Charge Estimation of Piezoelectric Actuators: A Comparative Study

Mohammadzaheri, Morteza and AlSulti, Sami and Ghodsi, Mojtaba and Soltani, Payam (2023) Charge Estimation of Piezoelectric Actuators: A Comparative Study. Eenrgies, 16 (10). ISSN 1996-1073

energies-16-03982.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB)


This article first reviews the position control of piezoelectric actuators, particularly charge-based sensorless control systems, which often include a charge estimator as a key component. The rest of the paper is about charge estimators for piezoelectric actuators. Two of the most recent/effective types of these estimators utilise either a sensing capacitor (type I in this paper) or a sensing resistor (type II); the latter (and the newer) type is broadly known as a digital charge estimator. Some experimental results in the literature show that, with the same loss in excitation voltage, a considerably higher amount of charge can be estimated with a type II estimator in comparison with a type I estimator; therefore, the superiority of type II estimators was acknowledged. In order to re-assess this conclusion, this paper equitably compares type I and II estimators through analytical modelling and experimentation. The results indicate that type II estimators have only a slight advantage in estimating higher amounts of charge, if both type I and II estimators are designed appropriately. At the same time, type II estimators have disadvantages; e.g., the resistance of type II estimators has to be tuned to suit different excitation frequencies. This research concludes that capacitor-based (type I) charge estimators for piezoelectric actuators, with pertinent design and implementation, can be still the prime solution for many charge estimation problems despite claims in the literature in the last decade.

Item Type: Article
Identification Number:
6 May 2023Accepted
9 May 2023Published Online
Uncontrolled Keywords: piezoelectric, charge, actuator, capacitor, digital, resistor, nanopositioning
Subjects: CAH00 - multidisciplinary > CAH00-00 - multidisciplinary > CAH00-00-00 - multidisciplinary
CAH10 - engineering and technology > CAH10-01 - engineering > CAH10-01-02 - mechanical engineering
CAH10 - engineering and technology > CAH10-01 - engineering > CAH10-01-08 - electrical and electronic engineering
Divisions: Faculty of Computing, Engineering and the Built Environment > School of Engineering and the Built Environment
Depositing User: Morteza Mohammadzaheri
Date Deposited: 09 May 2023 13:58
Last Modified: 09 May 2023 13:58

Actions (login required)

View Item View Item


In this section...