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SERIES EDITORS’ INTRODUCTION 
 

We are delighted to present this special volume dedicated to Industry 4.0 supported by a 

dedicated conference.  We are very grateful to the editors and authors who have worked 

tirelessly to produce the book ready to launch at the conference in October 2018.  Industry 4.0, 

although based on long-standing principles in manufacturing, has really come to the fore 

through the power of computing and data handling and whilst challenges remain, the use of 

Industry 4.0 will undoubtedly increase competitiveness and the ability to manufacture 

minimising cost and waste. 

 

The initial ‘Thoughts and Reflections’ book concerning the use of magnesium was conceived 

through a need to raise the profile of magnesium and dispel some of the myths especially 

regarding its flammability.  It also served as a basis to showcase strengths of the partnership 

working with the world leading organisation Meridian as well as other stakeholders.  

Importantly, the book allowed colleagues working in various areas to explore some of the 

academic underpinning knowledge and express them as thoughts and reflections for the wider 

academic community.  This is very much as the heart of the vision and ethos of the faculty at 

Birmingham City University to share with a wider audience world leading activity in a more 

focussed and open form of a book.  It is pleasing to see that the first book was very well 

received… so much in fact that this second book has been developed focussing on Industry 

4.0.  Indeed, we are pleased to announce we will be developing a series of texts based on the 

concept of “Thoughts and Reflections” with invited editors for each volume.  At present the 

intention is to present a first series of volumes as outlined below. 

 Advanced Technologies & Manufacturing 

 Big Data 

 Connectivity and 5G 

 Cyber Security 

 Digital Construction 

 Future Living and Socio-Technical Systems (incorporating smart cities) 

 Healthy Environments and Communities 

 Machine Learning and Artificial Intelligence 

 The Low Carbon Economy (including Autonomous Vehicles, Fuel Cells and Energy) 

 

This series will seek to record emerging gaps and allow a wider community to challenge 

existing thinking in an area.  Many of these areas have under-developed aspects especially at 

the periphery, for example how does advanced technologies such as autonomous vehicles 

change town planning and the use of facilities in future cities?  Or how does digital construction 

create a less wasteful society with more effective on-site manufacturing of civil engineering 

structures?  There are many similar questions to which we hope to provide some answers.  We 

welcome contributions from all and in particular industrial support associated with each 

volume.  Equally, ideas for new volumes in the “Thoughts and Reflections” series are similarly 

welcome. 

                                                                                                                              Prof. Gareth Neighbour 

Prof. Andrew Aftelak 
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Foreword 
It is predicted that by 2050, more than 70% of the global population will live in cities with 

projections of 80% of Gross Domestic Product.  Analysts are also predicting that the global 

population will hit 9.7 billion people by 2050, resulting in potential strains on efforts to reduce 

poverty, inequality and hunger.  Set against this background, the digital technologies agenda 

will be of critical importance; it will be the responsibility of future generations to understand 

and implement the ethos and science of ‘digital’ into their careers and daily lives. Accounting 

for agricultural production, energy consumption, environmental impact and other variables will 

be key if we are to sustain social health and well-being. We will need to embrace the new 

digital age with open arms that can aid in solving the challenges that lie ahead towards the 22nd 

Century.   

 

Digital technology will become more pivotal to our daily lives than ever before and will also 

disrupt traditional industries, causing them to become more efficient and further enhance our 

livelihoods.  Digital technology has the potential to increase the social, economic and 

environmental sustainability of cities across the world and key areas include: data; transport; 

digital; sensor technology; energy; cyber security; smart cities; connectivity; health; bioenergy; 

zero/low carbon modern built environment; and even art and design. 

 

One of the key areas of the digital revolution is the term Industry 4.0 – seen by many as the 

fourth industrial revolution – suggesting that all manufacturing companies will at some point 

need to take the next technological jump to create more connected, more efficient environments 

where production efficiency is optimised and controlled via new interventions such as 

collaborative robots working in parallel with human operators, as well sensor technology and 

the Internet of Things (IoT). The premise of Industry 4.0 would also imply that these new 

process advancements are not only most efficient, but also more sustainable with an overall 

reduced impact on the environment. 

 

With such a large growing population, we will also see unprecedented transport needs – road, 

air and sea. One of the key areas for manufacturing companies engaged in the transport sector, 

for example the automotive and aerospace industries, will be of light weighting. As we move 

towards alternative energy, such as hydrogen and electric/solar power (and perhaps one day, 

an all-electric/solar powered passenger aircraft) – transport modes will need to become far 

lighter – and with the circular economy agenda also rapidly growing – we will need to select 

raw materials that match these key criteria.  This is where magnesium will become more 

prominent than ever within the transport sector, with its excellent light weight, heat dissipation 

and 100% recyclable properties. 

 

In terms of magnesium metal and digitalisation, we need to distinguish first the range of 

industries where magnesium is used and second the regional production environments. Further, 

with the demand of an integrated value chain, magnesium also faces the challenge of having 

its dominant raw material supply from China. Industry 4.0 technologies are already disrupting 

and are most likely to shape the future of the automotive value chain. OEMs may become 

mainly the suppliers of white-label cars to the internet giants. In addition, recent technological 

advances including sensor technologies, connectivity, augmented reality and machine learning 

have already impacted the automotive value chain and business models. This is due to their 

abilities to monitor, track and respond quickly to unexpected events at any point of time across 

the entire automotive value chain. 
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To respond to this unique and unprecedented set of global challenges, Birmingham City 

University has developed significant expertise in the digital arena.  This book represents key 

ideas that are designed to provoke thought around the need for digitalisation within the 

manufacturing sectors – ensuring that Industry 4.0 progresses to a new age where the impact 

is reflected on a new world order. 

 

Dr Jamil Ahmed 

Makhan Singh 

Martin Tauber 

Prof. Stephen Brown 
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From the “green book” to the “blue book”  
 

“Thoughts and Reflections on the Use of Magnesium” book was published by Birmingham 

City University in July 2017 as the first in a series of books to be published in association with 

Meridian Lightweight Technologies UK and the European Committee of the International 

Magnesium Association. It presented a number of publications focussing on various aspects of 

the development, processing and application of Magnesium alloys. 

 

Known locally as the “Green Book”, the collection of academic papers and industrially based 

reports and articles covered a range of topics including “Magnesium: A Structural Super 

Metal”; “Magnesium and Mobility”; “Design Optimisation for Magnesium Parts Used in 

Automotive Body Structure”.  

 

As one may expect, many of the technical chapters addressed the engineering aspects of 

magnesium relating to its structural properties and potential applications. However, the book 

differed from other published works by also addressing the attitudes and perceptions of the 

engineering community towards Magnesium as a useful material: to this end, colleagues from 

the University’s School of Social Psychology joined staff from the Centre of Engineering in 

compiling the book.  

 

The subject of Women in Engineering was also addressed, as was the University’s initiative of 

involving artists and small businesses in the STEM (Science, Technology, Engineering and 

Mathematics) agenda as well as the STEAMhouse project which encompasses Science, 

Technology, Engineering, Art and Mathematics. 

 

The “Green Book” would be compelling reading for anyone interested not only in the design 

and manufacture of lightweight products but also those with an eye to the future of equality in 

employment, better utilisation of the Earth’s dwindling resources, and the bringing together of 

scientific and creative communities. 

 

As a result of this work, BCU and its industrial partners have identified several questions and 

challenges to the academic and research community on how the latest advancements in 

technology can help engineers to enhance manufacturing performance using Magnesium.  

 

The blue book was identified to be the next to be published in this series of publications with 

its aim to tackle these challenges and raised issues in the Green Book. It explores the potential 

of Industry 4.0 technologies and applications and identifies the opportunities that Industry 4.0 

can offer to the manufacturing sectors and more specifically manufacturing using Magnesium.  

 

Alan Pendry 

Prof. Ilias Oraifige  
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Executive Summary   
 

The rapid pace of developments in digital technologies offers many opportunities to increase 

the efficiency, flexibility and sophistication of manufacturing processes; including the potential 

for easier customisation, lower volumes and rapid changeover of products within the same 

manufacturing cell or line. A number of initiatives on this theme have been proposed around 

the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in 

Germany, Made-in-China in China and Made Smarter in the UK). 

 

This book presents an overview of the state of art and upcoming developments in digital 

technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 

and its potential for enhancing the manufacturing process. Later on moving to the design of 

smart (that is digitally driven) business processes which are going to rely on sensing of all 

relevant parameters, gathering, storing and processing the data from these sensors, using 

computing power and intelligence at the most appropriate points in the digital workflow 

including application of edge computing and parallel processing.  

 

A key component of this workflow is the application of Artificial Intelligence and particularly 

techniques in Machine Learning to derive actionable information from this data; be it real-time 

automated responses such as actuating transducers or informing human operators to follow 

specified standard operating procedures or providing management data for operational and 

strategic planning. Further consideration also needs to be given to the properties and behaviours 

of particular machines that are controlled and materials that are transformed during the 

manufacturing process and this is sometimes referred to as Operational Technology (OT) as 

opposed to IT. The digital capture of these properties and behaviours can then be used to define 

so-called Cyber Physical Systems. 

 

Given the power of these digital technologies it is of paramount importance that they operate 

safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented 

cybersecurity challenges to manufacturing and the overall industrial sector and the case is made 

here that new codes of practice are needed for the combined Information Technology and 

Operational Technology worlds, but with a framework that should be native to Industry 4.0. 

Current computing technologies are also able to go in other directions than supporting the 

digital ‘sense to action’ process described above. One of these is to use digital technologies to 

enhance the ability of the human operators who are still essential within the manufacturing 

process. One such technology, that has recently become accessible for widespread adoption, is 

Augmented Reality, providing operators with real-time additional information in situ with the 

machines that they interact with in their workspace in a hands-free mode.  

 

Finally, two linked chapters discuss the specific application of digital technologies to High 

Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a 

key task for increasing productivity and reducing defective parts and the first chapter provides 

an overview of the HPDC process with attention to the most common defects and their sources. 

It does this by first looking at real-time process control mechanisms, understanding the various 

process variables and assessing their impact on the end product quality. This understanding 

drives the choice of sensing methods and the associated smart digital workflow to allow real-

time control and mitigation of variation in the identified variables. Also, data from this 

workflow can be captured and used for the design of optimised dies and associated processes. 
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This is the subject of the second chapter that describes how the HDPC process can be simulated 

using Computational Fluid Dynamics based numerical modelling to understand the parameters 

affecting the process, analyse its performance, and to further select the optimum parameters 

that will lead to a better use of the material (magnesium in this case), and achieve less scrap 

rate, and higher efficiency rates. 

Dr. Adel Aneiba 

Prof. Cham Athwal 

Prof. Hanifa Shah 
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Industry 4.0: The Future of Manufacturing 
 

Adel Aneiba, Hanifa Shah, Aftelak and Mak Sharma 
School of Computing & Digital Technology, Birmingham City University, 

Millennium Point, Birmingham, UK.  B4 7XG. 
Email :{ Adel.Aneiba, Hanifa.Shah, Andrew.Aftelak, Mak.Sharma}@bcu.ac.uk 

 

Abstract  
Digital transformation has become a priority appearing on many industrial organisations’ agenda. 

Increasing productivity, staying competitive and reducing capital expenditure (Capex) as well as 

operation costs (Opex) is a key requirement for many market sectors especially in manufacturing. The 

digitisation of manufacturing will transform the way products and services are created and amongst 

other things change recruitment policies. The fourth industrial revolution (Industry 4.0 or “i4.0”) has 

brought this transformation to many industrial sectors. The digital transition for many legacy factories 

to i4.0-enabled (Smart Factory) has been arduous. Smart Factory is the term used where machinery, 

products and systems are digitally connected along the manufacturing value chain. In this chapter, 

concepts surrounding i4.0 and its approaches to modernisation are defined as well as highlighting the 

strategic steps that need to be taken to achieve the i4.0 vision. Finally, the, latest technologies that 

enabled i4.0 solutions, will be addressed.   

 

Keywords 

Digital manufacturing, i4.0 Ecosystem, i4.0 Technologies, People 4.0. 

 

INTRODUCTION   

 

i4.0 can have different terms and definitions such as SMART Manufacturing, Smart Factory, 

Manufacturing 4.0 and Industrial Internet of Things, but they are all expressing one concept 

(Bassi, 2017). These terms are describing the ecosystem of the next era of manufacturing where 

all manufacturing value chain components (inbound logistics, operations, outbound logistics, 

marketing and sales) are working together to provide collective value to the industry (Nuseibah 

& Wolff, 2015). However, the definition for i4.0 was first announced in 2011 at the “Hannover 

Messe trade fair”, as a result of an i4.0 working group formed by the German federal 

government (Sniderman et al, 2016). The Germany Trade and Investment group (GTAI) 

defines i4.0 as: 
 

“A paradigm shift . . . made possible by technological advances which constitute a reversal of 

conventional production process logic. Simply put, this means that industrial production machinery no 

longer simply “processes” the product, but that the product communicates with the machinery to tell it 

exactly what to do”.  

 

I4.0 enables manufacturers and suppliers and to leverage new technological concepts like 

Augmented Reality, Digital Twin, Internet of Things, Cyber Physical Systems, Big Data and 

Cloud/Edge Computing. These promising technologies will help to create new products and 

services or to enhance existing ones. Such technological advances will reduce cost and increase 

productivity. The ideas, thoughts and technologies behind i4.0 are become more mature than 

before (Bassi, 2017). Most of these technologies have been adopted and implemented in many 

industrial sectors especially in the automotive industry, however, many software design and 

development aspects such as standardisation, specifications and modelling are still being 

developed. The fundamental principles of i4.0 can be described as: the use of the internet, 
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production flexibility and virtualisation of process using data acquisition, data management 

and data decision making techniques.  
 

The main motivation behind adopting the i4.0 initiative is to overcome the following hurdles:  

high cost and shortage of talented labour, short production cycle time, and small volume 

production (Cheng et al, 2016). Moving towards an information-based economy is a 

fundamental requirement by many governments around the world. i4.0 is at the centre of this 

new economic trend, therefore i4.0 can be seen as a catalyst for economic growth and support 

the knowledge economy of many leading nations such as USA, China, Japan, Germany and 

the UK. i4.0 is considered supportive for many national economies across the world (Gartner, 

2016).  

 

I4.0 ECOSYSTEM   

 

i4.0 is a holistic industrial paradigm, whereby many business and technology elements are 

combining together to form an effective ecosystem. There is a need to have an ecosystem 

existing around the i4.0 phenomena which provides education, knowledge, facilities, funding 

and supportive legislation. i4.0 is a game changer, it’s not just an updated version of a certain 

technology, it is a fully automated and connected manufacturing ecosystem (e.g. fully 

connected factory). The i4.0 ecosystem is a complex system of interdependent components that 

all work together to enable i4.0 services. In essence, an ecosystem is composed of 

interconnected living (active components) and non-living things (passive components) that all 

work together. In the i4.0 domain, the ecosystem consists of technical (hardware and software) 

and non-technical elements such as business partners, government regulatory bodies in 

manufacturing, customers, engineers’ communities, industrial consultants, system integrators 

and policy makers. Figure 1 identifies the major areas that need to be considered for existing 

manufacturers or new entrants into the i4.0 domain. To establish a strong and competitive 

manufacturing strategy and to drive innovation, there is a need for smooth integration amongst 

all the ecosystem elements, between Information Communication Technology (ICT) and 

Operation Technology (OT). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

FIGURE 1: i4.0 Ecosystem (adapted from BDO, 2017) 
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Taking all the above elements into consideration when building an i4.0 business strategy, can 

lead organisations to build smarter manufacturing value chains and even powerful end-to-end 

ecosystems: 

 

Data   
Data is fundamental to the success of the i4.0 ecosystem, data and information gathered through 

the product life-cycle and corresponding services can assist manufacturers to understand their 

products and services much better, together with their customers’ needs and their own business 

environment. Integration of multi data sources throughout the manufacturing value chain can 

strongly help business owners to provide a positive customer experience, as well as measuring 

their business performance. Sharing data among machines within factory settings and beyond 

is essential and has proved to be an effective strategy (Lee, 2013).  

 

Smart Business Process  
The distributed nature of i4.0 systems requires robust and smart business processes to be in 

place. This integration of real-time data provides an opportunity to optimise and automate 

manufacturing processes and improve performance. Modelling the complexity of the i4.0 

business processes is not an easy task, but initiatives like “the Industry 4.0 Process Modeling 

Language (I4PML)” (Petrasch & Hentschke, 2016) are an important step towards modelling 

existing and new processes within the i4.0 ecosystem. Chapter 2 will address this topic in more 

detail. 

 

Organisation 

Creating an i4.0 culture across all levels of an organisation is key for achieving the 

transformation goals. The setting of shared goals, values and principles such as workplace 

fairness with clear transparent staffing policies will help organisations to accelerate the process 

of collaboration and build an innovative culture. Current organisational structures and cultures 

need to be ready to cope with rapid development in processes and technology for i4.0. Self-

organisation and decentralised decision-making will become more important in the new era of 

i4.0. Related studies (BDO, 2017) have pointed out that “Management 4.0” will have to leave 

the traditional management norms and focus again even more closely on value creation. 

 

Governance  
The role of the senior management team in any organisation in achieving i4.0 business strategy 

is vital, they must be fully cognisant and fully engaged regarding the value of i4.0. This can be 

achieved by running targeted awareness programs specifically regarding the business value 

that i4.0 can bring to their businesses. Powerful leadership attributes are required to drive the 

organisation to achieve their goals for example, Brian Bacon, the chairman and founder of 

“Oxford Leadership” has defined i4.0 leadership as “The ability to rapidly align & engage 

empowered, networked teams with clarity of purpose and fierce resolve to win”.  

  

Security  
i4.0 introduces new business models and technological systems which disrupt traditional ways 

of thinking and implementation solutions. This will have implications for required data inputs, 

connected processes as well as the communications and security protocols, thus potentially 

introducing new and yet unknown vulnerabilities. These vulnerabilities will compromise 

systems in many ways we had not imagined, hence putting i4.0 systems at a higher risk, 

therefore there will be a need for novel security approaches, methods and techniques to secure 
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these new systems and mitigate cyber risks. Chapter 7 addresses the security element of i4.0 in 

more detail. 

 

Technology 
To build a smarter and efficient manufacturing value chain, substantial research and 

development (R&D) is needed at an early stage to form a holistic i4.0 strategy. At the beginning 

of the manufacturing value chain, the R&D effort will accelerate the enhancement of the design 

cycle, reducing time to market, producing improved products and services (Acharyulu et al, 

2015). Lateral thinking design engineers are the most valuable stakeholders at this stage. A 

better strategy can lead to a positive impact at the end of the value chain resulting in revenue 

increase and business growth. Table 1 shows key business objectives for manufacturers 

adopting i4.0. 
 
TABLE 1: i4.0 Key Business Objectives, organised (Sniderman et al, 2016) 

Business 

Operations 

 

Productivity 

Improvements 

 Maximising asset utilisation and minimizing downtime  

 Driving direct and indirect labour efficiency  

 Managing supply network costs and synchronization  

 Ensuring schedule and plan stability and accuracy  

Risk Reduction 

 Ensuring raw material price and availability  

 Managing warranty and recalls effectively  

 Mitigating geographic risks  

Business 

Growth 

Incremental revenue 

 Finding sources of growth for the core business  

 Growing aftermarket revenue streams  

 Deepening customer understanding and insights 

 Strengthening customer integration and channels 

New revenue 

 Creating new products and service offerings  

 Expanding internationally and in emerging markets 

 Identifying attractive opportunities  

      

I4.0 TECHNOLOGIES 

 

Achieving business objectives while adopting i4.0 is largely dependent on the selected 

technologies alongside strong leadership and people skills. Certain emerging and developed 

technologies can offer tangible business opportunities to manufacturing leaders to improve 

their operations strategies and achieve their business objectives throughout the manufacturing 

value chain. Some of the key technologies that encapsulate the physical-to-digital-to-physical 

reach of i4.0 are recorded in table 2. 

 
TABLE 2: i4.0 Technologies (Sniderman et al, 2016) 

Product Impact Potential IT/OT Applications 

Physical    Digital   

 Sensors and controls  

 Wearables  

 Augmented reality  

Digital  

 Signal aggregation 

 Optimization and prediction  

 Visualization and POU delivery 

 Cognitive and high-performance computing   

Digital      Physical  

 Additive manufacturing  

 Advanced materials  

 Autonomous robotics  

 Digital design and simulation  
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The technologies identified above, generally underpin and act as an enabler for i4.0. These 

technologies accelerate the automation task for machines and generate meaningful data to 

detect any possible failure or defects and predict any potential industrial trends (Lee, 2013). 

These will help in communicating, analysing and using information to carry additional 

intelligent actions back to the physical world to accomplish a physical-to-digital-to-physical 

transition. Below are the most dominant i4.0 technologies. 

 

3D Printing (Additive Manufacturing) 

Additive manufacturing systems play a major role for small volumes production at a minimum 

cost. In addition, it offers the ability to provide rapid design manufacturing solutions with 

shorter time-to-market. (Li & Lau, 2017). 3D printing is considered as a vital technology in 

i4.0 domain. It has offered a new way to model complex items and implement an otherwise 

time consuming design in a short time. 3D printing can be used for rapid prototyping to 

conceptualise future system or to add new feature to an existing one. 

 

BlockChain 

Decentralisation is a trend in many market sectors such as the automotive industry where 

distribution is a norm. Blockchain technology represents a logical choice to secure, manage 

and track the entire manufacturing value chain transactions. Many aspects of blockchain such 

as Smart contracts can make deployments more autonomous, intelligent and transparent. This 

will enable machines to carry out tasks faster by minimizing human intervention and accelerate 

the automation process (Hepp et al, 2018). The adoption rate of this technology varies and is 

dependent on the maturity of individual organisations. However, early adoption of blockchain 

technology may provide industrial companies with an edge over their competitors. 

 

Big Data and Machine Learning 

There is no doubt that i4.0 solutions will generate large volumes of data from different sources 

throughout the manufacturing value chain at various rates, structures and formats (i.e. Big 

Data). This requires advanced and innovative techniques to gather and pre-process the data. 

Then the data must be stored, managed, analysed and presented using sophisticated processing 

to turn it into meaningful insights, i.e. Information. Furthermore, from this information we can 

gain knowledge of the i4.0 system. With this knowledge we can start to predict the performance 

of the machines and production lines within an i4.0 context. This enablement will generate 

large volumes of data that require powerful analytics tools to manage and mine for business 

insights (i.e. wisdom) to help manufacturers assess their operations and boost their market 

position. Machine Learning algorithms are being widely adopted in the manufacturing arena to 

process and extract relevant features that are important to business to understand certain 

phenomena or solve certain problems (Wuest et al, 2016). Chapters 4, 5 and 6 address this 

subject in more detail. 

 

Augmented Reality 

Augmented and virtual reality have proved their worth in adding business value to many 

manufacturers. The concept of industrial augmented reality (IAR) has attracted various 

industrial stakeholders such as industrial engineers and manufacturing leaders. Several R&D 

attempts have been developed to use IAR systems to facilitate an early testing capability for 

prototype systems using virtual or mixed reality platforms (Fraga-Lamas et al, 2018). This is 

due to the latest advances in its interactive capabilities. AR concepts, techniques, tools and 

applications are explored in chapter 7 
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Smart Sensing/IoT 

Sensing is one of the core i4.0 technologies. Sensors are installed mainly in individual 

manufacturing machines but can be installed across the entire manufacturing process, from raw 

material collection to the end-product. The role of installed sensors is essential to monitor the 

manufacturing process performance as well as the behaviour of the final product (Wright, 

2014). Sensors are important for converting physical properties of machines into discrete and 

analogue signals. Various sensors are used in the manufacturing sector to trace vital data over 

the entire manufacturing process in real time and transmit it to the data centre on the edge or 

in the Cloud through an industrial communication network. These Big Data can be processed 

using platforms that employ applied machine learning and knowledge discovery techniques as 

well as tools to explore trends and insights. 
 

DT (Digital Twin) and CPS (Cyber-Physical Systems) 

The digital twin (DT) concept is becoming a hot topic in the i4.0 domain and is being used for 

global manufacturing digital transformation. It was named one of Gartner’s Top 10 Strategic 

Technology Trends for 2017. The digital twin paves the way to cyber-physical integration 

making it a cost effective approach for manufacturers, designers and engineers. DT is all about 

simulating the physical objects/machines’ behaviour via creating a virtual model using digital 

twin technology. DT is a powerful rapid development approach which promises significant 

value for many industrial organisations (Parrott & Warshaw, 2017). The developed virtual 

model understands the real-time status of a physical object by capturing data using advanced 

sensors to predict, estimate, and analyse dynamic behaviours and changes. Based on the 

simulation outputs from the digital twin peer, the physical entity/machine would respond to its 

environment accordingly. This will help manufacturing engineers to optimize the entire 

manufacturing process (Qi & Tao, 2018). Figure 2 illustrates these and related technologies 

that can be applied to the i4.0 domain.  

FIGURE 2: Major I4.0 Technologies (adapted from PWC, 2016) 

 

 

http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/
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TRANSITION CONSIDERATIONS TO I4.0 

 

Prior to attaining an i4.0-enablement, industrial organisations that are adopting or planning to 

adopt i4.0 practices can expect numerous challenges relating to the integration of Information 

Technology (IT) and Operational Technology (OT). These challenges can be classified into 

two types, the first is at an organisational level where the internal operations and processes are 

required to improve to meet the i4.0 standards; whilst the second exists at the wider ecosystem 

level. These challenges are increased as connected technologies advance at a fast rate. For 

example, when companies are trying to integrate information technology and operational 

technology under the i4.0 practice at the organisational level, in this case most companies are 

struggling to find talent to design, implement and operate i4.0 systems.  

 

Unskilled labour can lead to failure to adopt the new approach “i4.0”, therefore, manufacturers 

need to adopt a proactive approach toward staff development when considering i4.0 

applications. This can be done through developing an outsourcing strategy by partnering with 

outside organisations such as universities and apprenticeship programme providers to develop 

a steady stream of labour (Van Dinther et al, 2015). 

 

Ecosystem challenges such as standardisation and interoperability are the most important 

components in the entire i4.0 ecosystem.  As this element lies beyond companies’ control, extra 

care needs to be taken when dealing with this matter. Normally, many of the systems behind 

i4.0 applications can impose integration challenges due to their proprietary nature. Ignoring the 

interoperability element can lead to a significant obstacle for full adoption of i4.0 technologies. 

To overcome this hurdle, industry leaders should work closely with partners to develop and 

unify industrial standards through peer consortiums, industry associations, and government 

industrial regulatory bodies as in (Din, 2018). These professional bodies can establish a set of 

standards to maximize the business value delivered by i4.0 investments (Amy et al, 2017). 

 

Another important consideration within the i4.0 ecosystem is data ownership and control over 

the data that have been generated at various points of the manufacturing value chain. 

Regulating the data ownership across the value chain for many connected stakeholders is a real 

concern for many manufacturing organisations. Each stakeholder (supplier, customer, 

manufacturers…etc.) throughout the chain will be responsible for the data being generated in 

their working domain. The integration of these data sources can lead to product improvements 

and value creation for all stakeholders. Industrial leaders should think carefully about the 

benefits that this integration can bring to their business and consider data sharing, data 

ownership and data access agreements. The final important element of the ecosystem is the 

security of the generated data throughout the value chain. Security obviously is often 

mentioned as a concern in implementing i4.0 practices. Therefore, industrial leaders should not 

omit this element and start looking to evolve security solutions to protect their systems against 

a data breach and avoid any downtime events that might slow their operations. In general, the 

transformation roadmap will vary depending on the maturity of individual organisations. 

 

To understand what manufacturers’ leaders and business owners need to do to transform their 

business and enter the era of i4.0, six recommendations have been captured from successful 

i4.0-enabled companies (Petit et al, 2018). The below themes characterise core transformation 

elements such as harder capabilities (technology oriented) and softer enablers (human 

resources and vision). Table 3 summarises the required steps for digital transformation to i4.0. 
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TABLE 3: Essential guidelines for the digital transformation to i4.0 (Petit et al, 2018) 

Theme Recommended Actions 

Vision, leadership 

and transformation 

plan 

- Develop a clear and practical transformation digital vision and have a roadmap to 

execute it, progress and secure leadership support. 

- Communicating the vision across all levels of the organisation 

Digital culture 
- Building a robust digital culture across the organisation with clear core values such as 

openness, experimentation, flexibility, agility and collaboration. 

Digital ecosystem 
- Working closely with start-ups and partners across boundaries, both around products 

and services to drive business value. 

Adopting                

i4.0 Technologies 

- Invest in, and deploy, new and emerging digital technologies to develop smart, 

connected product and services. 

People 4.0 
- Recognise the importance of i4.0 digital skills across all levels of the organisation and 

setting a clear plan for recruiting talented people.  

Data 
- Taking full advantage of the collected data from different sources at various points in 

the manufacturing value chain.  

 

 

DISCUSSION  

 

A large challenge to implementing i4.0 is the heterogeneity of the systems involved. Different 

data exchange standards and formats exist such as OPC, OPC-UA and SEMI PV02. In addition, 

much manufacturing machinery is not interoperability-enabled. This will have an impact 

resulting in deficiencies in data management, minimizing the opportunities for full monitoring 

of the entire production process. Furthermore, omitting other related factors such as financial 

boundaries and holistic monitoring will reduce opportunities to gain business advantages 

(Cemernek et al, 2017). Furthermore, there are concerns regarding the influences of 

digitalisation on the economy and the labour market in many countries. Skilled labour is a 

major factor in the successful adoption of i4.0 and as such a comprehensive training plan and 

digital literacy activities for existing workforce and an efficient smart recruiting strategy for 

newcomers is paramount.  

 

Despite the above challenges, many serious attempts have been made by leading automotive 

manufacturers towards i4.0 practice. Proactive Maintenance or Maintenance 4.0 is one  

practical example for i4.0 that has been proposed by (Dol & Bhinge, 2018). For instance, 

BMW, the automotive car company, has built a smart factory that has various smart workshops 

for major production processes such as stamping, body, coating and assembly. They employ 

smart robot systems to significantly improve efficiencies such as achieving water savings of 

30%, energy savings of 40% and a 20% reduction in emissions. Another encouraging example 

is the automotive company Toyota. It has invested in UBER with $500 million to enhance self-

driving projects by deploying more intelligence into their new designs and models, i4.0 

technologies such as the digital twin (DT) and Cyber Physical Systems have been considered 

in this joint project (FT, 2018).  

 

The above examples were chosen for their individual efforts, but there are well-known global 

initiatives launched by several countries. For example, Germany, the initiator of the i4.0 

concept in Europe, has launched a national program in 2011 to drive forward i4.0 by developing 



10 
 

common understanding across industry sectors.  Following the progress made by Germany, 

Taiwan has launched their "Productivity 4.0" initiative that will be the centre of the digital 

transformation in the industry sector. (Chou et al, 2016). Moreover, in 2015, the Chinese 

government announced their “Made in China 2025" programme to promote the Chinese version 

of i4.0.  

 

The aim of these initiatives is to enhance major manufacturing pillars such as productivity 

quality, delivery and flexibility based on technology convergence (Cemernek et al ,2017; Kang 

et al, 2016). i4.0 technologies can support various stakeholders from product designers to 

retailers who are involved in the product development cycle in achieving their tasks in a timely 

manner while maintaining quality. A full data analysis research has been carried out by various 

countries such as Germany to assess the impacts of i4.0 on productivity and revenue growth. 

They have found that productivity can be increased from 5% to 8% in the next ten years and 

reasonable saving can be obtained as much as 30% for general manufacturing costs such as 

overhead costs, operating costs and labour costs (Li & Lau, 2018). i4.0 can clearly bring 

benefits to many stakeholders, for example customers can use additive manufacturing 

technologies to build rapid prototyping in order to accelerate the design process (Sniderman et 

al 2017). Finally, technical concepts such as smart sensing, data aggregation, process 

optimisation, and decision making through prediction, enable manufacturers to get insights 

around their business performance and need (Schneider, 2015). This will help many 

organisations in better planning to provide better services and meet market demands. 

 

CONCLUSIONS  

 

i4.0 offers abundant opportunities for many industry sectors to enhance and control their 

business value chain.  In addition, it allows manufacturers to gain a competitive edge by 

digitisation and integration of products and services. Integration can be among different 

machines, or different data sources and on a large scale among different industrial systems. 

The essence of system integration from the business point of view is providing industrial 

stakeholders with a unified view of the entire domain. i4.0 is enabling a new era of 

manufacturing intelligence and analytics. i4.0 produces new services and business models and 

can be described as a new growth engine for many industrial organisations. It is a bridge that 

takes manufacturers and business owners from the physical to the digital world where they 

obtain benefits and create business value.  

 

Despite the challenges, business leaders should have a full unified view of the i4.0 ecosystem 

elements to unlock its potential. They must produce a detailed roadmap to achieve the i4.0 

vision. This includes recruiting qualified people who can execute it and achieve business goals.  

Policy makers and business owners have to concentrate on all aspects and elements of the i4.0 

ecosystem from the top with business strategic elements: vision and mission, industrial 

standards and cultural thinking down to adopting the latest digital industrial technologies and 

best practice in operations and management.  For any i4.0 initiative to succeed, organisations 

need to understand how systems information, processes and external entities interact and 

interface with each other. Finally, industry leaders need to have a clear vision, mission and 

objectives for their i4.0 strategy to assess their market position, and identify direct requirements 

to achieve their business objectives, but the real challenge will remain in how this potential can 

be put into practice. 
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Abstract 

Industry 4.0 promotes growth, operational efficiencies, and new business models and services. 

However, to take full advantage of the Industry 4.0 landscape existing processes need to be transformed 

to facilitate automation, machine-to-machine communication and information flows. This chapter 

proposes a business process change model which outlines steps and activities that organisations should 

adopt as part of this transformation project. Also, it highlights the potential challenges that may be 

encountered during the business process change projects; the challenges are categorised, and success 

factor exemplars are offered as part of the smart process wheel.  

 

Keywords 

Smart Processes, Business Process Change (BPC), Smart Process Wheel 

 

INTRODUCTION 

Recent advancements in manufacturing technologies has led to a paradigm shift in the 

manufacturing sector, referred to as the fourth industrial revolution namely Industry 4.0. This 

shift influences customer expectations, increase data efficiency and promotes new business 

models. Industry 4.0 makes use of various technologies and techniques; this includes Cyber-

Physical Systems (CPS), Internet of Things (IoT), cloud computing, blockchain, Enterprise 

Resources Planning (ERP) systems and other technologies (Moeuf et al., 2017). While there 

are numerous definitions for Industry 4.0, Hoffmann et al. (2017) suggest that Industry 4.0 can 

be considered as a digital interconnection of products and services to enable automation and 

self-optimisation with minimal human interventions. Lu (2017) advocates that Industry 4.0 

allows IT-enabled customisation of manufactured products leading to automation and flexible 

adaptation of the production chain leading to operational efficiency, productivity and 

automation. For example, one of the core roles of CPS is to support agile production by 

integrating various data and knowledge, which can result in improved effectiveness and 

efficiency (Lu, 2017). The implementation of Industry 4.0 results in horizontal, vertical and 

end-to-end integration of the different technologies, resources, products and systems, which 

improves management of complex business processes. The integration of these different 

technologies, systems and resources facilitates autonomous sharing of information, control of 

processes and optimised decision-making, which are the core foundation of a smart factory.  

 

Smart factories offer manufacturing firms an opportunity to leverage Industry 4.0 technologies 

to integrate and extend processes, become intelligent, dynamic and flexible to market demands. 

Also, the integration of real-time data provides an opportunity to optimise and automate 

manufacturing processes and improve performance. Hoffman et al. (2017) implied that smart 

factories are dependent on processes that can be fully automated, thus enabling machine-to-

machine communication and material transfer with minimum human intercession. As part of 

their study, they explored the potential implication of Industry 4.0 and highlighted the 

following Just-in-Time (JIT) / Just-in-Sequence (JIS) processes characteristics (Figure 1).  
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FIGURE 1: Industry 4.0 Characteristics for JIT/JIS processes (adapted from Hoffman et al., 2017) 

 

Drawing from Figure 1, Industry 4.0 facilitates real-time tracking of materials flow, generally 

achieved when there is direct machine-to-machine communication through the use of sensors 

to support sharing of data and automation of material transfer between machines with minimal 

human intervention. Also, integration of systems enhances information flows, decision-

making, and process transparency resulting in an intelligent end-to-end optimisation of tasks 

and most importantly facilitate the transformation of business models. This transformation 

leads to wide-ranging changes in all areas of value creation, such as (i) availability of goods 

and services with the prospect of autonomous delivering with the aim of responding faster and 

being more adaptable to volatile market demand; (ii) improvements in transparency and 

traceability offered by connected smart processes and components which facilitate autonomous 

awareness of components and monitoring of process parameters which also increase efficiency 

and productivity. Smart processes promote autonomous operations, self-regulation and 

transparent activities assisted by machine-machine communication and sharing of data. 

However, Moeuf et al. (2017) indicate that many manufacturing firms have implemented 

traditional business processes and the introduction of Industry 4.0 would potentially disrupt 

these processes. Therefore, there is a need for these processes to be transformed to 

accommodate the technological solutions offered as part of the Industry 4.0 landscape and 

support seamless integration of technology, processes, data and people, along with 

coordination of services and physical flows.  
 

ENTERPRISE SYSTEMS INTEGRATION (ESI) 

 

According to Xu (2018), Enterprise Systems Integration (ESI) plays a significant role in 

integrating business processes and facilitating sharing of information across all business units. 

ESI introduces changes and improvements to operations and elements of the business strategy, 

which are created by business processes. Business processes are systematic rules, which 

connect the input to the output of an organisation, thus, implement the business objectives. 

Other components including people, management, roles, tasks, information flow, and 

technology add value to the inputs and generate some outputs, such as products and services to 
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the customers. Therefore, business processes affect the enterprises’ capabilities for production 

or service delivery, supporting the notion that business processes are the primary drivers that 

help to perform the tasks through a seamless process flow across related departments (Harmon, 

2014). Javidroozi et al. (2015) concluded that during ESI, the most significant change is 

undertaken on business processes, suggesting that technology is an enabler which is used to 

realise and manage this transition. Morton and Hu (2008) suggest that for a successful ESI, the 

organisational structure should fit the systems integrator and technology (such as ERP, CPS). 

As a result, the enhancement of business processes’ performance through undertaking an 

appropriate change approach, to provide intercommunication, interoperation, and consequently 

integration amongst organisational components, is a necessity to support the leveraging of 

industry 4.0 technologies.  According to Lodhi et al. (2013) and Jurisch et al. (2014), there is 

a direct relationship between a successful BPC and the whole enterprise’s performance. Thus, 

the next sections discuss BPC practices, approaches, stages, challenges, and success factors, as 

the foundation that would allow the creation of smart processes.  

 
Business Process Change (BPC) 

For an effective systems integration, BPC needs to be managed and planned carefully (Jurisch 

et al., 2014). Accordingly, the following actions should be undertaken: (i) an appropriate BPC 

approach should be taken (Jurisch et al., 2014); (ii) some stages along with their activities 

should be followed (Harmon, 2007); and (iii) the challenges encountered during the BPC 

procedure should be addressed (Harmon, 2007; Jurisch et al., 2014).  While the terms Business 

Process Management (BPM), Business Process Reengineering (BPR), and BPC have been 

utilised interchangeably, BPC is an enhancement procedure, which develops business 

processes in two different approaches/modes: revolutionary/radical or evolutionary Javidroozi 

et al. (2015). This implies that BPM is an approach/type/technique for conducting BPC, which 

encompasses other techniques and tools such as Business Process Transformation (BPT), Total 

Quality Management (TQM), and Six Sigma. Nevertheless, BPM is a comprehensive and 

systematic approach, which includes all other tools, techniques, and approaches for addressing 

BPC challenges. Each approach comprises different tools and techniques such as BPR, BPI, 

TQM, and so on. Figure 2 illustrates further the approaches and some of the BPC tools and 

techniques. Even-though Industry 4.0 introduces radical changes that revolutionise the 

manufacturing industry it is essential to take into account both BPC approaches when 

conducting BPC as part of developing smart processes. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: BPC approaches and types (adapted from Jurisch et al., 2014) 
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BPC stages 

Earlier researchers such as Harmon and Trends (2010), and Kettinger et al. (1997) have 

suggested various methodologies for BPC. However, despite the different characterisation and 

different terminologies, all methodologies emphasise similar aspects and adhere to the same 

rules. Javidroozi et al. (2016) have critically reviewed these methodologies and proposed a 

BPC model .Figure 3 offers steps to assist digital transformation that can drive the development 

of smart business processes.  
 

 
 

FIGURE 3: BPC model (Source: Javidroozi et al., 2016) 
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The BPC model focuses on system integration as the primary project goal (Table 3 provides a summary 

of the steps). The steps proposed can be utilised for transforming existing processes in a manufacturing 

firm to make them more compatible to support the drive towards smart factories. However, the stages 

are carried out at various levels, including systems integration, business process, and execution level. 

In other words, the activities of the business process level are not separated from the systems integration 

level, because changing business processes are designed within systems integration. Hence, the 

activities of every BPC step are performed on these three levels.  
 

TABLE 1: Description of the BPC model stages  

Stage Description     
Comprehension The following activities: understanding, analysis, and evaluation will be undertaken with 

the aim of identifying the goal and purpose of BPC. For example, if the primary goal is 

system integration as part of the smart factory development, therefore at this stage it 

would be essential to understand what the systems integration project objectives are, 

which can lead to aligning business processes for this purpose. Thus, analysis and in 

depth understanding of all current business processes are necessary. This will also 

develop the objectives of new business processes. 

Identification In this stage, the summary of all business process analysis findings from the previous 

step is evaluated to determine if these processes meet the integration requirements. Also, 

the business processes, which are fully aligned with the objectives of the main project 

will be recognised and documented. After that, the approach and type of BPC will be 

identified. At this stage, the radicalness of the change will be determined, and 

appropriate mode of change will be assigned to identify the approach to use (details on 

how to assess the level of radicalness is available in (Javidroozi et al., 2016).  

Preparation After the identification of the candidate business processes for change and the BPC type, 

the scope and strategy of the change should be specified, and all scheduling and planning 

activities will be carried out. Also, all other key business drivers including the 

organisation, human resources, and possible technological resources need to be 

identified and prepared for the change. Additionally, the appropriate change team 

including business process experts, who are fully informed about the candidate processes 

will be assigned. Moreover, top management support would be requested and all 

stakeholders and other employees will be informed about the change. 
Design The actual changing and redesigning activities including brainstorming, defining and 

analysing new process concept, prototyping, designing, and documenting new processes 

according to identified change approach are carried out in this step by a team, responsible 

for the change. Appropriate techniques for process mapping and prototyping will be 

applied, along with evaluating the benefits for the business, costs and feasibility to select 

the best option. 

Implementation Having the prototype tested and approved (referred to as a phased approach) is a more 

preferred implementation approach for most of the BPCs, especially for those which are 

highly visible internally and externally, and involved with revenues, customers, or 

valuable employees. A phased approach is also an economical method of 

implementation, which generates some financial benefit from BPC in an earlier time. In 

this stage changes to organisation structure, roles, and IT will be carried out. BPC 

techniques such as TQM and Six Sigma will also be applied for fulfilling this step. 

Sustainment The last step of changing business processes is to evaluate and improve the new 

processes’ performance continuously and assess if they have addressed the 

requirements. This allows the organisation to monitor and control the business processes 

after the change continuously. 

 

BPC challenges, practices, and success factors 

Any changes introduced, be it technology or process, would present significant challenges and 

risks to the organisation. Similarly, BPC involves numerous types of challenges that can arise 

in any of its steps. Various tools, techniques, approaches, and success factors are proposed to 

facilitate the addressing of these BPC challenges. Therefore, one of the main steps towards 

smart process is the identification of the BPC challenges and their success factors. This chapter 
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proposes a conceptual ‘smart process wheel’ (Figure 4), which categorises the different 

challenges that a manufacturing firm may encounter when developing smart processes. The 

challenges have been categorised into five dimensions based on Kettinger and Grover's (1995) 

BPC model, as well as Javidroozi et al.'s (2015) systems integration model. 
 

 
 

 

FIGURE 4: Conceptual Smart Process Wheel 

 

The five BPC challenges dimensions are:  

1. Managerial: this includes challenges such as clarification and understanding of business 

processes, BPC monitoring, risk assessment, governance. 

2. Functional: these are mostly related to operational aspects of the organisation; the 

challenges include efficiency, quality assurance, and complexity. 

3. Inter-organisational: these are more concerned with ensuring collaboration, 

communication, and integration among systems; challenges include interoperability, data 

sharing, and inter-dependencies. 
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4. Human issues: it is well established that people play an essential role during BPC; the 

challenges associated with human issues include people’s acceptance, commitment, culture, 

knowledge of the users, stakeholders. 

5. Environmental: these challenges are related to the external and internal influences that 

can impact the transformation; the challenges could include costs, politics and other external 

factors.  

 

The processing wheel offers success factors as exemplars, and when these are used along with 

BPM tools and techniques, it will promote the development of best practices for BPC. Next, 

the best practices would be utilised in various contexts, so that the smart processes will be 

established. Hence, the smart process wheel would be useful for any firm that attempts to 

implement ESI to change its processes, whether this is part of an Industry 4.0 implementation 

or any other digital transformation project.  
 

CONCLUSIONS 

 

Industry 4.0 technologies can significantly improve operations and introduce new business 

models that can help manufacturing firms find new opportunities for value creation. However, 

to fully leverage these capabilities, there is a need to integrate technology, processes, people 

and data. The integration of these elements is not straightforward as these changes usually 

introduce risks and challenges, especially since business processes are the core elements that 

need to be transformed as part of any system integration. Therefore, it is essential to follow 

precise steps and activities to support any digital transformation projects. As a result, this 

chapter proposed a BPC model, that suggests stages and activities that can be used to identify 

smart practices that can be used to design smart business processes. 

 

Additionally, understanding the practices, challenges and success factors during any BPC 

project is critical to the success of the project. Hence, a conceptual smart wheel is presented, 

which categorises BPC challenges and provides critical success factors exemplars that can be 

used in conjunction with BPM tools to address the challenges that arise during BPC projects. 

 

It should be noted that these challenges and success factors are not exhaustive. One reason for 

this is that each firm may approach BPC differently. Hence a detailed study needs to be 

undertaken to capture all the challenges so that relevant success factors could be offered that 

best fit the firm undertaking the business transformation.  
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Abstract 

The purpose of this paper is to provide an outline of how smart sensor technology and sensor  

intelligence can be applied to the manufacturing process in industry 4.0. This chapter provides an 

overview of key  smart sensor technologies  and  sensor intelligence in industrial processes that act as  

intelligent agents to sense and  further process the collected data and transmit it.  In this manner dynamic 

configuring of sensors is enabled to provide targeted and specific data for particular purposes  to achieve 

an optimised and efficient industrial process. 

 

Keywords 

Smart Sensor, Sensor Intelligence, Industry 4.0, Digital Manufacture 

 

INTRODUCTION 

 

Modern industrial development has led to the new era of Industry 4.0. as initially proposed for 

developing German economy (Vogel & Hess 2011). The automation of  production based on 

electronics and internet technology has been developed for several decades; whilst the recently 

developed Industry 4.0 focuses on cyber physical systems (CPS) production, based on 

heterogeneous data and knowledge integration to achieve a higher level of operational 

efficiency and productivity, as well as a higher level of automatization (Lee et al 2015). The 

main roles of CPS are to fulfill the agile and dynamic requirements of production, and to 

improve the effectiveness and efficiency of the entire industry. Industry 4.0 involves numerous 

technologies and associated paradigms, including Radio Frequency Identification (RFID), 

Enterprise Resource Planning (ERP), Internet of Things (IoT), cloud-based manufacturing, and 

social product development (Thames and Schaefer 2016, Georgakopoulos, 2016, Kube &Rinn 

2014, Lin et al 2016 , Pfeiffer 2016, Roblek, et al, 2016,Wan et al 2106). 
 

Industry 4.0 can be summarized as an integrated, adapted, optimized, service-oriented, and 

interoperable manufacturing process which is correlated with algorithms, big data, and high 

technologies. The major features of Industry 4.0 are digitization, optimization, and 

customization of production; automation and adaptation; human machine interaction (HMI); 

value-added services and businesses, and automatic data exchange and communication. These 

features not only are highly correlated with internet technologies and advanced algorithms, but 

they also indicate that Industry 4.0 is an industrial process of value adding and knowledge 

management. 
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Industry 4.0 facilitates interconnection and computerization into the traditional industry. It 

provides IT-enabled mass customization of manufactured products; to make automatic and 

flexible adaptation of the production chain; to facilitate communication among parts, products, 

and machines; to apply human-machine interaction (HMI) paradigms; to achieve IoT-enabled 

production optimization in smart factories; and to provide new types of services and business 

models of interaction in the value chain (Shafiq et al. 2015, 2016). Industry 4.0 brings 

disruptive changes to supply chains, business models, and business processes (Schmidt 2015).  
 

Cyber-Physical Systems (CPS) are expected to offer promising solutions to transform the 

operation and role of many existing industrial systems (Bondar et al 2017,Mao et al 2016, Yan 

et al 2015). CPS is seen as the convergence of the physical and digital worlds:  data and 

information are exchanged among embedded devices, wireless applications, or even clouds. A 

complex, dynamic and integrated CPS will support collaboration of planning, analysis, 

modeling, design, implemention and maintenance in the manufacturing process. CPS combine 

information and materials, where decentralization and autonomy play important roles in 

improving the overall industrial performance (Harrison & Ammad 2016, Bagheri et al 2015).  

CPS can  also consist of micro-controllers that control the physical sensors and actuators. With 

the advances in wireless communication, smartphones, and sensor network technologies, CPS 

will make a large impact on new ICT and enterprise systems technologies. 

 

The CPS of Industry 4.0 will be activated and enforced by the development of computational 

entities, data-related procedures, manufacturing automation and technology, and information 

and communication technologies (ICT). The manufacturing systems by integrating with CPS 

will be a new generation of industry, which  involves humans, machines, and product, and 

combines computation, networking, and physical processes together in the production process 

in order to make a more cost- and time-efficient production process (Albers et al 2016) 

 

Networked production and process control in industrial process environments determine the 

industrial future and Industry 4.0 is made possible by using Smart Sensors to support dynamic, 

real-time optimized, and self-adaptive industry processes. Practical operational statuses from 

machine will be digitized and collected from smart sensor and become data, that is shared 

automatically with the process controller. As providers of data, sensor technology is the 

prerequisite for successful implementation of Industry 4.0. 

 

The added value of sensor communication depends significantly on the quality and stability of 

the delivered data. Smart Sensors technology enhances sensing to ensure stability during 

detection and recording of measured values. Sensors, machines, and humans involved can 

communicate with each other at any time in industry 4.0. This information at the factory 

gateways or edge and cloud also allow operation and data management from and to the outside 

and further application. This cooperation between sensor technology and humans makes the 

industrial process more transparent, productive, and profitable. 

 

Sustainable industrial operations encompasses both material management as well as 

operational checks and machine and production monitoring. This makes it possible to reduce 

stock levels and shorten throughput times. Sensor solutions for process monitoring and quality 

assurance provide added flexibility and autonomous adaptation in the case of changes to quality 

and products. As a result, they offer resource efficiency, a lower reject rate, and a high level of 

throughput. 
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One of the major challenges associated with Industry 4.0 is making production processes 

flexible. Many production companies are looking to Industry 4.0 to provide ways of setting up 

flexible production processes with a high degree of automation. State-of-the-art manufacture 

already contains elements of the requirements of Industry 4.0 – and are waiting for their full 

potential to be exploited. The factory of the future is increasingly set to blur the lines between 

humans and machines, with teams containing robots and people working side by side. This 

requires a different approach to safety that addresses the need to respond to a range of situations 

with high flexibility aided by sensor technology and sensor intelligence. 

 

This chapter will review how smart sensor technologies  and  sensor intelligence in industrial 

processes act as an intelligent agent to sense and  further process the collected data and transmit 

it, to provide  the specific data for particular purposes for an optimised and efficient industrial 

process in Industry 4.0,  with an example in high pressure die casting. 

 

SMART SENSOR TECHNOLOGY 
 

Intelligent measurement technology is required at every step of the process, and these 

measurements are carried out using a wide array of methods (See Figure 1). Various sensor 

technologies developed currently have been adopted and integrated into the production process, 

such as optical sensor and ultrasound sensor technology. Industrial wireless sensor networks 

connect sensors and devices and collect and transmit data in the manufacturing process in the 

context of industry 4.0 (Li et al 2015) 

 

 

 
 

FIGURE 1: Intelligent measurement technology (SICKInsight) 
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Optical sensor technology 

A non-contact, precise, and speedy technology: the benefits of optical measuring sensors in 

contrast to mechanical measuring tools are obvious. There is no need to touch the object to be 

measured so that sensitive materials are protected from distortion or damage. Optical 

measuring sensors can also be beneficial if the object’s surface is difficult to access. Whether 

you opt for 1D or 2D, or 2D and 3D vision solutions: the high precision measurement laser 

allows triangulation and chromatic confocal measurement of the object directly in the 

production process helping to guarantee added efficiency, while making sure of quality 

(Everton et al 2016). 

 

There are the various applications using intelligent optical sensor measurement technology. 

Displacement measurement sensors especially show their strength when it comes to dealing 

with fragile components to achieve precision detection, spotting even the tiniest material faults 

and micro-cracks. The sensor array in the sensor unit can deliver measurement results with the 

maximum possible precision, without need to worry about complicated calibration.  With 

displacement measurement sensors, grippers are precisely positioned using non-contact 

technology for Automotive and parts suppliers for precision on the production line. For 2D or 

3D vision and displacement measurement sensors, the combination of various types of 

technology brings its own benefits: for instance, displacement measurement sensors make sure 

that electronics cards are in the right position. 2D vision sensors measure holes’ diameters with 

a high level of accuracy before 3D vision sensors then determine the height and volume of the 

electronics cards, making it easier to locate shape defects (Barua et al 2014). 

 

A broad spectrum of vision sensors offer a great opportunity for industrial manufacturers 

starting with compact devices that are easy to integrate, through configurable stand-alone 

solutions, and beyond to programmable high-speed cameras for the most demanding of 

requirements. The programmable sensor system delivers a high level of development flexibility 

to minimize complexity, costs, and risks in the implementation of customized image processing 

solutions.   It is used to create new solutions from both established modules and integrable 

functions from various image processing libraries, such as OpenCV, which provide the perfect 

match for customers’ requirements and are compatible with tasks in the context of Industry 4.0, 

such tasks include quality control, track and trace, object data capture, and predictive 

maintenance. 

 

There are a wide range of configurable and programmable vision sensors in addition to the 

normal 2D camera. A 3D sensor can maximise performance with additional height monitoring. 

This type of camera allows us to generate very high-quality 3D data at a very high speed.  For 

example the inspection of magnesium bricks with 3D vision technology from (Leo 2017)  

allows quality control without downtime. Producers of building materials like to ensure that 

their products achieve the highest quality possible, and in the production of special bricks for 

blast furnaces, which are particularly susceptible to surface damage,  carrying out quality 

control during the production process is indispensable. A system has been developed where 

bricks are scanned during transport on conveyor belts with the 3D vision sensors to create 3D 

models of each individual brick. The 3D models can be used to determine the precise 

dimensions of the brick and the extent of its damage. The 3D vision sensors operate based on 

the principle of triangulation distance measurement. The line laser beam is integrated into the 

sensor housing, projects a light track on objects, allowing their profile to be determined. The 

3D sensors are able to use these profiles to create precise 3D images of the magnesium bricks, 

measuring them with high precision and detecting volume errors. This allows the quality of the 

bricks to be checked during the production process.  
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These programable 3D vision sensors can connect to a network and communicate with each 

other; communication betwen sensors allows operation to continue without being connected to 

a computer. One of the 3D vision sensors can be designated as the control sensor, collecting 

information from subordinate sensors and transmitting the measurement results to the foundry 

robot, which is responsible for the mechanical loading and unloading of bricks from the 

conveyor belts. At the same time, the 3D vision sensors communicate with the control panel. 

This control panel allows for the entry of the measurement parameters and, where necessary, 

data archiving for subsequent inspection.   

 

Ultrasonic sensor technology 
Cutting-edge ultrasonic sensor technology, with more efficient electronics, has demonstrated 

good benefits to users. Background noise is a real poison for accurate ultrasonic measurements.  

For example, expansions in pipelines, valves, plant vibrations, or pressure regulators often 

cause critical levels of noise for the ultrasonic measurement process. Tiny amounts of noise 

can have a huge impact on ultrasonic sensors. These noises can affect the way signals are 

received, particularly in the high frequency range between 85 and 200 kHz. This in turn can 

affect the signal quality, leading to uncertain measurements. Current  new ultrasonic sensors 

and optimized electronics has managed to improve the system’s resistance to disruptive noises 

in the application such that  noise no longer has such a negative impact on measurements. Built-

in pressure and temperature sensors allow the automated calculation of minimal geometric 

changes to the meter in a bid to improve the accuracy of the measurement result (Shin et al 

2016). 

 

Ultrasonic and time-of-flight measurement offers complete flow measurement which is flexible 

for all industries and fluids. The non-contact flow sensor detects the flow volume of conductive 

and non-conductive fluids based on ultrasonic technology.  The ultrasonic flowmeter is suitable 

for measuring tasks in hygienic conditions. The compact and rugged design offers a wide 

variety of application possibilities, including those where space restrictions or aggressive 

media play a role. For example, the new fluid sensors offer calibration-free measurements no 

matter which medium they are used in, ensuring a high level of flexibility. Plants do not have 

to be converted or operated in parallel when the fluid or medium is being changed. The digital 

communication protocol also allows the process data to be integrated into an automation 

network. 

 

Small quantities and individualized mass products are the key words of Industry 4.0. A machine 

must be able to handle variable product infeed and adapt to different formats. Sensors and 

actuators make such an adaptation possible. Any product size and shape can be produced 

flexibly on one machine.  Current broad portfolio of  sensor products and solutions of sensor 

technology allows us to offer many different possibilities and methods for creating the 

foundation for more flexible processes. This involves the concepts of digitization, intelligence, 

and networking, which will enable production and logistics systems to optimize and control 

themselves autonomously. Intelligent sensor technology enables this flexibility. This 

technology makes it possible to collect production data in real time  and to optimize machines, 

being able to adapt to significantly changing conditions. Fast, software-supported format 

changes can reduce downtime and optimize material utilization and packaging processes. For 

example, in packaging machines it is primarily contrast sensors that are used for recognizing 

marks. The contrast sensors  can detect the smallest contrasts at the highest speeds. They detect 

minute grayscale variations between the mark and the background on matte, shiny, or 

transparent surfaces. The contrast sensor has to be taught  for optimal recognition of the marks 
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and with multiple sensors built into a machine, this will take a lot of time. However, if  the 

sensor has been added intelligence within a sensor unit, once parameters have been taught to 

the contrast sensor they will be stored in the controller. If the format changes, the corresponding 

information is simply recalled. This will save time and cost.  

 

Current smart sensors offer additional advantages, along with conventional sensor detection, 

the current smart sensor will be able to provide additional information via I/O connection. The 

connection enables constant data diagnostic and learning functions, which  is indicative of 

process reliability. If any changes of the process is in progress, the quality of  function reports 

back immediately through sensor I/O connection. These additional integrated functions with 

smart sensor allow you to produce new and higher-quality information beyond detection 

together with the customer’s desired application. 

 

SENSOR INTELLIGENCE  
 

Communication-enabled sensors combining smart sensor intelligence with additional 

integrated functions offer a great deal of potential.  Industial communication and sensor 

integration is now gaining increasing acceptance in an ever greater number of applications – 

the manufacturer-independent communication technology is also a catalyst for innovative 

sensor solutions and supports the global availability of data and information required by 

Industry 4.0.  The smart sensors ultilise their  communication ability to reliably acquire data, 

as well as to communicate and run diagnostics with intelligent algorithms. The integrated 

sensor combined with additional functions offers huge potential in terms of machine 

productivity and reliablity, expecially for remote automation tasks in industrial processes. 

Sensor intelligence is seen as a foundation of Industry 4.0 (SICKinsight) 

 

Self-diagnostics via intelligent algorithms makes predictive maintenance possible. The 

components of machines and plant in the production environment are constantly subjected to 

environmental influences such as temperature, material, humidity and vibrations. Current smart 

sensors are designed to operate in harsh application conditions in terms of their mechanical, 

electrical and optical properties, and  have improved their performance when subject to heavy 

loads and high throughput by virtue of their self-monitoring and self adaptive functions. 

Diagnostic data  and intelligent algorithms can be used at machine-level (but also in cloud-

based) analysis tools in order to anticipate potential faults in good time and to prevent them 

from occurring by means of predictive maintenance. Smart sensors’ settings can be visualised 

and reconfigured for the benefit of the machine operator.  

 

The potential of smart sensors is increasing and leading towards step-wise increases in 

efficiency for many tasks in industrial processes, such as downloading parameters for fast 

changeover, easy device replacement, formula management and condition monitoring. Newly 

developed sensor technology have additional integrated functions, allowing computing power 

to move from the automation system to field devices – offering a sustainable approach for 

building more efficient and better-performing automation networks. The integrated additional 

functions also allow you to generate new, higher-quality information that goes over and beyond 

object detection, depending on the desired application. This information can be generated from 

the integrated sensing system and then provided for the higher-level systems as necessary 

(PLC, ERP, the cloud). 
 

Flexibility and productivity are major trends in the field of industrial automation and this 

requires flexible safety concepts to be developed and deployed in production processes. The 
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wide range of safety-related sensors and controller solutions in the market allow you to 

customise the requirement and design protection mechanisms in a flexible manner and adapt 

them to real situations. The controller, using a flexible safety algorithm, offers a wide variety 

of options for programming for monitoring scenarios and integrating various safety sensors. 

This sensor intelligence can process the signals from other sensors to enhance the automation 

solution as a whole. 

 

Sensor Intelligence has also integrated with robots, which are already able to operate without 

being surrounded by a safety fence. Safety laser scanners monitor the defined robot 

surroundings and are connected to the safety controller of the robot. The easy-to-program 

protective field geometries can be easily adapted to the individual layout. Modern robot 

systems feature safely monitored axles and drives. Safety limits can be set for the robot 

operation space in the robot’s controller. The protective field is always larger than the working 

area of the robot. Stopping/run-down times and approach speeds must also be taken into 

account. This ensures that any personnel are detected in good time and that the robot is stopped 

before a hazard arises for the person. These new communication options and the functionalities 

of safe sensors, combined with non-safe sensors, represent beneficial application solutions for 

reliability and productivity. 

 

New safety sensor technologies currently in development will enable even closer coordination 

with manufacturing processes in the future. For example, intelligent algorithms in sensor 

systems are making it possible to favour a continuous machine response based on the current 

position. The machine no longer triggers a complete shutdown, but instead results in the 

working speed being reduced to an appropriate level or the directions of movement being 

modified so that the person’s safety is ensured at all times and yet production can still continue. 

 

Recently an open platform for programmable sensors has been developed. These sensor 

systems offer system integrators and manufacturers means to develop application solutions to 

fit specific requirements’ descriptions; from precisely designing the perfect online user 

interface, through selecting the most suitable programming technique to distributing the 

software on various hardware platforms.  
 

INTELLIGENT SENSOR APPLICATION IN DIGITAL MANUFACTURE 
 

Sensors will improve the quality and consistency of the manufacturing process. For example, 

die casters manufacture a large and diverse array of products. Using machines to rapidly inject 

molten alloys or magnesium into metal moulds, die casters produce near-net-shape parts at 

high production rates. Typical part cycle times range from 30 to 120 seconds, and metal 

injection is completed in times as low as 50 milliseconds. Improper filling of the die cavity can 

result in entrapped gases and a poor quality casting. Proper performance in die casting depends 

on a combination of effective die design; robust mechanical operation and control of the die 

casting machine; the delivery of molten metal at the right temperature and cleanliness; 

controlled thermal management of the die; and metal pressure intensification at the end of the 

injection cycle to feed shrinkage. Typically, die casters monitor machine variables at only 

discrete points. Advanced sensor technologies are available to directly measure critical process 

parameters. If critical variables are continuously monitored and controlled, problems can be 

detected and solved during the casting cycle. This will lead to less scrap, improved surface 

finish, higher dimensional repeatability, and improved internal integrity. Current research has 

developed the use of vibration sensors (accelerometers) for machine diagnostics, allowing 
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problems to be detected and solved during the casting cycle. Vibration diagnostics often 

provide insight into both normal and anomalous operational characteristics of equipment.   
 

Sensors that have been embedded into a casting enable the detection, measurement, and 

evaluation of mechanical loads within the casting, such as compressive or tensile forces, 

deformations, or vibrations. Due to the production-orientated integration during the casting 

process, the sensors can be embedded precisely where the effects are experienced in the 

component, and are thus able to warn of an overloading of or damage to the casting for decision 

making. The CASTTRONICS® technology enables the embedding of strain sensors for 

condition monitoring as well as new concepts for lightweight design of castings made by 

aluminium high-pressure die-casting. The sensor functions using thick film technology – 

analogously to the classical strain gauge strip – through a change in the electrical resistance 

due to mechanical deformation. Thus, both dynamic load changes and static loads can be 

detected.  A piezo thin-film sensor system has also been developed. These sensors are 

distinctive in that they can detect both dynamic and static loads without being elastically 

deformed themselves. 2D and 3D vision based sensors, ultrasonic sensors and other advanced 

sensors such as temperature and MEM sensor can also be applied to the Die Casting process. 

 

For automotive and part supply industries, intelligent sensors can be applied within the overall 

production process to promote productivity with efficient resources and high quality and safety.  

From the photoelectric sensor to high-tech 3D vision systems, thin film MEM and ultrasonic 

and radar sensors, these sensor solutions help provide safe, fast and cost-effective production 

using smart senor unit and intelligent processing and actuators. These integrated intelligent 

sensor solutions monitor and optimise quality continuously in order to prevent machine failures 

and reduce downtime with fast conversion times, which directly increases productivity for 

industries. 

 

CONCLUSIONS 
 

Sensors and sensor intelligence has driven automation technology to change the world. As we 

embark on a new future with Industry 4.0.  newly developed sensor technology and advanced 

communication (Internet of Things) will enhance the efficiency of manufacturing processes. 

Integrated intelligence into the devices, machines and the entire process will allow the 

development of the smart factory. In the case of the die casting manufacturing process, 2D and 

3D vision based sensors, ultrasonic sensors and other advanced sensors such as temperature 

and MEM sensor are being applied; with embedded AI algorithms, these smart sensing 

technology will demonstrate the potential for developing smart die casting. These integrated 

technologies will provide the potential to improve the process efficiency, reduce scrap rate and 

save cost. 
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Abstract 

The Internet of Things (IoT) continues to see a rapid growth in recent years, and the estimates suggest 

that its global market value will reach $457 billion by the year 2020. This exponential growth in IoT 

will drive economic growth and competitiveness in countries and companies, more specifically, in the 

areas of manufacturing, transportation and logistics. A typical IoT solution pipeline consists of five 

phases: 1) data capturing; 2) data normalisation and analytics; 3) management control and decision 

making; 4) data visualisation and 5) data storage. The second stage “data normalisation and analytics” 

is fundamental because during this stage the data will be inspected, and business decisions will later be 

made to improve the business flows. Machine Learning (ML) can play a critical role at this stage to 

make useful insights. Based on the live stream or historical data, ML can perform pattern recognition, 

facilitate intelligent decisions and forecast future performance with the objectives of reducing cost and 

increasing profitability. This chapter begins by discussing the difference between the three types of 

machine learning, namely supervised learning, unsupervised learning and reinforcement learning. It 

will later review the various IoT platforms that belong to either cloud based or edge based ML. Here, 

the advantages and the disadvantages of both types will be discussed, as well as the ideal project 

scenarios that can work for each type. Finally, this chapter will present some scenarios where applying 

machine learning to IoT can be used to optimise business operations, e.g. anomaly monitoring, 

predictive maintenance, performance optimization and transportation. 
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INTRODUCTION 

 

The rapid advancement in hardware technologies, processors and networking protocols made 

communication between different devices easier and robust. Looking to the future, Cisco IBSG 

predicts that around 50 billion device will be connected over the internet by the year 2020 

Evans (2011). This trend has contributed to the revival of the concept of Internet of Things 

(IoT). IoT is a combination of embedded technologies, including sensors, and actuators that 

can be connected to the internet via physical wire or wirelessly Atzori et al. (2010). 

 

This rapid expansion of IoT and its applications will generate enormous amounts of data that 

needs processing for optimising decision making. Due to the volume, variability and velocity 

of such data, there are various challenges in leveraging the vast amount of data. These 

challenges include the system capacity for storing and processing the data and and designing 

efficient and scalable algorithms to perform data analysis Fan and Bifet (2013).  Data generated 

from IoT devices, e.g. at home from coffee machines, vehicles or fitness trackers, will need to 

be computationally analysed to reveal patterns, trends and associations – so we gain more 

insights about the data for informing conclusions and effective decision making. Machine 

learning (ML) provides the technical basis to extract useful information from the raw data 

generated by IoT. ML looks for patterns and structural description in the data which can be 

used to automate decision making. Unlike traditional computing where algorithms are 
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configured explicitly with instructions to solve a problem, ML methods allow computers to 

learn from raw data and apply statistical analysis to perform an action based on a range of 

values. ML can also be used in forecasting what will happen in new situations from the data 

that describe events that happened in the past. 

 

The recent advancements of ML have contributed to improvement of facial recognition sys- 

tems, computer vision and helped in understanding natural languages  Hussain et al. (2017). It 

is widely deployed in forensic computing for detecting credit card fraud Buczak and Guven 

(2016), and used to develop recommendation systems in the financial market. Moreover, there 

has been a growing interest in the medical sector for using ML for medical diagnosis. For 

example, Face2Gene app uses ML, via deep learning, to analyse facial dysmorphic features of 

patient phenotypes that correlate with rare genetic diseases. ML is not new,  it has been around 

for a while but its applications have been restricted due to their complexity and high demand 

in computation power. One of the reasons for the current rise of ML is the evolution of cloud 

computing which offers high storage capabilities and high performance computing services. 

Due to the rapid advances in low-power and low-cost processors, IoT devices have now more 

computing power than computers from the early 2000s. For example, a Raspberry Pi can be a 

good representative of an IoT device. This will allow IoT to run lightweight machine learning 

at the edge (closer to the data source) to share the burden on the cloud, but also to avoid a single 

point of failure, minimise the network traffic, by conducting real-time analytics or filtering data 

on the IoT device Dickson (2018). Indeed the deployment of machine learning on the edge IoT 

is advantageous for many reasons: 
 

Faster real-time prediction 

Having machine learning performing prediction tasks including classification and regression 

on the edge, means it is close to the source of the sensor data, hence, it will reduce the time 

required if the prediction is performed on the cloud. For example, the data generated from self 

driving cars, for learning and prediction can reach up to 25 gigabytes per hour. If this data was 

to be sent to the cloud to perform data analysis, it will introduce huge delay that may also slow 

down its expected fast responsive manoeuvres or accelerating / breaking when dealing with 

sudden events on the road, which could potentially lead to serious accidents Ovenden (2018). 

 

Increased operational reliability 

With the possibility for storing and processing data, we can avoid issues related to connectivity 

with the cloud, hence, no single point of failure. This can benefit applications that require real-

time processing and control such as audio and video, and for IoT devices deployed in places 

that suffer from weak / no internet access Ovenden (2018). 

 

Increased security for the device and the data 

Tracking and sensor data can generate highly sensitive information that could reveal the 

location and current activity of individuals and their health conditions. It is more secure to 

process this type of generated data locally. This will minimise the risk of sending raw data to 

the cloud as this may increase its vulnerability to various type of sniffing attacks Ovenden 

(2018), Abomhara and Køien (2015). 

 

MACHINE LEARNING ALGORITHMS 

 

ML algorithms are categorized based on how the learning is performed or how the feedback is 

given by the algorithms. Most machine learning methods can be categorised into three main 

categories supervised learning, unsupervised learning and reinforcement learning Sezer et al. 
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(2018). In supervised learning, the data are represented in vectors which pairs the input and the 

output values. These vectors have labelled features that define the meaning of the data. In 

supervised learning, the algorithm analyses the data, and produces an inferred function/model 

which is used to predict the outputs for given inputs. One problem that may result from the 

learning is known as overfitting. This is when the function works precisely with the training 

data but not for data outside the learning sample.  

 

Unsupervised learning is typically used for large data which are unlabelled. In such 

circumstances, unsupervised learning techniques are used to understand the data, by making 

patterns or clusters through iterative processing without human intervention. This divides the 

data into regions or groups of features in order to be labelled so that they can be used by 

supervised learning algorithms, or can be used for data exploration and description.  

 

Reinforcement learning is where an agent learns how to behave in an environment by 

performing actions and observing the results. At the beginning, the agent is not configured with 

which action to take at particular circumstances, as in most forms of machine learning, but 

instead must discover the actions that lead to the highest reward by trying them. This will 

require trial-and-error search and delayed reward which are vital elements of reinforcement 

learning Sutton et al. (1998). 
 

Supervised learning algorithms 
 

Linear Regression 

Linear regression is commonly used in statistics, and is a key algorithm in ML. It helps to 

generate models for understanding the relationship between input X (also known as 

independent variable) and the output Y (dependent variable), where X and Y are both numerical 

variables. It is called a simple regression, if there is only one independent X and one dependent 

variable Y , and is called multiple regression when they are multiple independent variables 

influencing one Y dependent variable. Linear regression focuses on minimising the error to 

make accurate predictions whenever possible. Linear regression relationship is represented as 

a line that best fits the relationship between X and Y Yan and Su (2009). However, linear 

regression is limited to linear relationships, hence, it does not show good performance to model 

curved relationships such as the curved correlation between income and the age. Moreover, it 

is prone to overfitting, this is when the model gets over trained by including the noise and 

inaccurate data entries in the data sets Hoskuldsson (1988). In this case, the overfit model 

becomes too complicated and may work well with high accuracy with the learned data sets, but 

it is unlikely to work with new data sets. Simple linear regression is represented in the equation 

Y = a * X + b where Y is dependent variable, a is the slope, X is independent variable and b is 

the intersection point on the Y axis of a 2d graph. 
 

Logistic Regression 

Logistic Regression is used for classification. In contrary to linear regression, discussed above, 

which predicts the value based on a given set of inputs, logistic regression tries to find a 

relationship between features and the probability of the inputs of belonging to a specific class. 

For example, given the number of hours spent by a student studying for the exam, logistic 

regression can predict if the student passes or fails the exam. This example depicts a Binomial 

Logistic Regression where the output predicted value can be either true or false Tripepi et al. 

(2008). If the regression analysis required to deal with more than two outcomes, Multinomial 

Logistic Regression is used to predict the probability of category membership of a dependant 

variable based on multiple independent variables Bentler and Weeks (1980). In logistic 
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regression, the data points on the solution space cannot be fitted within a straight line like linear 

regression, instead they are mapped using a Sigmoid function that looks like an ‘S’  (See Figure 

1). Logistic regression is fast, and requires less computation power. It is used to understand the 

effect of predictor variables on the outcome. However, logistic regression does not capture 

complex relationships e.g. non-linear problems as its decision is linear Tu (1996). 

 
 

 
 

FIGURE 1: Random Forest Simplified Representation Yazici et al. (2018) 

 

SVM 

Support Vector Machines (SVM) is a supervised learning method, and can be applied to 

classification or regression problems. SVM is built on the concept of decision boundaries. In a 

two dimensional space, SVM defines a hyperplane that splits the solution space into two parts 

which differentiate the two classes. This is called linear classifier as it separates a set of data 

into their respective category Vapnik (1982). In more complex scenarios, the data cannot be 

separated with a linear hyperplane, hence a complex hyperplane is used instead to optimally 

separate the two classes, applying a data transformation using a kernel function. Accelerating 

the process, using what is known as ‘kernel trick’, allows the transformation tobe applied to 

very large spaces Zhu and Blumberg (2002). In a large solution space, some solutions of 

different classes can overlap. A perfect classification will attempt to separate both using a 

perfect partitioning, however, this risks overfitting. Regularization algorithms are used to avoid 

overfitting using non linear classification with reasonable accuracy and speed. One of the main 

challenges with SVM is determining the values given for the regularisation and the kernel 

parameters, which are sensitive to overfitting Cawley and Talbot (2010). 
 

k-NN 

Despite its simplicity to run and implement, k-NN can perform classification with reasonable 

accuracy on complex data sets. k-NN measures the distance from a new data point to all other 

training data points. Using Euclidean or Manhattan functions, it selects the nearest points based 

on the parameter k - usually a small positive integer value that is responsible in the selection 

of the neighbourhood size. Using majority voting, this new data point will be assigned the class 

that is most common among its k nearest neighbours Short and Fukunaga (1981). k-NN is 

robust when used on large and noisy training data sets. It is a non-parametric method, thus is 

used heavily for pattern recognition problems, as it can handle multi-class cases Weinberger 

and Saul (2009). However, it is hard to determine the optimal value of the k parameter 

Deekshatulu et al. (2013). Moreover, k-NN is computationally expensive, as the algorithm will 

need to compute the distance from the data point to all training data points in the solution space 

Liao et al. (2001). 
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Random Forest 

Random Forest is another popular ML algorithm which can be used for regression and 

classification. Here, multiple samples of the training data are selected and this method 

generates what is called bootstrap datasets. From these bootstrap samples, the algorithm 

constructs decision trees. At each step, the algorithm randomly selects a subset of features to 

grow the trees with decision nodes. This process will repeat in making new bootstrapped 

datasets and building new trees. This process generates a wide variety of decision trees for the 

same datasets. The results are combined and either averaged for predicting values such as sale 

volumes, or a voting mechanism is used to predict the output for classification outcome such 

as classification of papers as public or confidential Liaw et al. (2002). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2: Random Forest Simplified Representation Yazici et al. (2018) 

 
The main advantages of the Random Forest algorithm is that it works well with high 

dimensionality data sets, and it can cope well with missing values while maintaining reasonable 

prediction accuracy. On the other hand, since prediction is calculated based on the mean, 

Random Forest can lack precision when used for regression Biau and Scornet (2016). 
 

Neural networks 

Neural networks are one of the main tools in machine learning. It is inspired by how the human 

brain works. The human brain consists of neurons that are connected to form a network of 

neurons. These neurons are responsible for processing and passing the electrical impulses 

received from our senses – so the brain can interpret them correctly Hinton (1992). 

The basic unit of neural networks is an artificial neuron, typically called a node in a layer. The 

neural network consist of three types of nodes according to the layer the node is in: input node, 

hidden node and output node. There is no computation performed at the input node as the job 

of these nodes is to only transform the information from external sources to the hidden nodes. 

The hidden nodes are responsible for processing the inputs during which they are associated 

with weight w parameters which are trainable to control the influence and the direction of its 

output. The hidden nodes apply a function on the weighted sum of its inputs 

 

f (w1 × x1 + w2 × x2 . . . + b) 

 

where x1 and x2 are inputs provided by the input node, w1 and w2 are weights associated by 

the hidden nodes to the inputs x1 and x2. b is the bias which is used to adjust the output along 
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with the weighted sum to produce a desired output during the learning phase. The weighted 

sum of a hidden node is then passed through an activation function to produce the output of the 

node. The computation results performed on the hidden nodes are finally passed to the output 

node which uses an activation function, e.g. linear for regression and Softmax for classification 

problems Tu (1996). 

 

Deep neural network (DNN) is an artificial neural network with multiple hidden layers in 

between the input and output nodes. DNN techniques learn categories incrementally through 

its hidden nodes. In this case, a DNN defines abstract features before it defines the low level – 

specific- features. For example, in identifying risks of developing breast cancer in individuals, 

hidden nodes 

 
 

 
 

FIGURE 3: The figure depicts an Artificial Neural Network Yazici et al. (2018) 

 
first look at the general categories such as age and number of children, and later deeper hidden 

nodes will look at more specific features such as family history and hormonal disorders 

Furundzic et al. (1998). Deep neural network required training to adjust the weights and the B 

parameters in order to reduce the error between the outputs and the training data sets, hence, a 

backpropagation technique is used. It uses an error function with respect to the weights to 

understand relationships between the inputs and outputs.  

 

The calculation of the gradients moves backwards, which means that the weights of the last 

nodes are calculated first, then the first weights associated with the first node are calculated 

last Hinton (2007). Neural networks are easy to train, and can be developed using multiple 

training algorithms. Research showed that they can identify complex patterns and relationships 

between independent and dependant variables. However, these capabilities come at other 

expenses. ANN requires high computation power, but more importantly it is a black box which 

might produce correct prediction, but can not provide an explanation of why and how. It can 

also be time consuming as building the network structure does not follow any rules, and is 

usually obtained through experience and trial and error Tu (1996). 
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Unsupervised learning algorithms 

 

K-means 

k-means is one of the simplest unsupervised learning algorithm. It is used to define groups in 

data based on instance similarity. The algorithm iteratively assigns each data point to one of k 

groups/clusters based on the given features. The algorithm starts by identifying random k 

centres, one for each cluster, which will later be used to label new data instances/examples. 

The location of cluster centres (known as centroids) is critical as it leads to different results, 

hence, it is ideal to initially maximise the distance between the centroids as much as possible 

for optimal results. After identifying the group centroid, using the Euclidean distance function 

the algorithm will iteratively assigns each point to its nearest group centroid. Finally, once all 

data points are assigned to a cluster group, the algorithm will search for better centroids to 

replace the current ones by selecting better cluster members to act as the cluster centroid for 

each cluster. This is done by calculating the mean of all values in the cluster to select an optimal 

a new centroid. Centroids will continue move, and due to change in distance between the new 

centroid and the cluster members, new members will be added or released to/from the newly 

forming cluster of the centroid, and this will continue until the k-means algorithm is converged 

(i.e. when no member can replace the current centroid in the cluster) Kanungo et al. (2002). 

 
 

 

 
 

 

FIGURE 4: Hierarchical Clustering with Dendrogram Visualisation Yazici et al. (2018) 

 

The algorithm is fast and robust. The algorithm works well if the data are distinct, and the data 

sets of a low density, i.e. separated from each other. However, one of the main issue of the k-

means algorithm is defining the optimal number of centroids in advance, hence, there will be a 

trial and error process until the optimal number is found. Also, the algorithm does not handle 

non-linear data sets well Hamerly and Elkan (2004). 

 

Hierarchical clustering – Agglomerative 

Hierarchical clustering is a simple algorithm that partitions the data points into groups. Once 

the algorithm is initiated, each data point is considered as a cluster on its own. The algorithm 

computes the distances between the clusters with the aim to merge the clusters into bigger 

cluster. This process continues until the entire data set is encapsulated by one single cluster. 
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The output of the algorithm is known as a dendrogram (See Fig. 4), which is represented as a 

tree of linked nodes. This illustrates the resulted merged clusters, but more importantly acts as 

a trace that shows when the merging was established for each cluster throughout the process 

Johnson (1967). The nodes are arranged in accordance with their similarity factor, hence, nodes 

that have the same linkage heights are similar, and those with different heights are dissimilar. 

Merging of clusters is performed using three common methods Yim and Ramdeen (2015) as 

follows. Single linkage: In each step, the algorithm merges the clusters of two pairs that depict 

the smallest distance between them. This type of clustering produces minimal spanning trees, 

and premature merging of clusters which are vastly dissimilar. Complete linkage: the algorithm 

merges two clusters that have the furthest distance showing huge dissimilarity. This prevents 

creating extended clusters. Average linkage: is clustering based on the average distances of all 

pairs of the clusters subject for merging. The main advantages of hierarchical clustering is that 

the Dendograms are a good visualization aid in providing hierarchical relations between 

clusters, and it is easy to implement, however, experimental research Steinbach et al. (2000) 

showed that other clustering mechanisms can  outperform hierarchical clustering e.g. k-means 

clustering. 
 

Reinforcement learning 

Reinforcement learning is a type of machine learning that uses various reward feedback 

mechanisms so that an agent software or machine learns from the environment it resides in to 

achieve an ideal behaviour, but also to maximise its performance. There are three main 

concepts of reinforcement learning: state, action and reward. If we consider a robot learning 

how to move using reinforcement learning, the state describes the current situation, or the 

position of the robot. The action is what the robot can do at each state in order to reach another 

state while maximising the reward. For example, a robot can move 5 meters toward the north 

direction which leads to a dead-end, or moves 15 meters toward the south direction without 

being exposed to any barrier. From previous moves, the robot understands that hitting into a 

wall will get negative reward ‘depicting punishment’, thus, it chooses to move south as it is 

maximises its reward Kaelbling et al. (1996), Zhang et al. (2017). 
 

Q-learning 

Q-learning is a reinforcement learning method which is used to help the agent to learn a policy 

which determines what action to execute under what circumstances. Q-learning does not 

require to construct a model of the environment, and works by keeping a table with all possible 

states and actions that can be performed on these states. Each row represents a state S and and 

an action A that an agent can execute associated with a Q value that depicts the reward R that 

would be gained if this action is executed by the agent. 

 

Q : S × A− > R 

 

At the beginning, the Q values are initialised with predefined random values, however, they 

will later be updated based on the experience given the obtained rewards from the selected 

action. Through the value iteration update, the algorithm gives a better approximation of the Q 

value for an action using the weighted average of the old value and the new information Sutton 

et al. (1998). However, Q-learning seems to take a long time to reach the optimal value even 

in normal circumstances, since iterations will have to be performed before a negative score is 

awarded Manju and Punithavalli (2011) 
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EDGE-IOT USE CASES 

 

Machine learning and IoT have experienced a boost in popularity among industrial companies 

thanks to the rise of the IoT platforms that supports ML. Many companies are already 

designating IoT as a strategically significant area, while others have kicked off pilot projects 

to map the potential of IoT in business operations. The following are use cases where the 

integration between IoT and ML can create new business opportunities helping business 

growth. 

 

Anomaly monitoring 

Constant monitoring of fast machines and systems in search for errors is difficult, and may not 

be free of mistakes. Today, most anomaly detection systems are reactive, hence, even if errors 

are detected, it will be after the occurrence of the error. For example, in factories, if a defect is 

detected, the production line would have already produced malfunctioning items, resulting into 

wasting raw materials, energy and time. Hence, the timing in detecting this error is critical. In 

an ideal world, anomaly detection should provide warning before the occurrence of the errors, 

although it is hard to achieve, but if ML is used to learn from the system behaviour, patterns 

and historical operational errors to offer a better anomaly detection mechanism, it will provide 

huge operational benefits in many areas. 

 

Industrial predictive maintenance 

Acme Industries, well known for manufacturing high precision drill bushings, uses Google 

Cloud Machine learning and Losant IoT platform to monitor and predict the health of the Acme 

facilities. This can be done using data visualisation and alert generation with the aim to 

minimise production time and increase operational efficiencies to reduce the overall 

manufacturing cost. Accelerometers (vibration sensors) along with temperature sensors will be 

attached to each of the machines to sense and process vibration data. Sensors can send data to 

the cloud for training using Google ML Engine which supports TensorFlow, but prediction, 

using a neural network model, happens at the edges where alerts can be raised or control of the 

machine to switching on / off. This way we can monitor but also detect the health of the entire 

facility. These vibration/temperature models can decide if the machine is operating correctly, 

or if it is likely to be experiencing failure Foxworth (2017). 

 

FIGURE 5: Data about weather, location and prices adds context value to turbine data. The system keeps 

granular data at the wind turbine for inspection, and aggregated data is stored at the cloud using the ParStream 

which update these data every minute. 
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Performance optimization  

Envision Energy, the largest Chinese offshore wind turbine supplier, is considering edge 

analytics to optimise their wind turbines’ performance. To reduce turbine downtime, Cisco has 

proposed the use of machine learning such as linear regression and neural networks to predict 

the weather ahead of time in order to quickly adjust its positioning or blades’ direction to 

respond to the continuous changes in environmental factors such as wind direction, wind speed 

and temperature. Using Cisco ParStream for real-time analytics in IoT, Envision can monitor 

their 20,000 wind turbines, each fitted with 150 sensors, in real time (See Figure 5). Historical 

analysis can also be used for predictive maintenance for the turbines which are often located in 

remote locations, where it can be hard to send engineers out for on-site inspection on a regular 

basis. According to Cisco, using edge enalytics could improve the productivity of the wind 

turbines by 15% while minimising downtime, which will lead to $158M of economic profit 

Ruland (2016). 

 

Driverless cars 

Direverless cars have become a reality and are currently being produced by various 

manufacturers, for example Tesla and Uber. Self-driving cars are made for human comfort, 

convenience and safety. According to the U.S. National Highway Traffic Safety 

Administration (NHTSA) automated driving is safer as 90% of car crashes are caused by 

human errors, hence, automating driving could dramatically improve this figure. Deep 

reinforcement learning such as the Q-Learning method can be used to train the car for efficient 

acceleration and breaking Gu et al. (2016). AI-enabled IoT connected to car parts can detect 

the possibility of component failure, hence, it could fire an order at the dealership to resolve 

the issue, and guarantee that the replacement is in store before the failure becomes imminent. 

Using ML, the car can drive itself home after being repaired. 
 

CONCLUSIONS 

 

The rapid enhancement in technologies made communication between devices easier, and 

hence around 50 billion devices will be connected by 2020. This contributed to the revival of 

embedded devices that combine various sensors and actuators and are known as IoT. This 

growth will generate an enormous amount of data that needs processing for decision making. 

ML provides the technical means to extract and learn from the data to provide for effective 

decision making and control. Deploying ML on the cloud was never feasible due to their high 

demand for memory and computing power, however, with the new advancement in IoT, some 

have more computing power than computers made in the early 2000s. Deploying ML on IoT 

has tremendous advantages including real-time prediction, increasing security and operation 

reliability as there is no need to communicate with the cloud over the internet. Machine 

Learning methodologies like Deep Learning (DL) and Reinforcement Learning (RL) and their 

combinations demonstrate unprecedented performance in a wide range of applications such as 

anomaly monitoring, predictive maintenance, automated decision making and control. 

 

With the rapid growth in IoT which is estimated to reach $457 billion by 2020, major soft- 

ware/hardware companies are racing to lead this new market. Amazon launched AWS 

Greengrass in the market in 2016 taking advantage of the rich AWS Lambda ecosystem. 

Microsoft released Azure IoT Edge which supports container-based modules for deployment, 

and supports major programming languages. Unlike the previous two platforms, Google 

released their Cloud IoT Edge in 2018, which is an integration between Google’s Cloud TPU  

and Cloud IOT offering a complete cloud to edge solution including software and hardware 

Google (2018). Moreover, IBM enhanced its Watson IoT platform which manages IoT devices 
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securely and efficiently, where its IoT Gateways can act as a mini server to run lightweight ML 

algorithms IBM(2018). 

 

The fast enhancement in IoT hardware in terms of processing and storage capacity allowed IoT 

to run on lightweight IoT device. However, most perform the inference on the IoT device, 

while the learning still happens on the cloud due to the algorithm’s high demand for processing 

power and storage capacity which none of the aforementioned platforms or devices can offer. 

The future direction would be to maintain IoT devices’ autonomy and distribution to avoid a 

single point of failure, and to further enhance security from any interference / cyber attacks 

utilising security gaps in the communication protocols/networks between the device and the 

cloud. More attention should go towards making ML more lightweight. For example, the 

learning or parts of the learning should occur on the IoT device itself to reduce the dependence 

on network connectivity and cloud capability which is also useful when IoT-AI is deployed in 

remote areas such as forests, agricultural areas and conflict zones in developing countries and 

oil exploration areas in deserts and seas. 
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Abstract 

In recent times, big data and associated analytics has caught the attention of manufacturers who wish 

to optimise their production lines. Due to the relentless march of automation the amount of data 

generated in the manufacturing industries is growing at an exponential rate. Production lines which 

once spoke to the ether now bristle with sensors collecting and transmitting data ripe for analysis. 

Traditionally, research into the analysis of large data sets has been focused on fields such as machine 

learning, data mining and knowledge management. These and other research trends are now finding 

practical application in manufacturing domains where data is a commodity bursting with potential. As 

with any learning process the more you know about a system the more accurate the predictions you can 

make about future trends. Hidden insights into the relationship between process and value are now 

emerging from big data sets helping inform strategic decisions. By accurately modelling every 

eventuality, manufacturers can optimize the use of their machines and deploy resources more 

efficiently. Once finished, products that contain numerous sensors are feeding back into the 

manufacturing process adding to the data deluge. In this paper, generic parallel processing of large data 

sets is introduced and its suitability for deployment in the automotive manufacturing industry is 

considered. 

 
Keywords 

Automotive Manufacturing, Parallel Processing, Data Distribution. 

 

INTRODUCTION 

 

The emergence of big data sets, such as those in automotive manufacturing, coupled with 

complex algorithms have increased the demand for high speed processing capabilities 

(Eastwood 2017). The use of parallel processing to overcome time constraints associated with 

applications is growing in popularity. Conveniently, many of the algorithms used in 

manufacturing are inherently parallel and are therefore well suited to a distributed 

implementation. An important consideration when adopting a parallel processing approach is 

the architecture of the host system (Englander 2009). In a system constructed of a single 

machine with multiple processors, data distribution is not required, these systems are viewed 

as a tightly-coupled architecture. A loosely-coupled system, in contrast, consisting of multiple 

computers in different locations will require its own distribution, communication and 

accumulation mechanisms. When a distribution scheme is employed, information regarding 

size of the original data and the identity of the processor allocated to it are just some of the 

additional information normally required to accompany partitioned data. 

 

In a loosely-coupled architecture parallel processing consists of three main steps: data 

distribution, local processing and processed data accumulation. Distribution is the process of 

dividing data into segments each of which is then assigned to a unique process. Under a 

duplicate distribution scheme each process is sent an exact copy of the original data; this 

represents the simplest approach. An alternative more complex scheme can also be adopted 

where the data is divided into variable sized segments (Nicolescu & Jonker 2000). Once 
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distributed, each process applies local processing to its allocated segment. When data allocated 

to other processes are required, it can be transferred by inter-process communication. Finally, 

after application of the parallel algorithm, distributed processed data are accumulated and 

combined. Due to the variety of algorithms developed, variations are most apparent in the local 

processing step of many parallel processing frameworks. 

 

Seinstra and colleagues (Seinstra et al 2002) describe how inter-process communications can 

be categorised into groups based on their pattern of data access. These patterns also represent 

a strategy for synchronisation between communicating processors. One-to-one access is 

common in functionality such as subtraction and multiplication, where the value of an output 

maps directly to the input. Alternatively, a one-to-many relationship exists in neighbourhood 

operators which calculate an output based on a function of the input’s immediate 

neighbourhood. Naturally, the handling and transmission of non-contiguous data differs from 

data stored as contiguous blocks. Data stored randomly in memory causes additional overheads 

due to the need for packing into a contiguous buffer before transmission. 

 

There is a multitude of data available to support the automotive industry to help them 

understand their customers and the products they manufacture (Lorica 2017). The sheer scale 

and complexity of useful data limits manufacturers in their ability to analyse this effectively 

and act on findings. This is not due to difficulties associated with data collection, but the 

specialist knowledge required to process the data in a timely fashion. In this paper, generic 

parallel processing of large data sets is introduced and its suitability for deployment in the 

automotive manufacturing industry is considered. 

 

PARALLEL PROCESSING 

 

In general, the most effective parallel processing scheme will depend on the architecture of the 

host system. The two most common host architectures employed in distributed computing are 

illustrated in figure 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1: Tightly and loosely-coupled architectures. Data is fetched either from the main memory system, via 

a memory bus, or is transferred over a communications network. 
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As previously discussed, due to the use of a shared system memory, tightly-coupled 

architectures allow efficient processing by avoiding data replication and the transfer of 

information between components. The high cost of hardware required to scale tightly-coupled 

architectures is however a major disadvantage. It is unlikely, for example, that the hardware 

employed in a tightly-coupled architecture can be recycled as independent processing units 

upon retirement. Loosely-coupled architectures, in contrast, have the advantage that the 

components of a distributed application can reside on existing hardware (Rauber & Runger 

2013). This means that an application can be deployed across an existing network making it 

robust and allowing components to fail without bringing down the entire application. Loosely-

coupled architectures have the disadvantage that each component requires communication and 

collaboration capabilities which allow them to run as separate processes. Unsurprisingly, such 

capabilities represent overheads which reduce the performance of an application especially 

when the data to be processed needs to be broken into a large number of segments. 

 

DATA DISTRIBUTION 

 

In tightly-coupled architectures, data distribution is achieved through the installation of a 

network file systems such as NFS (Sandberg et al 1985). A network file system allows all 

processes to read from and write data to the same address space thus removing the need to 

physically distribute data across a physical network. Loosely-coupled architecture in contrast 

require mechanisms to assign data to an area of global memory, the global memory itself being 

divided into uniquely accessible local partitions to prevent data corruption caused by 

concurrent reading and writing by multiple processes. System wide data is then added to a 

global parameters partition, including the number of segments the data is to be divided into and 

the size of border assigned to each segment, to control the behaviour of the distributed 

algorithm. Parameters associated with data processing operators, such as local neighbourhood 

size, are also added to the global partition at this time (Zavorin & Le Moigne 2005). Placing 

each data segment into a separate partition helps ensure that no single partition becomes 

excessively large, thus causing a performance bottleneck. The addition of initial system 

parameters and segment data to their respective partitions is illustrated in figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 2: Schematic showing a distribution process allocating data and parameters to unique partitions in an 

area of globally shared memory 
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LOCAL PROCESSING 

 

Local processing is performed locally by processes residing on a host computer or computers. 

In a tightly-coupled architecture care must be taken to prevent data corruption caused by 

concurrent reading and writing by multiple processes on the same data, this is in contrast with 

loosely-coupled architectures where mutually exclusive access is controlled by the initial 

partitioning of data segments during the distribution phase. Traditionally, mutually exclusive 

access to data was implemented as semaphores which act as traffic signals warning processes 

of the availability of data. More recently this role is shifting to the Integrated Development 

Environment (IDE), the MathWorks Distributed Processing ToolboxTM and IDE 

(MathWorks 2016) being a prime example of this, which are now capable of warning a 

programmer when a possible data corruption scenario exists. 

 

In loosely-coupled architectures, parameters associated with the data to be processed are 

retrieved from the parameters’ partition, the local process then waits for a start command. The 

start command acts as a trigger mechanism which prevents the processes from retrieving data 

segments before they have been placed in global memory. Once triggered, the data segment 

associated with a local process is retrieved. The retrieved segment is then processed and placed 

in a processed partition in the global memory. To reduce search overheads caused by redundant 

data, whenever a data segment is retrieved from global memory it is removed. The fetch, 

process and replace cycle is repeated until all data segments have been processed. In a final 

step, a stop command is sent to all local processes causing them to terminate. Figure 3 illustrates 

retrieval of operator parameters and data segments by a local process. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3: Schematic showing the iterative fetch, process and replace cycle of a local process as it repeatedly 

consumes data segments 
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resulting data set as described by Grama and colleagues (Grama et al 2003). System wide data 

n 

Parameters 

Kernel Size 

51x51 
Unprocessed n 

Processed n 

Data Segment 
n 

Data Segment 
n 

Local Process 

Kernel Size 

Algorithm 
* 

Segment n 



48 
 

allocated to the global parameters partition is then removed so as not to influence the behaviour 

of subsequent distributed algorithms. In tightly-coupled architectures similar housekeeping 

tasks are also undertaken to enforce data integrity on the system as a whole. 

 

POTENTIAL SOURCES OF BIG DATA 

 

Not only are the automotive production lines generating useful big data, most newly built cars 

already contain substantial technology coupled to numerous sensors that help improve our 

driving experience. Detecting if a seat belt is not fastened, automatically switching on headlight 

or windscreen wipers as well as sensing air pressure in tyres are some simple examples where 

the potential data generated is huge. In the current technological climate, most of these types 

of data are stored and processed locally with limited on-board processing capabilities. With the 

advent of connected cars, it will be possible to aggregate this information into much larger data 

sets where parallel processing will be employed in the construction of accurate models allowing 

predictions to be made. The models themselves are also a commodity which could be sold to 

other manufacturers to improve their product. 

 

Connection to the internet will allow manufacturers to update their vehicle management 

software remotely, this in turn will allow them to monitor multiple performance metrics and 

address maintenance issues before they become critical. If, for example, a vehicle is running 

low on engine oil or the tread on tyres is dangerously low a local garage can be informed with 

precise details relating to the problem. The car can then be remotely booked in for servicing 

while the correct components are sent to the garage. By gathering multiple streams of data, 

parallel processing allows timely inference to be made regarding driver behaviour. For 

example, establishing if there is a link between how fast people drive and the current weather 

conditions has the potential to impact car insurance premium rates. These types of big data and 

ability to mine the insights contained within them are not only useful to the manufacturer 

themselves but also invaluable commercially to other industries in both their raw and processed 

forms. 

 

SUITABILITY FOR THE AUTOMOTIVE INDUSTRY 

 

In distributed computing, there are three main modes of operation including fine-grained, 

coarse-grained and embarrassingly parallel. The inherent parallelism of algorithms is well 

understood and have been reported by a number of researchers (Rohlfing & Maurer 2003) and 

(Ino et al 2005). Fine-grain parallelism is used to divide an algorithm into low-level 

components each of which is hosted by a separate processor. Although good for maximising 

speedup, fine-grain parallelism complicates the distribution of an algorithm and reduces 

flexibility of the approach; this is mainly because the inter-process communication required for 

the algorithm to work is high. Coarse-grained parallelism, in contrast, is where inter-process 

communication is not as frequent but still need to be maintained. Little or no inter-process 

communication is required in embarrassingly parallel modes of operation. Although entirely 

plausible, as with other fields of research big data collected from any aspect of the automotive 

industry will fall into all three categories and expert knowledge will be required to advise on 

the suitability of a parallel processing scheme and help with the creation of pipelines through 

which the data can pass. 
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CONCLUSIONS 

 

This paper is aimed at providing an introduction to the use of parallel processing in the 

automotive manufacturing industry. Furthermore, the generic parallel processing of large data 

sets is outlined and its suitability for deployment is considered. From the manufacturers’ point 

of view, the ability to utilise existing hardware makes loosely-coupled architectures attractive 

to those who already possess extensive computer networks. While those wishing to simplify 

the processing of their big data will be required to purchase shared memory architectures and 

associated network infrastructure. To gain competitive advantage manufacturers need to 

understand customer behaviours in a timely fashion allowing them to make predictions about 

market trends in advance. Parallel processing of big data is a practical and realistic approach 

to realising this goal. 
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Abstract 

Industry 4.0, in all its cutting-edge digitalisation and web technologies in the area of smart machines 

and products, brings with it the collection and generation of big data that needs to be ‘smartly’ analysed 

to aid management and production decision-making process. The application of Association Rule 

Mining offers Industry 4.0 the affordability to discover and present the co-occurrence of related 

Association Rules present in Industry 4.0 datasets. In this chapter, we introduce an Architectural 

Framework built from Association Rule Mining; named Transaction-based Rule Change Mining. The 

framework is capable of detecting temporal rule dynamics and evolvement of rules in a transactional 

database of production equipment which can enhance predictive maintenance scheduling.  

 

Keywords 

Association Rule Mining, TRCM, Industry 4.0  

 

INTRODUCTION 
 

Since the beginning of industrialisation, technological surges have resulted in complete 

changes which are referred to as industrial revolutions.  The area of mechanisation resulted in 

the 1st industrial revolution; the exhaustive use of electrical energy resulted in the 2nd 

industrial revolution and subsequently, extensive digitalisation resulted in the 3rd industrial 

revolution (Lasi et al., 2014). The cutting-edge digitalisation in industries, as well as the web 

technologies and futuristic technologies in the area of smart machines and products, has 

resulted in a new paradigm shift called Industry 4.0 – the 4th industrial revolution. In recent 

times, Industry 4.0 – also referred to as smart manufacturing, smart production and industrial 

internet etc. (Oesterreich & Teuteberg, 2016) - is attracting accelerated interest from 

researchers, manufacturers, government and application developers as it enhances energy 

consumption reduction, economic advantages and smart inventions (Li et al., 2017). The 

Industry 4.0 has significantly increased the use of ICT in the manufacturing sphere. The 

increase has encouraged funding programmes and research inventiveness from governments of 

numerous countries in order to advance or sustain universal relevance in manufacturing 

production. Industry 4.0 includes diverse technologies that assist the growth of digital and 

computerised manufacturing settings and also for the digitisation of the value chain.  

 

As industry and society have evolved progressively, the notion of Industry 4.0, smart factories 

(Liu et al., 2014), networking manufacturing (Davis et al., 2012) and other similar structures 

have been recommended (Wu et al., 2011; Zhang et al., 2012). Recently, novel information 

and communication technologies like the industrial cloud (Wan et al., 2014), wireless cloud 

network (Wan et al., 2013), high performance embedded systems (Wan et al., 2010), industrial 

internet of things (Chen et al., 2015), big data (Chen et al., 2014; Yin et al., 2015), are now 

being used in the manufacturing processes to take care of the demand for high productivity and 

green production. Machines used in manufacturing in Industry 4.0 factories are required to 

have the abilities of self-cognizance, self-prediction, self-assessment, self-reconfiguration, and 

self-maintenance (Lee et al., 2014).  The predictive maintenance data generated from these 
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machines can be analysed to enhance the regular maintenance scheduling process. However, 

automated maintenance data collected by factories in Industry 4.0 aggregates into big data and 

appropriate analytics of such data becomes relevant in order to sustain enhanced performance 

and the lifespan of the machines.  

 

With the foregoing, application of Data Mining techniques to the big data generated from 

Industry 4.0 production processes can aid predictive maintenance and more importantly, help 

in unexpected fault detection.  This can consequently result in smooth manufacturing processes 

and performance of industrial machines and better-quality delivery. This chapter presents 

Transaction-based Rule Change Mining (TRCM), an architectural framework developed from 

Apriori of Association Rule Mining. The TRCM architectural framework is capable of 

detecting temporal rule dynamics and evolvement of rules in a transactional database in the 

Industry 4.0 production process. For instance, data generated from machines during a 

production process can be analysed and evaluated using the TRCM approach to detect the 

change in the pattern of scheduled predictive maintenance at two consecutive periods. 

Application of TRCM can rapidly detect faults that may affect productions process in the near 

future.  

 

OVERVIEW ASSOCIATION RULE MINING 

 

Association Rule Mining (ARM) is one of the commonly used data mining techniques. The 

technique is used for mining significant association rules common to different collections of 

items in data repositories such as transactional and relational databases (Agrawal et al., 1993, 

Liu et al, 2009). The technique is in form of X → Y; where X and Y are disjointed sets of items. 

ARM extracts interesting recurrent representation, associations or links between different 

arrays of items within transactional databases (market basket), relational databases (personal 

details), or any other information repositories in the form of rules. ARM also reveals remarkable 

associations embedded in huge data sets – such as data sets generated in industry 4.0 – which 

may include hidden information that can be useful for decision making (Jain et al., 2012). The 

technique tends to reveal every probable association that satisfies definite boundaries using the 

defined minimum support and confidence (Ale and Ross, 2000). The ARM is mostly used for 

Market Basket Analysis (MBA) to detect the frequency of specific items within the dataset. It 

evaluates the frequent antecedent/consequent patterns by using support and confidence 

measures to detect significant relationships (Brin et al., 1997b) that satisfy the user-defined 

support and confidence thresholds. For instance, ARM enables business organisations and 

industries to understand their customer purchasing behaviour. It is used to ascertain items that 

are purchased together, for example, bread; milk → eggs. This means that customers who buy 

bread and milk also buys eggs.  

  

 

 

 

 

 

 

 
 

 

FIGURE 1: Association Rule Mining Concepts 

ARM enables stores to discover which items sell faster together and those that are not frequently 

sold. This analysis assists the business when making important business decisions. Items 
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purchased together can be placed within close proximity and those that sell less frequently can 

be put on offer to attract increased sales.  

 

The rule form of the ARM can be demonstrated as follows: 

 

Antecedent → Consequent(user-defined) [support, confidence] 

 

Examples:  

 

 Buys (y, "dress") → buys (y, "shoes") [0:5%:60%] 

 

Gender (y, "female") ^ income (y; "50000-55000") → buys (y, "house”) [1%; 75%] 

 

However, extracting associations rules from large datasets such as data collected/generated in 

the Industry 4.0 oftentimes bring about a large amount of discovered rules which end up almost 

impossible to analyse. Manually inspecting quality rules embedded in these huge datasets is 

always very tasking and time-consuming.  

 

Support Measures in Association Rule Mining 

Support (S) of an itemset I is the proportion of transactions in the database that is matched by 

I (Bayardo Jr and Agrawal, 1999). This means that an itemset I matches a transaction T which 

is part of the whole itemset, where S is a subset of T (Stahl, 2013, Hipp et al., 2000). The 

frequency with which the items in I occur collectively in the database is considered. Where 

support(S) = count(S)/n, given n is the number of transactions in the database. The rule X → Y 

supports if the % support of transactions in T contains X Ս Y. Support can also mean a fractional 

support which means the proportion of transactions that support X in T. Support can be 

summarised as follows: Let K = {k1; k2; k3…, kn} be a set of items, let D (the database), be a 

set of transactions T with each transaction representing the set of items [Srikant and Agrawal, 

1996]. T is said to support an item x if x occurs in T, while T supports a subset of items X. X → 

Y holds if support s is s% of the transactions in D that supports X also support Y. This implies 

that T supports a subset of items X. Rules that have support equal to or greater than a user-

defined support is said to satisfy the minimum support. Apriori algorithm allows for multiple 

setting of minimum support threshold without affecting the process of frequent items and rules 

extraction. Support can be calculated using equation 1.  

 

Confidence Measures in Association Rule Mining 

The rule X → Y suffice with confidence (c) of c% of the transactions that includes X also 

includes Y [Agrawal et al., 1993]. Confidence is used to create rules from the frequent itemsets 

by extracting only rules with c equal to or greater than the user-defined minimum confidence 

(min_conf) . 

 

Lift in Association Rule Mining 

The major concern of support and confidence is that of establishing a valid means of deciding 

the suitable values for min_sup and min_conf. Setting min_sup that is too high will result in 

missing important rules while setting it too low will generate too many rules, some of which 

might be irrelevant (Liu et al., 1999). Some rules having uncommon itemsets might be of 

interest in some situations but the concept of correlation is not being captured. A rule A → B 

that satisfies both the min_sup and min_conf constraint may not have any correlation between 

A and B, which means that support (A) × support (B) = support (A U B). Lift chooses rules that 

have a high score of importance and interestingness (Geng and Hamilton, 2006). It denotes the 
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relation and the difference between the support and if the support would have occurred if A and 

B are autonomous. It tends to detect rules with strong correlations between A and B.  

 

THE APRIORI APPROACH TO ASSOCIATION RULE MINING 

 

Apriori method is a common algorithm for learning ARs for Boolean associations (Srikant & 

Agrawal, 1997, Joshi and Sodhi, 2014). Based on prior knowledge of frequent itemset 

properties, Apriori uses an iterative method named level-wise search to detect frequent itemsets 

and strong ARs (Han & Kamber, 2011). This is achieved by generating a set of all probable 

combination of items and subsequently computing the support for the itemsets. The downward 

closure property of frequent patterns (k-itemset) implies that any subset of a frequent itemset 

must be frequent (Zaki & Hsiao, 2002) (k-1) as described as follows:  

 

•    If a transaction containing {Shoe, bag, belt} is also containing {Shoe, belt}; {Shoe, bag}; 

{bag, belt} 

 

•   {Shoe; bag; belt} is frequent → {Shoe; belt} MUST also be frequent. Any superset of an 

infrequent itemset are also infrequent and are eradicated from the rule generation. 

 

THE ALGORITHM COMPONENTS OF APRIORI 

 

Since the purpose of data mining techniques (including Apriori) is to solve a specific task, it is 

imperative to define identified components of the technique. We based our explanations on the 

work of (Hand et al., 2001) and the components include: 

 

1.    The use of appropriate technique to interpret/address the task; whether classification, 

clustering, regression or visualisation. 

 

2.    Verification of the model structure adapted to fit the data. The structure encompasses the 

margins within which learning is affected. 

 

3.    The Score Function (SF) used to evaluate the quality of the fitted models based on the 

observed data (for example, classification error). The SF can either be maximized or minimized 

when parameters are fitted to the models/patterns. The SF is vital for learning and 

generalisation of the models. For Apriori, the SF used is accuracy. For the ARM, a method like 

Apriori rule with favourable interestingness measures can be used as a score function.  

 

4.    The search and optimization method is applied to search the parameters and structures such 

as computational processes and algorithms used to identify the maximum/minimum of the 

score function for specific models/ patterns. The concerns arising from this identification 

include the computational methods employed to enhance the SF, for example, search related 

parameters such as the maximum number of iterations or convergence depiction for an iterative 

algorithm. For a pattern of a single fixed system such as the kth order polynomial function of 

the data, the search is carried out in the parameter space to enhance the SF comparative to the 

fixed structural form. In ARs, the search is done in accordance with the employed technique, 

for example, Apriori applies greedy search to find frequent itemsets. 

 

5.    The Data Management Technique employed for storing, indexing and mining data. 

Accessing large datasets from secondary storage may affect the efficiency of the algorithms, 

therefore the location of the data and the methods of accessing it are vital.  
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TRANSACTION-BASED RULE CHANGE MINING – AN APPROACH TO RULE 

DETECTION IN INDUSTRY 4.0 DATA 

 

Transaction-based Rule Change Mining (TRCM) apply Apriori to an interesting keyword in a 

transactional database within two consecutive periods of time t and t + 1 to produce two 

association rulesets which are interpreted as rules evolvement in the context of this chapter.  

TRCM is a system built to identify rule change patterns in large transaction datasets such as 

Industry 4.0 data at a different period of time. The application of the Apriori method of an ARM 

to targeted keywords in the document at t and t + 1 generates two association rulesets. In 

(Adedoyin- Olowe et al., 2013) TRCM was used to detect four (temporal) dynamic rules in 

tweets by emphasising tweet hashtags. The hashtag keywords highlight important 

words/phrases used in such tweets. The four rules identified are namely “new rules”, 

“unexpected rules”, “emerging rules” and “dead rules”. The rules were obtained by 

matching rules present in datasets at t and t + 1. The Rule Matching Threshold (RMT) are 

represented with binary vectors [0; 1], with 0 indicating the non-existence of Association Rules 

(ARs), while 1 indicates the existence of ARs in the two datasets. The degree of similarity and 

difference measures are applied to detect rule changes in the two datasets. The changes are 

categorised accordingly under the four identified rules. TRCM reveals the dynamics of ARs 

present in transactional databases and demonstrates the linkage between the different types of 

rule dynamics investigated. The rules at t and t + 1 are matched using Rule Matching (RM). 

RM is the process of matching the right-hand side/consequent and the left-hand side conditional 

part of the ARs in itemsets at time t and t + 1 to detect keywords at t + 1 that has any similarity 

with those at t having considered the user-defined RMT. The adoption of RM to the two itemsets 

result in the detection of the four identified rules patterns present in the two datasets. The 

Architectural Framework of TRCM is presented in Figure 2. 
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FIGURE 2: TRCM Architectural Framework 

 

Definitions of TRCM Rules 

Rule Matching in rulesets at t and t+1 results in the definition of TRCM rule change patterns. 

An unexpected Consequent rule arises when a rule at t and another rule at t + 1 have a similar 

conditional part but a different consequent part. An unexpected Conditional rule is detected 

when the consequent parts of the rule at t and at t + 1 are similar, but the conditional parts are 

different. The similarity measure must be greater than or equal to the user-defined RMT. 

Having described unexpected consequent rule change in the real-life situation, it is important 

to mention that both unexpected consequent and unexpected conditional rule change are 

presented in the same way in real life. Unexpected rule evolvement in real life can be likened 

to the detection of an unexpected fault occurring during the production process. Emerging rules 

occur when rules at time t and t + 1 have similar conditional and consequent parts of the rule 

with similarity greater than the user-defined threshold.  

 

All rules at t + 1 that were not classified as one of the three previous types of rules (emerging, 

unexpected consequent and unexpected conditional rules) are classified as new rules. This 

means that all rules in ruleset at t + 1 are new until there is a match found in ruleset at t. A rule 

in t is classified dead if its maximum similarity measure with all the rules in t + 1 is less than 

the user-defined RMT from both the conditional and consequent parts. Dead rules in real-life 

can be a mechanical fault that no longer exists, as a result of permanent eradication of the cause 

of the fault from re-occurring.  

 

Trend Analysis of Identified Rules 

Experimental investigations conducted in (Adedoyin-Olowe et al., 2013, Gomes et al., 2013) 

show that ARs present in datasets at t and t +1 evolve over time. This resulted in what is referred 

to as rule trend. Trend Analysis (TA) in the context of TRCM Architecture, is a way of analysing 
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the trend (evolvements) of TRCM rules identified in datasets at t and t +1 as displayed by 

targeted keywords over a specified period of time. The process of TA provides the ability to 

trace back the root of TRCM rules as they evolve from datasets at t and t +1. This process is 

called rule trace. In the case of a dataset where faultA was detected as an unexpected rule - 

faultA → ChainJam) the rule may be traced back to faultA → SlowChainMovement. The time 

frame between these two rule evolvements may vary depending on the period the machine 

could engage in self-cognizance, self-assessment, self-prediction, self-reconfiguration, and 

self-maintenance. The evolvements might have been characterised by different occurrences 

such as the timely intervention of the Operation Manager in attending to the fault.  

 

Application of TRCM in Industry 4.0  

As mentioned earlier in this chapter, ARM extracts interesting recurrent representation, 

associations or links between different arrays of items within transactional databases (market 

basket), relational databases (personal details), or any other information repositories in the form 

of rules. On the other hand, Industry 4.0 is involved in various technologies that promote the 

growth of digital and computerised manufacturing settings and digitisation of the value chain. 

In manufacturing, users are interested in wide-ranging maintenance service of production 

machines through convenient scheduling of corrective maintenance to prevent unexpected 

machine failures at critical stages of manufacturing procedures. Predictive maintenance of 

machines ensures optimal performance of the machines as well as improved machines lifespan.  

In today’s technology, machines in Industry 4.0 are maintained using the predictive 

maintenance technology rather than preventive maintenance procedures commonly used. 

Predictive maintenance can be applied through sensing, predictive analytics, distributed 

systems technologies and condition monitoring (Ferreiro et al., 2016).  

 

In a mechanical system, self-awareness refers to the ability to evaluate the present or past state 

of a machine, and then respond to the valuation output. This can be realised by applying a data-

driven algorithm to investigate data collected from the specified machine as well as its location 

(Lee et al., 2014).  

 

TRCM architecture is an intelligent algorithm, that can be integrated with machines, that has 

the capacity of performing sensing and predictive analytics to detect Association Rules present 

in keywords relating to any fault captured in the data. TRCM was successfully applied to tweets 

relating to sports, politics, social-economic and business data (Adedoyin-Olowe et al., 2014, 

2015, 2016) to detect evolving Association Rules in tweet hashtags at consecutive periods of 

time. The detections were correctly mapped to targeted real life events. TRCM can be applied 

to production machines to assist in effective predictive maintenance and track Association Rule 

Trends of machine performance over a consecutive period of time. This will consequently 

enhance production management and industry transformation in the long run. TRCM rules 

discovery can be visualised by applying visualisation tools capable of visualising big data 

output for ease of translation of result outputs for a smooth decision-making process.  
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CONCLUSIONS 

 

The continuous advancement of smart factories as a result of evolvement of complex 

production processes in Industry 4.0 has consistently increase the need for the utilisation of 

advanced prediction models for efficient predictive maintenance scheduling of manufacturing 

equipment. This has also increased the need for intelligent algorithms to intertwine with smart 

manufacturing equipment in order to extract and analyse data generated for effective predictive 

maintenance scheduling of the equipment.    

 

The application of the TRCM architectural framework to Industry 4.0 production equipment 

can help to detect faults by way of detecting change in ARs patterns in related datasets. This 

can improve smart decision support systems for dedicated maintenance scheduling which can 

consequently enhance manufacturing processes. Application of TRCM on manufacturing 

equipment data can lower maintenance cost and promote the performance and lifespan of 

equipment, causing an increase in profit and promoting the sustainability of Industry 4.0. 
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Abstract 

Industry 4.0 is an ongoing transformation that aligns Industry with new computing and business models. 

Examples of enabling technologies are Cloud Computing, Cyber-Physical Systems, Artificial 

Intelligence and Big Data. Some technologies are well established in other sectors, such as Financial 

and IT, but the adaptation effort is nevertheless significant. Among the risks, cybersecurity is at the 

forefront. This chapter discusses why Industry 4.0 brings unprecedented cybersecurity challenges to 

Manufacturing and the overall Industrial sector. To overcome them, we make the case for new codes of 

practice that take a holistic view of the IT and OT world whilst adopting a framework that should be 

native to Industry 4.0. 

 
Keywords 

Cybersecurity, Industry 4.0, Industrial Internet 

 

INTRODUCTION 

 

Industry 4.0 (or “Industrie 4.0” as the German initiative is called) is now on the agenda of all 

industrial sectors as the Fourth Industrial Revolution. Similar initiatives, although with 

important differences, exist elsewhere with the Industrial Internet (from the United States) 

being at the forefront. Given that there are more similarities than differences, we shall 

collectively refer to these initiatives as Industry 4.0 (I4.0). In our opinion, I4.0 is more likely 

to be an evolution than a revolution but one that, nevertheless, will transform industry and 

manufacturing. A 2014 report from PricewaterhouseCoopers envisioned €140 billion annual 

spending by European industry until 2020 with more than 80% of companies seeing their value 

chain digitised and an increase of productivity of 18% (PricewaterhouseCoopers, 2014). 

 

The notion of digitisation is central to I4.0. In opposition to Information Technologies1 (IT), 

that essentially handle information, materials cannot be digitised. However, the operations 

environment concerning People, Processes and Products (commonly called the 3P) can indeed 

be digitised with the corresponding improvements in productivity (Thames & Schaefer 2016). 

Furthermore, it enables new business models where different parties, not necessarily 

connected, collaborate to create new products, sometimes called Social Products (Rüßmann et 

al 2015), in an agile way. Such digitisation has two main axes: vertically, it should cover the 

business units of the same organisation, from the plant to the business intelligence; 

horizontally, it should cover the whole supply chain, from customers to suppliers to partners 

or agencies 

 

 

                                                           
1 In this chapter, we collectively call IT any field that is not Industrial while fully appreciating that other fields, such as 

Telecommunications or Medical devices, do not perfectly fall under Information Technologies. 
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I4.0 is, in the first place, a convergence of traditional manufacturing techniques with current 

trends in information technologies. It goes beyond that, however, as it also sets a new paradigm 

in terms of business collaboration and the use of technology with two overarching goals, 

namely, zero-defects and turnaround efficiency from design to finished product. 

  

The opportunity to rethink Industry comes at a time when a number of key technologies has 

matured sufficiently – such as Cloud Computing and Mobile Technologies – technologies that 

are ready to be embedded in a sector that is traditionally conservative and/or has long upgrade 

cycles. Past the effort involved in the transformation, cybersecurity is raised as a top concern 

of business leaders (Bughin et al 2015), given the exploding complexity of the technologies 

involved, which creates risks and an attack surface that did not exist before. In a simplistic way, 

what before could be protected with walls and physical security, now requires a matching level 

of sophistication and management. The remainder of this chapter is organised as follows. In 

the next section, we review the key technologies involved in I4.0, and then go on to identify 

the old and new cybersecurity risks. In the last section, we propose directions for mitigation of 

the identified risks. 

 

Industry 4.0 enablers 

We start by reviewing the key elements of Industry 4.0 to guide the later discussion on 

cybersecurity. We split the key enablers of Industry 4.0 into four categories: Cyber-Physical 

Systems (CPS); Cloud-assisted Manufacturing; Mobile Technologies and Augmented Reality; 

and Big Data, Artificial Intelligence and Analytics. 

 

Cyber-Physical Systems 

CPS are any systems that provide an interface between the computing infrastructure and the 

physical reality. A simple split is sensors and actuators that are enabled with networking 

interfaces in order to report measurements and/or actuate on the physical environment (Igor 

2016). Internet-of-Things is a close concept, although the CPS mostly relate to the physical 

devices and IoT typically combine devices and a cloud counterpart. Consider a scenario of an 

automotive wheel made of a light alloy containing magnesium or aluminium with each unit 

needing to have a unique identifier. A simple example of a CPS is an actuator that marks the 

wheel with a Quick Response (QR) code and a set of sensors that later track the same code in 

order for each manufactured unit to have a globally unique identity (Cheng et al 2016). 

 

CPS may also take the form of embedded devices that have computing capabilities and run a 

complex embedded Operating System, such as Linux or QNX. Depending on the application, 

such devices may process data before sending to a centralised point (that can be in the Cloud). 

An alternative is to send the data to other nearby intermediary devices that will pre-process and 

aggregate data from multiple devices before sending to a central architecture to either control 

an industrial process or for analysis – a so-called Fog Computing architecture (Peralta et al 

2017). Considering that the backbone of Industry 4.0 is the digitisation of the manufacturing 

process, CPS play a central role as they are expected to be pervasive both vertically, from data 

at the plant floor to business analytics, and horizontally by communicating reliable data to 

multiple stakeholders. A key element associated with CPS is, naturally, industrial robots. By 

achieving increasingly greater autonomy, the human element can be removed from adverse 

environments with corresponding efficiency and flexibility gains. When fully integrated in the 

Smart Factory, robots are on the critical path of end-to-end digitisation. 
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Cloud-assisted Manufacturing 

Cloud Computing is a fairly recent, yet mature, paradigm for computing that relies on using 

shared and remote resources, often in an imprecise physical location or distributed across 

multiple ones. In terms of business, this model has several advantages when considering the 

Total Cost of Ownership of a server infrastructure which, beyond economies of scale, has 

important manageability properties since the physical infrastructure is often outsourced. Cloud 

computing intensively uses virtualisation techniques that allow a multi-tenancy model: 

multiple users have access to the same physical server while applications and services run as if 

using dedicated hardware. A common provider of a (public) Cloud is Amazon with its Amazon 

Web Services: using simple interfaces, servers and services can be deployed extremely quickly 

– minutes in contrast with the months it might take to buy and provision an actual server 

infrastructure before applications and services can be installed.  

 

A common way of defining a cloud paradigm is to say that its adoption converts resources and 

processes into programmatic software interfaces. An industrial use case would be customer 

fulfilment that is as simple as placing an order and uploading CAD files on a web site, then  

waiting for the package to be delivered. The cloud service sets in motion all the required 

manufacturing processes, internally manages scheduling and availability of resources and 

hands-over the product to other parties for further handling and delivery. Such on-demand self-

service is a possible delivery model and is particularly applicable when considering Additive 

Manufacturing (AM). Although not commonly used in today’s die cast industry, where mostly 

alternative methods depending on the product are used, AM is commonly considered one of 

the enablers of Industry 4.0. In AM, manufacturing is often envisioned as evolving to a model 

where any part with any geometry can be uploaded to be (3D-) printed with high efficiency in 

raw materials waste. 

 

Cloud-assisted Manufacturing takes advantage of this computing model to enable new business 

models. Not only does it have the potential of virtualising, via software interfaces, physical 

processes, but it has also the ability of combining and matching suppliers, providers, tools and 

space in order to create value (Mabkhot et al 2018) from the composition of virtualised services. 

In fact, one can imagine a full virtualised factory in this way, where multiple specialised 

suppliers are composed using an online tool that more or less autonomously organises and 

defines the workflow, from  the design files to physical delivery. Another example is a 

customer creating different customised products. Such horizontal integration of multiple 

parties dynamically cooperating along a chain of value is also seen as a key driver towards 

Smart Factories (Strange 2017). 

 

Mobile Technologies and Augmented Reality 

Mobility and Augmented Reality are, in this scope, tightly connected. We gather here those 

requirements that enable different stakeholders, from a business owner to an operator, to have 

access anywhere and anytime to required and detailed information, in a human-friendly way, 

or even be able to control a process remotely. Whereas mobile technologies in conjunction with 

a Cloud infrastructure, enable an anywhere-anytime-anyone paradigm, Augmented Reality 

creates new usability patterns. For example, a CAD model can be virtually manipulated in real-

time as if it is a physical object and, given availability of information, can even be visually 

matched with a part during its manufacture. 

 

Big data and Artificial Intelligence  

Techniques to analyse large volumes of data, both offline and in real-time, are now available 

that allow unprecedented efficiency, both in terms of obtaining the current status of a process 
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or workflow and in terms of identifying hidden trends and value. Whereas Big Data is the set 

of technologies that enable the analysis of very large volumes of information, Artificial 

Intelligence (AI), in its primary form as Machine Learning, consists of giving inference 

capabilities to computer systems. The vision is that information is collected at many different 

points and lifecycles, with collection points ranging from CPS to business workflows (logistics, 

finance, scheduling, etc.) and sent to be analysed. The data mining can be used at any point in 

the business: from real-time data to assist the industrial processes to business analytics to 

inform strategic and operational decisions. 

. 

The Cybersecurity Challenge 

Industry 4.0 dramatically changes the threat landscape in comparison to traditional 

manufacturing. For one thing, its inherent technological basis dramatically increases the attack 

surface, exposing a business or process to the possibility of being compromised in many 

different ways. Furthermore, the human element is now a key source of risks: considering the 

dense network of actors in the chain of value of I4.0, from users to suppliers, third-parties and 

inter-domain interfaces now pose a management problem that was much smaller (often 

negligible) before. We now discuss how Industry 4.0 impacts cybersecurity practices. 

 

Operational Technologies versus Information Technologies 

A simple starting model in cybersecurity is the CIA triangle: Confidentiality, Integrity and 

Availability. Different sectors have different priorities. Whereas a financial business will be 

mostly concerned with Confidentiality and Integrity, an electricity supplier will focus its 

security practices on Availability. Manufacturers would typically focus on either Availability, 

in the case of high-volume but low added-value products, or Integrity, in the opposite case. By 

Integrity, one means a high-quality, repeatable and accurate production. Industry 4.0 requires 

all three elements at the same level of attention. 

 

When compared with Information Technologies, securing Operational Technologies (OT) has 

inherently different requirements – Table 1 briefly makes a comparison. For diverse reasons, 

OT requires a cybersecurity approach that is distinct from IT and the first author has first-hand 

experience in seeing cybersecurity programmes designed with IT in mind systematically fail 

or quickly be found to be inadequate. One  reason is to do with the difference of cultures 

between the two domains. Whereas IT uses widespread and conventional technologies, that get 

updated and upgraded in very short cycles, OT projects can take years to develop and can have 

a field longevity of decades. Furthermore, industrial projects always have, regardless of the 

sector, a safety-critical element. It is often said that, if an IT system fails, the business gets 

phone calls from angry users, but if a furnace explodes it can take human lives. OT is 

nevertheless converging with IT, both in terms of adapting mature and advanced IT 

technologies to OT projects and also because IT is increasingly seeing requirements that once 

were only for OT – for example, with operations running on a 24x7x365 basis. Another reason 

is that OT equipment and software is usually different from what is found in IT, coming from 

different, specialised vendors whose software development processes often do not have the 

maturity, or the same resources, as those of well-known vendors. The result is that devices are 

often more limited in terms of features and support is not as agile, which impacts on the 

cybersecurity world when it comes to vulnerability management and updates. 

 

It is also worth pointing out that cybersecurity for OT has only recently started to be taken 

seriously throughout the sector. It can be argued that the Stuxnet case (Lachow 2011) in Iran, 

2010, was a turning point for industrial cybersecurity. Since then, the world has seen multiple 

high-profile incidents, while numerous small ones remain to be analysed. Cybersecurity for OT 
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was, until then, often considered a lesser concern. In fact, cybersecurity for OT relied – and 

still often does – in physical isolation of the plant from the rest of the business, the so-called 

“air gap”. This apparently seems to reduce the problem to one of physical security which has 

been repeatedly proven to not provide the expected assurances (Cisco Blogs 2018). For 

example, industrial networks often have wireless access points in order to facilitate remote 

maintenance, but attackers can exploit them too. 

 
Table 1 – Requirements of OT versus IT 

  Information Technologies (IT) Operational Technologies (OT) 

Different 

Industries 

Enterprise, Datacentres, Financial, 

Services 

Energy, Oil&Gas, Manufacturing, 

Automotive, Transportation, Smart 

Cities, Smart Buildings 

Different 

Goals 

Information-centric: data 

confidentiality, business support, can 

usually be stopped if necessary; fast 

development and obsolescence 

lifecycles (5y) 

Process-centric: 24x7x365 availability, 

critical infrastructure, real-time 

interactions, cannot usually be stopped 

(societal/environmental); long project 

lifecycles (up to 25 years) 

Different 

Technologies 

& Vendors 

Servers, Enterprise networks, 

Applications, Web, End-user, laptops 

and mobile devices 

PLCs, Remote telemetry, HMIs, 

historians, industrial or real-time 

protocols, raw materials, critical real-

time control, telemetry centric, field 

devices, mixed technologies (OS, 

embedded, proprietary, legacy) 

Different 

Practices 

ISO 27001; OWASP; CISSP; 

EU/GDPR; SOC; FedRAMP; CSA 

ISA99/IEC62443; GIAC GICSP; 

Industry specific; Operations Reliability 

 

Increased Surface Attack of Industry 4.0 

Industry 4.0 removes the split between IT and OT while dramatically increasing the surface 

attack of compared to traditional manufacturing. We identify four main reasons: the inherent 

complexity of I4.0, assimilation of IT risks, transition and change management, and, finally, 

Third-Party management. 

 

Scale and Complexity 

Industry 4.0 is a system-of-systems which raises unparalleled complexity and scale when 

compared to traditional manufacturing, given the expected dense interconnectivity between 

processes, products and people. To contrast, whereas before the industrial processes could 

simply be protected inside a physically secure space, now the myriad of devices and systems 

can be converted to a point of compromise, which can be remote and from which the whole 

business becomes vulnerable. Such complexity and scale needs to be properly managed across 

the lifecycle of a security programme which has both a technical and business dimension. 

Furthermore, considering all risks, a single successful attack is now able to cause significant 

damage (in the order of the investment effort in Industry 4.0) if cybersecurity is not designed 

in from the outset. 

 

A striking source of complexity and scale is the ubiquity of networked CPS that now become 

an attack vector. For example, a CPS in a I4.0 setting should to be reconfigurable which raises 

its software complexity and increases the risk of vulnerabilities – in fact, it could conflict with 

safety requirements. A key risk is a CPS running compromised software which is only fairly 
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addressed by using trusted hardware (cryptographic functions directly implemented on 

electronics) (Waidner & Kasper 2016) and which is harder to develop software for. Table 2 

lists some of the high-level threats to which CPS are exposed. A successful attack rarely uses 

a single vector; instead, they are usually a combination of actions and steps that may take 

months to carry out until a goal is reached. A common technique is lateral movements: a device 

is compromised only to serve as a foothold and, from there, other devices or systems are 

compromised in accordance with a strategic plan. 

 
Table 2 – some cybersecurity attacks associated with CPS 

Attack type Description  

Physical  Changing the hardware or software by physically modifying it. 

Impersonation A malicious device hiding between legitimate devices. 

Man-in-the-

middle 

Intercepting and/or modifying in-flight communications  

DoS Denial of Service: compromise availability of services, machines or 

communications 

Malware Malicious software installed and undetected 

 

Assimilation of IT risks and requirements 

Off the plant floor, the I4.0 factory will bring in all the risks that IT currently has which will 

add to the typical risks of OT. The Cloud component is an example – see Table 3 for typical 

attacks. On the one hand, exposing software interfaces to the public Internet will attract remote 

attacks and will facilitate reconnaissance, a key stage in any attack where discovery of 

vulnerabilities is made. On the other hand, mobile users will have access to important assets 

and will have to use trusted devices and, above all, have enough training in order to be aware 

of the risks and cybersecurity best-practices. The current trend of Bring-Your-Own-Device 

(BYOD) will require special measures as a trade-off between efficiency, personal freedom and 

cybersecurity is likely to exist. 

 
Table 3 – some cybersecurity attacks associated with Cloud Computing 

Attack type Description  

Data Breaches Stealing valuable data 

Account 

mismanagement  

Compromised credentials or keeping legitimate owners out of service 

Insecure 

interfaces 

The software interfaces used in interacting with the cloud are vulnerable 

DoS Denial of Service: compromise availability of services, machines or 

communications 

Compliance 

violation 

Storing or using data in a fashion not compliant with regulations 

Compromised 

shared hardware 

The servers on which the applications and services run are compromised. 

Man in the middle Capturing data in transit or tampering with service requests 

 

Revisiting the scenario where a customer uploads to the Cloud a CAD file of a part that needs 

to be manufactured, the file eventually reaches the plant floor but may be compromised with 

subtle modifications that could be difficult to detect. A case in die cast or additive 

manufacturing is adding seemingly imperceptible imperfections, such as indents or voids (Cao 

et al 2015), which weaken or otherwise lower the quality of the final part. Even worse, new 

smart file types to be designed (CAD, STL, tooling files) may be prone to embedding 

executable malware which may be a door to an attacker. 
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Data quality is also now a requirement. A possible attack on Artificial Intelligence agents is 

where they are remotely re-trained, using legitimate interactions such as a set of customers 

feeding inconsistent data, in order to skew their inference processes. Overall, a data quality 

attack is such that data used is subtly contaminated in order to cause inaccuracies. 

 

Finally, one major challenge is the early state of integrated cybersecurity frameworks for 

Industry 4.0 (Waidner & Kasper 2016). It should be noted that whereas IT is rich in 

cybersecurity standards and guidance, some at the regulatory level, OT is not. A sign of this is 

looking at current I4.0 models such as RAMI or IIRA (Ma et al 2017) and realising, 

surprisingly, that cybersecurity is something of an afterthought.  

 

Transition Management 

It is expected that the transition between traditional and smart factories will take time and 

several upgrade cycles. This means that traditional and modern devices, systems and processes 

will coexist. There are two cybersecurity implications. The first is that old vulnerable devices 

will have less cybersecurity capabilities, or have vulnerabilities that cannot be patched. They 

will, expectedly also be hard, if not impossible, to retrofit and will integrate in a less ideal way 

with the I4.0 architecture. This requires mitigations based on perimeter infrastructure such as 

Intrusion Detection Systems which is challenging on its own for Industry 4.0 (Rubio et al 2017) 

given the heterogeneity of devices, industries and applications.  

 

Secondly, history has proven that change management creates its own vulnerabilities. There 

are countless examples of forgotten servers or devices that, in the extreme case, are openly 

accessible on the Internet. In any project, managing change is always complex, both in terms 

of resources and realignment with processes; in cybersecurity it can temporarily, yet 

dramatically, raise risks. 

 

Finally, a note on cybersecurity operations. With scale, threat intelligence and incident 

monitoring become complex bringing the problem to the levels of large IT infrastructures. Even 

if engineers have proven skills in complex process monitoring, cybersecurity requires different 

techniques and technologies which may require significant effort in order to adjust and prepare 

(Moustafa et al 2018). 

 

Third Party Management and Context 

Finally, Industry 4.0 brings a new challenge for Manufacturing that typically did not exist 

before. Given the dynamic business context composed of many parties, administrative borders 

become critically important: customers, suppliers and partners are now part of the operations. 

A comprehensive cybersecurity programme needs to account for the lack of good cybersecurity 

practices of Third Parties.  

 

It is always challenging, in any industry, to manage the cybersecurity of Third parties since, by 

definition, a business has only signed agreements at their disposal or, at best, some powers to 

audit that are always limited. Other than that, a simple sharing of a credential to upload, for 

example, a design file of a part can compromise the whole business. Old problems, such as 

auditing the provenance of materials and parts are now scaled up. 

Furthermore, Confidentiality and Privacy are now also strong requirements. By opening to the 

wider business context, Intellectual Property of customers, for example, has to be managed in 

a structured and consistent way. This further opens the space to Regulations connected to 

cybersecurity. For example, the recent EU directive Networks and Information Systems (NIS), 
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that is essentially a cybersecurity regulation, mostly applies to critical infrastructure operators 

but will indirectly affect suppliers and intermediaries. 

 

Finally, considerations must be given to incident response and forensics (Eden et al 2016). In 

handling an incident, as it may escalate up to involving regulatory authorities, there may be a 

duty to collect evidence in a legally acceptable way. Whereas components sourced from the IT 

domain typically have security controls in place, such as audit logs, OT components typically 

do not. Furthermore, collecting evidence in real-time during production may prove extremely 

challenging and needs to be avoided at all costs. 

 

Perspectives 

The rise in sophistication of Industry 4.0 can only be matched by raising the sophistication of 

the cybersecurity approach itself. Whereas IT practices are robust and mature in their essence, 

they cannot fully cover the Industrial case. As such, a mix of practices and technologies, both 

new and old, needs to be drawn upon in order to design a comprehensive cybersecurity 

programme for Industry 4.0. Figure 1 (left) gives a representative lifecycle of a cybersecurity 

programme, typically designed for IT. It should be contrasted with Figure 1  (right) that shows 

a typical model for Manufacturing. Beyond protecting the human, always the top priority, 

cybersecurity has to be supported by a business case and it is in this sense that it is currently 

evolving, from a management perspective, as a risk discipline, similar to other business 

domains (Radanliev et al 2018). An alternative would be to decompose the overall problem of 

the Industry 4.0 factory and progressively identify and break down possible risks which are 

then mitigated using either processes or technologies informed by standards and community 

guidance. Ultimately, as Figure 1 (right) shows, it is integrated into the business strategy and 

governance. 

 

Considering the diversity of elements in Industry 4.0 that form a continuum between different 

areas (for example, CPS to Cloud to Business IT), we argue that a combination of current 

cybersecurity approaches may not completely close all the gaps; rather, a specific approach to 

Industry 4.0 may prove to be necessary with selective implementation of relevant codes of 

practice where applicable. 

 

 
FIGURE 1:  Cybersecurity Governance. 

 

A number of standards exist that can be of help. Table 4 lists some of the prevalent standards 

and guidance in cybersecurity. IEC/ISA 62443 is particularly fit for Industry 4.0. With current 

adoption mainly in Oil & Gas, it is a flexible framework for Industrial environments. Others, 
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depending on the particular domain of the Smart Factory, should be used. For example, ISO 

27001 should be used to manage a cybersecurity programme based on risk, despite being 

oriented to Information; and CSA STAR on the cloud subdomain.  

 
Table 4 – Cybersecurity related standards and guidance. 

Guidance Domain  Aim 

ISO 27001, SOC 2 IT IT cybersecurity management 

CSA STAR, CIS, ISO 

27018 

IT, Cloud Security in the cloud 

EU/GDPR IT Data Privacy regulation (EU) 

NIST Various Catalogue of recommendations (US) 

OWASP, ISO 27034 IT (Web) Secure software development 

IEC/ISA 62443 Industrial Industrial and SCADA cybersecurity  

 

Finally, one aspect that can be of help is that Industry 4.0 will accelerate the convergence 

between IT and OT which may have the benefit of standardising OT technologies in the 

direction of IT and enable the reuse of mature IT cybersecurity technologies in OT. Examples 

are next-generation firewalls or Intrusion Detection Systems (Rubio 2017) which are 

commonly less featured in OT than their counterpart in IT. 

 

CONCLUSIONS  

 

This chapter discussed the challenges that Industry 4.0 face regarding cybersecurity. Because 

of its transformative character and the complexity of system-of-systems, involving several 

different technical and business visions, multiple challenges were identified. The paradigm still 

has to mature and materialise in concrete use-cases as the ones available for analysis are still 

sparse. Furthermore, cybersecurity frameworks for I4.0 are still lacking which includes models 

to manage the transition and coexistence of traditional and I4.0 domains. A different framework 

is therefore needed that, on the one hand, is able to integrate the multiple domains that comprise 

the new Industrial paradigm (which current standards are able to address) but, on the other 

hand, has to be native to Industry 4.0 given its own emergent properties. 
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Abstract 

Current advances in Augmented Reality (AR) hardware and software has largely mitigated the key 

adoption barriers for presenting a practical application of AR. Complimentary to this the recent 

development of commercial  portable AR devices, notably the MS Hololens, now presents a viable 

platform for changing many key manufacturing practices and therefore redesigning legacy processes. 

This paper presents the current potential of AR for supporting manufacturing. We firstly introduce  

general concepts of AR and establish the current positioning of AR research and hardware. We then 

present several key application domains whereby AR can be readily applied, notably in production 

assistance, operator navigation, product visualisation and manual training. We finally present some 

current barriers to AR adoption in manufacturing and highlight the current limitations that should be 

considered when looking to develop and apply a practical application of AR.   

 

Keywords 

Augmented Reality (AR), Virtual Reallity (VR), Manufacturing, Training, Interaction. 
 

INTRODUCTION 

 

Augmented Reality (AR) refers to technology that presents the real world to the user but 

augmented with virtual components (usually Computer Generated Images) that appear to be 

part of the real world. This can be contrasted with Virtual Reality where the user is totally 

immersed within a virtual world usually with no reference to the user’s actual surroundings. 

These immersive technologies are widely expected to become one of the major enablers of 

Industry 4.0 and digitisation more generally. Overall global Augmented Reality/ Virtual 

Reality revenues are set to rocket from £4.2 billion in 2016 to £130 billion in 2020 

(International Data Corporation (IDC)), with the United Kingdom (UK) set to be at the 

epicentre of this market growth, second after the United States in market share (GrowthEnabler 

Market Pulse Report AR & VR).  The Made Smarter Review, led by Professor Juergen Maier, 

CEO Siemens UK, and commissioned by the UK Government to set out how UK 

manufacturing can be transformed through the adoption of industrial digital technology (IDT) 

also identified AR/VR as one of its 5 key enabling technologies. The consensus is that, although 

currently (2018) VR has greater uptake due to the availability during the past couple of years 

of consumer accessible VR Head Mounted Displays (HMDs) such as Oculus Rift and HTC 

Vive, with large audiences for games and entertainment application, the major growth in 

industrial use will be for AR supported by nascent HMD’s and Smart Glasses such as 

Microsoft’s Hololens, Meta 2 and Magic Leap. 

 

Car manufacturers such as BMW and Jaguar Land Rover have recently started to introduce AR 

experiences into their market strategies, enabling potential customers to customise and take a 

closer look of their cars using immersive technology.  International shipment company DHL 

has introduced AR into their supply chain logistics, making smart glasses the new standard in 

their warehouses and showcasing improvements in productivity, according to their press 

release. 
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WHAT IS AR? 

 

AR is a set of technologies that seeks to give their user the impression that virtual (computer 

generated) objects are actually present in the same space as the real world surrounding them. 

The virtual objects are most often 3D models existing within a computer defined co-ordinate 

reference frame that have to be rendered onto a display by the AR system. Although, numerous 

display formats (including holographic and volumetric projection systems) have been 

postulated and prototyped, current commercially available AR systems largely present the 

virtual objects on a screen in either video see through (VST) or optical see through (OST) 

modes. Tablets, smartphones and head mounted devices are typically used for VST based AR; 

the virtual objects are rendered and composited onto the video stream captured by the camera 

or cameras on these devices. OST based AR currently is available on HMD’s and Smart 

Glasses; in this case the virtual objects are presented on the surface of a semi-transparent screen 

through which the user can see the real world directly. 

 

In AR applications the illusion that the virtual object is actually in the real world is maintained 

because the virtual object’s rendering will change with head movement in the same way as 

would the view of an actual object at that position in the real world. Ideally this includes the 

effects of parallax, occlusion-of and occlusion-by real objects, and size of virtual objects as the 

head moves closer or further from the defined position of the virtual object in the real world.  

In order to calculate the transformations for these effects it is necessary for the AR system to 

simultaneously track the position of real world objects and the changes in the position of the 

head. This Simultaneous Location and Mapping (SLAM) functionality is provided by software 

SDK’s such ARToolkit to derive these transformations using computer vision algorithms on 

scenes captured by cameras and other sensors such as depth of field sensors.  

 

USAGE SCENARIOS OF AR MANUFACTURING 

 

Provision of in situ instructions 
An important aspect of manufacturing is the provision of guidance and instructions on the 

details of steps in carrying out manual procedures. This is necessary for the training of new 

staff, or existing staff after changes in workflows, for the case of complicated and variable 

workflows, for the case of exception conditions in the workflow, and especially for periodic or 

unplanned maintenance. Historically these instructions have been provided in paper based 

instruction manuals and guides. With the advent of computer terminals in the workspace, these 

instructions became more multimedia based – including the use of photos, videos and 2D and 

3D animations (Smith & Athwal, 1995). The provision of these instructions becomes 

particularly powerful when they are available in situ and at the time when the task or procedure 

is to be carried out. Thus, the operative can flick through the instruction manual or view videos 

on a tablet or other screen at the workplace and complete the task immediately afterwards.  

AR takes this process to the next stage by overlaying the instructions, videos, animations, etc.  

that seem to appear on virtual screens directly in the real working environment. These can be 

supplemented by, for example, the AR system locating and highlighting real parts that need to 

be worked on with instructions next to them or animations demonstrating virtual 

representations of these parts being manipulated in the required manner. In this scenario, using 

video see through (VST) AR, would involve the operative holding up a tablet and viewing the 

real scene (via the tablet’s rear facing camera) with real time composited virtual elements on 

its screen. However this has the disadvantage of the operative’s hands being occupied when 

they could be used to directly carry out the instructions. One solution to this problem is to have 

the screen included in a HMD; and indeed this is possible with modified VR HMD’s such that 
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they include cameras close to the positions of the user’s eyes. However this camera-mediated 

view of the world is limited by the resolutions in pixel size, colour depth and contrast of the 

cameras and display, and the current state of art in AR HMDs is to use optical see through 

(OST) which are able to provide the user with an unencumbered natural view of the real world 

in all its glory.  

 

 
 

FIGURE 1:  motionEAP system for manual assembly work using in-situ projection to provide assembly 

instructions using motion recognition (Funk, Kosch, Kettner, Korn, & Schmidt, 2016) 
 

The HMD can be linked to cloud based enterprise databases and tracking systems to deliver 

the right information at the right moment directly into an operative’s line of sight, while leaving 

their hands free so they can work without interruption. This dramatically reduces the time 

needed to complete a job because there is no need to flip through a paper manual or consult a 

workstation. Errors can be reduced and compliance with standard operating procedures assured 

as AR can display explicit guidance overlaid on the work being done and track completion of 

required steps. An additional functionality provided in current examples is the capability to 

connect by video with remote experts to share what is seen by the operative and get real-time 

assistance.  

 

 
 

FIGURE 2:  Assembly instructions being displayed in a Smart Factory environment (Paelke, 2014) 

 

A number of studies have demonstrated substantial improvements in productivity using the 

methods outlined above:  Boeing showed that AR improved productivity in wiring harness 

assembly by 25%; GE Healthcare showed that warehouse workers could complete a new 

picklist order 46% faster when using AR rather than a paper list and work station. Additional 

cases from GE and several other firms show an average productivity improvement of 32%. 

 

Augmented reality overlays on existing real world scenes 

Another powerful usage scenario in manufacturing is the capability for the AR system to give 

the impression that additional virtual structures are overlaid onto actual floors, walls and 

machinery. One use is to directly visualise planned changes of configuration or additions of 
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new machines to the assembly line or workspace. The new machines are displayed as virtual 

objects that appear to be in the designed positions within the real workshop; then these virtual 

objects can be manipulated to take into account any constraints that are observed in the 

visualisation and these transformations can be immediately captured by the AR system to 

feedback into the re-design process. The user can move around the new machines or 

workspaces and physically check for safety and general ergonomic considerations. This 

scenario can be extended to allow operators to be presented with virtual hazard conditions to 

safely practice avoidance and compensatory patterns and behaviours. 

 

 
 

FIGURE 3:  Example of video-mixed display used in a manufacturing environment (Fraga-Lamas, Fernandez-

Carames, Blanco-Novoa, & Vilar-Montesinos, 2018) 

 

An interesting use case in this scenario is to test the suitability of human working with 

cooperative robots (cobots) whereby AR is used to present the cobot as an animated virtual 

object and the user can interact with the virtual cobot to carry out tasks using additional virtual 

objects. A further advantage of the AR approach here is the opportunity to practice these 

interactions without the danger of physical harm from mistakes in cobot or human 

performance. 

 

The same overlay capability can be used to provide so-called “x-ray vision” whereby hidden 

parts and structures (eg pipes or wiring within walls, or internal parts of equipment that might 

be difficult to access) can be overlaid as virtual objects directly in situ onto the normally visible 

walls and covers of the real world-view. This allows planning of where access is best made or 

better understanding of operation of machinery to plan maintenance or enhancement. 
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Visualisation of product details and designs 

AR is going to change the way product designers create their products and the way end 

consumers purchase them by enhancing visualisation, product design and brand engagement 

(Scholz & Duffy, 2018). Unlike VR, AR offers a new layer of information into the user’s 

current environment, offering the possibility to showcase design processes in the place they are 

meant to be. Within product design AR enables the instant sharing and visualisation of CAD 

models, bringing them to life in 3D potentially at real scale and in their eventual environment 

with the option for designers to interact directly with the models to make and capture design 

changes.  However conversion of CAD models to virtual objects is not trivial; for example 

CAD models could be at too high a resolution to allow real-time rendering and manipulation. 

These issues can be resolved by use of intermediate file formats (such as .STL and .STP) and 

appropriate workflows (see e.g. Lorenz et al. 2015). This AR use case is an  example of 

expanding the capabilities of product designers and engineers.   

 

Companies like Adobe, Autodesk and PTC are also currently exploring the possibilities of AR 

in the shared design and visualisation area, creating new tools that will change the way 

designers work with their products, enabling collaborative immersive design, visualisation and 

navigation of virtual products in real spaces.  

 

 
 

FIGURE 4:  Air-Modelling tool for gesture based modelling in AR (Arroyave-Tobón, Osorio-Gómez, & 

Cardona-McCormick, 2015) 

 

It is not only designers and product engineers who will benefit from this, the use of AR is likely 

going to change the way customers buy online, with renowned companies like IKEA or Inditex 

providing AR tools for visualizing augmented versions of their products in users’ houses using 

dedicated mobile apps. Additionally, new software development tools are enabling customers 

to take real time accurate measurements of their spaces by using built-in mobile cameras, 

offering a full solution for virtually measuring and furnishing spaces, making sure the layout 

is what the consumer expected before purchasing it.  In a B2B scenario this capability offers 

manufacturers the opportunity to show how their product could be integrated in situ as a 

component or enhancement to their customers’ existing machinery, assembly or environment. 

 

Operator training 

AR offers an invaluable opportunity for changing the delivery, efficiency and quality of 

operator training and presents the potential for redefining future training environments (Jetter 

2018). Common to other applications of AR, notably in design and visualisation, virtual content 

can augment the real environment in varying different forms. These can reflect different 

training parameters bespoke to the training operation. These visualisations can be animated and 

updated in real-time providing dynamic training programmes which are adaptable and 

personalised in ways not feasible with traditional real environments.  
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Current applications for AR training often present the AR virtual content as overlays that 

facilitate the training program by presenting in-view visual instructions, alternative training 

guidance (i.e. in view directions and task indicators), training feedback (i.e. visual guidance of 

task success, failures or length/difficulty of training) and also training parameters (i.e. task 

specific attributes such as the names of components and physical properties of virtual objects). 

This improved level of interactive information creates a richer training environment and 

furthermore supports the redesign of new training programmes. The benefit that AR brings has 

been illustrated in many studies to improve the overall training experience for users, improve 

training accuracy and overall reduce the cognitive task load throughout the training exercise. 

 

 
 
FIGURE 5:  In-view visual instructions for a bespoke assembly training at BMW (Werrlich, Nitsche, & Notni, 

2017) 

 

In addition to improving the visualisation within operator training, AR also poses the potential 

for creating collaborative training environments. These environments can support the 

coworking of multiple users in real-time or even present an AR representation of coworking 

with robots (or cobots) in a hazard free environment.  

 

These training environments can also support the real time interaction of co-workers who are 

either spatially co-located (i.e. multiple trainees using the same environment) or remote (i.e. in 

different sites or geographically separated). This can create training environments where 

trainees can support co-workers in collaborative training or be managed and assisted by 

facilitators who interact with the trainee in real time. Current AR devices (e.g. Hololens and 

Meta2) often support multimodal methods of interaction (i.e. hand gestures, voice control, eye 

gaze etc.). These interaction modes can be used to not only interact with the AR content but to 

also offer communication to other trainees or facilitators in real-time. Thus AR can present a 

collaborative two way interactive communication channel whereby a facilitator can give voice 

instructions to a trainee, a trainee can report back on task difficulties or form a communication 

channel between collaborative trainees. This form of collaborative AR is effective in 

highlighting how users can mutually interact within training environments and also establish 

routines to solving complex collaborative problems. 

 

CURRENT CHALLENGES AND LIMITATIONS    
 

Fundamental early reviews of AR technology (Azuma, A survey of augmented reality, 1997) 

(Azuma, et al., 2001) highlighted some key limitations, namely inaccurate tracking, 

cumbersome and heavy displays, lack of portability and inaccurate depth perception. While 

some of these early problems have largely improved due to the vast technological advances in 

recent years (i.e. display quality, tracking, rendering and device portability), however many 
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challenges and fundamental problems in different aspects AR technology still exist and can 

limit potential industry application. These problems can be categorised as technical problems 

(i.e. relating to the inherent technical limitations of the hardware), interface problems (i.e. 

relating to the interaction method and the overall interface between the user and the AR 

content) and perceptual problems (i.e. relating to the overall perception and realism of the 

augmented content). 

 

Technical limitations refer to the impact of technological shortcomings in hardware, which can 

directly impact the user’s quality of experience or the overall effectiveness of the AR 

solution.  For example, low resolution tracking sensors can cause environment segmentation 

errors, augmentation difficulties and thus result in a poor representation of the virtual content 

(i.e. objects may appear flat, in the wrong location, or jitter around their fixed locations). 

Latency is a further technical limitation that can impair the overall user experience and 

reliability of the AR solution. Latency in the rendering and tracking can cause a static virtual 

objects to move about its fixed position (‘jumpiness’), whereas latency in the interaction 

response can result in the virtual object movement being delayed causing a poor user quality 

of experience and thus a detachment from the application.  

 

 
 

FIGURE 6:  HoloLens Air Tap gesture interaction (Microsoft, 2016) 

 

Interface limitations relate to the overall level of direct interaction that the user has with the 

augmented content and the interface the system provides. Currently there are no defined 

standards for facilitating the overall interaction between the user and the virtual content, 

therefore the interaction devices or methods used by one device may not be common to 

alternative devices, thus presenting problems for application development and porting of 

applications to different devices. Furthermore, while some hardware devices support hand 

interactions between the users and the augmented content, these are often gesture based (e.g. 

the air tap and bloom in the HoloLens) and do not reflect the full dexterity offered by real 

interactions with real objects (i.e. the user cannot grasp virtual objects the same as they would 

with real objects). This can present limitations in the design of the system and not reflect the 

interactions that are needed within the real industrial situation.  

 

For example, in an assembly training scenario a user may be trained to assemble augmented 

components using gestures that do not relate to the interactions they would have with the real 

components in the practical assembly task.  These issues are being addressed by the current 

and ongoing development of AR systems that employ more natural grasp based hand 

interactions (Al-Kalbani et-al 2016, 2017) 
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FIGURE 7:  Freehand grasping interaction (Frutos-Pascual, Al-Kalbani, Dolhasz, & Williams, 2017) 

 

Perceptual problems relate to the overall user perception of the augmented system and this 

often relates to the visual clarity of the augmented content. The current limited field of view 

(FOV) in hardware is another fundamental perceptual and technical problem. FOV limitations 

restrict how much of the augmented world is perceived and viewable by the user from a given 

viewpoint, thus making visual based interactions potentially cumbersome for users to perform. 

Finally, properties of the display device, such as luminance, contrast and resolution can also 

negatively impact perception of the augmented content. Notably the brightness of the display 

device may be suitable for dimly lit real environments but can be compromised in highly lit (or 

external) environments.  

 

CONCLUSIONS 
 

Numerous studies have demonstrated proven benefits for the use of AR in many aspects of the 

manufacturing workflow. The most prevalent current trend for the delivery of AR is via the use 

of Smart Glasses and Head Mounted Devices, with the latter providing greater functionality. 

Significant investments are being made by industry giants and specialist suppliers to continue 

to provide ever more capable and comfortable devices, with some commentators believing that 

in the long term such devices may even come into general use to supplant smartphones.  Thus 

the time is ripe for manufacturing companies to start pilot programmes to develop and tailor 

AR systems to meet their particular demands. They should do this with the confidence that, as 

they become ready to roll out these AR assisted workflows more fully into the enterprise, more 

powerful and/or cheaper hardware and software solutions should be available to enable 

achievement of significant ROI. 
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Abstract 

HPDC (High Pressure Die-casting) is one of the core manufacturing processes of the industrial 

revolution and is currently still valid for many industry sectors such as automotive. With the current 

competitive markets, there is a need to improve the HPDC process to meet the high demands from many 

Original Equipment Manufacturers (OEM). Therefore, this chapter reviews the state of the art in the die 

casting domain and related elements. In addition, it will provide an innovative approach to enhance and 

optimise the HPDC process using smart technologies. Optimizing the HPDC process is a key task for 

increasing productivity and reducing defective parts (e.g. scrap ratio). An overview of the HPDC 

process is provided with more attention to the most common defects and their sources. This chapter 

reviews the work that has been carried out by the researchers in this domain and identifies the main 

factors that affect the process.  It also identifies how to maintain consistency in trying to reach the 

‘‘zero-defect’’ production status.  It does this by looking at real-time process control mechanisms and 

understanding the various process variables and their impact on end product quality. 

 

Keywords 
HPDC Process, Smart Sensing, Process Parameters Optimisation, Adaptive Learning  

 

INTRODUCTION 
  

The high pressure die casting process is a manufacturing process used to form metals such as 

aluminium, zinc and magnesium into different geometric shapes by melting and pushing the 

metal under high pressure into a cavity or mould (Vinarcik, 2003). Common pressures that are 

used to fill the cavity at higher solidification are between 20-120 MPa, which lead to high speed 

filling rates that are usually 25-60 m/s and can exceed more than 80 m/s. At these pressures the 

molten metal filling time is very short, at about 0.01- 0.2 seconds, depending on the size and 

design of the cast (Bonollo et al, 2015; Gariboldi et al, 2010). 
 

High-pressure die casting (HPDC) is mainly appropriate for high production rates. For 

example, in the automotive industry, 60% of components are created using HPDC. It is well 

known that HPDC with a low cycle time is particularly suitable when high production rates are 

required. The scrap rate in a very efficient environment should not exceed 5% or the sequence 

will be costly to the manufacturer, who may pass on this inefficiency as part of their overhead.  

As these casting requirements get considerably larger and more complex the industry in general 

can often get into difficulties trying to keep these inefficiencies under control.  The goal is the 

same as most manufacturing, to try and maintain consistent casting quality from the first part 

to the last, to the benefit of the manufacturer, the customer and quality production part delivery 

times (Bonollo et al 2015). One of the limitations of HPDC is that the overall complex process 

is not managed by a single information system, and the systems we do find in place are often 

not accurate enough to provide efficient diagnosis of the immediate issue: if this happens it 

may involve a stoppage and a loss of heat in the die, which is a major contributor to the 

inefficiencies mentioned.  The heat map within the die, that is set during the development of 

mailto:Adel.aneiba@bcu.ac.uk
mailto:sbrown@meridian-mag.com
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the part, needs to remain consistent to ensure that each casting regularly and consistently fills 

the cavity of the die in the same manner as its predecessor.  If the heat map in the die is erratic 

then the metal will flow erratically and introduce irregularities into the process.  In many cases 

controls only measure machine parameters, whilst the temperature of the holding furnace, for 

example, is controlled separately. In other words, there is no holistic view for the entire 

production system, especially the cavity heat in real time.  
 

Therefore, there is a need to have a holistic computerized approach in place to monitor and 

control the entire HPDC process parameters, permitting them to be corrected or optimized to 

produce high quality parts and get closer to achieving ‘‘zero-defect’’ production status. Despite 

the fact that most HPDC machines are equipped with sensors that measure basic process data 

such as hydraulic pressure or piston velocity, these readings are not correlated with other 

process parameters to validate the method. For example, if the filling time varied only in the 

range of milliseconds because of piston velocity, then there would be an impact on content and 

location of defects. Monitoring various parameters such as temperature in different locations 

within the cavity during the die casting process, in the holding furnace and in the ladle or the 

level of hydrogen are very important when targeting the consistencies necessary for continued 

quality part production. 
 

This die casting process takes various high precision steps in a very short time for mass 

production, as seen in Figure 1. The quality of the parts produced depends on all of these 

parameters being consistent to the original parameter settings arrived at during development of 

a good part.  Achieving this refined process is very important to both producers and customers. 

Reducing any inconsistencies in this process is an essential task to keep improving the process 

to drive down scrap and supply to ever changing market demand.  Many changes occur in 

process variables throughout the casting life cycle. These changes will have an impact on the 

die cast part quality. This chapter will review the latest research work in this area and propose 

some directions that can be adopted to enhance the die casting process.  The quality of die 

cast is based upon several factors including material failure, construction errors, variations of 

process parameters and the surrounding environment. The effect of the material not just 

determines the properties of the final casting, but also impacts the machine and tooling (Patel 

et al, 2017).  
  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

FIGURE 1:  The HDPC Process Cycle (Bonollo et al 2015) 



82 
 

 

There are two major high pressure die casting processes in the die-casting industry, they are 

called: cold chamber and hot chamber. Each process has its own characteristics, purpose and 

mechanism. For example, Figure 2 illustrates the cold chamber Die Casting type. The main 

different between cold and hot is that, cold chamber die casting is a preferred manufacturing 

process for metal alloys that have high melting points such as aluminium, brass and copper ( 

Patel et al , 2017; Winkler et al, 2015). In addition, cold chamber die casting can take few 

seconds to solidify. Furthermore, cold chambers are usually made to have multiple cavities, so 

different machine parts can be produced at the same time. 
 

 

 
 

FIGURE 2: Basic Cold Chamber Die Casting (Customoartnet, 2018) 

 

Meridian currently develop and manufacture magnesium parts for the automotive sector via 

High Pressure Die-Casting (HDPC) using the cold chamber method. In order to meet the 

demand of end user requirements and to improve current manufacturing methods, Meridian are 

constantly looking to optimise and improve their process to produce more cost effective 

products and reduce the amount of variability in order to reduce scrap. Die temperature 

distribution commonly seen in a production die is ~100-150 Co across the die face, and these 

are often required to manage the material flow through the complex geometry in an effective 

manner to produce a good part.  These parameters are developed and finalised at the 

development stage, and once the heat map requirement is established this must remain as 

constant as possible throughout the production. However, there are a multitude of factors that 

can affect these temperatures and any one of these factors can affect the visual quality and fill 

integrity. 
 

Reliable temperatures within die casting tools are crucial for flawless results of the die casting 

process, and accordingly, release agents and their corresponding method of application can 

play an important role. Die surface temperature is crucial for high quality, efficiency and 

faultless component manufacture. Many of the defects seen in the traditional HPDC system, 
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such as shrinkage, porosity, cracks, and blisters, are caused by out-of-control die temperatures 

(Podprocká et al, 2015). To mitigate this, it is mandatory to monitor the die casting process, in 

real time and without interruption to the production cycle, the die temperature surface and 

related spray effect. Higher or lower die temperatures can also have a negative impact on tool 

life, start up and cycle time, as well as energy consumption and maintenance costs due to 

unnecessary use of thermal regulation, air pressure, and/or water based lubricant (Bonollo et 

al, 2015). 

 

Business Challenge  

In any die casting industry, the quality of the produced parts from the die-casting process is 

crucial.   If the produced parts have defects or impurities as a result of an inefficient die casting 

process, then more process steps are needed, such as trimming and puffing. An initial 

investigation conducted at Meridian Ltd found that the majority of defects could be traced to 

the problems stated below. 

 

According to a chief engineer at a UK-based die casting foundry, the main problem affecting 

the die causing it to not function properly and produce a high rate of scrap parts is heat 

variations and heat distribution rate inside and outside the die cavity. This problem affects 

solidification and flow patterns in the mould and ultimately the quality of the end product. As 

the die opens and closes after every “shot” that is taken then we are bound to see temperature 

fluctuations, but if these regular opening and closing stages are managed and consistent then 

the temperature variations from the required parameters remain controlled to the values 

expected and necessary for good production conditions, as set during the development phases.  

However, any unexpected stoppages, for a multitude of reasons, which disrupt this pattern of 

opening and closing will tend to also disrupt the temperature pattern, and in turn cause an 

increase in potential scrap parts.   

 

The system presently being used to monitor temperatures relies on expensive thermocouple 

solutions that can only be deployed well below the surface of the die cavity due to the pressures 

seen at the die surface (over 3000T on existing machines).  The time taken for the “true” heat 

of the die cavity surface to register at the thermocouple cannot be controlled by solid state due 

to the erratic nature of the temperature variables.  But, a truly predictive system that can monitor 

the actual temperature of the die cavity surface in “real time” would be invaluable to the 

predictive control of the process.  Once an issue is identified then the solution could be sought 

before it causes disruption to the process and the parts being cast.  This system could then be 

used to investigate and deploy a solution to the temperature issue before a stoppage is needed. 
 

Currently, a semi-manual process is being employed to control the liquid flow melting rate  

using manual valves to cool down (using water) or heat up (using oil) through ingress 

cooling/heating channels. Not only is an excessive scrap rate consequently produced, but also 

the type, size and diagnosis of the defects can vary. In fact, the process itself is extremely delay-

sensitive, therefore, without adequate statistical process control, is clearly inefficient. In order 

to produce high volumes of precision parts, however, other factors that can contribute to the 

die cavity heat distribution should be considered: 
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FIGURE 3: Die Casting Process Parameters and Their Effects 

 

Finally, the recycling process of the defective automotive parts is very costly and time 

consuming. Based on the above, the need for a solution for this problem or even an 

improvement of the current process by reducing the scrap rate by a sufficient percentage is a 

must. In addition, by performing these enhancement actions, Die-Casting foundries could 

achieve a more mature and efficient relationship with large end users. 
 

RELATED WORK  

 

Research and development in the area of die casting is limited but there are some reasonable 

efforts made by the research community around the globe in an attempt to tackle the challenges 

that arise in this domain. Swillo et al, (2013) presents imaging based approaches and neural 

network techniques to capture and categorize surface defects during inspection of cast parts. 

Based on several conditions, such as processing techniques, castings might produce surface 

discontinuities, such as cracks and lack of fill, that greatly impact the material’s properties. The 

developed vision system uses an advanced image processing algorithm based on modified 

Laplacian of Gaussian edge detection method. In addition, neural network techniques have 

been used to detect three groups of defects: namely blowholes, shrinkage porosity and 

shrinkage cavity.  
 

Bonollo et al, (2015) have reviewed the most relevant challenges for the HPDC industry that 

prevent ‘‘zero-defect’’ production. This includes investigation of the real-time process control 

concept and realizing the role of the HDPC process variables and process optimization. They 

suggest that the breakthrough for the HPDC industry is the change from a simple input setup 

to dynamic total quality management. Winkler et al (2015) have produced an intelligent 

cognitive system taking all quality controlling parameters into account to reduce the scrap rates 

in Aluminium high pressure die casting. Their solution has used advanced sensors to monitor 

new process parameters, such as the sound of the shot and pressure sensors inside the cavity. 

The collected sensors data have been stored in a database for further analysis. The data is then 

used to obtain correlations between process parameters and quality characteristics in 

Aluminium high pressure die casting. This research work has added real value to the public 
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domain by demonstrating the effects of incorporating smart devices into traditional processes. 

The system described was validated using a simulation tool called MAGMASOFT (MG, 2018). 

An adaptive learning technique was adopted as the cognitive system for improving the process 

over time.  
 

Haokai & Peijie, (2016) have developed a remote monitoring system for die casting scenarios. 

The developed monitoring system uses sensing equipment for real-time monitoring.  The 

system is connected to remote client computers through industrial networks. Patel et al (2017) 

have studied a number of types of process for HPDC, such as cold chamber die casting and hot 

chamber die casting. In addition, they have identified the major problems which occur during 

the processing of metal alloys, especially aluminium. They state that casting defects are caused 

from material failure, construction errors or as an effect of process parameters. 

 

Ignaszak et al, (2015) focus on the issue of discontinuity in the die casting process and in 

particular in the filling phase. The compactness of their structure is not perfect; the 

discontinuities present in these castings can be classified as porosity, that is shrinkage and gas 

(hydrogen and gas-air occlusions) in origin. The mixed gas and shrinkage nature of porosity 

makes it difficult to identify and indicate the dominant source. Using the “density index” - DI 

to estimate the amount of hydrogen in the melted alloy, is an important step in identifying the 

correct amount of heat needed to melt the alloy. This will help to improve the filling process.   

 

Adke et al, (2014) have used the Taguchi method for design of experiment (DOE) to optimise 

pressure die-casting process parameters and identify the optimal tuning for improving the cycle 

time. There are four major HDPC process machine parameters: namely melting temperature, 

injection pressure, plunger speed and cooling phase. Sequences of experiments have been 

conducted to identify the optimal process parameters to produce high quality products. Their 

findings suggest that the following parameter values (Cycle time is 34 sec for Melting Temp 

700 °C, Injection Pressure 900 bar, Plunger speed 3m/s & cooling time 8 sec) give optimum 

performance for control of porosity. Hangai et al, (2014) have proposed two types of fractal 

analyses to illustrate porosity in terms of the shape of individual pores and the three-

dimensional distribution of multiple cracks.  

 

DIE-CASTING DEFECTS AND THEIR ORIGINS   
 

The complexity of the die casting process stems from the fact that the entire process is 

controlled by multiple variables. These can be environmental factors or process parameters. In 

order to produce a high quality cast part with almost “Zero defects”; these factors and 

parameters need to be optimised and controlled. Therefore, it is essential to identify them and 

find an efficient way to measure and optimise them for the benefit of die casters and OEMs. 

Bonollo et al, 2015 have classified the most common defects (surface defects, internal and 

surface defects, and geometrical defects) and their source as shown in Table 1. Clearly, from 

the table shrinkage, Gas-related and Filling related are the most common defects, therefore, 

there is a clear need to pay more attention to these for current and future solutions.  
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TABLE 1: Classification of HPDC defects and frequency of occurrence (Bonollo et al, 2015) 

Defect subclass 
Frequency of 

Occurrence(%) 

Predictable by 

Simulation? 

Experimental 

validation 

Monitoring 

parameter 

Shrinkage defects 20 Only partially 
X-Rays, 

Microscopy 

Temperature, 

pressure, 

metal front 

sensors 

Gas-related defects 15 No 

No X-Rays, 

Microscopy, 

blister test 

Air pressure, 

humidity 

Filling related 

defects 
35 Yes 

Visual inspection, 

leakage tests 

Air pressure, 

metal front 

sensors, 

temperature 

Undesired phases 5 No Microscopy 
Shot chamber 

sensoring 

Thermal 

contraction defects 
5 Yes 

Visual inspection, 

Microscopy 
Temperature 

Metal-die 

interaction defects 
5 Only partially Microscopy 

Temperature, 

ejection force 

Out of tolerance 5 
By advanced 

simulation 

Visual inspection, 

Metrology 

Geometry 

measures 

Lack of material 5 Yes 
Visual inspection, 

Metrology 

Geometry 

measures 

Excess of material, 

flash 
5 

By advanced 

simulation 

Visual inspection, 

Metrology 

Geometry 

measures 

 

For example, the major defects for the rejections during production were identified as 

shrinkages, inclusions, porosity/gas holes and cracks. The factors that influence the formation 

of shrinkage cavities are shown in Table 2.  

 
TABLE 2: illustrates the major defects for the rejections during production  

Metal Quality 
Pouring 

Condition 
Die Condition Casting Parameter 

Molten Metal 

Quality 

-Solidification range  

-Shrinkage during 

solidification  

-Pouring 

temperature  

-Rate of pouring  

Feeding systems  

-Initial temperature 

of the die.  

-Conductivity of 

the die.  

-Thickness  

Shape.  
-Inclusion content 

 

 

SMART DIE-CASTING: THE NEW APPROACH  

 

As mentioned earlier that the most relevant challenges for die casting industry are: ‘‘zero-

defect’’ production, real-time process control, understanding the role of process variables, and 

process optimization, therefore a holistic approach should be considered as a foundation for 

any solution (Bonollo et al, 2015). Many factors, parameters and variables have an impact on 

the produced automotive part as a result of the die casting process. The aim of this approach is 

to develop a novel smart solution to maintain the thermal and flow process parameters for the 

melted magnesium material inside the die cast mould, in order to manufacture high precision 

die cast products. Key areas to address include, heating and cooling of the die, developing real-

time temperature mapping of the heat distribution in the die with associated control measures, 

and development and validation of a simulation model. 
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A site visit and interview with a leading magnesium die caster in the UK has been conducted 

to understand the environment of the die casting process, capture the requirements and carry 

out essential analysis for the proposed solution (See Figure 4). The concept of distributed 

control systems can be adopted and applied as a possible solution (with a certain degree of 

modifications and customization) into the magnesium die casting process. Historically, this 

type of control systems fall under Industrial Control Systems (ICSs) where several 

subcategories can be identified such as Supervisory Control and Data Acquisition (SCADA) 

systems, Distributed Control Systems (DCS), and other smaller control system configurations 

such as skid-mounted Programmable Logic Controllers (PLC). These systems share several 

common characteristics and patterns from sensing, data collection, data communication, data 

processing and control.  
 

It is necessary to develop a probing/sensing method to measure temperature and other process 

parameters like pressure and filling velocity, in order to sustain the required heat distribution 

inside the die cavity zones. This will require real time measurements for the heat distribution 

rate and the capability of adjusting the temperature accordingly. In case of variation inside the 

die cavity, the system will capture this and instantly trigger an actuator to release the right 

amount of Heating or Cooling by actuating (opening or closing) an appropriate valve to 

maintain the melting flow rate of the metal (e.g. magnesium). To make the system more 

efficient, the die cast chamber will be equipped with various types of sensors to capture the 

required parameters. 

 
FIGURE 4: Smart Die Casting (SDC) Model 

 

The system should predict the possible defect or defects and reduce the amount of excess scrap. 

This can be done by developing a novel intelligent algorithm (i.e. adaptive learning technique), 

for predicting the condition of the part being manufactured using a real-time multi-sensing 
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system. Self-adaptation behaviour is key for self-automation and to reduce human intervention 

as much as possible. It is important to mitigate any variation of the liquid metal temperature as 

it has a direct effect on the quality of the produced part. Obtaining the optimal parameters for 

mitigating a particular defect is a real challenge as different die casting parts have different 

optimized parameters.  
 

SDC MODEL COMPONENTS  
 

The model for the proposed solution (See Figure 4) has eight modules working together to 

achieve the aim of this project: 

  

Sensing module  

Advanced sensors will be used and applied to the HPDC machine process. This could be 

contact or non-contact sensors, it all depends on the outcomes of the current investigation. This 

module will allow the continuous control of the process itself, monitoring and recording the 

evolution of all related variables during the casting cycle. 

 

Communication module  

The communication module provides the required connectivity to send data from the sensing 

module to the controller and sending control messages from the controller to the actuator 

module (closed loop). 

 

Data acquisition  

The data acquisition module is a process of sampling signals that measure real physical 

conditions of the die cast machine and convert the resulting samples into digital numeric values 

(i.e. Analog-to-digital converters, to convert conditioned sensor signals to digital values) that 

can be manipulated by the following module. 

 

Data processing and analytics module  

 

 Filtering /Classification  

 Correlations  

 

Information modelling module  

 

 Dashboard (e.g. Heat Map) 

 Reporting  

 Analysis (Simulation Model) 

 

Decision making module  

At this stage, the processed data from the previous module will be treated as inputs for the 

developed algorithm (statistical /mathematical model) to be considered for its calculations and 

produce an output in form of numerical values that represent what is called a “correction profile 

“.  This can then be matched to one in the knowledgebase if it exists or to generate a new profile 

for the current case of the die, in either case, to be executed instantly based on a prediction 

process. The outcome is then verified, and if the desired outcome is achieved, the newly 

produced profile will be stored in the knowledgebase for later use. 
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PLC Module  

The PLC module will be responsible for controlling the heating/cooling valves by sending a 

control message to the actuators.  The actuators in this case will be a group of electric valves 

that control the water flow for the cooling process and the oil flow for the heating process. The 

PLC based system will use wireless technology (i.e. ZigBee) to interface with sensors that 

interact with the die casting machine. 

 

Actuators module 

This module is responsible for actuating (opening or closing) a valve. Power-operated actuators 

will be used to allow the valve to be adjusted remotely. Power-operated valve actuators may 

be the final elements of an automatic control loop which automatically regulates the water and 

oil flows. An actuator requires a control signal that is sent by the PLC module as well as a 

source of power. 

 

CONCLUSIONS  

 

The die-casting process is a complex engineering manufacturing process, whereby 

understanding the process thoroughly is key to providing a suitable solution for any defect that 

may happen during the operation phase. Tuning the plunger speed to allow molten metal filling 

the sprue at low speed and filling the mould at high speed is best practice. Preventing the 

surrounding air from entering into the die by closing the gate quickly and increasing the 

pressure helps to reduce porosity defects. Installing advanced sensors in the domain of the 

HPDC machine to monitor and control the HPDC process in real time is essential, in order to 

gain insights into process parameters for producing good quality cast parts. Efficient heat 

distribution must be achieved within the cavity by controlling the amount of heating/cooling 

flow over the time of the die casting production phase. From this review, it is clear that 

multidisciplinary research and development work is needed to employ and test new 

technologies (e.g. deep learning and smart sensing) that may help to enhance the quality of the 

die casting in wider manufacturing processes and HPDC scenarios. Finally, there is no doubt 

that innovation support is needed in HPDC foundries, as in most cases they do not have 

sufficient scientific and technological capacity to design and develop such innovative solutions. 
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Abstract 

The automotive industry is increasingly using lightweight materials aiming to achieve vehicle fuel 

economy, less pollution, and better drivability and performance. In this regard, Magnesium with nearly 

half the weight of aluminium, offers great potential. However, due to a number of technical and 

commercial obstacles, Magnesium was not been promoted effectively in the past compared with Steel 

and Aluminium industries. High Pressure Die Casting (HPDC) is a manufacturing process that is 

essential to make components for the automotive industry and widely employed for casting magnesium 

products. Liquid metal is injected into the die at relatively high speed, and under high pressure. HPDC 

is a complicated process, and energy intensive, therefore, numerical modelling, analysis and 

optimization technologies are essential to understand the parameters affecting the process, analyse its 

performance, and to further select the optimum parameters that will lead to a better use of the material, 

less scrap rate, and higher efficiency rates. 

 

Keywords 

Magnesium, Numerical Analysis, Modelling, Die Casting 

 

INTRODUCTION 

 

The UK/International automotive industry is moving towards using lightweight metals rather 

than traditional heavier options such as steel in order to improve vehicle fuel efficiency, reduce 

emissions, and enhance vehicle drivability and performance. The most common material for 

lightweighting automotive parts is aluminium even though it is more than 50% heavier than 

another, more overlooked option, magnesium. Other than that, magnesium has similar 

mechanical properties to aluminium which makes it an auspicious contender in vehicle 

lightweighting. However at the time of writing magnesium prices are nearly double those of 

aluminium which is likely to contribute to the lack of uptake of this material because price is a 

major contributor to most large-scale engineering decisions. At a similar price point, 

magnesium parts are superior to aluminium ones for the majority of automotive applications. 

Assuming that raw material costs remain constant for the foreseeable future then the only 

means of closing the magnesium and aluminium part cost gap would be to optimise the 

magnesium part manufacturing process.  

 

High Pressure Die Casting (HPDC) is a manufacturing process that is currently used to make 

magnesium components for the automotive industry. The process involves injecting molten 

metal into a die at speeds of 30-100m/s, pressures of up to 1200 bar and at temperatures in 

excess of 600°C. HPDC is an incredibly complex process with many in the industry considering 

it more of an art than a science. The complexity of HPDC makes it difficult to obtain consistent 

quality castings, with some manufacturers incurring 25% part rejection rates. 

  

Computational fluid dynamics (CFD) is a tool which is used across many engineering 

applications to model fluid flow; this highly versatile tool allows for relatively low cost and 

non-invasive testing/prototyping to be conducted for any fluid flow and heat transfer 
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application. Post-processing of CFD simulations provides users with both quantitative results 

from data extraction as well as qualitative results through flow visualization. This enables 

problems to be understood in a technical sense but also that results are easier to communicate 

to non-specialized audiences. 

 

The specific thermofluidic aspects of a HPDC process are:  

- Multiphase flow. 

- Convective heat transfer and conduction. 

- Significant viscosity change. 

- Non-Newtonian flow. 

- Phase-change. 

 

The combination of these already complicated thermofluidic processes makes accurate 

modelling of HPDC challenging and more computationally expensive than single phase, 

isothermal flows due to the greater number of equations that require solving. In this chapter, 

the authors will introduce commonly-used CFD simulation methods that are used to model the 

HPDC process, explain the challenges in simulating these flows and discuss the limitations and 

abilities of current verification/validation practices.  

 

CFD SIMULATION METHODS: 

 

CFD is not a panacea for the prevention of defects in HPDC. As stated above, CFD has many 

excellent capabilities such as controlling input parameters, extracting data and visualizing 

flows which would be impossible to do, or at best unfeasible, experimentally. However 

numerical modelling has many potential sources of error and inaccuracy. Simulations require 

assumption of fluid properties/flow behaviour to be made which may have significant effects 

on the physicality of the results. Numerical modelling can capture filling-related defects, excess 

of material and thermal contraction defects (Bonollo et al., 2015). CFD can solve for 

instantaneous flow and thus can capture the nature of transient flow, model heat transfer and 

deal with phase interactions.  

 

Some issues cannot be captured by CFD such as undesirable phases being present, gas-related 

defects or whether the part is out of tolerance. However, there is a limit to the size of the flow 

scale that can be achieved. It cannot determine the microstructure of the cooled metal, nor can 

it model the small-scale defects. CFD methods are largely used for filling simulations and to 

determine whether cooling flows exist. It is advantageous that CFD allows users to control the 

inputs; however, HPDC can be so variable that defining the accurate inputs can be challenging.  

This section presents an introduction to the Volume of Fluid (VoF), Smoothed Particle 

Hydrodynamics (SPH), and Lattice-Boltzmann methods (LBM), which are three of the most 

commonly used CFD methods for HPDC applications.  

 

Volume of Fluid 

The VoF approach models the free surface interaction between two, or more, fluids. The 

method uses both Lagrangian and Eulerian coordinates. It is also understood that in fluid 

dynamics modelling, any materials interface including those with deformable structures should 

be modelled as free boundaries. Using Lagrangian coordinates for fluid modelling is considered 

by dividing the domain into elements that remain identified for the whole solution time. On the 

contrary, in the Eulerian representation, each element’s body and surface should be computed 

at each time step, in order to compute the flow of the fluid through the mesh (Hirt and Nichols, 

1981).  
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In this respect, the marker particle method is used to track the interface movement and 

deformation offering accurate results in two-dimensional problems, but it can suffer from the 

need for huge computational overhead when dealing with three-dimensional problems. 

Alternatively in VoF, only one value is used for each variable to define the fluid state which 

results in significantly reduced computational expense and memory requirements. Also, 

because VoF follows regions rather than surfaces, all problems associated with intersecting 

surfaces are avoided. As a result, VoF is shown as a flexible and efficient method that can deal 

with a variety of complicated boundaries Cleary et al. (2002). An important feature of VoF 

methods is that contact angles are imposed geometrically, which means that interface angles 

are considered as boundary condition which again help to reduce computational needs.  

 

VoF method was used by Mahady et al. (2015) to simulate fluid/fluid interfaces with solid 

boundaries. The model was used to describe the wetting and de-wetting of fluids on substrates 

characterised by random contact angles. Models were successfully validated by comparing 

numerical results with the Cox–Voinov law for drop spreading. In other work, VoF approach 

was used by Saeedipour at al. (2014) to model the global spreading of liquid metal jet in the 

high pressure die casting, with an Eulerian-Lagrangian framework to track the droplets after 

formation. Destination has to be calculated very carefully, as wavy destination can result in 

cold shut defect, while high atomization can increase the porosity. Validation of the numerical 

modelling was performed using water analogy to capture the flow regime changes and drop 

formation, with a very good agreement between experimental and numerical results being 

shown. 

 

An optimization of the HPDC process was conducted by Kong et al. (2008). The die 

temperature profiles were monitored by infrared thermograph technology and the internal 

cooling system was optimized to provide even cooling to the components and the die. Cooling 

channels were redesigned to improve the cooling efficiency and reduce the cooling time. It can 

be seen from (figure 1) that the temperature is higher in the central area of the die compared 

with the surrounding areas as the heat is trapped and conduction to the cooling pipes is slow. 

It is evident that the highest temperature with long cycle time, is lower than that with a shorter 

cycle time. 

 

 
 

FIGURE 1: Thermal images when die is open (a) with longer cycle time and (b) with shorter cycle time (Kong 

et al., 2008). 
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Homayonifar et al. (2008) used novel methods to calculate splash droplet trajectories and 

regions of ‘trapped’ air from VoF and single-phase simulations, respectively. The droplet 

trajectories were calculated using pressure, drag, and gravitational forces once the droplet was 

‘released’ from the free-surface VoF simulations. Locations of air entrapment/porosity were 

modelled using single-phase CFD simulations. Single-phase simulations lack the capability to 

capture larger, macro-scale bubbles in a fluid. The mass fraction of air was modelled using a 

scalar transport equation, which gave the capability to calculate the presence of smaller bubbles 

in a fluid. 

 

VoF methods are very popular when it comes to modelling metal flow in HPDC. This is mainly 

due to ease of implementation through commercial software packages such as Magmasoft and 

Flow-3D (Hirt and Nichols., 1981, Mahady et al., 2015). VoF can be used for simple HPDC 

approaches but the inclusion of moving parts would be more cumbersome than other 

approaches due to the requirement for a computational mesh. The stability of VoF is also highly 

dependent on mesh quality which can become poor at regions of complex geometry. 

 

Smoothed Particle Hydrodynamics 

SPH is a Lagrangian-based fluid modelling approach where the positions/velocities of a 

collection of particles are used to represent bulk fluid movement. SPH is a commonly-used 

method to simulate HPDC for a number of reasons including the potential speed-up of 

simulations over conventional finite volume method simulations, the meshless capability 

which allows for the flow through complex geometry to be simulated, and the implicit 

conservation of mass, energy and momentum, which aid numerical stability. 

 

When the influence of air is neglected in multiphase simulations, SPH can be considered more 

efficient than conventional CFD methods because only the particles that represent the denser 

phase require modelling. Mesh-based CFD methods are able to concentrate meshes in certain 

areas to reduce computational cost but for spatially varying flows this can be highly inefficient. 

Adaptive meshes provide an alternative, where meshes are dynamically-refined in ‘regions of 

interest’ such as high strain rate. The drawback of dynamic mesh refinement is the 

computational overhead of ‘remaking’ the mesh during the simulation process which can be 

prohibitively expensive. SPH allows engineers and researchers to capture regions of flow 

interest without wasting computational effort on unnecessary cells or remaking meshes.  

 

For highly-complex geometries mesh-based techniques often produce poor quality meshes and 

thus inaccurate or unstable simulations. Because SPH is meshless, fluid flow around 

complicated geometries can be simulated with relative simplicity. There is some evidence to 

support the fact that 50 times fewer particles than adaptive mesh cells can produce similar 

results (Liu and Liu, 2003). However, this has not been verified for all applications. The 

computational overhead of SPH simulations scales with NlogN, where N is the number of 

particles.  

 

Lattice-Boltzmann Method 

The LBM is a non-standard CFD approach which solves the discrete Boltzmann equation using 

particle collision models to simulate fluid flow. LBM considers the flow on a mesoscopic scale 

with probability distribution functions being solved to obtain fluid properties. The LBM 

method has an advantage over other CFD methods in that it was specifically designed to run 

efficiently on parallel architectures, such as GPUs and hetero- and homogenous 

supercomputing clusters. This level of efficiency means that complex fluid-flow problems such 
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as fully resolved multi-phase flow with small droplets and bubbles can be modelled with 

greater accuracy when using similar resources with Finite Volume Method (FVM) simulations.  

Practical engineering CFD simulations based on FVM often require highly complex meshes 

which can take hours, or sometimes days, to produce. The lattices used for LBM are 

comparatively simpler and are considered to require a much lower fraction of the computational 

cost. 

 

HPDC MODELLING CHALLENGES 
 

In order to create physically representative simulations, accurate input data is first required. In 

many cases the inputs to numerical simulations are approximated to make the modelling 

procedure easier or because they are unknowns. Examples of this are assumptions of uniformity 

of mass flow rate into the die and die face temperatures. Another challenge is associated with 

the fact that viscosity is a function of temperature, where the molten metal becomes 

increasingly viscous as temperature approaches its freezing temperature. Detailed viscosity vs 

temperature and heat transfer vs temperature information is not always available for all alloys 

so assumptions of behaviour must be made. Between castings, the HPDC die face is sprayed 

with a lubricant to prevent the part from ‘sticking’. The addition of this lubricant will have 

some influence on heat transfer between the fluid and the wall, as well as the shear forces on 

the wall. 

  

VERIFICATION AND VALIDATION 
 

Verification and validation experiments are essential in order to ensure that simulation results 

are both physical and accurate. In this instance, simulation verification is referred to as the 

means of ensuring that simulations are ‘consistent’ i.e. that the results don’t change between 

two similar simulations. In FVM, this is performed using mesh sensitivity studies, where users 

determine whether an initial mesh has the capability to resolve flow features of importance by 

using a finer mesh. Mesh refinement is continued until flow properties are comparable between 

at least two simulations of different mesh densities. 

 

For simulations of HPDC using the VoF approach, mesh sensitivity is used for verification. In 

SPH simulations, the user increases the number of particles which represent the fluid (or each 

fluid) and compares the results. If the results of two simulations with different particle numbers 

are comparable then the particle number can be considered ‘consistent’. Once the simulation 

results have reached this stage, then validation against physical experiments can be performed. 

A point to note here is that for die filling simulations, the number of particles in a simulation 

will increase with time because the amount of fluid is increasing. Validation can take a number 

of forms such as comparing flow variables at specific locations and/or times as in the physical 

experiments. This approach would be considered as quantitative which means that there are 

exact values to compare. Quantitative data can be very hard to obtain because of the cost of 

measurement equipment, potential interference with the flow and potential damage to 

equipment due to very high temperatures involved in HPDC.  

 

On the other hand, qualitative validation is very popular due to its ‘user friendly nature’ and 

often takes the form of comparing flow images at different times during simulation/experiment. 

Due to the fact that the HPDC dies are made from high-strength, opaque materials, flow 

visualisation becomes challenging. One alternative is to perform a water filling experiment 

with a transparent die (Cleary et al., 2010), however fluid viscosity, phase change and heat 

transfer are all neglected in this method. The second alternative is to perform ‘short-shot’ 
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castings and simulations (Cleary et al., 2006) which provide a view of the fluid simulations 

after the event but fail to show the transient behaviour that could be obtained from quantitative 

methods. In the cases discussed above, only qualitative validation is performed. Qualitative 

validation allows for easy understanding of the results however it makes quantification of the 

differences between experiments and simulations very difficult. 

 

CONCLUSIONS  

 

In this chapter, it has been explained that it is advantageous to use CFD to understand, analyse, 

and further optimize the HPDC process. The common CFD methods that are used to model the 

process were listed and explained. Furthermore, the challenges that are facing the numerical 

modelling of this complicated process were mentioned, while methods used for the verification 

and validation of the developed models were summarized.   
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The book has been produced as a result of long term relationships with several partners within 

industry through robust collaboration programmes such as the exclusive partnership between 

Birmingham City University and Meridian Lightweight Technologies UK – the world’s largest 

producer of magnesium die cast components. Since forming in 2016, with a group visit to the 

factory, the strategic alliance has seen the two organisations work together in education, 

research and development of magnesium use and now, how digital technologies can push 

business growth through increased productivity and sustainability within its core using Industry 

4.0 technologies. Further, the partnership, also builds on the heritage of Birmingham City 

University as a catalyst for growth among regional industries through both knowledge transfer 

and by offering a unique, interdisciplinary approach.  

 

From a strategic perspective, BCU and through the Faculty of Computing, Engineering and 

Built Environment seeks to identify new ways to offer more sustainable products, services and 

business models for manufacturers and their potential clients. This book looks to highlight the 

potential of Industry 4.0, by showcasing it as a viable alternative for the manufacturing sector, 

including the automotive industry. The strength of the book lies in its levels of collaboration 

and partnership which spans both academic and professional staff, and the undergraduate and 

post-graduate student body of Birmingham City University. Strategically, the project aligns 

with Birmingham City University’s institutional commitment to STEAM-based learning 

(STEM with Arts-based subjects).  

 

STEAM is designed to drive an increasingly enterprise-focussed education, developing 

employability and entrepreneurship skills. The challenges set by Industrial partners clearly 

demonstrate how arts and creativity can be combined with STEAM subjects to drive 

innovation, skills, research and economic growth and facilitate innovative solutions to new 

business ideas, products and services. The purpose of the book is to explore the importance of 

industry 4.0 as a digital enabler for the manufacturing sector – showcasing it as a strategic 

move, especially for car manufacturers and the aerospace industry in terms of productivity, 

business growth and sustainability. This book represents a welcome enhancement to our 

teaching and learning, and will serve to capture creative and innovative practice that can be 

shared across the industry community.  

 

Birmingham City University is the University ‘for’ Birmingham. We strive to realise our 

vision to transform the region by accelerating business growth and employability within the 

local economy. This can be achieved by delivering: practise-based research and knowledge 

transfer, business growth expertise and support activities, a highly-skilled, work-ready 

graduate workforce and interdisciplinary academic and industry collaborations. BCU and 

through its business enabler arms such as ‘The Institute for Sustainable Futures (iSF)’, will 

connect businesses and organisations with Birmingham City University’s academic experts 

and specialists to help them drive unique practise-based research, new knowledge and 

innovative solutions to their real-world business or societal challenges. 
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BCU academic experts support regional SMEs and businesses by creating and delivering a 

portfolio of business growth activities from one to one business analysis and consultancy to 

workshops, knowledge transfer partnerships and higher and degree apprentices. In addition, 

they work with regional SME leaders to identify the skills their businesses need to achieve their 

growth objectives and deliver bespoke skills solutions that match their business needs to 

highly-skilled work-ready graduates and/or employee up-skilling and training opportunities. 

 

STEAMhouse is BCU’s new centre aimed at encouraging the collaboration of the arts, science, 

technology, engineering and maths (STEAM) sectors. Interdisciplinary collaborations 

at STEAMhouse help entrepreneurs, SMEs and organisations with strong business ideas but a 

lack of knowledge, skills or resources to ‘plan it, make it and commercialise it’. More than a 

makerspace, STEAMhouse is a melting pot of technology, facilities, expert knowledge and 

specialist skills that put the Arts into STEM to drive business innovation and regional growth. 

 

Partnership with local and global organisations in order to develop cutting-edge expertise is at 

the heart of our approach to making our teaching and research vital to the evolving market for 

digital and technical skills.    BCU research has developed technologies and solutions in a 

number of areas including digital media, data analytics, cybersecurity, wireless sensor 

networks and engineering which are being applied in Smart Cities, Digital Health, Digital 

Productivity, Creative Industries and Advanced Manufacturing (Industry 4.0). 

 

We at BCU are committed to transferring the expertise, technology and skills that our research 

and innovative practice has helped us to develop, to external organisations with the aim of 

embedding new innovation and skills to improve our partners’ performance.  We work with 

our partner organizations to enable them to drive innovation and new business ideas to sharpen 

their competitive edge.  With our help they can get the additional skills and knowledge required 

to help with business growth.  

 
FIGURE 1: Birmingham City University Academic Team and The Institute of Sustainable Futures (iSF) visit to 

Meridian Lightweight Technologies UK for the official launch of the project in April 2018 
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