A Fuzzy GPSR Route Selection Based on Link Quality and Neighbor Node in VANET

Aljabry, Israa A. and Al-Suhail, Ghaida A. and Jabbar, Waheb A. (2021) A Fuzzy GPSR Route Selection Based on Link Quality and Neighbor Node in VANET. In: 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE), 1st - 2nd November 2021, Sana'a, Yemen.

[img]
Preview
Text
ITSS-IoE_2021_CameraReady_PDFeXpress_130.pdf - Accepted Version

Download (590kB)

Abstract

Over recent years, a new technology named VANET (Vehicular Ad-hoc Networks) is highly recommended in smart cities and especially in Intelligent Transportation Systems (ITS). The VANET technology relies on the nodes acting like cars without the necessity for any controller or central base station by creating a wireless link among them. It enables cars to send and receive information between themselves and their environment. most VANETs utilize position-based routing protocols because they contain a GPS device. To deal with VANET problems, one solution is Geographic Perimeter Stateless Routing (GPSR) which has been broadly implemented. This paper suggests an effective intelligent fuzzy logic control system; called the FL-QN GPSR routing protocol. The proposed routing protocol incorporates two metrics link quality, and neighbor node to detect the best next-hop node for packet forwarding also updates the format of the Hello message by adding the direction field to be more suitable to our simulation. The OMNeT++ and SUMO simulation tools are both used in parallel to examine the VANET environment. The obtained results of the four simulation experiments in urban environments indicate substantial improvements in the network performance compared to the traditional GPSR and AODV concerning the QoS parameters.

Item Type: Conference or Workshop Item (Paper)
Identification Number: https://doi.org/10.1109/ITSS-IoE53029.2021.9615323
Dates:
DateEvent
10 September 2021Accepted
25 November 2021Published Online
Uncontrolled Keywords: Wireless communication, Fuzzy logic, Base stations, Wireless sensor networks, Vehicular ad hoc networks, Tools, Routing
Subjects: CAH10 - engineering and technology > CAH10-01 - engineering > CAH10-01-08 - electrical and electronic engineering
Divisions: Faculty of Computing, Engineering and the Built Environment > School of Engineering and the Built Environment
Depositing User: Waheb Abdullah
Date Deposited: 03 Jan 2023 14:27
Last Modified: 03 Jan 2023 14:27
URI: https://www.open-access.bcu.ac.uk/id/eprint/14050

Actions (login required)

View Item View Item

Research

In this section...