Content-aware QoE Optimization in MEC-assisted Mobile Video Streaming

Rahman, Waqas ur and Huh, Eui-nam (2023) Content-aware QoE Optimization in MEC-assisted Mobile Video Streaming. Multimedia Tools and Applications. ISSN 1380-7501

s11042-023-15163-w.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB)


The traditional client-based HTTP adaptation strategies do not explicitly coordinate between the clients, servers, and cellular networks. A lack of coordination leads to suboptimal user experience. In addition to optimizing Quality of Experience (QoE), other challenges in adapting HTTP adaptive streaming (HAS) to the cellular environment are overcoming unfair allocation of the video rate and inefficient utilization of the bandwidth under the high-dynamics cellular links. Furthermore, the majority of the adaptive strategies ignore important video content characteristics and HAS client information, such as segment duration, buffer size, and video duration, in the video quality selection process. In this paper, we present a content-aware hybrid multi-access edge computing (MEC)-assisted quality adaptation algorithm by taking advantage of the capabilities of edge cloud computing. The proposed algorithm exploits video content characteristics, HAS client settings, and application-layer information to jointly adapt the bitrates of multiple clients. We design separate strategies to optimize the performance of short and long duration videos. We then demonstrate the efficiency of our algorithm against client-based solutions as well as MEC-assisted algorithms. The proposed algorithm guarantees high QoE, equitably selects video rates for clients, and efficiently utilizes the bandwidth for both short and long duration videos. The results from our extensive experiments reveal that the proposed long video adaptation algorithm outperforms state-of-the-art algorithms, with improvements in average video rate, QoE, fairness, and bandwidth utilization of 0.4%-12.3%, 8%-65%, 3.3%-5.7%, and 60%-130%, respectively. Furthermore, when high bandwidth is available to competing clients, the proposed short video adaptation algorithm improves QoE by 11.1% compared to the long video adaptation algorithm.

Item Type: Article
Identification Number:
13 March 2023Accepted
4 April 2023Published Online
Uncontrolled Keywords: Mobile edge computing, HTTP-based video streaming, Adaptive streaming, Quality of experience, Streaming media,
Subjects: CAH11 - computing > CAH11-01 - computing > CAH11-01-02 - information technology
Divisions: Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology
Depositing User: Waqas Rahman
Date Deposited: 26 Apr 2023 14:17
Last Modified: 11 Jun 2024 14:58

Actions (login required)

View Item View Item


In this section...