted in L2 MAC
learning application.

TABLE VII: Attributes of L2 MAC learning Application

S/N Attributes / Functions
1 read src mac
2 read dst mac
3 unicast forwarding
4 brdc fwd
5 write dst mac
6 write mem
7 multicast fwd
8 write src mac
N Attribute n

These attributes drive the successful execution of the ap-
plication and as such can be used as authorisation antidote
against unauthorised code execution.

Note: The listed functions are not an exhaustive list of
L2 MAC attributes, but a high level and comprehensive func-
tions that make up the application. The attributes are not
sequential as shown and one can be called before the other.
The analysis and evaluation will be limited to these defined
sets to demonstrate feasibility of the framework. The attributes
are modelled in functions.

To initiate authorisation, first the L2 MAC application has
to pass authentication. After successful authentication, the
authorisation privileges are passed to L2 MAC application.
From equation 6, the authorisation is derived as follows:

Authorisation =

AuthenticateApp(argapp ∧ token argapp) ‖
f unc argapp

And the arg app ← L2 MAC,

AuthL2 MAC =

AuthenticateApp(L2 mac ∧ L2 mac token) ‖
L2 mac f unc(i)

AuthL2 mac can only complete if the first part:

AuthenticateApp(L2 mac ∧ L2 mac token) == True

If however it turns out to be false then AuthL2 mac will fail
because both the conditions must be True for the authorisation
to proceed and complete.

The database of the authorisation must contain the de-
fined set of allowed L2 MAC func.In the implementation the
database contains both for IP blacklist and the L2 MAC
application.

Authorisation DB=



L2 MAC f unc, if APP = L2 MAC;

IP Blacklist f unc, if APP = IPBlacklist;

Arg AppN f unc, if APP = AppN;

The set of mapped elements contained in the authorisation
database for L2 MAC are:

Authorisation database = L2 MAC← L2 MAC f unc(i)

Where in func(i), i ∈ N, 0 < i < 8

∀arg app ∃ f unc(i) [ f unc(i)⊆ Authorisation DB]

Out of the listed L2 MAC attributes on Table VII, two at-
tributes (read src mac & read dst mac) would be selected for
brevity to demonstrate how the process for the authorisation
are verified and evaluated by the framework. And at the end a
threat will be introduced in to the network operation and with
the application of the framework the execution of the threat
would be stopped and halted.

a) READ SRC MAC :

L2 MAC f unc(1)
f (read)−−−−→ SRC MAC

The authorisation wrapper (Auth wrapper) implements the
Boolean Access Matrix (BAM) method of comparison to see
whether if the arg arp attribute is contained in the database
of the Authorisation module. It is a Boolean function that
returns True or False depending on the matching entry in
Authorisation database.



Auth wrapper(arg app f unc(i), f unc(i))

BAM check =



Auth wrapper(x,y), if True= Execute;

Auth wrapper(x,y), if False= Deny;

otherwise, Deny;

Where the arg app func = L2 MAC func(i), and i=1 in
this instance.

Auth wrapper( L2 MAC f unc(1), f unc(1) ) (12)

Execute if and only if output is True from equation 12,
however AuthL2 MAC will fail if the condition output is false.

b) READ DST MAC: From equation 13, where in this
case read dst mac is considered. When the framework re-
ceives a request to execute a function regarding read dst mac,
the framework checks within the authorisation database:

AuthL2 MAC =

AuthenticateApp(L2 mac ∧ L2 mac token) ‖
L2 mac f unc(i)

(13)

Authorisation database = L2 MAC← L2 MAC f unc(i)

Where func(i), i ∈ N, i = 2

L2 MAC f unc(2)
f (read)−−−−→ DST MAC

Auth wrapper( L2 MAC f unc(2) , f unc(2) ) (14)

From equation 14 if the output is True, then read dst mac
will execute else if it is false.The execution will fail and return
authorisation failure.

A threat is introduced in the L2 MAC learning application
as follows:

c) Threat 1: Threat 1 is introduced to demonstrate how
resilient and efficient the trust framework is in detecting
external threat. The function threat 1 is not contained or
captured in the authorisation database. Even when the arg app
pass Authentication stage and attempts to execute functions
that are not captured in the database they will be denied.

Authorisation database : L2 MAC← L2 MAC f unc(i)

The condition is func(i) ∈ L2 MAC(func(i)), where this
is not the case and func(i) /∈ L2 MAC(func(i)). Then that

function is bound to be rejected based on the analytical
derivation of the framework.

f unc(threat 1)
f (execute)−−−−−−→ socket(src ip : port ∧ dst ip : port)

This is a flow mod action where the controller is expected
to retrieve such sensitive network information including IP
address and their respective port association. This action is
not a behaviour or attribute of L2 MAC.

Auth wrapper( L2 MAC f unc(x) , f unc(threat 1) ) (15)

From equation 15 the Boolean output cannot be True,
because func(threat i) is not contained in the authentication
database. The execution will be halted and flows will be
installed to deny similar future request.

The L2 MAC learning application is expected to be
compliant with the defined set of rules. The threat here is
making calls and listening to established socket connection
between client and server. The calls will try to execute but
due to the precision of the authorisation module and the
predefined configurations of the authorisation database this
request is denied and flow entries are initiated to refuse future
requests, the algorithm is seen as follows in Algorithm 5.

Algorithm 5 Authorisation L2 MAC

1: Initialising checks, verification and Authorisation
2: arg app = L2 MAC
3: token argp app = tokenL2 MAC
4: AuthoriseApp = AuthenticateApp((L2 MAC,tokenL2MAC)
‖ f uncL2MAC(i))

5: if (AuthenticateApp() == False) then
6: Action := (’Deny Authorisation’)
7: Controller info(’Failed Authentication’)
8: else if (AuthenticateApp() == True) then
9: L2 mac f unc = {read src mac, read dst mac, uni-

cast forwarding, write src mac,
write dst mac, brdc fwd, multicast fwd, write mem}

10: Auth wrapper( L2 MAC func(i), func(i) )
11: Where in func(i), i ∈ N, 0 < i < 8
12: if Auth wrapper() == True then
13: Apply L2 MAC func(i)
14: else if Auth wrapper() == False then
15: Action := Deny Authorisation
16: Controller info(Possible Threat)
17: end if
18: else
19: Controller info(Authorisation Denied)
20: end if=0

2) Authorising IP Blacklist Application : The blacklist
IP application has attributes similar to that of the L2 MAC
application.Attributes are behaviour descriptors and they vary
from one application to another. Though blacklist IP operates
differently than L2 MAC learning application. The framework



Fig. 6: IP Blacklist Logic

looks from a high level view of the application and implement
the authorisation policy.

The IP blacklist application first set flows at edge switches,
and these flows will wait for an incoming IP event to trigger
the blacklist logic. The blacklist application then compares
the incoming IP request with the set flows contained in the
blacklist database, if there is a match the request is denied
else the request is forwarded to the final destination.

The main logic of the application is seen on Figure 6 and
highlighted as follows:

1) The controller set flows in edge devices with instructions
to forward IP address request to the controller.

2) With the received request, the blacklist database is
consulted with known malicious IP sites.

3) If the IP address is not contained in the blacklist
database, the controller returns a flow with instructions
to forward.

4) If there is a match with entries in the blacklist database
then the request is denied.

From careful analysis and evaluation Table VIII shows the
set of attributes highlighted in IP blacklist application.

TABLE VIII: Attributes of L2 MAC learning Application

S/N Attributes / Functions
1 read src ip
2 read dst ip
3 cmp ip
4 drp ip
5 fwd dst ip
6 set flows
7 write mem
N Attribute n

These attributes drive the successful execution of the ap-
plication and as such can be used as authorisation constraint
against unauthorised code execution.

To begin the process of authorising IP blacklist application,
the condition as per the framework is for the application to
pass authentication which is the first stage. After successful
application then privilege rights are assigned to the application
as to what attributes or functions are allowed. This defines a
perimeter through which policing of function execution can
be carefully monitored and to prevent unauthorised access of
network resources. The derivation for IP blacklist will be:

Authorisation =

AuthenticateApp(argapp ∧ token argapp) ‖
f unc argapp

And the arg app → IP Blk

AuthIP Blk =

AuthenticateApp(IP Blk ∧ IP Blk token) ‖
IP Blk f unc(i)

Based on the framework condition, the authentication mod-
ule AuthenticateApp must be True, if however it turns out
to be false then AuthIP Blk will result in authorisation failure.
The listed functions are not limited to what a blacklist IP
application can execute, more attributes can be composed and
must be captured in the database of the authorisation database.
The entries for IP Blk f unc(i) are contained in the database as
follows.

Authorisation DB=



L2 MAC f unc, if APP = L2 MAC;

IP Blacklist f unc, if APP = IP Blacklist;

Arg AppN f unc, if APP = AppN;

The mapped elements contained in the database for
IP Blk f unc(i) are :

Authorisation database = IP Blk← IP Blk f unc(i)

Where func(i), i ∈ N, 0 < i < 7

∀arg app ∃ f unc(i) [ f unc(i)⊆ Authentication DB]

An authorisation wrapper Auth wrapper is used, which is
the enabler of the Boolean Access (BAM) Method. It is
a Boolean that checks for arg arp attribute in the mapped
authorisation database.

Auth wrapper(arg app f unc(i), f unc(i))



BAM check =



Auth wrapper(x,y), if True= Execute;

Auth wrapper(x,y), if False= Deny;

otherwise, Deny;

Out of the many attributes listed from Table VIII, two
will be evaluated based on the framework’s authorisation
procedure and they are read dst mac and set flows.

a) READ DST IP: When the framework receives a
request to execute a function regarding reading a destination
IP address. The framework queries for a match in the request
and the output will depend on the content of the authorisation
database.

AuthIP Blk =

AuthenticateApp(IP Blk ∧ IP Blk token) ‖
IP Blk f unc(i)

Authorisation database = IP Blk← IP Blk f unc(i)

Where func(i), i ∈ N, i = 2

IP Blk f unc(2)
f (read)−−−−→ DST IP

Auth wrapper( IP Blk f unc(2) , f unc(2) )

If the output is True, then read dst ip will execute else if it
is false.The execution will fail and return authorisation failure.

b) SET FLOWS: The edge switches in the infrastruc-
ture layer are the first point of contact to hosts making request
to network resources. Flows are set to capture traffic that
are perceived as rogue, malicious or threats. The switches
subscribe to events and forward to the controller which triggers
the logic that execute the filtering of IP blacklist. For this we
have the relation as follows:

AuthIP Blk = AuthenticateApp(IP Blk ∧ IP Blk token)

‖ IP Blk f unc(i)

Authorisation database = IP Blk← IP Blk f unc(i)

Where func(i), i ∈ N, i = 6

IP Blk f unc(6)
f (set f lows)−−−−−−−→ (dst ip← target ipaddress)

Auth wrapper( IP Blk f unc(6) , f unc(6) )

These flows will be installed in the Flow Table at edge
switches in proactive mode, and once there is a match the
switches invoke the control path where the blacklist IP logic
which will trigger filtering of designated IP addresses.

c) Threat 2: This is a depiction of a live threat that
is trying to execute its operation inside the network operat-
ing system. The framework as a policy correctness checker
will serve as a boundary that separates the security of the
internal network and external request from rogue sources.
The behaviour of this threat is to dig deep in the operating
system and make unsolicited calls to resources allocated for
legitimate network operation. The threat is concatenated inside
the working blacklist IP appication and will try to execute as
part of the attributes of an IP blacklist application.

AuthIP Blk = AuthenticateApp(IP Blk ∧ IP Blk token)

‖ IP Blk f unc(i)

Authorisation database = IP Blk← IP Blk f unc(i)

The design of authorisation module is to make sure there
is policy compliance. Even after successful application which
is the first part of the module, if there are functions that are
not captured in the authorisation database they cannot execute
their operation.

f unc(i) ∈ IP Blacklist( f unc(i)) (16)

From equation 16 , if f unc(i) /∈ IP Blacklist( f unc(i)), the
authorisation database will invoke the drp ip action so that
the request will be denied because the function is not captured.
The function call initiated by the threat is seen as follows:(

IP Blk f unc(threat 2)
f (execute)−−−−−−→

os call(version, buildtype, bios, config)
)

Auth wrapper( IP Blk f unc(7) , f unc(threat 2) ) (17)

The authorisation database will come into play now and
apply the pre-configured policy of allowed functions for a
blacklist IP application. And from the captured functions this
threat in particular does not match or correspond to any entry
in the database of the authorisation module. The authwrapper
function in equation 17 will perform the Boolean operation
and output the result where the threat is not captured and the
resulting action is to deny and log the report to monitoring log
(LoggingHandler). Algorithm 6 shows the pseudo-code that
initiates and executes the authorisation process successfully.

C. Performance Analysis

This section provides performance indices on how the
authentication and authorisation module handle the two net-
work applications. The computational cost of running the
L2 MAC application from authentication to authorisation
is analysed in Figure 7. The test is conducted using the
timeit and tic functions for code profiling and stress testing.
The mean (µ) execution time when the module is called



Algorithm 6 Authorisation of IP Blacklist

1: Initialising checks, verification and Authorisation
2: arg app = IP BLK
3: token argp app = tokenIP BLK
4: AuthoriseApp = AuthenticateApp((IP BLK,tokenIPBLK)
‖ f uncIPBLK(i))

5: if (AuthenticateApp() == False) then
6: Action := (’Deny Authorisation’)
7: Controller info(’Failed Authentication’)
8: else if (AuthenticateApp() == True) then
9: IP Blk f unc(i) = {read src ip, read dst ip, cmp ip,

drp ip, fwd dst ip, set flows,
write mem}

10: Auth wrapper( IP BLK func(i), func(i) )
11: Where in func(i), i ∈ N, 0 < i < 8
12: if Auth wrapper() == True then
13: Apply IP BLK func(i)
14: else if Auth wrapper() == False then
15: Action := Deny Authorisation
16: Controller info(Possible Threat)
17: end if
18: else
19: Controller info(Authorisation Denied)
20: end if=0

Fig. 7: Stress Test for L2 MAC Learning Application

is 0.00317sec (3.17ms) and the standard deviation (σ ) is
0.00198sec (1.98ms). There is no significant overhead when
running the application because the execution time is negligi-
ble. The minimum execution time is 2.06ms and the maximum
is 11.14ms. From the standard deviation value (σ=1.98ms),
a deduction of how the code uses the CPU execution time
can be predicted, because adding the standard deviation to the
mean would provide an execution time of 5.15ms which is still
within acceptable range and would not impact the performance
of the trust framework at large.

Figure 8 presents the code profiling test for the IP blacklist
application, the test shows mean (µ) value of 24.79ms and
12.78ms as standard deviation (σ ). The mean value is high

Fig. 8: Stress Test for the IP Blacklist Application

compared to other modules like the L2 MAC because there
are more procedural steps in the IP blacklist application and is
taking a tall on the code execution time. However 24.79ms as
the mean execution time would not affect the efficiency and the
performance of the trust framework . To evaluate the impact
more, the standard deviation (σ ) is applied to the mean(µ)
and the resulting execution time is (26.08ms and 23.52ms).
Both the min 22.87ms and max 27.79ms values are still within
reasonable code execution time that would not impact the trust
framework performance.

Table IX presents the summary of code profiling test for
both the L2 Mac and IP blacklist application.

TABLE IX: Code Profiling Test

Application Min(ms) Max(ms) Mode(ms) Mean
(µ)

Std
(σ )

L2 Mac 2.06 11.14 2.33 3.17 1.98
IP Blacklist 22.87 27.79 24.31 24.79 12.78

The next section introduces the concept of trust in to the
framework. After successful execution of authentication and
authorisation, a numerical trust value is assigned to network
applications based on how the functions conform to the policy
of the network.

D. Trust Evaluation and Implementation
Applications can be trusted after successful execution of

defined functions without any anomaly or deviation from
list of specified tasks. Numeric trust values are assigned
to applications based on how they conform to the network
policy. If there is a successful execution of defined tasks by
application, the application will have high trust mass. This
will in turn makes the controller to associate with the network
application without restrictions.

However when these defined sets of functions are not
followed by the network application, then the controller will
flag the network application and assign low trust value which
consequently can lead to complete denial of the application to
the entire network resources. The given trust values for any
network application that executes successfully are given on



Table X, these values are default and are assigned based on
trust framework design.

TABLE X: Default trust mass for applications that run suc-
cessfully

Trust Opinion Trust mass on local applica-
tions

bA
E 0.9

dA
E 0.1

uA
E 0

aA
E 0.90

These values indicate a strong trust on the running appli-
cation because the belief mass (b) on the application is 0.9,
and disbelief mass (d) is 0.1 which is very negligible. The
uncertainty mass (u) is 0 signifying no ambiguity. The base
rate (a) is a priori value for the execution environment and the
execution environment is trusted with mass value of 0.9. These
trust values (b, d, u, a) are carried by the network application,
so when associating with the controller, the controller will
evaluate the values through trust discounting operation. The
controller also hold certain trust assumption on the application,
section V-D1 will elaborates on that.

To begin trust evaluation the framework has three stages to
certify and evaluate applications to make them trustworthy as
follows:

1) Authentication
2) Authorisation
3) Trust evaluation
The first and second stages (authentication and authorisa-

tion) are prerequisite to the trust assignment stage. The trust
evaluation will be carried out on the two applications L2 MAC
and IP blacklist. And the evaluation will begin with L2 MAC
application.

1) Trust Evaluation for L2 MAC application: For trust
evaluation, the first two stages must be True for the output to
be successful. If either the authentication or the authorisation
is false, the trust vetting stage would not proceed which
consequently leads to trust failure. The trust verification Tv
is given as:

∀Application ∃ (Token ∧ Sets o f f unctions)

And the representation for every application and its respec-
tive token is given as:

Authenticate DB =



Token1, if APP = 1;

Token2, if APP = 2;

x, if APP = N;

And for the functions in each application, the relativism for
authorisation is as follows:

∀arg app ∃( f unc(i) | f unc ∈ arg app attribute)

To evaluate Tv based on L2 MAC application. The proce-
dures are given as follows:

T v = (Authentication ‖ Authorisation ‖ Trust)

T v =

Authenticate(arg app ∧ token arg app) ∧
Auth wrapper( arg app f unc(2) , f unc(i) ) ∧
TrustC L2MAC

Where arg app = L2 MAC and TrustC L2MAC is the trust
relaionship between the controller and the L2 MAC

T v =

Authenticate(L2 MAC ∧ token L2 MAC) ∧
Auth wrapper( L2 MAC f unc(i) , f unc(i) ) ∧
TrustC L2MAC

(18)

The default trust value for network applications that execute
successfully is given on Table X. The default trust that the
controller assigns for every application that is developed and
deployed locally is given as per Table XI based on the deign
guide of the trust framework.

TABLE XI: Default trust mass on local applications

Trust Opinion Trust mass on Controller
bC

A 1
dC

A 0
uC

A 0
aC

A 0.9

To calculate the trust between the controller and L2 MAC
application to assess the trust relationship. The trust opinion
values from Table X and that of the controller on Table XI have
to undergo a trust discounting operation to get the equivalent
trust based on Subjective Reasoning and trust association
conditions:

TrustC L2MAC = ω
C
A ⊗ ω

A
E

TrustC L2MAC = (bC
A, dC

A , uC
A, aC

A) ⊗ (bA
E , dA

E , uA
E , aA

E)

TrustC L2MAC = (1, 0, 0, 0.9) ⊗ (0.9, 0.1, 0, 0.9)

TrustC L2MAC = (0.9, 0.1, 0, 0.9)

The trust operator ⊗ is referred to as the discount operator.
It is not a multiplication operation but a discounting operation
where the equivalent values are obtained based on equation
10. The trust operator is used in Subjective Logic to model
and derive trust relationships between services and compo-
nents based on logic reasoning. Based on the derivation from
equation 10 the equivalent TrustC L2MAC is (0.9, 0.1, 0 , 0.9).

Because trust is a directed graph relationship between
two entities it can be visualised for evaluation. The graph
visualisation for the derived trust TrustC L2MAC can be seen on



Figure 9. The two barycentric triangles on the left represent the
plotted values of ωC

A and ωA
E . The equivalent trust on the right

hand side is TrustC L2MAC and lies within the highly acceptable
trust severity. Therefore for a local application that is running
without any anomaly or inconsistency this is the equivalent
derived trust.

Fig. 9: Derived Trust of TrustC L2MAC

And the probability distribution function (PDF) plot is seen
on Figure 10. The graph peaks at the right hand side. It
solidifies the trust derivation of the application to be highly
dependable and reliable.

Fig. 10: Normal application behaviour TrustC L2MAC in graph
notation

2) Trust Evaluation and Assessment on IP Blacklist
Application for One Anomaly: For the evaluation of the IP
Blacklist application, the test will be carried on when there
is a violation of the set authorisation policy. The IP blacklist
application has ith set of defined functions that can execute and
perform operations in the network. These ith functions are well
defined, captured and saved in the authorisation database for
verification and checks. Failure to comply with these sets of
defined ith functions may lead to the IP Blacklist trust level
to fall at a drastic rate which makes the controller to flag the
network application as malicious.

Network policy instructions are set for safe, robust and
efficient way of network operation. The IP blacklist application
is registered with predefined set of rules, privileges and access
rights. If there is any kind of anomaly or deviation from the
norm, then the framework will react and correct the fault as
necessary. This is achieved with the trust analytical evaluation.
What happens in any situation is that the moment there is a
trigger that indicates a deviation from the normal function,
then the trust framework will adjust the belief mass (b) and
the base rate (a). The effect will be that their values are halved.

T v =

Authenticate(IP BLK ∧ token IP BLK) ∧
Auth wrapper( IP BLK f unc(i) , f unc(i) ) ∧
TrustIP BLK2

Using the default derived trust for applications ω
[A:E]
x equals

(0.9, 0.1, 0, 0.9). The trust can be deduced by applying the
constraints laid out for any network application that deviates
from the set of defined instructions. These constraints are that
belief mass (b) and base rate (a) will be halved . Therefore
ω

[A:E]
x will be ( 1

2 (b
A
E), dA

E , uA
E ,

1
2 aA

E).

ω
A
E = (

1
2
(bA

E), dA
E , uA

E ,
1
2

aA
E))

ω
A
E = (

1
2
(0.9), dA

E , uA
E ,

1
2
(0.9))

With the additive rule of trust where b + d + u = 1, the
new value of dA

E can be obtained.

dA
E = 1− (bA

E + uA
E)

ω
A
E = (0.45, 0.55, 0.0, 0.45)

The derived trust for a single anomaly can be obtain by
carrying out a trust discount operation with ωC

A and ωA
E .

TrustIP BLK2 = ω
C
A ⊗ ω

A
E

TrustIP BLK2 = (bC
A, dC

A , uC
A, aC

A) ⊗ (bA
E , dA

E , uA
E , aA

E)

TrustIP BLK2 = (1, 0, 0, 0.9) ⊗ (0.45, 0.55, 0.0, 0.45)

TrustIP BLK2 = (0.45, 0.55, 0.0, 0.45)

The trust visualisation can be seen in the barycentric triangle
as shown on Figure 11.



Fig. 11: The equivalent of the new TrustIP BLK2 for one
anomaly

As a result of the reduced trust obtained from applying the
constraint, the confidence and reliability of the IP blacklist
application reduced. The disbelief mass (d) has now increased
to 0.55, where the belief mass (b) reduced drastically to
0.45. The visualisation graph shows the decision making point
shifting towards the disbelief vertex. The base rate (a) is halved
( 1

2 (90)), which signifies reduced confidence in the execution
environment of the application.

Fig. 12: When application exhibits strange behaviour
TrustIP BLK2 for one anomaly

The dependability on the application is in question based
on the trust equivalent point on the barycentric triangle which
shifts to the left. This signals a distrust and further more the
PDF plot on Figure 12 shows another deviation of the trust
from the right hand side. This gives a broader picture of how
the trust deviates from an area of dense belief mass to disbelief
position.

3) Further Test on L2 MAC and IP Blacklist Applications:
The following tests show different scenarios of trust when
the applications exhibit behaviours that are deem malicious
within the network. Figure 13 for one anomaly in L2 MAC
application exhibits a similar trust downfall just like the one in
IP Blacklist. The belief mass and the base rate will be halved
and the equivalent. The equivalent confidence and reliability
of the application will reduce.

In Figure 14 the L2 MAC application exhibits a situation
where multiple anomalies were recorded by executing the L2

Fig. 13: When there is a strange behaviour on execution of
(L2 MAC application ) for one anomaly TrustIP L2MAC

.

MAC application, the disbelief mass (d) decrease to 0.9 and
the base rate that represents the subjective trustworthy of the
execution environment will reduce to 0.225 based on the trust
discounting operation of a second anomaly. The trust values
are (b=0.06, d=0.9, u = 0.04. a=0.225), with disbelief mass
as 0.9 the controller will tag the application as malicious and
untrustworthy.

Fig. 14: Multiple violation of trust by L2 MAC application
TrustIP L2MAC (multiple anomaly)

The trust representation on Figure 15 shows a trusted
relationship with the controller and the IP blacklist application
without any anomaly. The application trust equivalent is as
follows (b=0.9, d=0.1, u=0, a=0.9), with the high belief mass
the application is running based on the expected behaviour.



Fig. 15: Normal application behaviour of IP Blacklist appli-
cation TrustIP BLK

In Figure 16, the trust equivalent ωk, is in the uncertain zone.
If visualised in the barycentric triangle the point will be at the
vertex near uncertainty mass (u). This signifies uncertainty
with high confidence. The trust opinion values (b,d,u) show
very low belief and disbelief mass with high uncertainty
mass. For every proposition that lies within this range, the
best possible deduction is to reject the trust outcome. The
continuous straight line on the graph shows the uncertainty
with high confidence, and the line will remain constant as
more uncertainty increases.

Fig. 16: When there is no trust in (L2 MAC application )
TrustIP L2MAC

.

Figure 17 presents an ambiguous trust point, it is not a
complete uncertain trust equivalent. However, there is much at
stake with very low confidence in the trust. And it is a bit away
from the belief mass which can add some weight to the overall

Fig. 17: When there ambiguous trust in (L2 MAC application
) TrustIP L2MAC

.

Fig. 18: When there ambiguous trust in (IP Blacklist applica-
tion ) TrustIP BLK

.

trust derivation. The main action to take when faced with this
kind of decision is to distrust the proposition. Trust can only
be accepted when it has high confidence and reliability, and
this can be realised when the belief mass is more than 90%,
where both the disbelief and uncertainty mass are negligible.

The derived trust in Figure 18 that falls between the two
extremes of disbelief and uncertainty mass has very low
confidence, and consequently, the reliability is weak. Because
the belief mass is low, which indicates that either the uncer-
tainty or the disbelief or both are high. Equivalent trust like
this should be avoided when considering the confidence and
reliability of the proposition. The graph concentrates on the



left-hand side and extends until it decays at the end. This
signifies region between uncertainty or disbelief.

VI. EVALUATION WITH EXISTING MODELS

This section provides a comprehensive evaluation of the
proposed framework with other existing models that attempt to
mitigate similar problem of controller to network application
security. In every research work, it is very crucial to evaluate
and validate the model or framework built. Verification and
Validation (V&V) is paramount in evaluating the usefulness
of any proposed framework in both research and production
environment. The main objective of (V&V) is to carry out
robust set of tests on the target framework and provide results
in return [47]. The returned results assist in evaluating how
useful, trustworthy, relevant and the impact of the proposed
framework based on the problem it is trying to address.

In SDN environment the V&V platform used is called
Cbench [48] [49]. It is a widely used model that checks how
the SDN controller framework executes the series of assigned
tasks and provides performance and latency constraint regrad-
ing any workload executed by the controller [50]. In this
context the workload is our proposed trust framework. Cbench
stands as the best candidate to carry out the V&V tests.

A. Framework Components and Cbench
The proposed trust framework introduces three main mod-

ules mainly authentication, authorisation and the trust module.
The Cbench will help provides a robust validation mechanism
where by network applications are initiated and the Cbench
tool will check for framework correctness and report on the
performance constraint caused by introducing the modules in
the SDN control layer. Cbench provides standardised tests for
(throughput and latency) that work across frameworks built in
SDN domain.

For the purpose of validation, the trust framework is inte-
grated in RYU controller platform with the help of the pseudo
codes. The pseudo codes provides high level view of the trust
framework objectives and as such can be port to different pro-
gramming environment. This modularity is enabled by Object
Oriented Programming because it helps in building reusable
and portable code base for any software implementation. Ryu
is a component based SDN controller written in python, it is
a modular framework with well defined APIs that simplifies
network management and control applications [51] [5].

B. Experiment Setup
Three experiments will be carried out in order to verify

the correctness and performance of the trust framework. The
main essence of using RYU controller is to provide a fair
contest between the trust framework and other frameworks
that tackle similar problem Rosemary[27] and FortNox[52]
respectively.These two frameworks as discussed in Section III
(Related Work) are chosen because they are available in public
domain and share similarities in terms of applied methods
and techniques. They will be run in the same emulation en-
vironment and the same validation tool Cbench with attached
switches and hosts.

The evaluation is carried out on RYU controller with
firmware version 4.3.0 running inside Mininet [53] emulation
environment and is hosted on a Virtual Machine (VM) Ubuntu
16.04 64-bit with processor Intel(R)Core(TM) i5-4200M, CPU
processing speed of 2.50GHz and installed RAM capacity of
16.0 GB. The three experiments that will be conducted are:
• Experiment 1: Cbench throughput experiments that in-

volves varying number of switches from (1-32).
• Experiment 2: Cbench latency experiment for switches

(1-100).
• Experiment 3: Write intensive workload with hosts.
• Test for Reliability and Dependability

1) Experiment 1: The objective of this experiment is to
stress test the correctness of the trust framework and de-
termine the computational impact of running authentication,
authorisation and trust between the controller and the network
applications. To baseline the experiment an L2 MAC learning
application (simple switch.py) from the RYU controller is de-
ployed to run without the trust framework in place. This initial
experiment can help us understand the network behaviour and
the initial performance because no additional workload on the
side of the RYU controller.

The simple switch.py is compiled and run in Cbench
throughput mode and to minimise the extra overhead the log-
ging functions are disabled. When Cbench is set to throughput
mode, the command control of Cbench executes an algorithm
that dictates if the buffers of the controller are not full,
then keep forwarding packet in requests and count successful
installed flows (flow mod) during that time. The experiment
procedures are seen as follows:

ryu-manager simple_switch.py

cbench -p6653 -s [1, 4, ..32] -M -t

Name Description
ryu-manager Controller Module
Cbench Validation tool
-p Port number
-s Number of Switch
-t Throughput mode
-M Number of Hosts
simple switch Application

TABLE XII: Experiment Arguments

The arguments used for the experiments are seen on Table
XII. Figure 19a with lines-plot of (w/o framework) shows the
average plot of flows installed wihtout the trust framework
based on Cbench throughput test carried out for different
number of switches (1, 4, 8, 16 and 32) respectively. Based
on the obtained results it shows that there is decrease in the
number of flows installed by the controller as more switches
connect and send flow requests to be processed. The drop was
not linear in practical, it shows a clear sign of reduced number
of flows processed by the controller. This presents just the



plain behaviour of the L2 MAC application within the RYU
controller framework without the trust framework in place.

When the trust framework is involved in flow processing
where verification and checks regarding how authentication,
authorisation and trust are carried out. The command control
module in Cbench that emulates flow requests will experience
a processing delay in flow installation due to additional over-
head introduced by the trust framework validations. There is
no single case of control layer failure or crash due to sequence
of verification carried out when packet in are processed by the
controller, despite several calls to APIs for network application
verification introduced by the trust framework. This clearly
shows a strong chaining and seamless integration of the
modules within the control layer. There is a minimal drop
(0.06%) in throughput due to the total number of recorded
flows installed. The effect of having more active switches
impact the throughput of flow processing, as the number of
switches increase beyond certain threshold as seen in Figure
19a.

Running the same experiment for Rosemary and Fortnox,
the evaluation from Cbench for Rosemary shows a drastic
fall in throughput, this is possible due to numerous modules
run by Rosemary to achieve threat containment and control
layer resiliency. These modules are resource manager, security
manager, kernel and the AppZone. There is a considerable
amount of overhead when flows are traversing the control stack
and Rosemary is checking for threats and at the same time
implementing possible mitigation strategy. As more switches
are connected to the network with massive flow requests the
more the throughout in successful flow rule insertion reduces.
However when no security checks are implemented Rosemary
tend to perform better.

In the case of FortNox, when using different number of
switches to test the computational impact of running the
conflict analysis algorithm. At the initial stage FortNOX
performs efficiently with high throughput, however as switch
contention rate for resources increases with TCP connections
set up and tear down the throughput degrades. There is
quite intensive processing done by Fortnox which makes flow
requests authentication to queue up as conflict verification
engine implements the contradiction algorithm (ARR). The
Cbench is constantly overwhelming the control channel with
tremendous flow requests that is why the throughput for flow
rule insertion degrades. The cumulative result for experiment
1 is seen on Figure 19a.

A comparison of the average throughput (mean) and stan-
dard deviation of flows installed with varying number of
switches for all the frameworks is presented on Table XIII.
Taking the results of the trust framework for running 1 switch,
the mean(µ) and standard deviation (σ ) are 3100 and 220.30
respectively. Applying the data analysis method of 68-95-
99.7 [54][55] through adding and subtracting the standard
deviation(σ ) from the mean(µ) will give an insight into how
the flow rule insertion are distributed during the experiment.
Adding the standard deviation (σ ) will give 3220.30 and
subtracting the (σ ) from the mean (µ) gives 2879.7. This

shows that 68% of the flows lies within these two bounds, by
further adding (µ + 2σ ) and subtracting (µ - 2σ ) the standard
deviation twice (2σ ) the results give (2659.4, 3540.6) then the
95% of installed flow rules per second are within these two
bounds. For the last bound applying same rule by adding and
subtracting the mean three times (3µ) then 99.7% of the flow
rules installed are within that range. The analysis applies to
other data set for 4, 8, 16 and 32 switches.

2) Experiment 2: The aim of this experiment is to de-
termine the latency incurred in processing number of suc-
cessful flows per second when running the trust framework.
This can be achieved through the Cbench latency mode, the
algorithm works by sending several packet in as defined in
the experiment procedure, then wait for a return flow mod
(flow installation) and record the gap in response time. The
experiment makes use 0 -100 emulated switches and provides
the average delay in installing flow rules without the trust
framework (default) and with the trust framework integrated.

The switches used in this experiment increment in the
range of 10s. This will provide the flexibility in predicting
the behaviour of the model with varying number of switches.
In latency mode without the framework, Cbench initiates a
synchronous flow requests to the controller, then the command
control waits and calculates the time the controller takes to
respond to those requests. Even without the trust framework
there are default processes and jobs the controller executes
which can take a toll against the response time. Some of these
processes are:

• Contention rate of TCP connections between switches and
controller.

• Frequent hello messages for keep alive.
• Input and Output batch CPU process.
• Memory allocation.

Figure 19b shows the average latency when the trust frame-
work is integrated, the setup environment and the experiment
procedures are the same. In latency mode the Cbench com-
mand control will experience additional overhead due to the
checks being carried out by the trust framework. For every
iteration or loop that involves a new flow processing a verifica-
tion is carried out whether that function is feasible as allowed
by the trust framework. As the load increases the growing
delay in flow response time increases in a near linear manner.
The latency involves traversals of several flow processes twice
from the networking stack on both the command control of the
Cbench and that of the controller. The average response time
of most SDN controllers is around 100-150 millisecond[49].

For the other frameworks starting with Rosemary there
is a near latency relationship for both Rosemary and the
trust framework at the beginning, this shows a correlation
that they perform optimally at initial stage, however looking
at Rosemary curve as more load is added the controller
response time lags due to overhead processing caused by
flow rule traversing several stacks of Rosemary modules. The
correctness is still maintained because at no point during the
time where Rosemary crashed, the processes of identifying



1 4 8 16 32
W/o Framework 3378 ± 69.97 3181 ± 388 3067 ± 129.16 3053 ± 139.32 2800 ± 65.13
Trust Framework 3100 ± 220.30 3000 ± 365.4 2890 ± 415.89 2800 ± 366.73 2602 ± 485.6
Rosemary 3080 ± 84.15 2820 ± 105.4 2760 ± 335.9 2688 ± 256.3 2587 ± 154.21
FortNox 2804 ± 119.86 2598 ± 88.5 2411 ± 65.9 2240 ± 256.3 2092 ± 71.35

TABLE XIII: Mean and Standard Deviation of Flows Installed with Varying Number of Switches for Experiment 1
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Figure 18: Average Throughput and Response Time (Latency) Comparison for Different Frameworks
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Figure 18: (c) Write Intensive Workload, (d) CPU Utilisation on Runtime

network applications, checking their permissions and isolating
malicious applications in containers affect the processing time.

In the case of FortNox the initial experiment with just one
(1) switch turns out to have a swift response time, because
that is the minimum response regarding growing number of
switches. Up until the number of switches are 30, the flow
installation response time is almost similar with both the trust
framework and Fortnox. However at an interval when there is
increasing number of switches then the response time starts
to increase with more delay. The cumulative plot is seen on

Figure 19b.

3) Write Intensive Workload: The objective of this exper-
iment is to test the robustness of the trust framework against
intensive workload when there are more connected hosts in the
network. The answers that can come out of this experiment
will be whether the trust framework will stand the overhead
of several flow processing while still achieving the goal of
security. The write intensive workload increases the contention
in the network applications, with the L2 MAC application



having large number of hosts both Rosemary, FortNox and the
trust framework are affected by the load condition introduced
by the Cbench. However in this experiment the overwhelming
flow requests initiated by Cbench at different iteration shows
that Fortnox handles scaling number of hosts efficiently. The
throughput turns out to be better than that of Rosemary, this
is because if there is no flow mediation the flow installation
will continue optimally.

10 100 1000
W/o Framework 2803 ± 72.27 2724 ± 95.15 2695 ± 108.46
Trust Framework 2504 ± 32.45 2401 ± 341.66 2199 ± 87.37
Rosemary 2240 ± 125.35 2091 ± 41.66 2001 ± 54.37
Fortnox 2488 ± 119.86 2393 ± 87.14 2188 ± 124.04

TABLE XIV: Mean and Standard Deviation of Flows Installed
with Varying Number of Hosts

For the trust framework when dealing with high number of
hosts, the workload increases the contention in the network
application. By probing the network application the steps
involve in installing flows will vary due to additional overhead
caused by authentication, authorisation and trust evaluation.
The Cbench command control will experience a reduced
number of flows processing per second due to the series of
verification at the control layer before flows are installed as
per host requests. Figure 19c presents the cumulative plot of
write intensive workload for all the frameworks and Figure
19d presents CPU utilisation of compiling and executing the
experiments for all the frameworks. Table XIV provides the
mean and standard deviation of the successful flows installed
for write intensive workload with different number of hosts
(10,100,1000, Figure 19c provides more result data points for
300 and 500 hosts.

4) Test for Reliability and Dependability: To report on the
reliability and dependability of the proposed trust framework,
the Binomial Distribution Model is used to predict the
probability of success and failure [56]. However there are
ground rules that must be in place to actualise the application
of Binomial Distribution Model and they are:

• Independent: The result of one experiment does not affect
the result of another experiment.

• Repetition: Conditions for experiment are the same.

These two conditions align with the evaluation of the pro-
posed Trust framework with Rosemary and FortNox based
on the conducted experiments. The first condition is about
independence where the individual experiments were carried
out separately and they are all independent of each other.
The experiments satisfy the second requirement of binomial
distribution model which is Repetition. In this context the
repetition translates to the condition of experiments, it should
be the same and this has been satisfied as stated in section
VI-B.

The experiments were all conducted under the same testing
environment and condition. With the two conditions satisfied,

the binomial distribution model is given as follows:(
n
r

)
prqn−r =

n!
r!(n− r)!

pr(1− p)n−r

p = Probability of success.
q = Probability of failure.
n = Number of observations.
r = Number of success for n observations.
Where p + q = 1,
And p = 1 − q

To obtain the reliability metrics, the probability of success
(P) must be established. Based on the experiments conducted
the projected (P) for the different frameworks is seen on Table
XV. The probabilities are derived from how many modules
each framework has that address authentication, authorisation
and trust.

Framework Prob. of Success (p)
Rosemary 0.75
Trust framework 0.87
FortNox 0.60

TABLE XV: Experiment Arguments

To evaluate the reliability, if four (4) different experiments
will be conducted for all the frameworks (Rosemary, FortNox
and the Trust framework). The number four (4) is used just to
get an approximate value of the reliability but the experiment
can be run more than 4 times. The deductions based on the
binomial distribution model will be to either get the probability
of failure or success. However in this case we will start by
evaluating failure first, from the obtained probability of failure
the probability of success can be derived. The probability that
any of the framework will fail that is r=0 for all is:

Trust =
(

4
0

)
p0q4−0 =

4!
0!(4−0)!

0.870(0.13)4−0 = 0.00028

Rosemary=
(

4
0

)
p0q4−0 =

4!
0!(4−0)!

0.750(0.25)4−0 = 0.0039

FortNox=
(

4
0

)
p0q4−0 =

4!
0!(4−0)!

0.600(0.40)4−0 = 0.0256

With the obtained values, it clearly shows how the chance of
faiure in the Trust framework is very negligible then followed
by that of Rosemary and finally FortNox. To get the probability
of success:
• ptrust = 1−q f ailure
• prosemary = 1−q f ailure
• p f ortnox = 1−q f ailure

The probability of success for ptrust after application is
0.9997 and that of p f ortnox is 0.9744 and finally for prosemary
is 0.9961. Looking at both the metrics of success and failure
in terms of reliability and dependability, it can be concluded
that the proposed trust framework has a very low chance of
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Fig. 20: The reliability metrics for Trust Framework, Rose-
mary and FortNOX.

failure and a very high success rate than both Rosemary and
Fortnox.

For more robust and resilient tests for reliability and de-
pendability, repeated experiments have been conducted where
observations (n) ranges from 0-50 to ascertain the level of
failure or success as seen on Figure 20. Several instances
of the three frameworks (Trust, Rosemary and FortNox) in
action and the Trust framework suffices to have more chance
of being active without failure than Rosemary and FortNox. At
the initial stage of the experiment the reliability and confidence
level of trust framework is a bit higher, however towards the
end the reliability seems to converge in to a near linear curve,
though at that level the frameworks are all reliable however
the Trust framework is more reliable.

VII. CONCLUSION & FUTURE WORK

The proposed trust framework aims at addressing a threat in
the SDN architecture that exists between the controller and the
network applications. This research work brings the abstract
and design concept of the trust framework into implementable
artefact that can be evaluated, tested and analysed. The
proposed trust framework introduces methods through which
the authenticity of network applications situated in Network
Function Virtualisation layer are verified and respective priv-
ilege permissions for successfully authenticated applications
are assigned. Trust evaluation and assessment are carried out
based on how the network application conform and adhere
to network policy, application can be flagged and denied
if there is violation of network policy. A comparative and
comprehensive analysis with other frameworks is presented in
order to discover the impact, usefulness and how dependable
the proposed trust framework is. Results shows the remarkable
performance of the proposed trust framework and this is step
in a right direction towards achieving a secure , dependable
and reliable controller to network applications interactions.

Future work will look into implementing the framework in
a multi controller environment focusing on establishing trusted
relationship with network applications situated at neighbouring
controllers for efficient and secure service delivery. In addition
production environment implementation can go a long way in
reporting about reliability, performance implication of the var-
ious stages of verification and the scalability of the proposed
framework.
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