Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems

Palomar, Esther and Chen, Xiaohong and Liu, Zhiming and Maharjan, Sabita and Bowen, J.P. (2016) Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems. Sensors, 16 (11). pp. 1-20.

[img]
Preview
Text
Component-Based Modelling for Scalable Smart City Systems Interoperability A Case Study on Integrating Energy Demand Response Systems.pdf

Download (622kB)

Abstract

Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

Item Type: Article
Uncontrolled Keywords: smart city system modelling; component-based architecture design; component system interoperability and coordination; scalable modelling; cooperative demand response
Subjects: G400 Computer Science
Divisions: Faculty of Computing, Engineering and the Built Environment
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology > Cyber Security
UoA Collections > UoA11: Computer Science and Informatics
Depositing User: $ Ian McDonald
Date Deposited: 12 Jan 2017 11:35
Last Modified: 12 Jan 2017 11:35
URI: http://www.open-access.bcu.ac.uk/id/eprint/3805

Actions (login required)

View Item View Item

Research

In this section...